第六章 传热

合集下载

第6章 化工原理传热1

第6章  化工原理传热1

第六章
传热
第二节 热传导 热传导是起因于物体内部分子微观运动的一种传热方式 。热传导的机理相当复杂,目前还了解得很不完全。简而言 之,固体内部的热传导是由于相邻分子在碰撞时传递振动能 的结果。 在流体特别是气体中,除上述原因以外,连续而不规则 的分子运动(这种分子运动不会引起流体的宏观流动)更是 导致热传导的重要原因。 此外,热传导也可因物体内部自由电子的转移而发生。 金属的导热能力很强,其原因就在于此。
T1
T2
t2
套管式
传热(或换热)过程: 是指在冷、热流体之间进 行的热量传递总过程。 给热过程:(对流传热过程) 是指热、冷流体与壁面之 间的热量传递过程。
第六章
传热
3、 蓄热式传热 蓄热式换热器又称蓄热器,是由热容量较大的蓄热室构成,室 内可填充耐火砖等各种填料。 一般说来,这种传热方式只适用于气体介质,对于液体 会有一层液膜粘附在固体表面上,从而造成冷热流体之间的少 量掺混。实际上,即使是气体介质,这种微量掺混也不可能完 全避免。如果这种微量掺混也是不允许的话,便不能采用这种 传热方式。这种传热方式只适用于气体的另一原因,是气体的 体积比热容较填充物小得多,液体则不然。
各种物质的λ可用实验方法测定,P388 附录六给出了常用固体材 料的导热系数。从表中所列数据可以看出,各类固体材料导热系数 的数量级为: O 金属 10—102 W/(m·C) O 建筑材料 10-1 —10 W/(m·C) O 绝热材料 10-2 — 10-1 W/(m·C)
第六章
传热
固体材料的导热系数随温度而变,绝大多数质地均匀的固体,导 热系数与温度近似成线性关系,可用下式表示: 式中:λ—固体在t OC 时的导热系数W/(m OC); λ0—固体在0 OC 时的导热系数W/(m OC); α—温度系数 1/OC 对于大多数金属材料和液体:α为负值 α< 0 提高温度 λ略减小。 对于大多数非金属材料和气体:α为正值 α> 0 提高温度 λ增大。 金属材料和非金属材料的λ随温度的不同变化趋势是因为它们的导 热机理不同而引起的。前者主要靠自由电子在晶格之间的定向运动导 热,而后者主要靠原子、分子在其平衡位置附近的振动导热。

传热学第六章

传热学第六章

6. 对流换热基础理论6.1 知识结构1. 对流换热的特点;2. 换热系数h 及其影响因素; 3. 对流换热问题的数学描述:(1) 假设:不可压缩牛顿型流体,常物性,无内热源,忽略粘性耗散; (2) 方程组(换热、能量、动量、质量)各项物理涵义;(3) 平板层流强制对流的精确解(边界层理论,数量级分析简化); (4) 平板层流强制对流的近似解(边界层理论,边界层积分)。

4. 实验求解方法: (1) 相似原理相似性质:彼此相似的现象,其同名准则必定相等。

相似判据:同类现象,单值性条件相似,同名已定准则相等,则现象相似。

相似解:实验关联式(准则方程式)。

(2) 准则确定方法:方程分析法、量纲分析法。

(3) 实验数据处理:误差分析,作图法求系数,数据回归。

(4) 实验关联式应用条件:适用范围,定性温度,特征尺度,特征流速,修正系数(入口、弯道、特性)。

5. 对流换热中常用准则(Nu 、Re 、Gr 、Pr )的定义式及其物理涵义。

6.2 重点内容剖析6.2.1 概述对流换热——流体与固体壁面之间的热交换。

t h q t hA ∆=⇒∆=Φ…………(h 的定义式) (6-1) 一、任务求取 h=f (流体、物性、流态、换热面形状等)的具体表达式 二、思路(对流换热量=附壁薄层导热量)()t A h t t A h yt Ax w x y ∆=-=∂∂-=Φ∞=0λ (6-2)()x y x ytt h 0=∂∂∆-=⇒λ (6-3)式中:h x —— 局部表面传热系数λ —— 流体导热系数Δt —— 流体与壁面传热温差求取表面传热系数的问题←求取附面层温度变化率←求取流体温度场三、研究方法1·理论解——建立微分方程组→求解2·实验解—— 相似原理,量纲分析→实验准则→实验关联式四、影响对流换热的因素1· 流动的动力(1) 自然对流——由于流体各部分密度不同而引起的流动,其流动强度与受热不均匀程度、流体性质和空间大小及位置有关。

