发电厂电气部分第三章
发电厂电气部分-常用计算的基本理论和方法
Qt Et At D
(W / m)
我国取太阳辐射功率密度 Et 1000W/m 2 取铝管导体的吸收率 At 0.6 ; D为导体的直径(m)。 对于屋内导体,这部分热量可忽略。
;
3.对流散热量的计算Ql
对流:由气体个部分发生相对位移将热量带走的过程。 对流散热量与温差及散热面积成正比:
Fl π D
(m m)
(2)强迫对流散热量的计算 屋内人工通风或屋外导体处在风速较大的环境时,可以 带走更多的热量,属于强迫对流散热。圆管形导体的强迫对 流散热系数为: Nu l
D vD Nu 0.13
0.65
当空气温度为20℃时,空气的导热系数为 2.52 102 W/(m C)
Ql l ( w 0 ) Fl
下面是对流散热系数αl的计算
(W / m)
根据对流条件不同,分为自然对流和强迫对流。
(1)自然对流散热量的计算 屋内空气自然流动或屋外风速小于0.2m/s,属于自然对 流换热。对流散热系数可按大空间湍流状态来考虑,一般取:
l 1.5( w 0 )0.35
F f 2( A1 A2 ) 0.266 m2/m
因导体表面涂漆,取 0.95 ,辐射换热量为 273 70 4 273 25 4 Q f 5.7 0.95 0.266 100 100 322.47 0.266 85.77 W/m (4)导体的载流量
从上式可以得到所取导体稳定温度和空气温度下的容许 电流值,即
导体的散热面积
I
Ql Q f R
w F ( w 0 )
R
2.导体的载流量 导体的载流量:在额定环境温度θ0下,使导体的稳定温度正好 为长期发热最高允许温度,即使θw=θal的电流,称为该θ0下的 载流量(或长期允许电流),即 Ql Q f w F ( al 0 )
发电厂电气部分课件-第三章 导体的短时发热计算
A R B
D
2 I∞
t p 除了与短路切除时间 t k 有关外,还与短路电流的
衰减特性 β ′′ = I ′′ / I ∞ 有关。
0
t p 可查曲线(见图 3-15)得到。
当短路切除时间 t k >5s 时,可以认为短路电流在 5s 后,已达到稳态值。故 t k >5s 时的发热等值时间 t p 可按 下式计算
由于短路电流 I kt 的表达式很复杂,一般难于用简单的解析式求解 Q k 。工程上常采用 近似计算法计算,如等值时间法、实用计算法。 1.等值时间法
Qk = ∫
tk 0
2 I kt
dt =
2 I∞ t eq
≈
2 I∞ tp
+
2 I∞ t np
2 I kt
式中, t p ——短路电流周期分量发热的等值时间(简称 周期分量等值时间) ,s; t np ——短路电流非周期分量发热的等值时间 (简 称非周期分量等值时间) ,s。 (1) 周期分量等值时间 t p
t np = 0.05 I ′′ /
2 I∞
第二节
载流导体短路时的发热计算
·4·
由于短路电流非周期分量衰减很快,当短路切除时间 t k >1s 时,导体的发热主要由短 路电流周期分量来决定,此时可不计非周期分量的影响。 等值时间法由于计算简单,并有一定的精度,目前仍得到广泛应用。但现有的周期分 量等值时间曲线是根据容量为 50MW 以下的发电机, 按短路电流周期分量衰减曲线的平均 值制作的,用于更大容量的发电机,势必产生误差。这时,最好采用其他方法。 例 3-3 2.实用计算法 由数值计算方法可知,任意曲线 y = f ( x) 的定积分,可采用辛卜生法近似计算,即
第3章-短路电流计算
确定合理的主接线方案和运行方式
第三章
短路电流计算
无限大容量供电 系统三相短路分析
第二节
第三章
