8负阻转换电路及RLC电路的方波响应

合集下载

负阻抗变换器及其应用

负阻抗变换器及其应用

负阻抗变换器及其应用一、实验目的1.了解负阻抗变换器的组成原理。

2.学习测试负阻变换器的特性。

3.进一步研究二阶RLC 电路的动态响应,扩展负阻抗变换器的应用。

二、原理说明1.用运算放大器组成电流倒置型负阻抗变换器的原理。

图6-4-2-1(a )虚线框所示的电路是一个用运算放大器组成的电流倒置型负阻抗变换器,6-4-2-1(b )、(c)为其等效电路及电路符号。

由于运放“+”端和“—”端之间为虚短路,且运放的输出阻抗为无穷大,故有:UpUn = 即 12U U = 而运放的输出电压0U 为:0131242UU I R U I R -=-= 得: 3142IR I R = 又因: 13II = ,24I I = 得:1122IR I R = 根据图6-4-2-1所示的2U 与2I 的参考方向可知:22LU I Z =-因此电路的输入阻抗:12121221L L in U U R Z Z KZ R I R I R =-===- 12R K R =称为电流增益负阻抗变换器的电压电流及阻抗关系如下:21UU = ,21I KI = ,L in Z KZ =-Z L+-U 2z i.+-.U .1.(b)+-(a )图6-4-2-1 电流倒置型负阻抗变换器可见,这个电路的输入阻抗的负值,也就是说,当负载端接入任意一个无源阻抗时,在激励端就得到一个负的阻抗元件,简称负阻元件。

在本装置中令 12R R R == ,则1K =,L in Z Z =-(1)若L Z 为纯电阻R ,则in Z R =-称为负电阻,如图6-4-2-2(a )所示.i 1+--R -图6-4-2-2 纯负电阻电路纯负电阻伏安特性是一条通过坐标原点且处于2、4象限的直线,如图6-4-2-2(b )所示,当输入电压u1为正弦信号时,输入电流1Iy 与电压u1相位相反,如图6-4-2-2(c )所示。

(2)若L Z 为纯电容,即:1L Z j Cω=则:1L in Z Z j L j Cωω==--=,(这里21L Cω=) (3)若L Z 为纯电感,即:L Z j L ω=则:1L in Z Z j L j Cωω=-=-=,(这里21C L ω=)2.负阻抗变换元件(-Z )与普通的无源R 、L 、C 元件Z’作串、并联时,其等值阻抗的计算方法与无源元件的串、并联计算公式相同,即:+-.U.(c)+-i 1u 1(b)i 1u 1i 1u 1(c)Z 串Z Z '=-+ Z 并ZZ Z Z '-='-+3.应用负阻抗变换器,可以构成一个具有负内阻的电压源,其电路如图6-4-2-3(a)所示。

RC电路的方波响应

RC电路的方波响应

t
tp U1=U2e
零输入响应 全响应
2tp U2=Up-p+(U1Up-p)e
解方程组

C
tp

+
CH1
+
10k
ui
uo
CH2


0 蓝——ui 红——uo
t
图5 图6
三、实验任务与方法 3、观察耦合电路( tp )的输出波形 按图7连接实验线路。其中C取1F,ui波形仍同任务1, 在坐标纸同一坐标平面上绘制ui和uo的波形图(1幅图) 。 (波形参考图8)
红C红tp来自U S i (t ) e R
图1
观察uC和i的波形,需要慢扫描 示波器或数字存储示波器。在现有 U S 实验条件下为便于观察并记录uC和i U S 的波形,本实验借助方波激励下RC R 一阶电路的重复性过渡过程,实际 上所观察到的是RC一阶电路在方波 0 激励下的稳态响应。
i
图2
uC
t
三、实验任务与方法 1、观察RC电路的过渡过程 按图3连接实验线路。其中C分别取 0.01 F , 0.033 F 和 1 F ,在坐标纸同一坐标平面上绘制三个不同C值下的
ui , uo 的波形图(共1幅图)。
激励信号ui参数:正方波、200Hz、6V峰-峰值,如图4

10k
+ ui 图3

ui / V
6
CH1
C
+ uo -
CH2
tp
0


图4
t/s
三、实验任务与方法 2、观察微分电路(
= t p )的输出波形
按图5连接实验线路。其中C取 0.01 F ,ui波形同任务1, 在坐标纸同一坐标平面上绘制ui和uo的波形图(1幅图) 。 (波形参考图6)

8-3 RC电路的方波响应

8-3 RC电路的方波响应

电路理论RC电路的方波响应RC 电路的方波响应电压源激励输出波形为正方波的周期信号。

toS u UT 2T 4T 3T 5T(0)0c u −=正方波激励下的响应会有什么特点呢?RC 电路的方波响应toS u UT 2T 4T 3T 5T(0)0c u −=直流激励响应零输入响应正方波的激励下的响应⎧⎨⎩T > 5τ情况,在T 期间达到稳态T < 5τ情况,在T 期间未达到稳态toS u UT 2T 4T 3T 5T直流激励响应零输入响应−−==s c cC u u U u i R R由于T >5τ,则有电路在发生换路后的T 时间后都能达到稳态。