化工原理课件第6章:传热

化工原理课件第6章:传热
6.2.3 单层圆筒壁的定态导热 化工原理——传热
化工原理——传热
6.2.4 多层壁的定态导热
例 6-2
Q n
t1 tn1 1 l n ri1
i1 2Li ri
化工原理——传热
化工原理——传热
接触热阻
1
c A
c :接触系数,W/(m2 ℃)
化工原理——传热
6.3 对流给热
6.3.1 概说 1 对流给热过程的分类
(1)T1、T2、t1、t2均确定时,△tm逆>△tm并
(2)若Q相同,依 Q KAtm ,A逆<A并 (3)Q一定时,依 Q qm1cp1(T1 T2 ) qm2cp2(t2 t1)
若T1、T2确定,则(t2-t1)逆> (t2-t1)并

qm2逆<qm2并
化工原理——传热
逆流
并流
化工原理——传热
(3)蒸汽过热的影响 r' r cp(TV Ts )
(4)蒸汽流速及流向的影响 强化思路 → 减少液膜厚度
化工原理——传热
化工原理——传热
a、r、d 的大小取决于物体的性质、表面状况、 温度和投射辐射的波长,一般
固体、液体:a+r =1
气体:a+d =1
化工原理——传热
物体的辐射能力:指物体在一定温度下,单位时间、单位表面积 上所发出的全部波长的总能量。(E)W/m2
化工原理——传热
化工原理——传热
另一表达式: 灰体在一定温度下的辐 射能力和吸收率的比值, 恒等于同温度下黑体的 辐射能力,即只和物体 的绝对温度有关。
化工原理——传热
相距很近的平行黑体平板,面 积相等且足够大,则 12 21 1
化工原理——传热

传热学第六章对流换热

传热学第六章对流换热

6个未知量::速度 u、v、w;温度 t;压力 p;对流 换热系数h
6个方程:换热微分方程式、能量微分方程、x、y、z 三个方向动量微分方程、连续性微分方程
1 能量微分方程 微元体的能量守恒: ——描述流体温度场 假设:(1)流体的热物性均为常量,流体不做功 (2)无化学反应等内热源 由导热进入微元体的热量Q1 +由对流进入微元 体的热量Q2 = 微元体中流体的焓增H
2t 2t 2t 微元体导热热量:Q1 x 2 y 2 z 2 dxdydzd
微元体对流换热收支情况:
在d时间内, 由 x处的截面热对流进入微元体的热量为
' Qx c tudydzd
在d时间内, 由 x dx处的截面热对流流出微元体的热量为
由连续性方程知此项为0
t t t Q2 c u v w dxdydzd x y z
在d时间内, 微元体中流体 温度改变了(t / ) d , 其焓增为
t H c dxdydzd
能量微分方程
t t t t 2t 2t 2t u v w 2+ 2 2 x y z c x y z
boundary layer)
由于粘性作用,流体流速在靠近壁面 处随离壁面的距离的减小而逐渐降低; 在贴壁处被滞止,处于无滑移状态。
流场可以划分为两个区:边界层区与主流区 边界层区:流体的粘性作用起主导作用
主流区:速度梯度为0,τ=0;可视为无粘性理想流体

u , 牛顿粘性定律 y
2)热边界层(Thermal boundary layer) 热边界层:当壁面与流体间有温差时,会产生温度梯度很大的 温度边界层 热边界层厚度t (温度边 界层):过余温度(t -tw ) 为来流过余温度(tf - tw ) 的99%处定义为t的外边 界