短路电流计算
一、无限大容量电源概念
无限大容量供电系统定义
内阻为零
端电压恒定不变 短路电流周期分量恒定不变
通常将电源内阻抗小于短路回路总阻抗10%的电源看作无限大
容量供电系统;一般的工矿企业供电系统的短路点离电源的距
产生最大短路电流的条件
最大三相短路电流是指最大短路电 流瞬时值。由ik的公式可以知道,短 路电流瞬时值最大的条件就是短路电 流非周期分量初始值最大的条件。 短路电流非周期初始值既与短路
前的负载情况有关,又与短路发生时
刻、短路后回路性质有关。 因此,当供电回路为空载Im=0或者cosψ=1时,Im与横轴重合。电源 电压过零(电源电压与横坐标重合)时短路,而且短路回路为纯感性, 则短路电流非周期初始值最大。
短路电流计算
无限大电源容量的暂态过程
设电源电压为: 正常运行电流为:
u ph = U phm sin(wt + q) i = I phm sin(wt + q - f )
I phm = U phm / ( R + Rlo )2 + (wl + wLlo )2
式中:I
-短路前电流的幅值
phm
-短路前回路的阻抗角
对于纯感性电路ksh =2;
第三章
有效值,
短路电流计算
短路冲击电流的有效值Ish是指短路后第一个周期的短路电流全电流的
I sh =
I
2 pe (0.01)
+I
发电厂习题
9
第三章 计算题
(3)求载流量
I
Ql Qf R
56.23270.94 0.037103
1854(A)
10
第三章 计算题
❖3-7 三相平行导体发生三相短路时最大电动力 出现在哪相上,试加以解释。
❖ 答:三相平行导体发生三相短路时最大电动力出 现在中间相B相上。
Fmax1.73107L ais2h(N)
6
第三章 计算题
❖ 直流电阻
单 R Rda10cc位 0.00长 013R070d度 c00K.10导 02f9体 3[[11(0 的 .a001t/.交 03(0Sm 040W 流 24)10603电 /(107阻 )00]0025)1].080.03426
f 50 38.2 Rdc 0.03426 b 10 1 h 100 10
w 61.9C
A w0 .4 6 1 0 1 6J/( m 4)
满足热稳 定要求!
A hS 12Q kA W(8080 1106)2421.11060.461016
0.5251016J/( m 4)
h70C200C
19
第四章 计算题
❖4-10 某220kV系统的重要变电站装置2台 120MVA的主变压器,220kV侧有4回进线, 110kV侧有10回出线且均为I、II类负荷,不允 许停电检修出线断路器,应采用何种接线方式? 画出接线图并简要说明。
▪ 查附表2知,选用2条 2 0 0 m m 9 0 m m 1 2 m m
构成双槽导体,截面为 S8080mm2,载流量为
I25C 8800A,则35℃对应的载流量为
I 3 5 C K I 2 5 C 0 . 8 8 8 8 0 0 7 7 4 4 A 7 7 1 7 A
发电厂电气部分-第三章1-3节
流
Ft=EtAtD
辐射角系数
如何提高导体载流量? 为提高导体的载流量,应采用电阻率 小的材料。 导体的形状不同,散热面不同。 导体的布置方式不同,散热效果不 同。
磁滞、涡流发热 电流 磁场 环流发热
6
3-7
(3-26)
(辛卜生近似法)
(3-29),
(3-30)
(3-28)可得
(3-31)
3-2
(3-7) (3-26)得
(3-7)
一阶固有频率:
其中: • L为绝缘子跨 距; • Nf为频率系数, 根据导体连续跨 数和支撑方式而 异。