直流电源激励下的零状态响应:零输入响应:u s = U ,u c 由0 →u s = Ui c 由0→U Ru s = 0,u c 由U →0i c 由0−→UR0−=cC u i R电容初始电压为0,电容充电:电容初始电压为U ,电容放电:−−==s c cC u u U u i R R由于T >5τ,则有电路在发生换路后的T 时间后都能达到稳态。

直流电源激励下的零状态响应:零输入响应:u s = U ,u c 由0 →u s = Ui c 由0→U Ru s = 0,u c 由U →0i c 由0−→UR0−=cC u i R电容初始电压为0,电容充电:电容初始电压为U ,电容放电:toUT 2T 3Tu CtoT 2T 3TCi U R-U RtoUT 2T 3Tu S零状态响应零输入响应零状态响应由于T <5τ,电路u s =U 、u s =0 下的响应均不能达到稳态。

电路需要经历若干个周期的后才能逐渐进入稳态。

分析进入稳态后电路的响应:toUT 2T 4T 3T 5T 6T 7T Cu Su S u Cu 2U 1U tU n TC u 2U 1U (n+1)T (n+2)T (n+3)TSu 电路处于全响应和零输入响应交替变化中。

RC串联电路的方波响应

RC串联电路的方波响应

RC串联电路的方波响应实验目的:1. 探究:当一列占空比为50%的方波输入RC串联电路时,会有什么样的输出波形?2. 熟悉示波器和信号发生器的应用;3. 回顾电容的充放电过程,加深对电容性能的认识。

实验器材:数字信号发生器、数字示波器、电阻、电容、数字万用表实验电路:图一图二实验内容:1. 选择的电阻与电容值分别为:R=10KΩ,C=4.7uF;2. 低通RC电路的研究:a. 按照图一所示连接电路,V1连接信号发生器,V2连接示波器;b. 用信号发生器发出Vpp=10V,占空比为50%,频率为1KHz的方波,观察信号发生器的输出信号;c. 改变输入波形的频率,并记录输出波形及对应频率的输出信号的Vpp;3. 高通RC电路的研究:a. 按照图二所示连接电路,V1连接信号发生器,V2连接示波器;b. 用信号发生器发出Vpp=10V,占空比为50%,频率为1KHz的方波,观察信号发生器的输出信号;c. 改变输入波形的频率,并记录输出波形及对应频率的输出信号的Vpp; 实验结果记录及分析:低通RC电路实验结果如下:高通RC电路实验结果如下:分析:在两个电路中,τ=RC=0.047s ,T w =0.5*T=0.5*1/f,当f=10.63Hz时,T w=τ一.低通电路当f=1Hz时,因为τ<<T w,,电容的充电速度很快,因而图1中电容电压应该出现陡峭上升,且电容两端电压上升到输入电压值的时候,电压完全加在电容两端,输出电压维持不变。

当方波电压下降时,输入端电压为0,电容两端迅速放电,两端电压陡峭下降,因而输出信号和方波应该会比较接近。

实验中所得到的图像,由于示波器打在了AC档而出现了微分现象。

f=10Hz时,τ≈T w,电容充放电的速度变慢,不能突变,所以不再像方波;10Hz<f<100Hz时,电容缓慢充放电,不能突变,所以不再像方波,处在方波到三角波的过渡阶段,而且不到最大值便开始放电;100KHz>f>100Hz时,τ>>T w,由于频率的增高,输出信号更加趋近于三角波;当f>100K时,因为频率太高,电容两端电压更加小,而且基本没有规律。

电路实验(仿真).doc-重庆邮电大学主页

电路实验(仿真).doc-重庆邮电大学主页

实验一RLC电路的阶跃响应一.实验目的1.观察并分析RLC二阶串联电路对阶跃信号的响应波形。

2.了解电路参数RLC数值的改变会产生过阻尼、临界阻尼和欠阻尼3种响应情况。

3.从欠阻尼情况的响应波形,读取振荡周期和幅值衰减系数。

二.原理及说明1.跟一阶RC电路实验相同,我们仍用占空率为1/2的周期性矩形脉冲波输入图1-1的RLC串联电路。

当这脉冲的持续时间和间隔时间很长的时候,就可认为脉冲上升沿是一个上升阶跃,而下降沿是一个下降阶跃。

由于阶跃是周期性重复现的,所以在示波器上能观察到清晰、稳定的响应波形。

图1-1 RLC串联电路2.三种阻尼状态的上升阶跃的响应和下降阶跃的响应如下表:表1-11.从表1-1中可见,电路在欠阻尼态时,电容电压对上升阶跃的响应公式是)]sin(1[0φωωωα+-=-t e A u tc , 对下降阶跃的响应公式是 )sin(0φωωωα+=-t e A u t c 。

所以我们可知阶跃响应的波形大致如图1-2所示。

为了判别这种幅值衰减振荡的衰减速度,我们看两个相邻的同向的振幅之比 值,它等于 T T tt e Ke Ke ααα=+--)(/ (1-1)这比率称为幅值衰减率,对其取对数,有T e Tαα=ln (1-2)ln 1ln 1Te T T ==αα(相邻幅值之比) (1-3)这里α称为幅值衰减系数。

图1-2 衰减的正弦振荡曲线三.实验设备安装有Multisim 软件的电脑一台四.实验内容及步骤1.运行Multisim 软件2.计算元件参数,其中R为5KΏ的可调电阻,添加电子元件、脉冲信号源以及接地符号。

