2015中招压轴题讲解 点的存在性
2015年中考数学压轴题解题技巧答案
2015年中考数学压轴题解题技巧数学综压轴题是为考察考生综合运用知识的能力而设计的,集中体现知识的综合性和方法的综合性,多数为函数型综合题和几何型综合题。
函数型综合题:是给定直角坐标系和几何图形,先求函数的解析式,再进行图形的研究,求点的坐标或研究图形的某些性质。
求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。
几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式,求函数的自变量的取值范围,最后根据所求的函数关系进行探索研究。
一般有:(1)在什么条件下图形是等腰三角形、直角三角形,四边形是平行四边形、菱形、梯形等(2)探索两个三角形满足什么条件相似等(3)探究线段之间的数量、位置关系等(4)探索面积之间满足一定关系时求x的值等,直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。
求函数的自变量的取值范围主要是寻找图形的特殊位置(极端位置)和根据解析式求解。
而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
解中考压轴题技能:中考压轴题大多是以坐标系为桥梁,运用数形结合思想,通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
关键是掌握几种常用的数学思想方法。
一是运用函数与方程思想。
以直线或抛物线知识为载体,列(解)方程或方程组求其解析式、研究其性质。
二是运用分类讨论的思想。
对问题的条件或结论的多变性进行考察和探究。
三是运用转化的数学的思想。
由已知向未知,由复杂向简单的转换。
中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题
中考数学压轴题分析-函数图象中点的存在性问题-由比例线段产生的函数关系问题例1 2015年呼和浩特市中考第25题已知抛物线y =x 2+(2m -1)x +m 2-1经过坐标原点,且当<0时,y 随x 的增大而减小。
(1)求抛物线的解析式,并写出y < 0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC =1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为(a , b ),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.动感体验请打开几何画板文件名“15呼和浩特25”,拖动点A 在x 轴下方的抛物线上运动,观察L 随a 变化的图像,可以体验到,有两个时刻,L 取得最大值,这两个时刻的点A 关于抛物线的对称轴对称.思路点拨1.先用含a 的式子表示线段AB 、AD 的长,再把L 表示为a 的函数关系式.2.点A 与点D 关于抛物线的对称轴对称,根据对称性,点A 的位置存在两个情况. 满分解答(1)因为抛物线y =x 2+(2m -1)x +m 2-1经过原点,所以m 2-1=0.解得m =±1。
如图1,当m =1时,抛物线y =x 2+x 的对称轴在y 轴左侧,不符合当x <0时,y 随x 的增大而减小。
当m =-1时,抛物线y =x 2-3x 符合条件。
图1 图2 图3(2)①当BC =1时,矩形ABCD 的周长为6。
②如图2,抛物线y =x 2-3x 的对称轴为直线32x =,如果点A 在对称轴的左侧,那么3322D a x -=-。
解得3D x a =-。
所以AD =3-2a 。
当x =a 时,y =x 2-3x =a 2-3a 。
点的存在性问题
中考冲刺:点的存在性问题
在平面直角坐标系内有两点()20A -,,102B ⎛⎫ ⎪⎝⎭,,CB 所在直线为2y x
=(1)求b 与C 的坐标; (2)连结AC ,求证:AOC COB △
∽△
(3)求过A ,B ,C 三点且对称轴平行于y 轴的抛物线解析式 (4)在抛物线上是否存在一点P (不与C 重合),
使得ABP ABC S S =△△,若存在,请求出P 点坐标,若不存在,请说明理由.
(5)在抛物线的对称轴上是否存在一点M ,使得△MBC 的周长最小?求出M 的坐标;
(6)如果N 是(3)中抛物线上的动点,且在x 轴下方,那么四边形ANCB 是否有最大面积?若有,求出此时N 的坐标及四边形ANCB 的面积最大值;
(7)在抛物线上是否存在一点E ,使△EAC 是以AC 为直角边的直角三角形?若存在,求出P 点坐标,若不存在,请说明理由。
(8)在抛物线上是否存在一点F ,使∠CAB=∠FAB? 若存在,求出E 点坐标,若不存在,请说明理由。
(9)在抛物线的对称轴上找一点G ,使GC GA -的值最大,直接写出G 点的坐标和GC GA -的最大值。
(10)探究:若点H 是抛物线对称轴上的点,是否存在这样的H ,使△HBC 为等腰三角形?若存在,请直接写出所有符合条件的点H 的坐标;若不存在,请说明理由。
解:(1)
(2)
(3)
(6
(7
(8
(9
(10。
中考数学压轴题“存在性”问题的解题策略(含解答)
数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典型例题】 例1.223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且,3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。
分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。
解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]()=+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。
【2015北京中考数学压轴题(29)解析】
T 点存在反称点, T '(0, 0)
② ∵⊙ O 的半径为 1, ∴ OP 2 设 y x 2 与 x 轴、 y 轴的交点为 A 、 B 则 A(2, 0) , B (0, 2) ∵ OA OB 2 ∴以 O 为圆心半径为 2 的圆与直线的交点为
sin பைடு நூலகம்AB
CH OB 2 3 CA AB 4 3
【2015 北京中考数学第 29 题】在平面直角坐标系 xOy 中,⊙ C 的半径为 r , P 是与圆心 C 不重合的点, 点 P 关于⊙ C 的反称点的定义如下:若射线 CP 上存在一点 P ' ,满足 CP CP ' 2r ,则称 P ' 为点 P 关 于⊙ C 的反称点. 下图为点 P 及其关于⊙ C 的反称点 P ' 的示意图. 特别地,当 P ' 与圆心 C 重合时,规定 CP ' 0 . (1)当⊙ O 的半径为 1 时, ①分别判断 M (2,1) , N ( , 0) , T (1, 3) 关于⊙ O 的反称点 是否存在?若存在,求其坐标; ②点 P 在直线 y x 2 上,若点 P 关于⊙ O 的反称点 P ' 存在,且点 P ' 不在 x 轴上,求点 P 的横坐标的取值范围; (2)⊙ C 的圆心在 x 轴上,半径为 1,直线 y
A、B
当点 P 位于点 A 或点 B 时,
P '(0, 0) 在 x 轴上,不符合题意.