导体发生振动时,在导体内部会产生动态应力。 对于动态应力的考虑,一般采用修正静态计算方法。 修正静态计算法:在最大电动力Fmax上乘以动态应力系数 ( 为动态应力与静态应力之比值),以求得实际动态过程 中的动态应力的最大值。 动态应力系数 与固有频率f的关系,如图3-14所示。
固有频率在中间范围内变化时, > 1 β 动态应力大; 当固有频率较低时, β < 1 当固有频率较高时, β
≈1
对于屋外配电装置中的铝管导体,取 β = 0.58
导体发生振动时,在导体内部会产生动态应力。 对于动态应力的考虑,一般采用修正静态计算方法。 修正静态计算法:在最大电动力Fmax上乘以动态应力系数 ( 为动态应力与静态应力之比值),以求得实际动态过程 中的动态应力的最大值。 动态应力系数 与固有频率f的关系,如图3-14所示。
对于重要导体,应使其固有频率在下述 范围之外: 单条导体及一组中的各条导体为 35~135Hz; 多条导体及引下线的单条导体为 35~155Hz; 槽形和管形导体为30~160Hz; 如固有频率在上述范围以外,则 β = 1
发电厂电气部分第三章总结
第三章【一】、对电气主接线的基本要求一.可靠性二. 灵活性1.调度灵活2.检修安全方便3.扩建方便三. 经济性1.节约投资2.占地面积少3.年运行费用少【二】电气主接线的基本接线形式根据是否有母线,主接线的接线形式可以分为有汇流母线的电气主接线无汇流母线的电气主接线两大类。
一、有母线的基本接线形式主要体现为四种形式:1)单母线接线2)双母线接线3)一台半断路器接线4)变压器—母线组接线基本知识一:1、断路器:现场将其称为“开关”,具有灭弧作用,正常运行时可接入或断开电路,故障情况下,受继电器的作用,能将电路自动切断。
2、隔离开关:可辅助切换操作,或用以与带电部分可靠地隔离。
3、母线:起汇集和分配电能的作用。
4、操作时:1)先合上隔离开关,后合上断路器;2)先拉开断路器,后拉开隔离开关;3)对于断路器两端的隔离开关:①先合上电源侧的隔离开关,后合上负荷侧的隔离开关;②先拉开负荷侧的隔离开关,后拉开电源侧的隔离开关基本知识二1、同一回路中在断路器可能出现电源的一侧或两侧均应配置隔离开关,以便检修断路器时隔离电源。
2、若馈线的用户侧无电源时,断路器通往用户的那一侧,可以不装设线路隔离开关。
若费用不大,为阻止过电压的侵入,也可装设。
3、若电源是发电机,则发电机与其出口断路器之间可不装隔离开关。
但为了便于对发电机单独进行调整和试验,也可装设隔离开关或设置可拆连接点。
图3-1、3-2、3-3、3-4、3-6、3-7、3-8、3-9、3-12、3-16、3-17、3-18及原理旁路母线和旁路断路器的作用:检修任一进出线断路器时,代替其工作,不中断对该回路的供电。
绝不是(母线检修时代替其工作)一台半断路器接线的线路配置原则:同名回路尽量不要布置在同一串上;当只有两串时一般采用交叉连接形式,以提高可靠性。
一台半断路器接线的应用:大机组,超高压。
二、无母线【三】发电机出口也有装设断路器的其理由是:(1)发电机组解、并列时,可减少主变压器高压侧断路器操作次数,特别是500kV或220kV为一台半断路器接线时,能始终保持一串内的完整性。
《发电厂电气》03-02-载流导体短时发热计算
b a
f
( x) d
x
ba 3n
[(
y0
yn )
2( y2
y4
若n=4,则
yn2 ) 4( y1 y3
yn1)]
b
a
f
(x) d
x
ba 12
[(
y0
y4 )
2( y2 )
4( y1
y3 )]
因为 y1 y3 2 y2 ,则
b
ba
a f (x) d x 12 [ y0 10y2 y4 ]
如何得到?
