初中数学二次函数课件及练习题-(20362)
中考数学专题《二次函数》复习课件(共18张PPT)
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
初中数学二次函数课件及练习题(最新编写)
15、已知α为等边三角形的一个内角,则
sin α等于 ———————————————。
16、若抛物线 y=ax2+bx+c( a≠ 0)的对称轴为直线 x =2,最小值为-2, 则关于方程 ax2+bx+c
=-2的根为 ———————————————。
y
17、抛物线 y= ( k+1) x2+k 2-9 开口向下,且经过原点,则 k = —————————
在D处测得 A 的仰角为β,则塔高是多少米?
A
C
D
B
21 已知抛物线 y=x2+( n-3) x+n+1 经过坐标原点 O。 ⑴ 求这条抛物线的顶点 P 的坐标
⑵设这条抛物线与 x 轴的另外一个交点为 A,求以直线 PA 为图象的一次函数解析式
22 已知:在△ ABC 中, BC=20 ,高 AD=16 ,内接矩形 EFGH 的顶点 E、F 在 BC 上, G、H
4、将一抛物线向下向右各平移 2 个单位得到的抛物线是 y=-x 2,则抛物线的解析式是(
)
A y=—( x-2 )2+2
B y= —( x+2) 2+2
C y=— ( x+2) 2+2
D y= —( x-2) 2— 2
5、抛物线 y= 1 x 2-6x+24 的顶点坐标是(
)
2
A (— 6,— 6) B (— 6, 6)
C ( 6, 6)
6、已知函数 y=ax 2+bx+c, 图象如图所示,则下列结论中正确的有(
D ( 6,— 6)
)个
y
① abc〈0 ② a+ c〈 b
初三数学复习《二次函数》(专题复习)PPT课件
面积问题
面积问题
在二次函数中,可以通过求函数与坐标轴的交点来计算图形的面积。例如,当函数与x轴交于两点时 ,可以计算这两点之间的面积;当函数与y轴交于一点时,可以计算这一点与原点之间的面积。这些 方法在解决实际问题时非常有用,例如在计算利润、产量等方面。
求解方法ቤተ መጻሕፍቲ ባይዱ
求出二次函数与x轴和y轴的交点坐标,然后根据这些坐标计算图形的面积。对于更复杂的问题,可能 需要使用积分或其他数学方法来求解。
05
综合练习与提高
基础练习题
巩固基础 覆盖全面 由浅入深
基础练习题主要针对二次函数的基本概念、性质和公 式进行设计,旨在帮助学生巩固基础知识,提高解题的 准确性和速度。
基础练习题应涵盖二次函数的各个方面,包括开口方 向、顶点坐标、对称轴、与坐标轴的交点等,确保学生 对二次函数有全面的了解。
题目难度应从易到难,逐步引导学生深入理解二次函 数,从简单的计算到复杂的综合题,逐步提高学生的解 题能力。
初三数学复习《二次函数》(专题复习)ppt课 件
目录 Contents
• 二次函数的基本概念 • 二次函数的解析式 • 二次函数的图像与性质 • 二次函数的实际应用 • 综合练习与提高
01
二次函数的基本概念
二次函数的定义
总结词
理解二次函数的定义是掌握其性 质和图像的基础。
详细描述
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a, b, c$是 常数,且$a neq 0$。这个定义表 明二次函数具有两个变量$x$和 $y$,并且$x$的最高次数为2。
03
二次函数的图像与性质
开口方向
总结词:根据二次项系数a的正负判断开口方向 a>0时,开口向上
初三二次函数课件ppt课件
02
二次函数的解析式
一般式
总结词
最通用的二次函数形式,包含三个系数a、b和c。
详细描述
一般式为y=ax^2+bx+c,其中a、b和c为实数,且a≠0。它可以表示任意二次 函数,通过调整系数a、b和c的值,可以改变函数的形状、开口方向和大小。
顶点式
总结词
包含顶点坐标的二次函数形式。
详细描述
顶点式为y=a(x-h)^2+k,其中(h,k)为抛物线的顶点坐标。通过顶点式可以直接 读出顶点的坐标,并且可以快速判断抛物线的开口方向和对称轴。
伸缩变换
总结词
伸缩变换是指二次函数的图像在平面坐标系中沿x轴或y轴方向进行缩放。
详细描述
伸缩变换包括沿x轴方向的伸缩和沿y轴方向的伸缩。沿x轴方向的伸缩是指将图像在x轴方向上放大或 缩小,对应的函数变换是将x替换为kx(k>1表示放大,0<k<1表示缩小)。沿y轴方向的伸缩是指将图 像在y轴方向上放大或缩小,对应的函数变换是将y替换为ky(k>1表示放大,0<k<1表示缩小)。