3.修改脉冲信号源占空比50%,频率为10KHz,幅高A=2V。

3.连接电路并加入虚拟双通道示波器,虚拟双通道示波器分别接输入信号和输出信号Uc ,修改输出信号线颜色。

4. 调整可调电阻 R>2CL,让电路处于过阻尼状态,进行仿真,通过示波器观察电容上电压Uc 的阶跃响应波形,并记录上、下阶跃的响应曲线。

设计性实验项目1:RC电路的方波响应

设计性实验项目1:RC电路的方波响应

设计性实验项目1: RC 电路的方波响应一、 实验目的1. 初步掌握设计性实验的设计思路和方法,能够正确自行设计电路,选择实验设备;2. 通过实验加深对一阶动态电路的理解;3. 进一步熟悉示波器的使用方法。

二、设计要求1. 根据实验室条件,自行确定实验方案;2. 根据自己的方案,设计出具体的实验线路;3. 确定实验的方波信号的周期T 的大小;4. 实验分RC >>2T ,RC =2T ,RC <<2T 三种情况进行测量u C (t ),i (t )的波形。

5. 预习要求:预习有关理论,写出实验方案、实验步骤,设计出实验电路,选好实验设备和器材。

三、设计提示1. 对 RC 一阶电路,当激励源为方波信号,只要电路的参数和方波的周期满足一定的数量关系时,在方波的上升沿,相当于电路接通阶跃信号,电路的响应为零状态阶跃响应;在方波的下降沿,相当于电路的储能元件具有初始能量且输入为零,电路的响应为零输入响应。

2. 实验仪器与器材方波信号发生器1台,电阻若干,电阻箱1只,电容1只,示波器1台四、实验注意事项1. 注意方波信号源的周期选取时,要与实验室提供的电阻、电容相匹配。

2. 设计电路的参数时,应注意尽量选用标准的电阻和电容。

3. 当测量)(t i 波形时,注意取样信号的获得。

五、实验报告要求1. 在标准的坐标纸上,按比例画出各种情况下观察的波形。

2. 要写明输入方波的幅值、宽度和频率。

六、思考与总结1. 能否利用RC 的方波响应曲线,测出RC 电路的时间常数 ?2. 根据理论计算,画出RC 电路在方波信号的理论响应曲线,并与实际测量的响应曲线比较,加以讨论。

3. 设计总结设计性实验项目2: 用谐振法测量互感线圈参数一、实验目的1、 初步掌握设计性实验的设计思路和方法,能够正确自行设计电路,选择实验设备;2、 通过实验加深RLC 串联电路谐振的条件和特点;3、 进一步熟悉示波器的使用方法。

电路分析基础_第18讲(ch8LC振荡电路和RLC电路的零输入响应)解析

电路分析基础_第18讲(ch8LC振荡电路和RLC电路的零输入响应)解析
4、[3/4T,T] :L放电,C充电,磁场能向电场能转 化。
四、结论:
纯LC电路,储能在电场和磁场之间往返转移, 产生振荡的电压和电流。振荡是等幅的。
若回路中含有电阻,还是等幅振荡吗?
82 RLC串联电路的零输入响应——过阻尼情况
t = 0 + uL -

uR-
L C
iL + _uC
已知 uC(0) = U0 iL(0) = 0
或Leabharlann R21解答形式为:
2L LC
uC (t) K1e1t K2e2t
响应属于过阻尼(非振荡)情况
83 RLC串联电路的零输入响应——临界阻尼情况
当 = 0时, 即 R 2 1 或 R 2
2L LC
L时
C
s1 s2
齐次方程解: K1、K2由初 始条件确定
uC (t) (K1 K2t)et
(2)当 uC(0) = 0 iL(0) = I0
uC
(t)
C
iL (0)
2 1
e1t e2t
2
f(t)
iL
(t
)
iL
2
(0)
1
e2t 2 I0
1e1t
uC iL
e 2t
uC
1
e 1t
o
t
iL
O
t
物义:iL= I0 ,C充电, iL= 0 ,C放电,电阻消耗大,属非振荡。
(3)当 uC(0) = U0 iL(0) = I0
iL
+
uC _
C
+ L _uL
一、定量分析
已知 uC(0) = 1V iL(0) = 0
iL

RLC电路的阶跃响应PPT资料

RLC电路的阶跃响应PPT资料

i(t)
A
(eS1tS2t )
L(S1 S 2)
uC (t)
A
(S1
A S2 )
(S1eS2t
S2eS1t
)
i(t) Atet L
uC(t) A A(1t)et
i(t) A et sint L
uC
(t)
A
A0
et
sin(t
)
下降阶跃的响应 (脉冲间歇时间)
i(t)
A
(eS1tS2t )
L C
,让电路处于过阻尼状态
进行仿真,通过示波器观察电容上电压Uc的阶跃 为了判别这种幅值衰减速度,看两个相邻的同向的振幅的比值,它等于
从欠阻尼情况的响应波形,读取振荡周期和幅值衰减系数。
响应波形,并记录上、下阶跃的响应曲线 调整可调电阻
调整可调电阻
,让电路处于临界阻尼状态 ,让电路处于过阻尼状态
从欠阻尼情况的响应波形,读取振荡周期和幅值衰减系数。
调整可调电阻
,让电路处于过阻尼状态
由于是仿真实验,在写实验内容及步骤的时候注意不要抄书。
2、画出示波器上看到的欠阻尼的波形(定量,标出X,Y坐标上各点数值);
实验内容及步骤
调整可调电阻 R 2 L ,让电路处于临界阻尼状态 C
仿真,通过示波器观察电容上电压Uc的阶跃响应波 形,并记录上、下阶跃的响应曲线
修改脉冲信号源占空比50%,频率为10KHz,幅高A=2V。
实验内容及步骤
连接电路并加入虚拟 双通道示波器
虚拟双通道示波器分 别接输入信号和输出 信号Uc
修改输出信号线颜色
XSC1
G T
A
B
1
V1
0