当点 P 在线段 AB 上 (不含端点) 时, 1<OP<2
∴ CA 2CH 4 此时 t 6 4 2 . 当 C 在点 A 右侧,线段 AB 要与圆 C ' 有交点, 则 CA 2 , 由t 6 2 的t 8 . 综上 2 t 8 .
函数专题存在性问题(讲义)
中考压轴题之点的存在性技巧全攻略【例1】如图,在平面直角坐标系中,函数212y x =+的图象分别交x 轴、y 轴于A B 、两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点. (1)求直线AM 的函数解析式.(2)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A B M 、、、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.【例 2】已知(1)A m -,与(233)B m +,是双曲线ky x=图象上的两个点. (1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.ABCxy111-1-O【例3】如图,已知抛物线)0(2≠++=acbxaxy的顶点坐标为Q()1,2-,且与y轴交于点C()3,0,与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【中考真题1】已知二次函数2y ax bx c=++(0a≠)的图象经过点(10)A,,(20)B,,(02)C-,,直线x m=(2m>)与x轴交于点D.(1)求二次函数的解析式;(2)在直线x m=(2m>)上有一点E(点E在第四象限),使得E D B、、为顶点的三角形与以A O C、、为顶点的三角形相似,求E点坐标(用含m的代数式表示);(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.yxO【中考真题2】 在平面直角坐标系中,已知抛物线经过A )0,4(-,B )4,0(-,C )0,2(三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【测试 1】已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴于点C,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求点Q 的坐标;若不存在,请说明理由.。
2015年中考数学总复习专题9 存在性问题
(1)求点 A 的坐标和抛物线 C1 的解析式.
解:(1)∵抛物线 C1:y=a(x+1) -2 经过点 B(-2,-1),
2
∴a(-2+1)2-2=-1
∴a =1,
∴抛物线 C1:y=(x+1)2-2,
∴顶点 A 的坐标为(-1,-2).
专题9
存在性问题
(2)如图 T9-4①, 将抛物线 C1 向下平移 2 个单位长度后得到抛物 线 C2,且抛物线 C2 与直线 AB 相交于 C,D 两点,求 S△OAC∶S△OAD 的值.
图T9-4
专题9
存在性问题
【点拨交流】 (1)用待定系数法求抛物线解析式有哪几种类型?本题应该 选择哪一种方法? (2)求△OAC与△OAD的面积之比时,需要直接求得面积再计 算比值吗? (3)由直线和坐标轴构造三角形相似时,应注意什么问题?
专题9
存在性问题
2 已知抛物线 C1:y=ax+1 -2 的顶点为 A,且经过点 B(-2,-1).
(2)抛物线 C1:y=(x+1) -2 向下平移 2 个单位长度后得抛 物线 C2:y=(x+1)2-4=x2+2x-3.
∵A(-1,-2),B(-2,-1),
E
2
∴直线 AB 的解析式为 y=-x-3,
∴
解得
F
∴点 C 的坐标为(-3,0),点 D 的坐标为(0,-3).
∵A(-1,-2),B(-2,-1),
专题9
存在性问题
【归纳总结】 本题为综合题,考查了平面直角坐标系中,利用待定系数 法求抛物线解析式的方法,利用方程组、分类讨论和数形结合 等思想解题.
专题9
存在性问题
面动型问题
探究三
例 3 [2014²曲靖] 如图 T9-3,抛物 线 y=ax +bx+c 与坐标轴分别交于 A(- 3,0),B(1,0),C(0,3)三点,D 是抛物 线顶点,E 是对称轴与 x 轴的交点.
2015年中考数学压轴题及答案汇总
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
2015年安徽中考数学压轴题分析
2015年安徽中考数学压轴题分析近年来,安徽省中考的数学压轴题越来越注重应用型题目,这些题目涉及到的数学知识点较多,结构复杂,题型新颖,解法没有固定模式,难度较大,对同学们的解题技能、技巧有较高的要求且分值较高,通常出现在试卷的最后一部分。
一般来说,压轴题常以综合题的形式出现,由几道小题组成。
要顺利解答压轴题,除了基础知识要扎实之外,审题也非常关键。
需要搞清题目的类型,理清题目中的知识点,分清条件和结论,注意关键语句找出关键条件,特别要挖掘隐含条件,并尽量根据题意列出相关的数式或画出示意图形,然后分析条件和结论之间的联系,从而找到正确合理的解题途径。
将复杂问题分解或转化成较为简单或者熟悉的问题则是解此类题目的一条重要原则。
近几年来,随着中考改革的进行,许多应用型的中考压轴题在不断涌现,压轴题的类型也在不断变化。
本文从中考知识点和数学思想的角度对近几年来安徽省中考数学压轴题进行分类,找出其中的共性,发现其规律,为2010年及以后的中考探明方向。
其中,二次函数题仍是“热点”题目。
二次函数作为初中数学的一个难点也是历年来中考的热点,是初中数学与高中数学衔接最紧密的地方。
但是近年来由于对二次函数题类型与深度的挖掘,二次函数题的“新”与“深”受到了限制,不过安徽省中考题还有非常美好的一面。
例如,2004年的一道压轴题,考查学生对应用题的审题能力。
某企业投资100万元引进一条农产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万元。
该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax+bx,若第1年的维修、保养费为2万元,第2年的为4万元。
题目要求求y的解析式,以及投产后,这个企业在第几年就能收回投资。
这道题目关键在于“费用累计”这个概念,学生需要注意审题,正确理解题目中的条件和结论。
通过代入和计算,可以得到y=x+x,以及g=33x-100-x-x,然后通过分析条件和结论之间的联系,得出投产后该企业在第4年就能收回投资。
压轴题学习讲义—点的存在性问题
压轴题学习讲义—点的存在性问题1.(江津市)26.如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(- 3,0)两点, (1)求该抛物线的解析式;(2)设(1)中的抛物线交y 轴与C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P ,使△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值.若没有,请说明理由.解:(1)将A(1,0),B(-3,0)代2y x bx c =-++中得10930b c b c -++⎧⎨--+=⎩= ∴23b c =-⎧⎨=⎩∴抛物线解析式为:223y x x =--+(2)存在 理由如下:由题知A 、B 两点关于抛物线的对称轴1x =-对称 ∴直线BC 与1x =-的交点即为Q 点, 此时△AQC 周长最小 ∵223y x x =--+, ∴C 的坐标为:(0,3) 直线BC 解析式为:3y x =+ Q 点坐标即为13x y x =-⎧⎨=+⎩的解∴12x y =-⎧⎨=⎩∴Q(-1,2)ABC(3)答:存在。