已知材料和温度 W 查 AW ,由AW 和 Qk 查 Ah
二、短路电流热效应Qk的计算
t
ikt 2Ipt cost inp0e Ta
将 ikt 带入 Qk,有
周期分量 有效值
非周期分 量起始值
Qk
tk 0
ik2t
dt
tk 0
t
2
2Ipt cost inp0e Ta d t
h ]
AW
mC0 0
[2
ln(1
W
)
W ]
J /( m4 ) J /( m4 )
一、导体短时发热过程
上式可写成
1 S 2 Qk Ah AW
由上式可知,A值与材料和温度有关。
θ(℃)
400
300
铝
铜
200 θh
100
θw
0
Aw
Ah
2
3
4
5×1016
1 S 2 Qk
θ = f(A)的曲线
A[J/(Ωm4)]
tk 0
I
2 pt
d
t
发电厂电气部分第四版课后习题答案
第一章能源和发电1-1 人类所认识的能量形式有哪些并说明其特点。
答:第一、机械能。
它包括固体一流体的动能,势能,弹性能及表面张力能等。
其中动能和势能是大类最早认识的能量,称为宏观机械能。
第二、热能。
它是有构成物体的微观原子及分子振动与运行的动能,其宏观表现为温度的高低,反映了物体原子及分子运行的强度。
第三、化学能。
它是物质结构能的一种,即原子核外进行化学瓜是放出的能量,利用最普遍的化学能是燃烧碳和氢,而这两种元素是煤、石油、天然气等燃料中最主要的可燃元素。
第四、辐射能。
它是物质以电磁波形式发射的能量。
如地球表面所接受的太阳能就是辐射能的一种。
第五、核能。
这是蕴藏在原子核内的粒子间相互作用面释放的能。
释放巨大核能的核反应有两种,邓核裂变应和核聚变反应。
第六、电能。
它是与电子流动和积累有关的一种能量,通常是电池中的化学能而来的。
或是通过发电机将机械能转换得到的;反之,电能也可以通过电灯转换为光能,通过电动机转换为机械能,从而显示出电做功的本领。
1-2 能源分类方法有哪些电能的特点及其在国民经济中的地位和作用答:一、按获得方法分为一次能源和二次能源;二、按被利用程度分为常规能源和新能源;三、按能否再生分为可再生能源和非再生能源;四、按能源本身的性质分为含能体能源和过程性能源。
电能的特点:便于大规模生产和远距离输送;方便转换易于控制;损耗小;效率高;无气体和噪声污染。
随着科学技术的发展,电能的应用不仅影响到社会物质生产的各个侧面,也越来越广泛的渗透到人类生活的每个层面。
电气化在某种程度上成为现代化的同义词。
电气化程度也成为衡量社会文明发展水平的重要标志。
1-3 火力发电厂的分类,其电能生产过程及其特点答:按燃料分:燃煤发电厂;燃油发电厂;燃气发电厂;余热发电厂。
按蒸气压力和温度分:中低压发电厂;高压发电厂;超高压发电厂;亚临界压力发电厂;超临界压力发电厂。
按原动机分:凝所式气轮机发电厂;燃气轮机发电厂;内燃机发电厂和蒸汽—燃气轮机发电厂。
发电厂电气部分第三章习题解答
第三章 导体的发热与电动力3-1 研究导体与电气设备的发热有何意义?长期发热与短时发热各有何特点?答:电流将产生损耗,这些损耗都将转变成热量使电器设备的温度升高。
发热对电气设备的影响:使绝缘材料性能降低;使金属材料的机械强度下降;使导体接触电阻增加。
导体短路时,虽然持续时间不长,但短路电流很大,发热量仍然很多。
这些热量在适时间内不容易散出,于就是导体的温度迅速升高。
同时,导体还受到电动力超过允许值,将使导体变形或损坏。
由此可见,发热与电动力就是电气设备运行中必须注意的问题。
长期发热就是由正常工作电流产生的;短时发热就是由故障时的短路电流产生的。