利用二次函数求面积
详细描述
通过设定一个变量为常数,将 二次函数转化为一次函数,再 根据一次函数的性质求出面积 。
总结词
几何图形面积
详细描述
在几何图形中,如矩形、三角 形、圆等,可以利用二次函数
来求解面积。
生活中的二次函数问题
总结词
生活中的二次函数
总结词
实际应用案例
详细描述
在生活中,许多问题都可以用二次函数来 描述和解决,如速度、加速度、位移等物 理量之间的关系。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形 状由系数$a$决定。
二次函数图ppt课件
02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。
初中数学二次函数课件及练习题
页眉内容二次函数复习知识提纲:二次函数的定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。
IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。
)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的函数二次函数的三种表达式①一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)以上3种形式可进行如下转化:①一般式和顶点式的关系对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即h=-b/2a=(x1+x2)/2k=(4ac-b^2)/4a②一般式和交点式的关系x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,二次函数(抛物线)的性质1.抛物线是轴对称图形。
对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
二次函数阶段专题复习课件ppt
详细描述
根据二次函数的单调 性,判断函数在某个 区间的单调性;
根据二次函数的奇偶 性,判断函数的奇偶 性并求出函数的对称 轴;
根据二次函数的周期 性,求函数的周期并 观察图像的变化规律 。
综合练习题及答案
详细描述
根据二次函数与实际问题的综合 应用,解决实际问题并求出最优 解;
总结词:二次函数与其他知识点 的综合应用
求二次函数的最大值或最小值的方法是:先确定函数的对称 轴,再根据a的符号确定最大值或最小值的坐标,最后代入函 数解析式计算最大值或最小值。
02
知识点详解
二次函数的表达式及求解
表达式
$y = ax^{2} + bx + c$
求法
通过已知的三个点或顶点及对称轴可求得 $a$、$b$、$c$的值,进而得到二次函数 的表达式
2023
二次函数阶段专题复习课 件ppt
目 录
• 知识点概述 • 知识点详解 • 经典例题解析 • 易错点及应对策略 • 练习题及答案
01
知识点概述
什么是二次函数
1
二次函数是指形如`y = ax^2 + bx + c`(其中a 、b、c为常数,且a≠0)的函数。
2
二次函数的图像是一个抛物线,其顶点坐标为(b/2a,c-b^2/4a),对称轴为x=-b/2a。
二次函数与实际问题的结合
要点一
总结词
要点二
详细描述
了解二次函数与实际问题的联系,能 够建立数学模型并解决实际问题。
二次函数与实际问题结合广泛,如最 优化问题、经济问题、物理问题等。 通过对实际问题的分析,可以更好地 理解二次函数的应用价值。
要点三
示例题目
初三二次函数ppt课件ppt课件ppt课件
03
二次函数的图像变换
平移变换
总结词
平移变换是指二次函数的图像在平面坐标系 中沿x轴或y轴方向进行移动。
详细描述
平移变换包括沿x轴方向的左移和右移,以 及沿y轴方向的上移和下移。对于一般形式 的二次函数y=ax^2+bx+c,当b≠0时,图 像为抛物线。当b>0时,图像向右平移b/2a个单位;当b<0时,图像向左平移 |b|/2a个单位。
总结词
顶点式二次函数解析式是y=a(xh)^2+k,其中(h,k)为函数的顶点。
详细描述
顶点式二次函数解析式表示的是一个 开口向上或向下的抛物线,其顶点为 (h,k)。该形式简化了函数的对称轴和 顶点,便于分析函数的性质。
交点式二次函数解析式
总结词
交点式二次函数解析式是y=a(x-x1)(x-x2),其中x1、x2为函数与x轴的交点。
02
二次函数的解析式
一般二次函数解析式
总结词
一般二次函数解析式是y=ax^2+bx+c,其中a、b、c为常数 ,且a≠0。