传热学:第六章 热辐射及辐射传热

传热学:第六章 热辐射及辐射传热

本章总说明
❖ 物体的辐射特性包含发射特性和吸收特性 ❖ 课程中提到的温度包括两个: ❖ (1)工业高温,小于2000K——红外辐射 ❖ (2)太阳高温,近6000K——太阳辐射
6.1 热辐射的基本概念
6.1.1 热辐射
❖ 辐射——物体向外界以电磁波的方式发射携带 能量的粒子的过程
❖ 宏观-辐射是连续的电磁波传递能量的过程 ❖ 微观-辐射是不连续的光子传递能量的过程 ❖ 电磁波的本质是具有一定能量的光子(粒子),
❖ 引入立体角的目的是衡量表面辐射的方向特性 ❖ 表面在半球空间辐射的能量按不同方向分布的规
律只有对不同方位中相同的立体角来比较才有意 义
❖空间方位不同,可 以见到的辐射面积是 不同的
❖——表面的法线方 向最大
❖——切线方向最小,为零
❖ 表面在半球空间辐射的能量按不同方向分布的规 律只有在相同的辐射面积下来比较才有意义
❖ 几何上,“角”反映了在空间某一方向所占区域 的大小
❖ 平面几何中,用平面角表示在平面上所占区域的 大小
❖ 单位“弧度”
❖ 类似地,为了表示物体在三维空间中某一方向所 占空间的大小,引入“立体角”的概念
❖ 立体角(solid angle):球面面积As与球面半径 r2之比
❖ 单位:sr
As r2
❖ 波长不同,特性不同:
❖ ——短波的γ射线、X射线等,高能物理学家和
核工程师更感兴趣 ❖ ——波长在1mm-1m的电磁波称为微波,能穿
透塑料、陶瓷和玻璃等,但会被水等极性分子 吸收而产生内热源——微波炉的原理 ❖ ——波长大于1米的电磁波主要用于无线电技术 中 ❖ 热辐射中发出的电磁波通常称为热射线,本质 上也是电磁波
❖ 用“E”表示,W/m2 ❖ 辐射力表述了物体在一定温度下发射辐射能本

传热学-第六章 单相对流

传热学-第六章 单相对流

8
a 基本依据: 定理,即一个表示n个物理量间关系的 量纲一致的方程式,一定可以转换为包含 n - r 个独立 的无量纲物理量群间的关系。r 指基本量纲的数目。
b 优点: (a)方法简单;(b) 在不知道微分方程的情况 下,仍然可以获得无量纲量 c 例题:以圆管内单相强制对流换热为例
(a)确定相关的物理量
相似原理将回答上述问题
2
2 相似原理的研究内容:研究相似物理现象之间的关系,
(1)物理现象相似:对于同类的物理现象,在相应的时刻与相 应的地点上与现象有关的物理量一一对应成比例。
(2)同类物理现象:用相同形式并具有相同内容的微分方程式 所描写的现象。
3 物理现象相似的特性
(1)同名特征数对应相等;
实验验证范围为: l / d 60,
Prf 0.7 ~ 16700, Ref 104。
32
(3)采用米海耶夫公式:
Nuf

0.021 Ref0.8
Prf0.43


Prf Prw
0.25


定性温度为流体平均温度 tf ,管内径为特征长度。
实验验证范围为: l / d 50,
式中,qm 为质量流量; tf、tf 分别为出口、进口截面上
的平均温度; tm 按对数平均温差计算:
tm

tf tf
ln ttww

tf tf

28
二. 管内湍流换热实验关联式 实用上使用最广的是迪贝斯-贝尔特公式:
Nuf 0.023 Ref0.8 Prfn
德拉[cd] 因此,上面涉及了4个基本量纲:时间[T],长度[L],质 量[M],温度[]
r=4

传热学第六章凝结与沸腾换热

传热学第六章凝结与沸腾换热

第六章 凝结与沸腾换热
17
7. 凝结表面的几何形状
❖ 强化凝结换热的原则是 尽量减薄粘滞在换热表 面上的液膜的厚度。
❖ 可用各种带有尖峰 的表面使在其上冷 凝的液膜拉薄,或 者使已凝结的液体 尽快从换热表面上 排泄掉。
第六章 凝结与沸腾换热
18
§6-4 沸腾换热现象
1 生活中的例子 • 蒸汽锅炉
l g
l
2u y 2
0
al
2t y 2
0
第六章 凝结与沸腾换热
7
边界条件:
y 0 时, u 0, t tw
y 时, du 0,
dy
t ts
求解上面方程可得:
(1) 液膜厚度
4l
l (
g
ts
l2 r
tw
)x 1/ 4
定性温度:
tm
ts
tw 2
注意:r 按 ts 确定
第六章 凝结与沸腾换热
10
横管与竖管的对流换热系数之比:
hHg hVg
0.77
l d
1
4
3 边界层内的流态
凝结液体流动也分层流和湍流,并 且其判断依据仍然时Re,
Re de ul
式中:
ul 为 x = l 处液膜层的平均流速;
de 为该截面处液膜层的当量直径。
第六章 凝结与沸腾换热
无波动层流
6
考虑(3)液膜的惯性力忽略
l
(u
u x
v
u y
)
0
考虑(7)忽 略蒸汽密度
dp dx
0
u
x
v y
0
l
(u
u x
v