3-2 为什么要规定导体与电气设备的发热允许温度?短时发热允许温度与长期发热允许温度就是否相同,为什么?答:导体连接部分与导体本身都存在电阻(产生功率损耗);周围金属部分产生磁场,形成涡流与磁滞损耗;绝缘材料在电场作用下产生损耗,如:δtg 值的测量载流导体的发热:长期发热:指正常工作电流引起的发热短时发热:指短路电流引起的发热一 发热对绝缘的影响绝缘材料在温度与电场的作用下逐渐变化,变化的速度于使用的温度有关;二发热对导体接触部分的影响温度过高→表面氧化→电阻增大↑→↑→R I 2恶性循环三发热对机械强度的影响温度达到某一值→退火→机械强度↓→设备变形如:3-3 导体长期发热允许电流就是根据什么确定的?提高允许电流应采取哪些措施? 答:就是根据导体的稳定温升确定的。
为了载流量,宜采用电阻率小的材料,如铝与铝合金等;导体的形状,在同样截面积的条件下,圆形导体的表面积较小,而矩形与槽形的表面积则较大。
导体的布置应采用散热效果最最佳的方式。
3-4 为什么要计算导体短时发热最高温度?如何计算?答:载流导体短路时发热计算的目的在于确定短路时导体的最高温度不应超过所规定导体短路时发热允许温度。
当满足这个条件时,则认为导体在短路时,就是具有热稳定性的。
计算方法如下:1)有已知的导体初始温度θw;从相应的导体材料的曲线上查出A w;2)将A w与Q k值代入式:1/S2Q k=Ah-Aw求出A h;3)由A h再从曲线上查得θh值。
《电业安全工作规程》
中华人民共和国行业标准《电业安全工作规程》(发电厂和变电所电气部分)第一章总则第1条为了切实保证职工在生产中的安全和健康、电力系统、发供配电设备的安全运行,结合电力生产多年来的实践经验,制定本规程。
各单位的领导干部和电气工作人员,必须严格执行本规程。
第2条安全生产,人人有责。
各级领导必须以身作则,要充分发动群众,依靠群众;要发挥安全监察机构和群众性的安全组织的作用,严格监督本规程的贯彻执行。
第3条本规程适用于运用中的发、变、送、配、农电和用户电气设备上工作的一切人员(包括基建安装人员)。
各单位可根据现场情况制定补充条文,经厂(局)主管生产的领导(总工程师)批准后执行。
所谓运用中的电气设备,系指全部带有电压或一部分带有电压及一经操作即带有电压的电气设备。
第4条电气设备分为高压和低压两种:高压:设备对地电压在250V以上者:低压:设备对地电压在250V及以下者。
第5条电气工作人员必须具备下列条件:一、经医师鉴定,无妨碍工作的病症(体格检查约两年一次)。
二、具备必要的电气知识,且按其职务和工作性质,熟悉《电业安全工作规程》(发电厂和变电所电气部分、电力线路部分、热力和机械部分)的有关部分,并经考试合格。
三、学会紧急救护法(附录G),特别要学会触电急救。
第6条电气工作人员对本规程应每年考试一次。
因故间断电气工作连续三个月以上者,必须重新温习本规程,并经考试合格后,方能恢复工作。
参加带电作业人员,应经专门培训,并经考试合格、领导批准后,方能参加工作。
新参加电气工作的人员、实习人员和临时参加劳动的人员(干部、临时工等),必须经过安全知识教育后,方可下现场随同参加指定的工作,但不得单独工作。
对外单位派来支援的电气工作人员,工作前应介绍现场电气设备接线情况和有关安全措施。
第7条任何工作人员发现有违反本规程,并足以危及人身和设备安全者,应立即制止。
第8条对认真遵守本规程者,应给予表扬和奖励。
对违反本规程者,应认真分析,加强教育,分别情况,严肃处理。
第三章发电厂电气部分
试计算:
短路电流的热效应和母线的最高温度。
解:(1)计算短路电流的热效应 Q k
短路电流作用时间: =继电保护动作时间+断路器全开断时间 tk t pr tbr 1 0.2 1.2(s)
因为短路电流切除时间 tk=1.2s>1s 导体的发热主要由周期分量决定,非周期分量可忽略。
作业:
某变电所的汇流铝母线规格为80mm×10mm,其集 肤效应系Kf=1.05,在正常最大负荷时,母线的温度 θw=65℃。继电保护动作时间tpr=1.5s,断路器全断 开时间tbr=0.1s,短路电流 I It k It 20.5KA , 2