详细描述
一般二次函数解析式是二次函数的基本形式,它可以表示任 意二次函数。其中a控制函数的开口方向和开口大小,b控制 函数的对称轴,c为函数与y轴的交点。
顶点式二次函数解析式
值的变化。
04
二次函数的实际应用
最大利润问题
总结词
通过建立二次函数模型,解决最大利润问题。
详细描述
在生产和经营过程中,常常需要寻求最大利润。通过将实际问题转化为数学模型,利用二次函数求导 数的方法,可以找到获得最大利润的条件和对应的最大利润值。
抛物线形拱桥问题
总结词
利用二次函数解析式表示抛物线形拱桥的形 状,进而解决相关问题。
初三数学二次函数(例题+练习)
二次函数(入门篇)【教学目标】1.理解二次函数的概念;2.会根据二次函数解析式计算函数值.3.能利用二次函数描述有关的生产、生活实际中的数量关系.【重点、难点】重点:二次函数的概念; 难点:建立实际问题中的二次函数关系式.【知识要点】1.二次函数概念形如),,,0(2是常数c b a a c bx ax y ≠++=的函数叫做一元二次函数,简称为二次函数. 在理解二次函数的定义时,应注意下述问题:(1)2ax 称为二次项,bx 称为一次项,c 称为常数项,a 称为二次项系数,b 称为一次项系数.(2)在解析式中最高项是2x 项且系数0≠a ,而b,c 可以不为零,也可以为零,对于判断一个函数是否是二次函数不起作用,如22x y =(.0,0==c b ),),0(3212=+-=c x x y )0(5322=-=b x y 都是二次函数.(3)自变量x 的取值范围是任何实数.(4)如果0=a ,则该函数一定不是二次函数,但不一定是一次函数,如果0=a ,0≠b 才是一次函数.(5)如果一个函数的解析式形如)0(2≠++=a c bx ax y ,则这个函数一定是二次函数.反之,如果一个函数是二次函数,那么它的解析表达式一定是)0(2≠++=a c bx ax y 的形式. 2.计算函数值根据二次函数解析式,当x 取某一个值时,代入二次函数解析式中计算出最后结果,即为函数值. 3.建立实际问题中的二次函数关系式 (1)审清题意找出问题中的已知量(定量),未知量(变量)及相互关系. (2)建立函数关系式根据题意建立函数形式,并指出函数的定义域. (3)判断是否为二次函数解析式根据二次函数的定义及解析式的形式,判断求出的函数关系式是否为二次函数.【经典例题】例1.下列函数中,哪些是二次函数? (1)13-=z y (2) kk y 12+= (3)22)3(x x y -+= (4)322++=x x y(5)21x y -= (6)122+=x y (7))31(2x x y -= (8)23x y -= (9)()222y x x =-- (10)),,(2是常数p n m p nx m y ++=例2 已知函数3)2()4(22+++-=x m x m y (1)当m 为何值时,此函数是二次函数 (2)当m 为何值时,此函数是一次函数例3.当m 为何实数时,函数y=(m+1)x 122--m m +(m -3)x+m 是二次函数?例4.(1)已知二次函数为x x y 22+=.分别计算当自变量x 分别取-1,12,2,2-+n n m 时,计算函数y 的值;(2)已知二次函数2)1(2+-+=x m x y ,当3,1==y x 时,试确定对应二次函数)0(2≠++=a c bx ax y 中c b a ,,的值.(3)已知二次函数8102-+-=x x y ,当x 取何值时,函数y 的值为1.例5.(1) 写出圆面积S(cm 2)与圆半径R(cm)之间的函数关系式。
《二次函数》PPT优秀课件
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的步骤: (1)将函数解析式右边整理为含自变量的代数式,左边是 函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1 (是)
素养目标
2. 能根据实际问题中的数量关系列出二次函数解析式 ,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数是否是 二次函数.
探究新知
知识点 1 二次函数的概念
问题1
正方体的六个面是全等的正方形(如下图),设正方形的棱长为x,表面 积为y,显然对于x的每一个值, y都有一个对应值,即y是x的函数,它们的 具体关系可以表示为
探究新知
【分析】认真观察以上出现的三个函数解析式,分别说出哪些 是常数、自变量和函数.