大学电路-动态实验

大学电路-动态实验

6-1(1)示波器前面板上控制钮可分为哪几类?答:可分为水平控制钮、垂直控制钮、DISPLAY工作方式选择钮、功能控制按钮。

(2)示波器通道1(CH1)和通道2(CH2)的作用是什么?答:可独立输入两路信号,在YT显示方式下独立观察,也可以在XY显示方式下以CH1信号为X轴数值,CH2信号为Y轴数值综合显示。

(3)示波器水平和垂直控制钮中的“位置”(position)旋钮的作用是什么?答:垂直控制钮中的“位置”(position)旋钮的作用是调整被测信号波形在屏幕垂直方向的位置;水平控制钮中的“位置”(position)旋钮的作用是控制触发点相对于屏幕中心的位置。

(4)测量一个u P-P=2V的信号,如要使其在显示屏的垂直方向上尽可能大,但又不超过显示屏的有效位置,则Y轴灵敏度开关应该放在什么位置?答:500mV/DIV(5)测量一个f=100Hz的信号,如果要求信号在水平方向上显示两个周期波形,则示波器水平速度旋钮应调到什么位置?答:2.5ms/DIV(6)示波器输入端的“交流”(AC)、“直流”(DC)耦合方式分别代表什么含义?答:直流(DC)耦合方式既显示直流成分,又显示交流成分;交流(AC)耦合方式会屏蔽直流成分,仅显示交流成分。

6-2(1)如何用示波器测量电流?采样电阻r的作用是什么?答:用示波器不能直接测量电流。

可以利用下图所示方式间接测量CH1则有:i=u r/r采样电阻的作用是将电流信号线性变化为电压信号以方便示波器观测。

(2)示波器测量元件的特性曲线的原理是什么?为什么必须把显示方式设置为XY?答:示波器显示方式设置为XY方式,从示波器两个通道分别输入相应的物理信号,即可得到元件的特性曲线;YT方式表征的是信号随时间变化的曲线。

元件特性曲线是元件自身的两个物理量一个作为水平轴,一个作为垂直轴显示出来的曲线,因而必须设置为XY方式。

(3)要使元件特性曲线是一条清晰、完整的曲线,对激励电源有什么要求?答:激励电源应该能提供连续的正负电压(例如正弦波或三角波),幅值足够大,频率适当(100~1000Hz较好)。

8R、L、C理想电路

8R、L、C理想电路
如果线圈中含有导磁介质时,则电感L将不是常数,而是与外加电压或通电电流有关的量,这样的电感叫做非线性电感,例如铁心电感。
(3)线圈在电路中的作用
用于“通直流、阻交流”的电感线圈叫做低频扼流圈,用于“通低频、阻高频”的电感线圈叫做高频扼流圈。
2、电感电流与电压的大小关系
电感电流与电压的大小关系为
显然,感抗与电阻的单位相同,都是欧姆()。
3、相位关系
电阻的两端电压u与通过它的电流i同相,其波形图和相量图如图1所示。
图1ห้องสมุดไป่ตู้
4、功率关系
(1)瞬时功率p:瞬时电压与瞬时电流的乘积
(2)平均功率(有功功率)P:瞬时功率在一个周期内的平均值
二、电感元件的交流电路
1、电感对交流电的阻碍作用
(1)感抗的概念
反映电感对交流电流阻碍作用程度的参数叫做感抗。
长春职业技术学院课程教案用纸
教学环节
教学内容
备注
组织教学
复习提问
新课
新课
新课
新课
小结
作业
师生互相问好、考勤
1、正弦交流电的三要素
2、正弦交流电的相量表示法
模块三正弦交流电的测量
(R、L、C理想电路)
一、电阻元件的交流电路
1、电压、电流的瞬时值关系
电阻与电压、电流的瞬时值之间的关系服从欧姆定律。设加在电阻R上的正弦交流电压瞬时值为u = Umsin(ωt),则通过该电阻的电流瞬时值为
其中 是正弦交流电流的振幅。这说明,正弦交流电压和电流的振幅之间满足欧姆定律。
2、电压、电流的有效值关系
电压、电流的有效值关系又叫做大小关系。
由于纯电阻电路中正弦交流电压和电流的振幅值之间满足欧姆定律,因此把等式两边同时除以 ,即得到有效值关系,即