k
试计算母线的热效应和最高温度。
解:
一、导体短路时发热过程
1、根据导体短时发热特点,列出dt时间内热平衡方程式:
2 ikt R dt mC d
ikt — 短路电流全电流的瞬时值,A Rθ — 温度为θ时导体电阻,Ω Cθ — 温度为θ时导体比热容, J/(kg· ℃) m — 导体的质量,㎏ ρ0 — 0℃时导体电阻率, Ω·m α — 电阻率ρ0时温度系数 ,1/℃ C0 — 0℃时导体比热容,J/(kg· ℃) β —比热容C0时温度系数 ,1/℃ l — 导体长度(m) S — 导体截面(m2)
查曲线得θh =80℃<200℃,故满足热稳定。
f ( A) 的曲线
第三章作业:P99
3-4 3-7 3-9 3-14
当取n =4 (偶数)时,则
2 2 y0 I 2,y1 I 2tk /4, y2 I 2tk /2,y3 I3 , y I tk /4 4 tk
为了进一步简化,令
tk 2 pt
y2
(完整版)大工14春《发电厂电气部分》辅导资料六
发电厂电气部分辅导资料六主题:第三章电气主接线(第3—4节)学习时间:2014年5月5日—5月11日内容:第二章电气主接线这周我们将学习第三章中的第3—4节,这部分主要介绍无汇流母线的主接线及发电厂和变电所主变压器的选择。
第三节无汇流母线的主接线3.3.1 单元接线发电机—变压器单元接线:发电机和主变压器直接连成一个单元,再经断路器接至高压系统,发电机出口处除厂用分支外不再装设母线的接线形式。
1.发电机—双绕组变压器单元接线2.发电机—三绕组变压器单元接线3.发电机—变压器扩大单元接线4.发电机-变压器-线路组单元接线5.单元接线的特点和应用优点:a.接线简单,开关设备少,操作简便b.故障可能性小,可靠性高c.发电机出口短路电流有所减小d.配电装置结构简单,占地少,投资省应用:a.发电机额定电压超过10kV(单机容量在125MW及以上)b.虽然发电机额定电压不超过10kV,但发电厂无地区负荷c.原接于发电机电压母线的发电机已能满足该电压级地区负荷的需要d.原接于发电机电压母线的发电机总容量已经较大3.3.2 桥形接线1.内桥形接线特点:a.其中一回线路检修或故障时,其余部分不受影响,操作较简单。
b.变压器切除、投入或故障时,有一回路短时停运,操作较复杂。
c.线路侧断路器检修时,线路需较长时间停运。
适用范围:内桥接线适用于输电线路较长(检修和故障几率大)或变压器不需经常投、切及穿越功率不大的小容量配电装置中。
2.外桥形接线特点:a.其中一回线路检修或故障时,有一台变压器短时停运,操作较复杂。
b.变压器切除、投入或故障时,不影响其余部分的联系,操作较简单。
c.穿越功率只经过的断路器QF3,所造成的断路器故障、检修及系统开环的几率小。
d.变压器侧断路器检修时,变压器需较长时间停运。
桥连断路器检修时也会造成开环。
适用范围:外桥接线适用于输电线路较短或变压器需经常投、切及穿越功率较大的小容量配电装置中。
3.3.3 角形接线1.特点将断路器布置闭合成环,并在相邻两台断路器之间引接一条回路的接线。
发电厂电气部分第三章习题解答
第三章导体的发热与电动力3-1 研究导体与电气设备的发热有何意义?长期发热与短时发热各有何特点?答:电流将产生损耗,这些损耗都将转变成热量使电器设备的温度升高。
发热对电气设备的影响:使绝缘材料性能降低;使金属材料的机械强度下降;使导体接触电阻增加。
导体短路时,虽然持续时间不长,但短路电流很大,发热量仍然很多。
这些热量在适时间内不容易散出,于是导体的温度迅速升高。
同时,导体还受到电动力超过允许值,将使导体变形或损坏。
由此可见,发热与电动力是电气设备运行中必须注意的问题。