理由如下: 设P 点2(23) (30)x x x x --+-<<, ∵92BPC BOC BPCO BPCO S S S S ∆∆=-=-四边形四边形 若BPCO S 四边形有最大值,则BPC S ∆就最大,∴BPE BPCO PEOC S S S ∆+Rt 四边形直角梯形= 11()22BE PE OE PE OC =⋅++ =2211(3)(23)()(233)22x x x x x x +--++---++=233927()2228x -+++ 当32x =-时,BPCO S 四边形最大值=92728+∴BPC S ∆最大=9279272828+-=当32x =-时,215234x x --+=∴点P 坐标为315( )24-,)2. (宁德市)26.(本题满分13分)如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点(点A 在点B 的左边),点B 的横坐标是1.(1)求P 点坐标及a 的值;(4分)(2)如图(1),抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;(4分)(3)如图(2),点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.(5分)解:(1)由抛物线C 1:()522-+=x a y 得顶点P 的为(-2,-5)∵点B (1,0)在抛物线C 1上 ∴()52102-+=a 解得,a =59(2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G∵点P 、M 关于点B 成中心对称 ∴PM 过点B ,且PB =MB ∴△PBH ≌△MBG ∴MG =PH =5,BG =BH =3 ∴顶点M 的坐标为(4,5)抛物线C 2由C 1关于x 轴对称得到,抛物线C 3由C 2平移得到 ∴抛物线C 3的表达式为()54952+--=x y (3)∵抛物线C 4由C 1绕点x 轴上的点Q 旋转180°得到 ∴顶点N 、P 关于点Q 成中心对称 由(2)得点N 的纵坐标为5设点N 坐标为(m ,5) 作PH ⊥x 轴于H ,作NG ⊥x 轴于G 作PK ⊥NG 于K ∵旋转中心Q 在x 轴上 ∴EF =AB =2BH =6∴FG =3,点F 坐标为(m +3,0) H 坐标为(2,0),K 坐标为(m ,-5), 根据勾股定理得 PN 2=NK 2+PK 2=m 2+4m +104 PF 2=PH 2+HF 2=m 2+10m +50 NF 2=52+32=34①当∠PNF =90º时,PN 2+ NF 2=PF 2,解得m =443,∴Q 点坐标为(193,0)②当∠PFN =90º时,PF 2+ NF 2=PN 2,解得m =103,∴Q 点坐标为(23,0)③∵PN >NK =10>NF ,∴∠NPF ≠90º 综上所得,当Q 点坐标为(193,0)或(23,0)时,以点P 、N 、F 为顶点的三角形是直角三角形.3. (莆田市)25.(14分)已知,如图1,过点()01E -,作平行于x 轴的直线l ,抛物线214y x =上的两点A B 、的横坐标分别为-1和4,直线AB 交y 轴于点F ,过点A B 、分别作直线l 的垂线,垂足分别为点C 、D ,连接CF DF 、.(1)求点A B F 、、的坐标; (2)求证:CF DF ⊥; (3)点P 是抛物线214y x =对称轴右侧图象上的一动点,过点P 作PQ PO ⊥交x 轴于点Q ,是否存在点P 使得OPQ △与CDF △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(1) 解:方法一,如图1,当1x =-时,14y =; 当4x =时,4y =∴1A ⎛⎫- ⎪⎝⎭1,4 ()44B ,设直线AB 的解析式为y kx b =+则1444k b k b ⎧-+=⎪⎨⎪+=⎩ 解得341k b ⎧=⎪⎨⎪=⎩ ∴直线AB 的解析式为314y x =+当0x =时,1y = ()01F ∴,方法二:求A B 、两点坐标同方法一,如图2,作FG BD ⊥,AH BD ⊥,垂足分别为G 、H ,交y 轴于点N ,则四边形FOMG 和四边形NOMH 均为矩形,设FO x =(图1)备用图(第25题图)(图1)(图2)BGF BHA △∽△ BG FG BH AH ∴= 441544x -∴=- 解得1x =()0F ∴,1(2)证明:方法一:在Rt CEF △中,1,2CE EF ==22222125CF CE EF ∴=+=+=CF ∴=在Rt DEF △中,42DE EF ==, 222224220DF DE EF ∴=+=+=DF ∴=由(1)得()()1141C D ---,,, 5CD ∴= 22525CD ∴== 222CF DF CD ∴+= 90CFD ∴∠=° ∴C F D F⊥ 方法二:由 (1)知5544AF AC ===,AF AC ∴= 同理:BF BD = A C F A F C ∴∠=∠ AC EF ∥ A C F C F O∴∠=∠ AFC CFO ∴∠=∠ 同理:BFD OFD ∠=∠ 90CFD OFC OFD ∴∠=∠+∠=°即CF DF ⊥(3)存在.解:如图3,作PM x ⊥轴,垂足为点M 又PQ OP ⊥ R t R t O P M O∴△∽△PM OM PQ OP ∴=PQ PMOP OM ∴=设()2104P x x x ⎛⎫> ⎪⎝⎭,,则214PM x OM x ==, ①当Rt Rt QPO CFD △∽△时,12PQ CF OP DF === 21142x PM OM x ∴== 解得2x = ()121P ∴,图3②当Rt Rt OPQ CFD △∽△时,2PQ DF OP CF === 2142x PM OM x ∴== 解得8x = ()2816P ∴,综上,存在点()121P ,、()2816P ,使得OPQ △与CDF △相似. 4. 如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动, 设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)Q (1,0) ····································································································· 1分 点P 运动速度每秒钟1个单位长度.(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB 中,10AB =过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H .∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=. ∴所求C 点的坐标为(14,12).(2) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t A M M P∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位) ∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) 说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当47471062()10t =-=⨯-时, △OPQ 的面积最大. 此时P 的坐标为(9415,5310) . (4) 当 53t =或29513t =时, OP 与PQ 相等.5. (广州市)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
中考数学第二轮复习串讲--第四讲 存在性问题
中考数学第二轮复习串讲--第四讲 存在性问题精讲精练一、点的存在性问题例1如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式; (3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.二、四边形等其它图形存在性问题如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.N三、线段和最短的存在性问题例1如图,在直角坐标系中,点A的坐标为(-2,0),连结0A,将线段OA绕原点O顺时针旋转120。
,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)实战演练1、如图,在平面直角坐标系中,直线y=与x轴交于点A,与y轴交于点C,抛物线2(0)y ax x c a=+≠经过A B C,,三点.(1)求过A B C,,三点抛物线的解析式并求出顶点F的坐标;(2)在抛物线上是否存在点P,使ABP△为直角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;(3)试探究在直线AC上是否存在一点M,使得MBF△的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.x2、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.中考数学第二轮复习串讲--第五讲应用题篇精讲精练一、函数型应用题例1 某化工原料经销公司购进7O00 kg 某种化工原料,购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于每千克30元,市场调查发现:单价定为每千克70元时,日均销售60kg ;单价每降低l 元时,均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时。