函数解析式 y=6x2
自变量 x
函数 y
这些函数有什么 共同点?
n
d
x
y
这些函数自变量的最高次项都是二次的!
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数,叫做二 次函数.
y =-2x2+40x=-2×122+40×12=192(m2).
xm
xm
y m2
(40-2x )m
方法点拨:确定实际问题中的二次函数关系式时,常常用到生活中的经验及数 学公式(例长方形和圆的面积、周长公式)等.
巩固练习
做一做: ①已知圆的面积y(cm2)与圆的半径x(cm),写出y与x之间的函数关系式; ②王先生存入银行2万元,先y=存πx一2 个(x一>0年) 定期,一年后银行将本息自动转存为 又一个一年定期,设一年定期的存款年利率为x,两年后王先生共得本息和y万 元,写出y与x之间的函数关系式; ③一个圆柱的高等于底面半径,写出它的表面积S与半径r之间的关系式.
《二次函数》ppt课件
判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。
中考数学专题《二次函数》复习课件(共54张PPT)
当x b 时, y最小值为 4ac b2
2a
4a
y=ax2+bx+c(a<0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对 称轴的右侧, y随着x的增大而减小.
当x b 时, y最大值为 4ac b2
2a
例1: 已知二次函数 y 1 x2 x 3
2
2
(1)求抛物线开口方向,对称轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两
点,求C,A,B的坐标。
(3)x为何值时,y随的增大而减少,x为何值时,
y有最大(小)值,这个最大(小)值是多少?
(4)x为何值时,y<0?x为何值时,y>0?
写出满足此条件的抛物线的解析式.
解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同
a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5,
二次函数复习
二次函数知识点:
• 1、二次函数的定义 • 2、二次函数的图像及性质 • 3、求解析式的三种方法 • 4、a,b,c及相关符号的确定 • 5、抛物线的平移 • 6、二次函数与一元二次方程的关系 • 7、二次函数的应用题 • 8、二次函数的综合运用
1、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a ≠ 0)
a= ___. -2
2、二次函数的图像及性质
y
y
0
x
0
x
抛物线 顶点坐标 对称轴
八年级数学---二次函数题型讲解PPT课件
(2)直接利用二次函数顶点坐标公式,p=-m/4,q=-m²/8+m, 将前一个式子变换为m=-4p,代入第二个式子即可得到q=2p²-4p;
(3)抛物线与线段有两个交点,前提是与线段所在直线有两个交点,直 线OM解析式易求,y=-2x,联立抛物线与直线方程:-2x=2x²+mx+m, 整理成(2x+m)(x+1)=0,于是解出x1=-m/2,x2=-1,其中x2其实就是点 M的横坐标,那么另一个交点横坐标必须在-1和0之间,才能保证抛物 线与线段有两个交点,于是列出不等式-1<-m/2<0,解得0
(4)本题难点,抛物线不经过点P,根据平面直角坐标系内确 定抛物线的条件,至少三个不同的点,且满足①不在同一 直线上;②没有任意两点横坐标相同。
本课结束
回答二:二次函数图像上的点存在性问题
知识点:二次函数基本性质、待定系数法求函数解析 式、图形的旋转、抛物线与直线相交(二次函数与一次函数)、 确定二次函数的条件。
题目抛物线C1:y=2x²+mx+m过定点M,其顶点P坐标为(p,q),将点M 绕原点逆时针旋转90°得到点N,抛物线C2:y=ax²+bx+c经过点M、N.(1)填 空:M(_____,_____)N(_____,_____);(2)用含p的代数式表示q;(3)当抛物线C1与 线段OM恰有两个交点时,试确定m的取值范围;(4)若无论a、b、c取何值, 抛物线C2都不经过点P,请求出点P的坐标.