长期发热是由正常工作电流产生的;短时发热是由故障时的短路电流产生的。
3-2 为什么要规定导体与电气设备的发热允许温度?短时发热允许温度与长期发热允许温度是否相同,为什么?答:导体连接部分与导体本身都存在电阻(产生功率损耗);周围金属部分产生磁场,形成涡流与磁滞损耗;绝缘材料在电场作用下产生损耗,如: tg值的测量载流导体的发热:长期发热:指正常工作电流引起的发热短时发热:指短路电流引起的发热一发热对绝缘的影响绝缘材料在温度与电场的作用下逐渐变化,变化的速度于使用的温度有关;二发热对导体接触部分的影响温度过高→表面氧化→电阻增大↑→↑→I2恶性循环R三发热对机械强度的影响温度达到某一值→退火→机械强度↓→设备变形如:电流应采取哪些措施?答:是根据导体的稳定温升确定的。
为了载流量,宜采用电阻率小的材料,如铝与铝合金等;导体的形状,在同样截面积的条件下,圆形导体的表面积较小,而矩形与槽形的表面积则较大。
导体的布置应采用散热效果最最佳的方式。
3-4 为什么要计算导体短时发热最高温度?如何计算?答:载流导体短路时发热计算的目的在于确定短路时导体的最高温度不应超过所规定导体短路时发热允许温度。
当满足这个条件时,则认为导体在短路时,是具有热稳定性的。
计算方法如下:1)有已知的导体初始温度θw;从相应的导体材料的曲线上查出A w;2)将A w与Q k值代入式:1/S2Q k=Ah-Aw求出A h;3)由A h再从曲线上查得θh值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“十一五”国家级规划教材
单条矩形导体对流散热面积为,A1、A2分别为单位长度导体在高度h方向和宽度 b方向的面积
Fl 2( A1 A2 )
A1
h 1000
(m 2 /m)
A2
b 1000
(m 2 /m)
如图3-3(b)所示,二条矩形导体对流散热面积为
当100mm<h<200mm时,为
Fl
2 A1
A2
2
h 1000
b 1000
(m2/m)
当h>200mm时,为
Fl
2 A1
2 A2
2
h 1000
2
b家级规划教材
当
时,因内部热量不易从缝隙散出,平面位置不产生对流,故
Fl
2 A1
2
h 1000
如图3-3(e)所示,圆管导体对流散热面积为
k 体截面积。 f 为导体集肤效应系数; 导体温度为20℃时的直流电阻率;
材料电阻率 与电阻温度导数见表3-1.
表3-1 电阻率及电阻温度系数 t
材料名称
( mm2/m) (t ℃-1)
纯铝
0.02900
0.00403
铝锰合金
0.03790
0.00420
铝镁合金
0.04580
0.00420
(一)导体电阻损耗的热量 QR
单位长度(1m)的导体,通过母线电流IW ( A)时,由电阻损耗产生的热量
,可用下式计算
QR IW2 Rac
(3-2)
导体的交流电阻 为
Rac RdcKf 1 t w 20 Kf
S
(3-3)
式中:w 为导体的运行温度;Rdc为1000m长导体在20℃的直流电阻;S为导
一、概述
➢ 载流导体的电阻损耗(铜损) ➢ 绝缘材料内部的介质损耗(介损) ➢ 金属构件中的磁滞和涡流损耗(铁损)
热量
电气设备的 温度升高
长期发热,是由正常运行时工作电流产生的;短时 发热,是由故障时的短路电流产生的。
一、概述
➢ 发热对电气设备的影响: (1)使绝缘材料的绝缘性能降低。有机绝缘材料长期受到高
在计及太阳辐射(日照)的影响时,钢芯铝绞线及管形导体,可 按不超过+80℃来考虑;
当导体接触面处有镀(搪)锡的可靠覆盖层时,允许提高到 +85℃;
当有银的覆盖层时,可提高到95℃。 (2)导体通过短路电流时,短时最高允许温度可高于正常最高允许温度,
对硬铝及铝锰合金可取200℃,硬铜可取300℃。
二、导体的发热和散热