rlc串联电路 阻尼震荡 方博发生器 频率

rlc串联电路 阻尼震荡 方博发生器 频率

RLC 串联电路中的阻尼震荡及方博发生器频率在物理学和工程学中,电路理论是一个基础的概念。

而在电路理论中,RLC 串联电路及其阻尼震荡是一个重要的主题。

方博发生器频率也是电路中一个关键的参数。

本文将深入探讨这些主题,并从简到繁、由浅入深地解析其原理和应用。

1. RLC 串联电路在电路理论中,RLC 串联电路是指由电阻(Resistor)、电感(Inductor)和电容(Capacitor)依次串联组成的电路。

这种电路在现实生活和工程应用中有着广泛的应用,包括电源系统、通信系统等。

在 RLC 串联电路中,电感和电容将会影响电路中的电流和电压变化,而电阻将会产生能量耗散。

RLC 串联电路的特性和稳定性备受关注。

2. 阻尼震荡在 RLC 串联电路中,阻尼震荡是指由电路中的电容和电感引起的振荡现象,它是由于电感和电容在电路中的储能和交换能量导致的。

在阻尼震荡中,电路会不断地在电感和电容之间储存能量,并产生周期性的振荡。

而阻尼则会影响电路中的能量损耗以及稳定性,因此对于阻尼震荡的研究和理解至关重要。

3. 方博发生器频率方博发生器是指一种可以产生周期性信号的设备,它在信号发生器和频率发生器等设备中有着广泛的应用。

而方博发生器频率则是指该设备产生周期性信号的频率。

在电路设计和通信系统中,方博发生器频率的选择对于系统的性能和稳定性有着重要的影响,因此对于方博发生器频率的理解和掌握至关重要。

总结回顾在本文中,我们深入探讨了 RLC 串联电路及其阻尼震荡、方博发生器频率这些重要的电路理论主题。

通过从简到繁的方式,我们首先解释了 RLC 串联电路、阻尼震荡及方博发生器频率的基本概念和原理,然后深入讨论了它们在电路设计和工程应用中的重要性和应用场景。

在文章的结尾,我个人认为,对于这些电路理论主题的深入理解和应用,可以为电路设计和工程技术的发展提供重要的帮助,同时也能为我们对电路和能量传输的认识提供重要的参考。

希望本文的阅读能够让您对 RLC 串联电路、阻尼震荡及方博发生器频率有更全面、深刻和灵活的理解。

RLC串联电路接入负内阻方波电源响应的仿真研究

RLC串联电路接入负内阻方波电源响应的仿真研究

RLC串联电路接入负内阻方波电源响应的仿真研究发布时间:2022-07-21T07:51:52.954Z 来源:《科学与技术》2022年30卷第5期第3月作者:乔欣王静许明坤袁浩俊吴芮[导读] 基于熟练掌握RLC二阶电路特性的目的,本文对电路中总电阻R的变化对应的五种状态响应进行了理论分乔欣王静许明坤袁浩俊吴芮(巢湖学院电子工程学院安徽巢湖 238000)摘要:基于熟练掌握RLC二阶电路特性的目的,本文对电路中总电阻R的变化对应的五种状态响应进行了理论分析,通过Multisim仿真了RLC串联电路接入方波电源的各种暂态响应,包括:非振荡、临界振荡、衰减振荡、等幅振荡、发散振荡;仿真结果表明,通过Multisim 仿真的RLC二阶电路各暂态响应与理论一致,且能够直观的描述RLC二阶串联电路各态响应,克服了实验设备的不足。

关键字:RLC串联电路;负内阻;发散振荡;Multisim 引言随着实验设备功能的完善,其复杂度、成本也越来越高,但是在当前社会环境的压力下,需要学生熟悉各种电路,且能够实现电路的设计。

能否将电路的各种状态直观的呈现出来,成为当前电路教学的研究热点。

RLC二阶电路是电路课程中的重点和难点,在RLC串联电路接入负内阻方波电源响应的实验过程中,学生只能通过实验仪器实现非振荡、临界振荡、衰减振荡时的信号波形[1]。

而对于R0和R0时出现的等幅振荡和发散振荡,实验仪器很难将这两种状态响应呈现出来,需要用到负内阻变换器才能实现。

而负内阻变换器可用Multisim仿真软件简单方便地绘制出原理图,从而使学生更加全面、深入地理解RLC二阶电路各暂态响应的特性[2]。

Multisim仿真软件[3]是由加拿大一家公司首次开发出来,之后被美国NI公司收购并且将之与虚拟仪器技术结合的一种仿真软件。

它能够实现电路原理图直接输入、电路硬件描述语言输出的方式,强大的仿真分析能力,集合了各种虚拟仪器仪表的GUI界面,使得学生能够直观的分析自己设计的电路是否存在问题[4]。

正负方波电路

正负方波电路

正负方波电路摘要:I.引言- 介绍正负方波电路的概念- 阐述正负方波电路在电子领域的应用II.正负方波电路的原理- 讲解正负方波电路的工作原理- 分析正负方波电路的基本构成要素III.正负方波电路的实现- 介绍实现正负方波电路的常用方法- 对比不同方法的优缺点IV.正负方波电路的应用- 详述正负方波电路在实际应用中的重要作用- 举例说明正负方波电路在电子设备中的应用V.正负方波电路的发展趋势- 探讨正负方波电路的未来发展趋势- 预测正负方波电路在电子领域的新应用正文:正负方波电路是一种能够产生正负交替的方波信号的电路,它在电子领域具有广泛的应用。