2015中考:中考数学压轴题如何解答
2015中考:中考数学压轴题如何解答
历年中考都是以考察基础知识为主,但是会有一两道难题作为选拔性题目,这就是压轴题,做好了压轴题可以说就能够在数学成绩上遥遥领先,那么怎样解答2015中考数学压轴题呢?让我们一起来看看吧!
一、2015中考数学压轴题之函数与方程
在初中学习数学的时候我们都知道函数是中学阶段的重中之重,而函数中最重要的就是直线与抛物线,所以有相当一部分的数学压轴题是考查函数的,这时候我们要以直线或抛物线知识为载体,运用函数与方程思想来解题。
二、2015中考数学压轴题之分类讨论
大多数数学题都可以分成很多种情况来讨论,在有多个条件、有多种可变性的情况下,我们可以采用分类讨论的方法,这种方法不仅能够检测同学们思维的准确性与严密性,而且能够避免错解或漏解,避免失分。
三、2015中考数学压轴题之数形结合
最近几年的中考数学压轴题大多是与坐标系相关的,在做这一类题目的时候我们最好的方法就是采用数形结合思想,借助图形来形象直观的理解数,通过数来研究图形,不仅使得题目直观易懂,解答的时候也会容易一些。
以上就是怎样解答2015中考数学压轴题的相关内容,相信大家一定能够在备考中考数学的时候更加努力,在2015年中考的时候取
得优异的成绩。
加油!
精心整理,仅供学习参考。
2015中考数学压轴题精选精析
如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P AC N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;.图 9yxOED CBAOBxyA MC13-如图,抛物线经过A (4,0),B (1,0),C (0,-2)三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得△DCA 的面积最大,求出点D 的坐标.思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA .满分解答 (1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y . (2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM . 解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6如图1,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (0,-3),对称轴是直线x =1,直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式; (2)求直线BC 的函数表达式;(3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P 在第三象限. ①当线段34PQ AB =时,求tan ∠CED 的值; ②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标. 温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.思路点拨1.第(1)、(2)题用待定系数法求解析式,它们的结果直接影响后续的解题.2.第(3)题的关键是求点E 的坐标,反复用到数形结合,注意y 轴负半轴上的点的纵坐标的符号与线段长的关系.3.根据C 、D 的坐标,可以知道直角三角形CDE 是等腰直角三角形,这样写点E 的坐标就简单了.满分解答(1)设抛物线的函数表达式为2(1)y x n =-+,代入点C (0,-3),得4n =-.所以抛物线的函数表达式为22(1)423y x x x =--=--.(2)由223(1)(3)y x x x x =--=+-,知A (-1,0),B (3,0).设直线BC 的函数表达式为y kx b =+,代入点B (3,0)和点C (0,-3),得30,3.k b b +=⎧⎨=-⎩ 解得1k =,3b =-.所以直线BC 的函数表达式为3y x =-.(3)①因为AB =4,所以334PQ AB ==.因为P 、Q 关于直线x =1对称,所以点P 的横坐标为12-.于是得到点P 的坐标为17,24⎛⎫-- ⎪⎝⎭,点F 的坐标为70,4⎛⎫- ⎪⎝⎭.所以75344FC OC OF =-=-=,522EC FC ==.进而得到51322OE OC EC =-=-=,点E 的坐标为10,2⎛⎫- ⎪⎝⎭. 直线BC:3y x =-与抛物线的对称轴x =1的交点D 的坐标为(1,-2). 过点D 作DH ⊥y 轴,垂足为H .在Rt △EDH 中,DH =1,13222EH OH OE =-=-=,所以tan ∠CED 23DH EH ==. ②1(12,2)P --,265(1,)22P --.图2 图3 图4考点伸展第(3)题②求点P的坐标的步骤是:如图3,图4,先分两种情况求出等腰直角三角形CDE的顶点E的坐标,再求出CE的中点F的坐标,把点F的纵坐标代入抛物线的解析式,解得的x的较小的一个值就是点P的横坐标.(2010•河南)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.解:(1)设抛物线的解析式为y=a(x+4)(x-2),①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=-x,则Q(x,-x).②如图2,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).故满足题意的Q点的坐标有四个,分别是(-4,4),(4,-4),(2013•眉山)如图,在平面直角坐标系中,点A、B在x轴上,点C、D在y 轴上,且OB=OC=3,OA=OD=1,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点,直线AD与抛物线交于另一点M.(1)求这条抛物线的解析式;(2)P为抛物线上一动点,E为直线AD上一动点,是否存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由..∴抛物线的解析式为:y=x2+2x-3.(2)存在.△APE为等腰直角三角形,有三种可能的情形:①以点A为直角顶点.如解答图,过点A作直线AD的垂线,与抛物线交于点P,与y轴交于点F.∵OA=OD=1,则△AOD为等腰直角三角形,∵PA⊥AD,则△OAF为等腰直角三角形,∴OF=1,F(0,-1).设直线PA的解析式为y=kx+b,将点A(1,0),F(0,-1)的坐标代入得:解得k=1,b=-1,∴y=x-1.将y=x-1代入抛物线解析式y=x2+2x-3得,x2+2x-3=x-1,整理得:x2+x-2=0,解得x=-2或x=1,当x=-2时,y=x-1=-3,∴P(-2,-3);②以点P为直角顶点.此时∠PAE=45°,因此点P只能在x轴上或过点A与y轴平行的直线上.过点A与y轴平行的直线,只有点A一个交点,故此种情形不存在;因此点P只能在x轴上,而抛物线与x轴交点只有点A、点B,故点P与点B重合.∴P(-3,0);③以点E为直角顶点.此时∠EAP=45°,由②可知,此时点P只能与点B重合,点E位于直线AD与对称轴的交点上,即P(-3,0);综上所述,存在点P,使以点A、P、E为顶点的三角形为等腰直角三角形.点P 的坐标为(-2,-3)或(-3,0).(2010•宜宾)将直角边长为6的等腰Rt△A O C放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接A P,当△A PE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△A G C的面积与(2)中△A PE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.(1分)∵抛物线的图象又经过点(-3,0)和(6,0),(2012•从化市一模)如图(1),在平面直角坐标系中,抛物线y=ax2+bx-3a 经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.(1)求该抛物线的解析式及点C、D的坐标;(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;(3)如图(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.