温作用,将逐渐老化,以致失去弹性和降低绝缘性能。 (2)使金属材料的机械强度下降。当使用温度超过规定允
许值后,由于退火,金属材料机械强度将显著下降。 ( 3)使导体接触部分的接触电阻增加。接触部分的弹性元
件因退火而压力降低,同时接触表面氧化,接触电阻增加 ,引起温度继续升高,产生恶性循环
一、概述
在短路时,导体还受到很大的电动力作用,如果超过允许值,将使 导体变形或损坏。 ➢ 最高允许温度:为了保证导体可靠地工作,须使其发热温度不得超过一 定限值,这个限值叫作最高允许温度。按照有关规定: (1)导体的正常最高允许温度,一般不超过+70℃;
➢ 导体的发热: 导体电阻损耗的热量 导体吸收太阳辐射的热量
➢ 导体的散热: 导体对流散热 导体辐射散热 导体导热散热
二、导体的发热和散热
导体的发热计算,根据能量守恒原理
QR Qt Ql Qf (3-1)
➢QR:单位长度导体电阻损耗的热量 ➢Qt:单位长度导体吸收太阳辐射的热量 ➢Ql:单位长度导体的对流散热热量 ➢Qf:单位长度导体向周围介质辐射的散热量
铜
0.01790
0.00385
钢
0.13900
0.00455
导体的集肤效应系数Kf 与电流的频率、导体的形状和尺寸有关。矩形截面导
体的集肤效应系数,如图3-1所示,图中f为电流频率。圆柱及圆管导体的集肤效应系
数Kf 如图3-2所示。
图3-1 矩形导体的集肤效应系数
“十一五”国家级规划教材
图3-2 圆柱及圆管导体的集肤效应系数
( 1)自然对流散热。屋内自然通风或屋外风速小于0.2m/s,属于自然对流散热。空 气自然对流散热系数,
l 1.5(w 0 )0.35 [W/(m2·℃ ℃)] (3-6)
单位长度导体的散热面积与导体的形状、尺寸、布置方式等因素有关。导体片 (条)间距离越近,对流散热条件就越差,故有效面积应相应减小。
(m2/m)
Fl D
(m2/m)
(2)强迫对流散热。屋外配电装置中的管形导体,常受到大气中风吹的作用,风速 越大,对流散热的条件就越好,因而形成强迫对流散热。
强迫对流散热系数 a1为
“十一五”国家级规划教材
l
Nu
D
Nu
0.13
VD v
0.65
如果风向与导体不垂直,其值为
A B(sin)n
6mm
b
8mm
10mm
Fl 22.A51A1 4 A2
(m2/m) (m2/m)
3
A1
4
A2
(m2/m)
“十一五”国家级规划教材
如图3-3(c)所示,三条矩形导体对流散热面积为
当
b
8mm 10mm
,
Fl
3
A1
4
A2
4( A1 A2 )
(m2/m) (m2/m)
如图3-3(d)所示,槽形导体对流散热面积:
“十一五”国家级规划教材
(二)导体吸收太阳辐射的热量 Q t
吸收太阳辐射(日照)的能量会造成导体温度升高,凡安装在屋外的导体应考 虑日照的影响。对于单位长度圆管导体, 可用下式计算
Qt EtAtFt EtAtD (W/m) (3-4)
对于屋内导体,因无日照的作用,这部分热量可忽略不计。
式中: Et At D
(3-7)
将式(3-7)乘以修正系数 后,代入式(3-5)中,即得强迫对流散热量为
Ql
Nu
D
(w
0 )[ A
B(sin)n ]
D
0.13
VD v
0.65
(w
0
)[
A
B(sin
)n
]
(W/m) (3-8)
“十一五”国家级规划教材
(四)导体辐射散热量Q f
热量从高温物体以热射线方式传给低温物体的传播过程,称为辐射。根据斯蒂
- 太阳照射功率密度(W/m2) - 导体的吸收率 - 导体的直径(m)
“十一五”国家级规划教材
(三)对流散热量 Q L
由气体各部分发生相对位移将热量带走的过程,称为对流。由传热学可知,对
流散热所传递的热量,与温差及散热面积成正比,即导体对流散热量 为
Ql l( w 0)Fl (W/m)
(3-5)