传热学第六章

传热学第六章
定性温度: Prw的定性温度为tw,其它物性的定性温度为t.。 式中C和.m的数值列于下表。
第六章 单相对流传热的实验关联式
第六章 单相对流传热的实验关联式
外掠平板流动
内部流动
6-3 内部强制对流换热实验关联式
6.3.1. 管槽内强制对流流动与换热的特点 1.两种流态
6.3.1.管槽内强制对流流动与换热的特点 2. 入口段与充分发展段
流动进口段与充分发展段
管内等温层流流动充分发展段具有以下特征: (a) 沿轴向的速度不变,其它方向的速度为零; (b) 圆管横截面上的速度分布为抛物线形分布;
6-2
可见,对于圆形管道,边界条件不同,对流换热强度也不同:
qw = 常数,Nu = 4.36,tw = 常数,Nu = 3.66。
6.3.3 管内层流强制对流换热关联式
对于长管,可以利用表中的数值进行计算。对于 短管,进口段的影响不能忽略,可用齐德-泰特关系式 计算等壁温管内层流换热的平均努塞尔数:
在计算弯管内的对流换热时, 应在直管基础上加乘弯管修正因
子c R 。
6.3.2 管内湍流强制对流换热关联式
6.3.2 管内湍流强制对流换热关联式
对上述公式的几点说明:
1)上述公式都属于经验公式,当采用公式进行对流换热计算 时,要注意每个公式的使用条件;
2)在对流换热的研究中,曾经提出过数以十计的关联式,以 上几个公式只是有代表性的几个;
相似原理指导下的实验研究仍然是解决复杂对 流换热问题的可靠方法。 相似原理回答三个问题: (1)如何安排实验? (2)如何整理实验数据? (3)如何推广应用实验研究结果?
6-1 相似原理与量纲分析
6-1 相似原理与量纲分析
6.1.1物理现象相似的定义

主要内容本章介绍了三种基本传热方式,即导热、对流传热

主要内容本章介绍了三种基本传热方式,即导热、对流传热

t
Q qA 2rL dt 常数
dr
t
rQ
dt
dr
t1
r1 2rL
若为常数,则:
Q

t1 t ln r r1
--------可见温度分布 为对数关系
2L
0
t1 r1
r2Q Q t2 dr
薄壳衡b算法
§6.2.2一维稳态导热-----薄壳衡算法
Q t1 t2 ln r2 r1
恒压比热Cp: 恒压条件下,单位质量的物质升高或降低1℃所需(放
出)的热量,KJ/Kg.℃。取平均温度下的数值计算。 有相变时(蒸汽冷凝、液体沸腾)
相变热Q=qmr r:汽化潜热,KJ/Kg。 如热流体是饱和蒸汽,在换热器中冷凝后,冷凝液温度
T2低于饱和温度T1。 则 Q=qm1[r+Cp1(T1-T2)]=qm2Cp2(t2-t1)
t1 t2
r2 r1
2L 2L r2 r1 ln r2 r1 t
令rm

r2 r1 ln r2 r1
--------对数平均半径
当 r2 2 时,可用算术平均代替
r1
于是Q t1 t2 t1 t2
b
b
2Lrm Am
对照:平壁:Q

t1 t2
①对流传热过程的基本概念、定律、传热速率方程; ②管内强制湍流流动时表面传热系数的经验关联及影 响因素; ③总传热速率方程以及传热过程的计算。
6.1 概述
一、传热过程在工业生产中的应用 传热即热的传递(以温度差为推动力的能量传递现象)根据
热力学第二定律,凡是有温度差的存在就必然有热的传递,因 此传热是自然界和工程领域中较为普遍的一种传递过程。许多 单元操作,如蒸发、精馏、干燥、结晶、冷冻、吸收和萃取等, 无不直接或间接与传热有关。