(1)y=-x2+2x+3=-(x-1)2+4 ∴D(1,4)204.(四川省遂宁市)如图,二次函数的图象经过点D (0,397),且顶点C 的横坐标为4,该图象在x 轴上截得的线段AB 的长为6. (1)求该二次函数的解析式;(2)在该抛物线的对称轴上找一点P ,使PA +PD 最小,求出点P 的坐标;(3)在抛物线上是否存在点Q ,使△QAB 与△ABC 相似?如果存在,求出点Q 的坐标;如果不存在,请说明理由.(1)设二次函数的解析式为:y=a (x-h )2+k(2)∵点A 、B 关于直线x=4对称 ∴PA=PB∴PA+PD=PB+PD≥DB∴当点P 在线段DB 上时PA+PD 取得最小值 ∴DB 与对称轴的交点即为所求点P 设直线x=4与x 轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∵∠PBM=∠DBO ∴△BPM∽△BDOCD O BAyx207.(四川省内江市)如图所示,已知点A(-1,0),B(3,0),C(0,t),且t>0,tan∠BAC=3,抛物线经过A、B、C三点,点P(2,m)是抛物线与直线l:y=k(x+1)的一个交点.(1)求抛物线的解析式;(2)对于动点Q(1,n),求PQ+QB的最小值;(3)若动点M在直线l上方的抛物线上运动,求△AMP的边AP上的高h的最大值.(3)过点P作PN⊥x轴于点N,过点M作MK⊥x轴于点K,设点M的坐标为(x,-x2+2x+3),(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式.(2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标.②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.(1)ABxyO图1C ABxyOP D E图2CABP xyOD E 图3C(注:只回答有最大面积,而没有说明理由的,不给分;点P 的坐标,或最大面积计算错误的,扣(1分);其他解法只要合理,酌情给分.)1.(2008年四川省宜宾市)已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a bac a b 44,22)满分解答:1. 解:( 1)由已知得:310c b c =⎧⎨--+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =-++(2)由顶点坐标公式得顶点坐标为(1,4) 所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F 所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9 (3)相似. 如图,BD=2222112BG DG +=+=BE=22223332BO OE +=+= DE=22222425DF EF +=+= 所以2220BD BE +=, 220DE =即: 222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且22AO BO BD BE ==, 所以AOB DBE ∆∆..(2008年辽宁省十二市)如图16,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C ,抛物线223(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由;(3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.yxD EABFOG17. 解:(1)直线33y x =--与x 轴交于点A ,与y 轴交于点C .(10)A ∴-,,(03)C -, ··························································································· 1分 点A C ,都在抛物线上,23033a c c ⎧=++⎪∴⎨⎪-=⎩ 333a c ⎧=⎪∴⎨⎪=-⎩∴抛物线的解析式为2323333y x x =-- ·························································· 3分 ∴顶点4313F ⎛⎫- ⎪ ⎪⎝⎭, ································································································ 4分 (2)存在 ················································································································ 5分 1(03)P -, ·············································································································· 7分 2(23)P -, ·············································································································· 9分 (3)存在 ·············································································································· 10分 理由:解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点.····················································································· 11分 过点B '作B H AB '⊥于点H .A O xyBFC图16B 点在抛物线2323333y x x =--上,(30)B ∴,在Rt BOC △中,3tan 3OBC ∠=, 30OBC ∴∠=,23BC =,在Rt BB H '△中,1232B H BB ''==, 36BH B H '==,3OH ∴=,(323)B '∴--, ·················································· 12分 设直线B F '的解析式为y kx b =+233433k b k b ⎧-=-+⎪∴⎨-=+⎪⎩ 解得36332k b ⎧=⎪⎪⎨⎪=-⎪⎩33362y x ∴=- ···································· 13分 3333362y x y x ⎧=--⎪∴⎨=-⎪⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩,310377M ⎛⎫∴- ⎪ ⎪⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ····· 14分 解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ················································· 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=,BCO FHG ∠=∠ HFG CBO ∴∠=∠A O xyBFC图9HBM AO xyBF C 图10H MG同方法一可求得(30)B ,. 在Rt BOC △中,3tan 3OBC ∠=,30OBC ∴∠=,可求得33GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC 的对称点.5303H ⎛⎫∴- ⎪ ⎪⎝⎭,··············································· 12分 设直线BH 的解析式为y kx b =+,由题意得03533k b b =+⎧⎪⎨=-⎪⎩ 解得539533k b ⎧=⎪⎪⎨⎪=-⎪⎩553393y ∴=- ··············································· 13分 55339333y x y x ⎧=-⎪∴⎨⎪=--⎩ 解得371037x y ⎧=⎪⎪⎨⎪=-⎪⎩310377M ⎛⎫∴- ⎪ ⎪⎝⎭,线AC 上存在点M ,使得MBF △的周长最小,此时310377M ⎛⎫- ⎪ ⎪⎝⎭,. ······················································ 1 ∴在直19.