正负方波电路可以用于信号发生器、通信系统、电子测量仪器等电子设备中,实现信号的生成、处理和传输等功能。

正负方波电路的原理是利用电子元件(如晶体管、电容器、电阻器等)构成一个能够振荡的电路系统。

这个系统能够在输入信号的作用下产生振荡,进而产生正负交替的方波信号。

正负方波电路的基本构成要素包括信号源、放大器、滤波器、反馈网络等。

信号源提供输入信号,放大器对信号进行放大处理,滤波器用于滤除杂波,反馈网络则将部分输出信号反馈到输入端,以维持电路的振荡。

实现正负方波电路的方法有很多,常用的方法包括RC 振荡电路、LC 振荡电路、石英晶体振荡电路等。

RC 振荡电路利用电阻和电容构成振荡回路,LC 振荡电路利用电感和电容构成振荡回路,石英晶体振荡电路则利用石英晶体的压电效应来产生振荡。

这些方法各有优缺点,需要根据实际应用需求进行选择。

正负方波电路在电子设备中具有重要作用。

例如,在通信系统中,正负方波信号可以用于传输音频、视频等信号;在电子测量仪器中,正负方波信号可以用于产生各种测试信号,以检测被测设备的性能。

随着科技的不断发展,正负方波电路在电子领域的应用将越来越广泛。

负阻抗变换器及其在电路实验中的应用

负阻抗变换器及其在电路实验中的应用

负阻抗变换器及其在电路实验中的
应用
负阻抗变换器是一种用来将正阻抗转换为负阻抗的装置,它可以利用相对较小的正阻抗来模拟较大的负阻抗。

一般来说,它会使用一些特殊的半导体或其他元器件来实现这种变换,从而能够提供准确的、可靠的变换。

负阻抗变换器通常应用于电路实验,在这里它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。

负阻抗变换器的原理很简单,它使用一个晶体管或双极型三极管作为主要的变换元件,并通过将正阻抗接入到其中实现变换。

当正阻抗接入时,晶体管就会产生一个负压差,这也就意味着正阻抗被变换成了负阻抗。

因此,负阻抗变换器就可以用来将正阻抗转换为负阻抗,从而使测试测量更加准确有效。

负阻抗变换器在电路实验中被广泛使用,它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。

它们可以用来测量和分析一个电路的特性,如电流、电压、阻抗和其他参数。

此外,它们还可以用来模拟电路中某个元件的特性,如电容、电阻、变压器等,从而可以帮助我们更好的理解电路的工作原理。

因此,负阻抗变换器在电路实验中被广泛使用,它可以用来模拟不同的正阻抗值,从而使测试更加准确有效。

它可以用来测量和分析一个电路的特性,以及模拟电路中某个元件的特性,从而可以帮助我们更好的理解电路的工作原理。

RC电路——8号

RC电路——8号

RC 电路总结由电阻和电容构成的各种电路,简称RC 电路。

RC 电路在模拟电路、脉冲数字电路中得到广泛的应用,把电阻阻值和电容容量的乘积称为RC 时间常数,用希腊字母“τ”表示。

于是有:τ= R*C 。

由于电路的形式以及信号源和R ,C 元件参数的不同,输入和输出关系以及处理的波形之间的关系的不同,因而组成了RC 电路的各种应用形式:● 微分电路; ● 积分电路; ● 耦合电路; ● 滤波电; ● 脉冲分压器。

1. RC 微分电路图1所示为微分器(differentiator )电阻R 和电容C 串联后接入输入信号V I ,由电阻R 输出信号V O ,当RC 数值与输入方波宽度t w 之间满足:RC<<t w (3倍左右),这种电路就称为微分电路。

在 R 两端(输出端)得到正、负相间的尖脉冲,而且发生在方波的上升沿和下降沿,如图2 所示。

在t=t 1时,V I 由0→V m ,因电容上电压不能突变(来不及充电,相当于短 路,V C =0),输入电压V I 全降在电阻R 上,即V O =V R =V I =V m 。

随后(t>t 1),电容C 的电压按指数规律快速充电上升,输出电压随之按指数规 律下降(因V O =V I -V C =V m -V C ),经过大约3τ(τ=R*C )时,VC=Vm ,VO=0,τ(RC )的值愈小,此过程愈快,输出正脉冲愈窄。

t=t 2时,V I 由V m →0,相当于输入端被短路,电容原先充有左正右负的电压V m 开始按指数规律经电阻R 放电,刚开始,电容C 来不及放电,他的左端(正电)接地,所以VO =-Vm,之后VO随电容的放电也按指数规律减小,同样经过大约3τ后,放电完毕,输出一个负脉冲。

只要脉冲宽度tW >(5~10)τ,在tW时间内,电容C已完成充电或放电(约需3 τ),输出端就能输出正负尖脉冲,才能成为微分电路,因而电路的充放电时间常数τ必须满足:τ<(1/5~1/10)tW,这是微分电路的必要条件。

一阶RC电路的方波响应实验原理

一阶RC电路的方波响应实验原理

一阶RC电路的方波响应实验原理1.电路的零状态响应和零输入响应含有动态元件(或)的电路称为动态电路,当动态电路从一种稳定状态转换到另一种稳定状态时,电路储存的能量会发生变化,若电路没有冲激电流(或冲激电压),能量的变化就不能在一瞬间完成,能量的积累或衰减需要肯定的时间或过渡过程来进行,这个过渡过程也称暂态过程,简称暂态。