化工基础_第6章_传热试题含答案.doc

化工基础_第6章_传热试题含答案.doc

1第6章传热一、填空1在传热实验中用饱和水蒸汽加热空气总传热系数K接近于空气侧的对流传热系数而壁温接近于饱和水蒸汽侧流体的温度值。

2热传导的基本定律是傅立叶定律。

间壁换热器中总传热系数K的数值接近于热阻大大、小一侧的值。

间壁换热器管壁温度tVV接近于值大(大、小)一侧的流体温度。

由多层等厚平壁构成的导热壁面中所用材料的导热系数愈小则该壁面的热阻愈大大、小其两侧的温差愈大(大、小)。

3由多层等厚平壁构成的导热壁面中所用材料的导热系数愈大则该壁面的热阻愈小其两侧的温差愈小。

4在无相变的对流传热过程中热阻主要集中在滞离层内或热边层内减少热阻的最有效措施是提高流体湍动程度5消除列管式换热器温差应力常用的方法有三种即在壳体上加膨胀节、采用浮头式或U管式结构翅片管换热器安装翅片的目的是增加面积增强流体的湍动程度以提高传热系数。

6厚度不同的三种材料构成三层平壁各层接触良好已知b1>b2 >b3导热系数AKA2<A3在稳定传热过程中各层的热阻R1 >R2 >R3各层导热速率Q仁Q2 =Q3O 7物体辐射能力的大小与黑度成正比还与温度的四次方成正比。

8写出三种循环型蒸发器的名称中央循环管式、悬筐式.外加热式。

9在大容积沸腾时液体沸腾曲线包括自然对流、泡核沸腾和膜状沸腾三个阶段。

实际操作应控制在泡核沸腾。

在这一阶段内传热系数随着温度差的增加而增加。

10传热的基本方式有传导对流和辐射三种。

热传导的基本定律是傅立叶定律。

11水在管内作湍流流动若使流速提高到原来的2倍则其对流传热系数约为原来的1.74倍管径改为原来的1/2而流量相同则其对流传热系数约2为原来的3.48倍。

设条件改变后仍在湍流范围12导热系数的单位为W/m-°C对流传热系数的单位为W/m2-°C总传热系数的单位为W/m2-°C。

二、选择1已知当温度为T时耐火砖的辐射能力大于铝板的辐射能力则铝的黑度D耐火砖的黑度。

传热学第六章

传热学第六章

流动全部为紊流
局部传热系数关联式 Nuxm 0.0296Rex4m/5Prm1/3
平均传热系数关联式 Num 0.037Rem4/5Prm1/3
Rex=0≥108 0.6 Prm 60
混合边界层
h

1 l

xc
0
hcx
dx
1
l
xc
hcx
2 dx
Rem

u d o
层流 Rem 1.4 105
层流、紊流的转变
特征速度 来流速度 u∞ 特征尺寸 管外径 d0
Rem>1.4 105
定性温度 热边界层的平均温度 tm=1/2(t∞+tw)
1.流动的特征
圆柱前半部,沿流动方向流体处于加速减压状态,沿流向压 力逐渐减小。圆柱后半部,沿流向压力逐渐增加。最大粘滞 摩擦力处于圆柱表面处,因而圆柱表面附近的流体受到的阻 力最大。
小结:利用关联式获取表面换热系数的关键步骤
1,熟悉对象:如流过平板、圆柱、球或管束; 2,确定特征温度,查表获取特征温度下流体的热物理参数; 3,确定特征长度,计算Re数; 4,确定要获取局部、还是平均表面换热系数; 5,选择合适的关联式计算无量纲表面换热系数,即Nu数; 6,计算换热系数。
2017/10/23
第六章 单相对流换热的实验关联式
Convection Heat Transfer
§6-1 管内强制对流传热
6.1.1管内强制对流流动和换热的特征
入口段 充分发展段
1. 层流和湍流判别
层流: Re 2300 过渡区: 2300 Re 10000 旺盛湍流: Re 10000
Nu f

第六章热量传热微分方程.docx

第六章热量传热微分方程.docx

第六章热量传热微分方程一、单相对流传热的一般数学模型对流传热是一种与流体运动及流体内部导热规律均有关的一种传热现象。

所以,对此过程的描述,需要同时采用描述流体流动和传热两方面的基本方程,即传热微分方程、导热微分方程、运动微分方程、连续性方程以及相应的单值条件。

下面分别介绍。

1.传热微分方程当流体流过固体壁面时,总存在一层很薄的流体粘附在表面上,这层流体总是处于静止状态(u=0),则热量只能依靠导热在该表而层传递。

因此,在此流体层任一微元面积dA的传热量dq,可以根据付立叶定律计算:d q = -lrf— dA—— (1)和So紧结固体壁面处(11=0)的流体层屮温度梯度,kf——流体的导热系数。