(2008年四川省巴中市) 已知:如图14,抛物线2334y x =-+与x 轴交于点A ,点B ,与直线34y x b =-+相交于点B ,点C ,直线34y x b =-+与y 轴交于点E .(1)写出直线BC 的解析式.(2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?19. 解:(1)在2334y x =-+中,令0y = 23304x ∴-+= 12x ∴=,22x =- (20)A ∴-,,(20)B , ··················································· 1分又点B 在34y x b =-+上 302b ∴=-+ 32b = BC ∴的解析式为3342y x =-+ ················································································ 2分 (2)由23343342y x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,得11194x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ······················································· 4分 914C ⎛⎫∴- ⎪⎝⎭,,(20)B , 4AB ∴=,94CD = ································································································ 5分 1994242ABC S ∴=⨯⨯=△ ··························································································· 6分 (3)过点N 作NP MB ⊥于点PxyA B CE M D P N OEO MB ⊥NP EO ∴∥BNP BEO ∴△∽△ ································································································· 7分 BN NP BE EO∴= ··········································································································· 8分 由直线3342y x =-+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE = 25322t NP ∴=,65NP t ∴= ························································································· 9分 16(4)25S t t ∴=- 2312(04)55S t t t =-+<< ······················································································ 10分 2312(2)55S t =--+ ······························································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大 ∴当点M 运动2秒时,MNB △的面积达到最大,最大为125. (2010•内江)如图,抛物线y=mx2-2mx-3m (m >0)与x 轴交于A 、B 两点,与y 轴交于C 点.(1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A 、B 两点的坐标;(2)经探究可知,△BCM 与△ABC 的面积比不变,试求出这个比值;(3)是否存在使△BCM 为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由满分解答:(1)∴A、B两点的坐标为(-1,0)、(3,0).(4分)(3)存在使△BCM为直角三角形的抛物线;《3题图》过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m,∴MN=DM-DN=m.∴CM2=CN2+MN2=1+m2;在Rt△OBC中,BC2=OB2+OC2=9+9m2,在Rt△BDM中,BM2=BD2+DM2=4+16m2;①如果△BCM是Rt△,且∠BMC=90°,那么CM2+BM2=BC2,即1+m2+4+16m2=9+9m2,②如果△BCM是Rt△,且∠BCM=90°,那么BC2+CM2=BM2,即9+9m2+1+m2=4+16m2,解得m=±1,∵m>0,∴m=1;∴存在抛物线y=x2-2x-3,使得△BCM是Rt△;③如果△BCM是Rt△,且∠CBM=90°,那么BC2+BM2=CM2,。
2015中考数学压轴题课件
• (2)如图,在平面直角坐标系中,直角梯形 OABC的顶点A(3,0)、B(2,7)、C(0,7),P为 线段OC上一点,设过B、P两点的直线为l1,过 A、P两点的直线为l2,若l1与l2是点P的直角线, 求直线l1与l2的解析式.
图2
图3
例5 2010年北京市中考第24题
(1)求点B的坐标;
例6 2009年嘉兴市中考第24题
(1)求x的取值范围
图1
(2)若△ABC为直角三角形,求x的 值
图2
图3
例 7 2008年河南省中考第23题
图2 图3
图3
例3 2012年杭州市中考第22题
(1)当k=-2时,求反比例函数的解析式; (2)要使反比例函数与二次函数都是y随x增大而增大,求k应满 足的条件以及x的取值范围; (3)设二次函数的图象的顶点为Q,当△ABQ是以AB为斜边 的直角三角形时,求k的值.
图2
图3
例4 2011年浙江省中考第23题
图2
图1
图1
图2
• 如图1,已知梯形OABC,抛物线分别过点O(0, 0)、A(2,0)、B(6,3).
(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒 1个单位长度的速度沿着线段BC运动, 动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q 两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、 Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线 AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成 的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
• 如图1,已知梯形OABC,抛物线分别过点O(0,0)、 A(2,0)、B(6,3) • (1)直接写出抛物线的对称轴、解析式及顶点M的坐 标;
2015山东中考数学压轴题解析
2. (12 分) (2015•聊城)如图,在直角坐标系中,Rt △OAB 的直角顶点 A 在 x 轴上,OA=4,AB=3.动点 M 从点 A 出 发,以每秒 1 个单位长度的速度,沿 AO 向终点 O 移动;同 时点 N 从点 O 出发, 以每秒 1.25 个单位长度的速度, 沿 OB 向终点 B 移动.当两个动点运动了 x 秒( 0<x<4)时,解 答下列问题:21 教育名师原创作品
i)若点P为直角顶点,则∠APC=90°. 由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在
ii)若点 A 为直角顶点,则∠PAC=90°. 如答图 3﹣1,过点 A( , )作 AN⊥x 轴于点 N,则 ON= ,AN= . 过点 A 作 AM⊥直线 AB,交 x 轴于点 M,则由题意易知,△AMN 为等腰直角三角形, ∴MN=AN= ,∴OM=ON+MN= + =3, ∴M(3,0) . 设直线 AM 的解析式为:y=kx+b, 则: ,解得 ,
1
1
2 .
y
(1)求抛物线的解析式.