电路如图3-1(a) 所示。

设电容初始电压为零(即零状态的电路),当时,开关S合到1处,电源开头对电容充电,电容电压沿指数规律上升,且,波形见图3-1(b) 所示的曲线1。

此响应也称为零状态响应。

若上述电路已经进入稳态,,设在时,将开关S合向2处,此时,电路脱离电源(即电路的输入为零),因此,电容会通过电阻放电,电容电压沿指数规律下降,且,波形见图3-1(b) 所示的曲线2。

此响应也称为零输入响应。

电容充、放电的快慢均由电路的时间常数打算。

电路依据对电路参数和输出信号的选取不同,可实现对输入信号的简洁微分或者积分,实现将输入的方波变换成正负尖顶脉冲或三角波。

2.微分电路电路如图3-2(a) 所示。

输入信号为正负方波,输出信号取自电阻的两端,即,假如电路的参数满意:电路的时间常数,其中为方波的周期,则此电路中,,可以推得输出信号即输出电压近似与对输入电压的微分成比例,故称电路为微分电路,输出端的波形如图3-2(b) 所示。

微分电路将输入的方波转换成了正负尖顶脉冲,此尖顶脉冲波形常作为触发信号使用。

3.积分电路电路如图3-3(a) 所示。

输入信号为正负方波,输出信号取自电容的两端,即,假如电路的参数满意:电路的时间常数,其中为方波的周期,则此电路中,,此时,电路的电流,可以推得输出信号即输出电压近似与对输入电压的积分成比例,故称电路为积分电路,输出端的波形如图3-3(b) 所示。

积分电路将输入的方波转换成了三角波。

RLC电路的稳态过程

RLC电路的稳态过程

RLC 电路的稳态过程电容、电感元件在交流电路中的阻抗是随着电源频率的改变而变化的。

将正弦交流电压加到电阻、电容和电感组成的电路中时,各元件上的电压及相位会随着变化这称作电路的稳态特性;将一个阶跃电压加到RLC 元件组成的电路中时,电路的状态会由一个平衡态转变到另一个平衡态,各元件上的电压会出现有规律的变化,这称为电路的暂态特性。

本实验将研究这些变化的特点。

一、实验目的1.观测RC 和RL 串联电路的幅频特性和相频特性 2.了解RLC 串联、并联电路的相频特性和幅频特性 3.观察和研究RLC 电路的串联谐振和并联谐振现象二、实验原理把简谐交流电压加在由电阻、电感、电容组成的电路上,电路中的电流和各元件两端的电压将随电源频率的变化而变化,这称为电路的幅频特性;而且总电压和电流之间的相位差也随电源频率的变化而变化,这称为电路的相频特性。

(一)RC 串联电路的稳态特性 1.RC 串联电路的频率特性在图1所示电路中,电阻R 、电容C 的电压有以下关系式:RC CI U R I C R UI C ∙∙-=∙=∙=⎪⎭⎫⎝⎛∙+=ωφωω1arctan, U, 1R 22其中ω为交流电源的角频率,U 为交流电源的电压有效值,φ为电流和电源电压的相位差,它与角频率ω的关系见图2可见当ω增加时,I 和R U 增加,而C U 减小。

当ω很小时ωπ-→φ ,2很大时0→φ。

2.RC 低通滤波电路如图3所示,其中i U 为输入电压,O U 为输出电压,则有CR j 11U U i O ∙∙ω∙+= 它是一个复数,其模为:()2iO C R 11U U ∙∙ω+=设CR 10∙=ω ,则由上式可知: 0=ω时,1U U i O = ,0ω=ω时707.021U U i O == ,∞→ω时 0U U i O = 可见i O U U 随ω的变化而变化,并且当0ω<ω时,i O U U 变化较小,0ω>ω时,iO U U明显下降。

RLC电路与滤波器

RLC电路与滤波器

VC Vout 1 V Vin 1 1 / jRC
公式(9)为 RC 高通滤波器的传递函数表达式,其截止频率 3dB 1 / RC ;频率低于截止频率的电压信号将快速衰 减,因而此种滤波器称为高通滤波器。
Vout RC T Vin 1 R 2 C 2 2