另外,根据对流传热基木方程,壁面与流体之间的传热量dg乂可写为:dq = h[t s -t f^dA = hAtdA (2)式中:M = t s-t f——固体壁面与流体间的温差。

h——对流传热系数。

由⑴,(2)两式相等得:(3)h亠並丽n=0此式即为传热微分方程。

欲求出对流传热膜系数h,则应先得出在该流体中的温度分布。

其温度分布可由导热微分方程描述。

2.导热微分方程:流体内导热微分方程在前面已有推导,在无内热源时为:上式常称为能量方程。

对于稳态的温度场,里=0。

oO因此式包括有未知量代,仏,冬,因此,欲求解上式,必须知道流体内的速度分布,这就需求解流体的运动微分方程。

3•运动微分方程:粘性流体的运动微分方程,即是奈斯方程:上述三个方程中有4个未知量:u x ,u y ,u :及P,所以述应引入一个方程,才能求解。

该方程就是连续性方程。

4.连续性方程:一般流体的连续性方程在前而已经导出,即:讪 | °(刊J |。

(刊J | 讥以J 二°— (6)dxdydz对于不可压缩性流体lp =常数),稳态流动(叟=0 )时,有:30通过对上述四种方程求解,便可得出对流传热系数h 的一般解。

再加上单值 条件,便可求得具体问题的解。

第六章 传热-第六节-传热过程的计算

第六章 传热-第六节-传热过程的计算
W1 , T1 W2 , t 2
t W1 , T2
热流体
T
t 1, W 冷流体
2
W 1 C p 1 (T − T 2 ) = W 2 C p 2 ( t − t 1 ) T = W 2C p 2 W 1C p 1 ⎛ W 2C p 2 ⎞ t1 ⎟ t + ⎜ T2 − ⎜ W 1C p 1 ⎟ ⎝ ⎠
这就是传热计算的指导思想,以下的工作就是要解决
K和Δபைடு நூலகம் m !
西北大学化工原理课件 W2, t1 1、热量衡算的微分表达式 h1, cp2 右图为一定态逆流操 t+dt t W1,T1 作的套管换热器,以微元 H ,c T+dT T 1 p1 T2,H2 体内内管空间为控制体作 dA t2,h2 热量衡算,并假定:
T − Tw Tw − t w t w − t = = q= 1 1 δ
t T
α1
T − Tw = q ⋅ 1
三 式 相 加
λ
α2
α 2 tw α1 Tw
α1 δ Tw − t w = q ⋅ λ
tw − t = q ⋅ 1
⎛ 1 δ 1 ⎞ T − t = q⎜ ⎜α + λ + α ⎟ ⎟ 2 ⎠ ⎝ 1
金属壁两边温差很小,Tw ≈ tw,于是: 1 T − Tw α1 = 1 Tw − t (6 − 119)
α2
如果金属壁热阻不能忽略时, 从(6-119)式可看出:传 热面两侧温差之比等于两侧热阻之比、壁温Tw必接近于热阻 较小或给热系数较大一侧流体的温度。
西北大学化工原理课件
二、传热平均温差和传热基本方程式
西北大学化工原理课件
4、传热基本方程式
T1 − T 2 将 式 dT = ( d T − t) 和 ( T − t) − T − t) 1 ( 2 t 2 − t1 ( dt = d T − t) 带 入 式 A = ( T − t) − T − t) ( 1 2

传热学第六章单相对流传热的实验关联式

传热学第六章单相对流传热的实验关联式

02
单相对流传热的基本理论
单相对流换热的概念
定义
单相对流换热是指流体与固体壁面之间的热量交换,其中流体和 壁面之间的相对位置和速度是影响换热的主要因素。
分类
根据流体与壁面的相对运动方向,单相对流换热可分为顺流和逆 流两种类型。
单相对流换热的物理机制
80%
流体流动
流体在流动过程中,由于速度差 异和湍流扩散作用,会产生流动 的不均匀性和动量的交换,从而 影响热量传递。
THANK YOU
感谢聆听
实验数据处理
对实验数据进行整理、筛选和计算, 提取有用的信息,以便后续的分析和 解释。
实验结果的分析和解释
实验结果分析
对比实验数据和理论预测,分析数据的一致性和差异性,找出可能的原因和影响因素。
实验结果解释
根据实验结果分析,对单相对流传热的规律和机制进行解释,提出可能的改进措施和优 化建议。
误差分析和不确定度评估
传热学第六章单相对流传热的 实验关联式