y x 4x 2
2
D′′ N C
Dl G′
F′ E B E′′ x
(2)抛物线的对称轴为 l,与 y 轴的交点为 C,顶点为 D ,点 C 关于 l 对称点为 E.是否存在 x 轴上的点 M、 y 轴上的点 N,使 四边形 DNME 的周长最小?若存在,请画出图形(保留作图痕 迹),并求出周长的最小值;若不存在,请说明理由.2·1 ·c· n· j·y (3 )若点 P 在抛物线上,点 Q 在 x 轴上,当以点 D 、E、P 、 Q 为顶点的四边形为平行四边形时,求点 P 的坐标.www
②若∠ONM=90°,如图 3 所示: 则∠ONM= ∠OAB, 此时 OM=4﹣x,ON=1.25x , ∵∠ONM= ∠OAB,∠MON= ∠BOA, ∴△OMN∽△OBA, ∴ 即 , ,
挑战中考数学压轴题(第九版精选)之欧阳道创编
目录第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山嘉定区中考模拟第24题例2 2014年武汉市中考第24题例3 2012年苏州市中考第29题例4 2012年黄冈市中考第25题例5 2010年义乌市中考第24题例6 2009年临沂市中考第26题1.2 因动点产生的等腰三角形问题例1 2015年重庆市中考第25题例2 2014年长沙市中考第第26题例3 2013年上海市虹口区中考模拟第25题例42012年扬州市中考第27题例5 2012年临沂市中考第26题例62011年盐城市中考第28题1.3 因动点产生的直角三角形问题例12015年上海市虹口区中考模拟第25题例22014年苏州市中考第29题例3 2013年山西省中考第26题例4 2012年广州市中考第24题例5 2012年杭州市中考第22题例6 2011年浙江省中考第23题例7 2010年北京市中考第24题1.4 因动点产生的平行四边形问题例1 2015年成都市中考第28题例2 2014年陕西省中考第24题例3 2013年上海市松江区中考模拟第24题例42012年福州市中考第21题例5 2012年烟台市中考第26题例6 2011年上海市中考第24题例7 2011年江西省中考第24题1.5 因动点产生的梯形问题例1 2015年上海市徐汇区中考模拟第24题例2 2014年上海市金山区中考模拟第24题例3 2012年上海市松江中考模拟第24题例4 2012年衢州市中考第24题例5 2011年义乌市中考第24题1.6 因动点产生的面积问题例1 2015年河南市中考第23题例22014年昆明市中考第23题例3 2013年苏州市中考第29题例4 2012年菏泽市中考第21题例5 2012年河南省中考第23题例62011年南通市中考第28题例72010年广州市中考第25题1.7因动点产生的相切问题例12015年上海市闵行区中考模拟第24题例22014年上海市徐汇区中考模拟第25题例3 2013年上海市杨浦区中考模拟第25题1.8因动点产生的线段和差问题例1 2015年福州市中考第26题例22014年广州市中考第24题例3 2013年天津市中考第25题例4 2012年滨州市中考第24题第二部分图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例12015年呼和浩特市中考第25题例22014年上海市徐汇区中考模拟第25题例3 2013年宁波市中考第26题例4 2012年上海市徐汇区中考模拟第25题2.2 由面积公式产生的函数关系问题例12015年上海市徐汇区中考模拟第25题例2 2014年黄冈市中考第25题例3 2013年菏泽市中考第21题例4 2012年广东省中考第22题例5 2012年河北省中考第26题例6 2011年淮安市中考第28题第三部分图形运动中的计算说理问题3.1 代数计算及通过代数计算进行说理问题例12015年北京市中考第29题例2 2014年福州市中考第22题例3 2013年南京市中考第26题3.2几何证明及通过几何计算进行说理问题例12015年杭州市中考第22题例2 2014年安徽省中考第23题例3 2013年上海市黄浦区中考模拟第24题第四部分图形的平移翻折与旋转4.1图形的平移例12015年泰安市中考第15题例2 2014年江西省中考第11题4.2图形的翻折例1 2015年上海市宝山区嘉定区中考模拟第18题例2 2014年上海市中考第18题4.3图形的旋转例12015年扬州市中考第17题例2 2014年上海市黄浦区中考模拟第18题4.4三角形例12015年上海市长宁区中考模拟第18题例2 2014年泰州市中考第16题4.5四边形例12015年安徽省中考第19题例2 2014年广州市中考第8题4.6圆例12015年兰州市中考第15题例22014年温州市中考第16题4.7函数图像的性质例12015年青岛市中考第8题例2 2014年苏州市中考第18题第一部分函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2015年上海市宝山区嘉定区中考模拟第24题如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).(1)求k与m的值;(2)此双曲线又经过点B(n, 2),过点B的直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)在(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E 的坐标.图1动感体验请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,△ACE与△ACD相似,存在两种情况.思路点拨1.直线AD//BC,与坐标轴的夹角为45°.2.求△ABC的面积,一般用割补法.3.讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.满分解答(1)将点A(2, m)代入y=x+2,得m=4.所以点A的坐标为(2, 4).将点A(2, 4)代入ky,得k=8.x(2)将点B(n, 2),代入8y x =,得n =4. 所以点B 的坐标为(4, 2). 设直线BC 为y =x +b ,代入点B(4,2),得b =-2.所以点C 的坐标为(0,-2).由A(2, 4)、B(4, 2)、C (0,-2),可知A 、B 两点间的水平距离和竖直距离都是2,B 、C 两点间的水平距离和竖直距离都是4.所以AB =22,BC =42,∠ABC =90°. 图2所以S △ABC =12BA BC ⋅=122422⨯⨯=8. (3)由A(2, 4)、D(0, 2)、C (0,-2),得AD =22,AC =210. 由于∠DAC +∠ACD =45°,∠ACE +∠ACD =45°,所以∠DAC =∠ACE .所以△ACE 与△ACD 相似,分两种情况:①如图3,当CE AD CA AC =时,CE =AD =22.