1/ 2
此时品质因子过小,根据理论意义,图线应十分平缓。(实验前未验算 Q 值的理论值,导致 Q 值失去普遍意义)
信号发射频 率(kHz) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5 电阻两端接示 波器测得峰-峰 值(V) 0.67 1.34 1.92 2.44 2.92 3.34 3.70 4.00 4.28 4.56 5.72 6.16 6.36 6.40 -54.8 -36.0 -27.0 -21.6 -16.8 相位差 (度) 信号发射频 率(kHz) 14 15 16 17 18 19 20 21 22 23 24 25 26 27 电阻两端接示 波器测得峰-峰 值(V) 6.56 6.52 6.50 6.52 6.50 6.52 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 3 相位差 (度) -1.51 -1.61 0.38 0.61 0.65 1.37 2.16 3.00 3.17 3.31 3.45 4.50 4.70 4.84 信号发射频 率(kHz) 36 37 38 39 40 50 60 70 80 90 100 200 300 400 6.46 6.44 6.36 6.32 6.26 6.24 6.16 5.48 4.58 3.97 电阻两端接示 波器测得峰-峰 值(V) 相位差 (度) 10.40 9.85 9.62 9.84 11.50 21.9 14.8 18.7 21 24.7 27 43.7 59.3 66.4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图中R1、R2构成正反馈,运放交替地翻转,电容C交替 地充、放电一直循环下去即可产生周期性的方波。
集成运放应用系列实验(二)
3.负阻抗变换器
图2-15-3为集成运放构成的 负阻抗变换器电路。作用是实现负 阻抗的变换。当在22’端口接上电阻 RL时,从11’端口看进去就是负的阻 值。
从另一个角度看,当在11’端口 接上内阻为RS和电压为US的电源时 ,从22’端口看进去,等效电路为具 有负内阻的含源支路,如图2-15-4.
振荡条件是:UO和Ui同相 且UO=3Ui(即R2/R1=2)
②稳幅电路是利用二极管正向电阻的非
线性来实现稳幅。实验证明,当R3与二
极管的正向电阻接近时,对稳幅和改善
波形失真都有较好的效果,通常选R3为
R3
几千欧。
图 2-14-5
北航电工电子中心
集成运放应用系列实验(二)
2.方波发生器
能产生方波的电路有多种,本实验采用图2-15-2所示 方法。
集成运放应用系列实验(二)
北航电工电子中心
集成运放应用系列实验(二)
1. 实验目的 2.理论准备 3.实验内容 4. 注意事项 5.教师对实验结果的检查 6.总结报告要求
北航电工电子中心
集成运放应用系列实验(二)
一、实验目的
1.巩固集成运放的使用。 2.熟悉振幅比和相位差的测量 。 3.掌握电源输出特性的测量方法。 4.学习用示波器测量电路的过渡特性。
北航电工电子中心
集成运放应用系列实验(二)
北航电工电子中心
4.二阶电路的零状态响应
图2-15-5为RLC串联电路,它是 一个典型的二阶电路。此电路的微分 方程为: 此方程的解答视参数不同分为
⑴当R≥2√L/C 时,响应是非振荡的。 ⑵当R<2√L/C 时,响应为振荡的。
⑶当R=0时,响应是等幅振荡的。 ⑷当R<0时,响应是增幅振荡的。
4.搭接下图电路,用示波器观察uc(t)的波形。
逐渐从0到大改变电阻箱的阻值,观察方波正半周uc 波形的变化,画下等幅、增幅、减幅三个波形,记下相应 的电阻值。
北航电工电子中心
集成运放应用系列实验(二)
四、注意事项
1.正、负电源的接法
- GND +
- GND +
-VCC

+VCC
2.运放的正、负电源不要接反。 3.运放的输入、输出端不要接错。 4.改、换电路一定要关电源。
产生振荡画下振荡波形,测出并记下振荡频率。 ③去掉稳幅电路观察输出波形,体会稳幅电路作用。
集成运放应用系列实验(二)
北航电工电子中心
2.用伏安法测量图2-15-8所示具有负内阻电压源的输出特性
①搭接下图电路,RL在240 Ω~∞ 之间取10个点测输出电压。
②将测量结果列表,算出其开路电压和内阻。
RL
集成运放应用系列实验(二)
北航电工电子中心
五、教师对实验结果的检查
1.负内阻电压源输出特性最大输出电压点。 2.f=400HZ,UP-P=1.5V的方波波形。 3.二阶电路等幅、增幅、减幅三个波形。
六、总结报告要求
1.写出用示波器测量振幅比、相位差的方法。 2.以实验的亲身体会,说明振荡器稳幅电路的作用。 3.以表格形式列出具有负内阻电压源的输出特性,在坐标纸
集成运放应用系列实验(二)
北航电工电子中心
为在示波器上观察到稳定、重复的波形,我们用周期
性方波作为RLC电路的输入电压,让电容周期性地充电和 放电,以便得到重复的周期波形,如图2-15-7所示。
集成运放应用系列实验(二)
北航电工电子中心
三、实验内容
1.正弦波振荡器 ①用LM324搭接你所设计的正弦波振荡器。 ②将系统闭环,接好稳幅电路,观察系统是否产生振荡。若
上画出其输出特性曲线,算出该电源的开路电压和内阻。 4.在坐标纸上画出你所测的等幅、增幅、减幅振荡曲线,注
明电路参数值。
The End
北航电工电子中心
集成运放应用系列实验(二)
3. 方波发生器 ①方波发生器要求幅度、频率均可调且要有带载能 力(思考:如何实现带载能力?)。 ②用LM324搭接你所设计的满足上述条件的方波发 生器。 ③将方波发生器的输出调成 f=400HZ,UP-P=1.5V。
集成运放应用系列实验(二)
北航电工电子中心
北航电工电子中心
集成运放应用系列实验(二)
二、理论准备
C
1.正弦波振荡器
R
① 文氏电桥正弦波振荡器由RC串、并联选频 UF Ui
RC
网络和同相放大电路组成,见图2-14-4。
c R1
+
UO

R2 稳幅电路
图中左边部分为RC选频网络,亦即反馈网络,
图 2-14-4
图中右边部分是一个同相放大器,用集成运算放大器构成。
相关文档
最新文档