CONTENCT

• 引言 • 单相对流传热的基本理论 • 实验装置和实验方法 • 实验结果及分析 • 实验关联式的建立和应用 • 结论与展望
01
引言
传热学的重要性
传热学是研究热量传递规律的科学,在能源、建筑、航空航天、 电子、冶金等领域具有广泛应用。
掌握传热学知识有助于提高能源利用效率,优化设备性能,解决 工程实际问题。
优点
能够提供较为准确的单相对流传热系数,有 助于简化工程计算和提高设计效率。
缺点
对于某些复杂流动和传热条件,实验关联式 的适用性可能存在争议,需要进一步研究和 验证。同时,实验关联式的推导和验证需要 耗费大量时间和资源,也可能限制其应用范 围。

传热学课件第六章--单相流体对流换热

传热学课件第六章--单相流体对流换热

第一节 管内受迫对流换热
一、定性分析(基本概念)
1.进口段与充分发展段 2>.对于换热状态 将上述无因次温度对r求导后且令r=R时有: t t t r r R w t t t t r w f w f
由于无因次温度不随x发生变化,仅是r的函数,故对无因次 温度求导后再令r=R,则上式显然应等于一常数。又据傅里叶 定律:q=-(t/r)r=R及牛顿冷却公式:q=h(tw-tf),上 t 式变为: t t r r R h Const w tw t f r tw t f


另外,不同断面具有不同的tf值,即tf随x变化,变化规律 与边界条件有关。
第一节 管内受迫对流换热
一、定性分析(基本概念)
2.定性参数 2>.管内流体平均温度 ①常热流通量边界条件: t tw// tw/
tf /
进口段 充分发展段
tf// x
如图,此时:tw>tf 经分析:充分发展段后: tf呈线性规律变化 tw也呈线性规律变化 此时,管内流体的平均温度为: t f t f tf 2
第三节
自 然 对 流 换 热
一、无限空间自由流动换热(大空间自然对流)
指热(冷)表面的四周没有其它阻得自由对流的物体存在。 一般准则方程式可整理成: Nu=f(Gr· Pr) 一般Gr· Pr>109时为紊流,否则为层流。 对于常壁温的自由流动换热,其准则方程式常可整理成: Num=C(Gr· Pr)mn C、n可参见表6=5,注意使用范围、定型尺寸、定性温度。 令:Ra=Gr· Pr Ra为瑞利准则数。 既适用常壁温也适用常热流边界的实验准则方程式,常见的 为邱吉尔(Churchill)和朱(Chu)总结的式6-19,20。

第六章 传热设备的控制

第六章 传热设备的控制
q

n
Am m
q:传热速率 λ:导热系数
Am: 垂直于热流方向的平壁面积
n: 单层平壁厚度
△өm:平壁两侧面上的温度差
(2)对流传热
冷流体与壁面之间的传热速率
q Am ( w 1 )
热流体与壁面之间的传热速率
q Am ( 2 w ) : 给热系数; 2 热流体温度;
c1d10 M 1 dt G1c1 (1i 10 ) UA(10 20 ) , M 2 c2d 20 G2c2 ( 2i 20 ) UA( 20 10 ) dt M 1 , M 2流体的质量;c1,c2流体的比热容 U传热系数;A平均传热面积
(6 18)
选定ө1o,ө2o为输出量; ө1i,ө2i,G1,G2为输出变量,对(6-18) 进行线性化
G1 d1o T1 dt (1 a1 )1o a1 2 o 1i (1i 1o ) G 1 , (6 19) T d 2 o a (1 a ) ( ) G2 2 1o 2 2o 2i 2i 2o 2 dt G2
10 则 1i
G1c1 1 G1c1 ( 1) UAm 2 G2 c 2 G1c1 1 G1c1 ( 1) UAm 2 G2 c 2
10 ,即 2i 变化到 2i 2i , 其他量不变 (2) 求 2i 此时 1o 1 (6 15) G1c1 1 Gc 2i (1 1 1 ) UAm 2 G2 c2
注意:传导、对流、辐射三种形式很少单独进行,往往是两 种或三种形式综合作用。
(4)组合传热速率方程式:
q=UAm△өm q传热速率 U传热系数:包括对流传热和热传导的综合影响 Am- 平均传热面积 △өm-平均温差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热流体进热流体出
T
t
(1)平面壁内的温度分布
在壁内取的薄层,取单位面积薄层作热量衡算
x Δτ
ρ∂∂Δ+=Δ+t C x q q p
x x x ||τ
ρ∂∂Δt
C x p
为单位时间内热量的累积量因为是定态过程,无热量累积
所以
x
x x q q Δ+=||表明平壁内各处的热流密度相等,q 不随x 变化
t
x
x
Δx
t 1
t 2单层平壁的稳定热传导
δ
Q
工程计算一般只需要知道整个壁面平均给热系数
两平行矩形平板间的角系数
两平行圆盘间的角系数
2
1
(1) Q
E aE A =−入面
联立上两式,即1、2面之间的
能量衡算:
E 效= E +(1-a )E 入
Q /A -单位时间单位面积净损失能量;E 入—投入辐射,投入灰体的总辐射能;E 效—有效辐射,离开灰体的总辐射能;
E
E 有效
αE 入
E 入
1
2
对某一灰体作热量衡算,考察该灰体的能量收支情况:
(2) Q
E E A =−入
效面121121211212 Q A Q A Q ϕϕ==比较两黑体:相对位置的两灰体1、2之间所交换的净辐射能为:
1
b1111
2
b22b 1211111112Q Q E E A Q E Q E A
Q E A E εεε⎧⎛⎞=−−⎪⎜⎟
⎪⎝⎠⇒⎨
⎛⎞⎪=−=−−⎜⎝−⎟⎪⎠⎩
效效效、分别()为灰体和灰体的净损失热流量
121Q Q Q ==−一般情况下,两灰体间的热量交换不相等,若两灰体与外界无辐射交换(封闭系统),则有:
由于扩展表面的温度低于基管的温度,传热量的增加率低于
传热面积的增加率。