此时△ACD ≌△CAE ,相似比为1.②如图4,当CE AC CA AD=时,21021022=.解得CE =102.此时C 、E 两点间的水平距离和竖直距离都是10,所以E(10, 8).图3 图4 考点伸展第(2)题我们在计算△ABC 的面积时,恰好△ABC 是直角三角形.一般情况下,在坐标平面内计算图形的面积,用割补法.如图5,作△ABC的外接矩形HCNM,MN//y轴.由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.图5例22014年武汉市中考第24题如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)如图2,连接AQ、CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.图1 图2动感体验请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP.PQ 的中点H在△ABC的中位线EF上.思路点拨1.△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程.2.作PD⊥BC于D,动点P、Q的速度,暗含了BD=CQ.3.PQ的中点H在哪条中位线上?画两个不同时刻P、Q、H的位置,一目了然.满分解答(1)Rt△ABC中,AC=6,BC=8,所以AB=10.△BPQ 与△ABC 相似,存在两种情况:① 如果BP BA BQ BC =,那么510848t t =-.解得t =1. ② 如果BP BC BQ BA =,那么588410t t =-.解得3241t =. 图3 图4(2)作PD ⊥BC ,垂足为D .在Rt △BPD 中,BP =5t ,cosB =45,所以BD =BPcosB =4t ,PD =3t .当AQ ⊥CP 时,△ACQ ∽△CDP . 所以AC CD QC PD =,即68443t t t -=.解得78t =.图5 图6(3)如图4,过PQ 的中点H 作BC 的垂线,垂足为F ,交AB 于E .由于H 是PQ 的中点,HF//PD ,所以F 是QD 的中点.又因为BD =CQ =4t ,所以BF =CF .因此F 是BC 的中点,E 是AB 的中点.所以PQ 的中点H 在△ABC 的中位线EF 上.考点伸展本题情景下,如果以PQ 为直径的⊙H 与△ABC 的边相切,求t 的值.如图7,当⊙H 与AB 相切时,QP ⊥AB ,就是BP BC BQ BA=,3241t =. 如图8,当⊙H 与BC 相切时,PQ ⊥BC ,就是BP BA BQ BC =,t =1.如图9,当⊙H 与AC 相切时,直径PQ半径等于FC =48=. 解得12873t =,或t =0(如图10,但是与已知0<t <2矛盾).图7 图 8 图9 图10例3 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图1动感体验请打开几何画板文件名“12苏州29”,拖动点B 在x 轴的正半轴上运动,可以体验到,点P 到两坐标轴的距离相等,存在四边形PCOB 的面积等于2b 的时刻.双击按钮“第(3)题”,拖动点B ,可以体验到,存在∠OQA =∠B 的时刻,也存在∠OQ′A =∠B 的时刻.思路点拨1.第(2)题中,等腰直角三角形PBC 暗示了点P 到两坐标轴的距离相等.2.联结OP ,把四边形PCOB 重新分割为两个等高的三角形,底边可以用含b 的式子表示.3.第(3)题要探究三个三角形两两相似,第一直觉这三个三角形是直角三角形,点Q 最大的可能在经过点A 与x 轴垂直的直线上.满分解答(1)B 的坐标为(b, 0),点C 的坐标为(0, 4b ). (2)如图2,过点P 作PD ⊥x 轴,PE ⊥y 轴,垂足分别为D 、E ,那么△PDB ≌△PEC .因此PD =PE .设点P 的坐标为(x, x).如图3,联结OP .所以S 四边形PCOB =S △PCO +S △PBO =1152428b x b x bx ⨯⋅+⨯⋅==2b . 解得165x =.所以点P 的坐标为(1616,55). 图2 图3(3)由2111(1)(1)()4444b y x b x x x b =-++=--,得A(1, 0),OA =1.①如图4,以OA 、OC 为邻边构造矩形OAQC ,那么△OQC ≌△QOA . 当BA QA QA OA=,即2QA BA OA =⋅时,△BQA ∽△QOA . 所以2()14b b =-.解得8b =±Q 为(1,2+.②如图5,以OC 为直径的圆与直线x =1交于点Q ,那么∠OQC =90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
商丘兴华学校成功导案(点的存在性5)
主备人 初审人 审核人 九年级______班 姓名___一、成功学习
今天我们来学习动点中梯形问题,祝你学的愉快!
1、成功目标
⑴掌握解决因动点产生梯形问题的一般思路;⑵熟练解决相关问题。
2、成功自学
例1、已知平面直角坐标系xOy 中, 抛物线y =ax 2-(a +1)x 与直线y =kx 的一个公共点为A(4,8).
(1)求此抛物线和直线的解析式;
(2)若点P 在线段OA 上,过点P 作y 轴的平行线交(1)中抛物线于点Q ,求线段PQ 长度的最大值;
(3)记(1)中抛物线的顶点为M ,点N 在此抛物线上,若四边形AOMN 恰好是梯形,求点N 的坐标及梯形AOMN 的面积.
3、成功量学:已知,矩形OABC 在平面直角坐标系中位置如图1所示,点A 的坐标为
(4,0),点C 的坐标为)20(-,,直线x y 3
2-=与边BC 相交于点D . (1)求点D 的坐标;
(2)抛物线c bx ax y ++=2经过点A 、D 、O ,求此抛物线的表达式;
(3)在这个抛物线上是否存在点M ,使O 、D 、A 、M 为顶点的四边形是梯形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.
二、成功展示
三、成功检测
已知二次函数的图象经过A(2,0)、C(0,12) 两点,且对称轴为直线x=4,设顶点为点P,与x轴的另一交点为点B.
(1)求二次函数的解析式及顶点P的坐标;
(2)如图1,在直线y=2x上是否存在点D,使四边形OPBD为等腰梯形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)如图2,点M是线段OP上的一个动点(O、P两点除外),以每秒2个单位长度的速度由点P向点O 运动,过点M作直线MN//x轴,交PB于点N.将△PMN沿直线MN 对折,得到△P1MN.在动点M的运动过程中,设△P1MN与梯形OMNB的重叠部分的面积为S,运动时间为t秒,求S关于t的函数关系式.
图1 图2
四、成功思学————————————————————————————。