传热过程的调节
(2)冷却介质出口温度t 2 选择
▲若t 2 大,可使q m2↓,输送流体的的操作费用↓;但t 2 ↑使推动力△t m ↓,A ↑,设备投资费用增大—经济问题
▲t 2 低,推动力△t m ↑,A ↓,设备投资费用↓;但q m2 ↑,操作费用↑;t 2不能过低:当t 2 低至接近t 1时,△t m 几乎不变,换热器无调节余地。

t 2 不能过高,工业冷却水t 2一般<45℃,否则易于生成钙、镁盐
析出,成为污垢热阻—技术限制()22m p 21m
Q q C t t KA t =−=Δ费用
t 2
操作费
总费用
设备费最优t 2
流速高,有利于K ↑,A ↓
(3)流速的选择
注意:管内、外均要尽量避免层流状态
流速高,则阻力损失h f ↑,h f ∝
q V 2
经济问题
m
t KA Q Δ=作业P 238:24
0.812121
1
1S S K u q R R αδαλα=
∝∝++++;(二)换热器的操作型计算
用以判断现有换热器对指定生产任务是否适用;预测某些参数的变化对换热器传热能力的影响;
第一类:已知设备、操作条件,求操作结果
K A T t q q T t 即已知:、、、、、、求、1. 操作型计算的命题方式
计算方法1:平均推动力法
112112
22m m 2112m p 12m 21()()
1p p p Q q C T T q C t q C t t
T q t T C −⇒=−−=−= ()热量衡算式:传热基本方程式:操作型问题的计算方法
1
1
12
2m m p 1212
2m1p11221m1p1m2p 1
2
ln
1()(()ln q C T t KA
T t q C T t T Q KA t q C T T KA T t
T t q C −−−=Δ⇒−=−=−−−⇒−() (2)计算思路:热量衡算式与传热基本方程式的联用计算
热管换热器
1.固定压紧板
2.夹紧螺栓
3.前端板
4.换热板片
5.密封垫片
6.后端板
7.下导板8.后支柱9.活动压紧板
10.上导板
U 型管式换热器板式换热器:
组合式铝合金散热器(T形翅)
翅片式换热器螺旋板式换热器
单壳程四管程管板式换热器
二、管壳式换热器的设计与选用
、冷、热流体通道选择P225
、流动方式选择(逆、并流、多管程多壳程复杂流)如流速增大会使传热系数K 增大,同时也会引起阻力损失h f 增大的矛盾问题。

、换热管的规格与排列
系列标化规定管径φ25×2.5和φ19×2,管长1.5、
、3、4.5、6 及9米六种
排列:等边三角形和正方形
(排列紧凑则湍流程度高,给热系数大,正方形
——管列清洗方便)
设计和选用时应考虑的问题(1)正三角形排列
(2)正方形排列
(3)正方形错列。

相关文档
最新文档