解析(1)上手并不容易,需要将抛物线C1解析式变换成 y=2x²+m(x+1)后观察,既然是过定点M,则无论m取何值,解 析式两边恒成立,于是令x=-1,使含m的项为零,从而得到 y=2,于是可知当x=-1,y=2时,m无论取何值均成立,因此这 个定点M为(-1,2),由旋转可得N(-2,-1);
九年级数学《二次函数的函数-练习课》课件
则下列关系中正确的是(B)
A a+b=-1 C b<2a
B a-b=-1 D ac<0
三变式开放 灵活运用
❖ 6.已知抛物线C:,将抛物线C平移得到抛 物线C′。若两条抛物线C、C′关于直线x=1对
称,则下列平移方法中正确的是( ) C
A 将抛物线C向右平移个单位 B 将抛物线C向右平移3个单位 C 将抛物线C向右平移5个单位 D 将抛物线C向右平移6个单位
推荐作业 补充升华
❖ 必做题 : 练习册:26章 自我检测
❖ 选做题: 学案与资源:26章单元检测题
结束寄语:
观察,思考,感悟是能否进 入数学大门,领略数学奥 妙的关键.
综合训练 延展深化
❖ 7.某服装公司试销一种成本为每件50元的T恤衫,规定试 销时的销售单价不低于成本价,又不高于每件70元,试销中 销售量y(件)与销售单价x(元)的关系可以近似地看作一 次函数,如图。 (1)求y与x之间的函数关系式。 (2)设公司获得的总利润
(总利润=总销售额—总成本) 为P元,求P与x之间的函数关系式, 并写出自变量x的取值范围;根据题 意判断:当x取何值时,P的值最大? 最大值是多少?
围。bx 2 的图象与轴的一个
交点为,则它与轴的另一个交点坐标是( C)
A (1,0) B (2,0) C (-2,0) D (-1,0)
5.如图为抛物线 y ax2 bx c 的图象,A、B、C为 抛物线与坐标轴的交点,
且OA=OB=1,
C y x2 1
B
y
5 x2
D y (x 1)2 x2 2
基础训练 辨析概念
❖ 3.二次函数 y ax2 bx c(a 0) 的图象如
图,根据图象解答下列问题。 ❖ (1)写出方程的两个根; ❖ (2)写出不等式>0的解集; ❖ (3)写出随的增大而减小的 ❖ 自变量的取值范围; ❖ (4)若方程有两个不相等的实数根,求的取值范
《二次函数》参考PPT课件
y=kx(k≠0),
反比x2+bx+c(a≠0).
可以发现,这些函数的名称都反映了函数 表达式与自变量的关系.
布置作业
• 预习下一章节
x
即: y =-2x2+40x (0<x<20) m
y m2
x m
当x=12m时,菜园的面积为:(40-2x )m
y =-2x2+40x=-2×122+40×12
=192(m2)
在实践中感悟
横看成岭侧成峰,远近高低各不同
——变换角度分析问题
若函数y=x2m+n - 2xm-n+3是以x为自变量的二次函 数,求m、n的值。
这种产品的原产量是20 t, 一年后的产量是 20(1+x) t,再经过一年后的产量是 20(1+x)2 t,即两年
后的产量为 y 201 x2
即 y 20 x2 40x 20③
③式表示了两年后的产量y与计划增产 的倍数x之间的关系,对于x的每一个值 , y都有一个对应值,即y是x的函数.
观察
场,甲队对乙队的比赛与乙队对甲队的比赛
是同一场比赛,所以比赛的场次数
m 1 n(n 1) 2
即
m1n21n 22
②
②式表示比赛的场次
数m与球队数n的关系,对
于n的每一个值,m都有一
个对应值,即m是n的函数
.
问题:
问题2 某种产品现在的年产量是20 t,计划今后两年增加产量
.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而确定,y与x之间的关系应怎样表示?
3.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时一、教学目标1. 使学生会用描点法画出二次函数k h x a y +-=2)(的图像; 2. 使学生知道抛物线k h x a y +-=2)(的对称轴与顶点坐标;3.通过本节的学习,继续培养学生的观察、分析、归纳、总结的能力;4.通过本节的教学,继续向学生进行数形结合的数学思想方法的教育,同时向学生渗透事物间互相联系、以及运动、变化的辩证唯物主义思想;5.通过本节课的研究,充分理解并认识到二次函数图像可运动变化的和谐美,通过数学思维的审美活动,提高对数学美的追求。
二、教学重点会画形如k h x a y +-=2)(的二次函数的图像,并能指出图像的开口方向、对称轴及顶点坐标。
三、教学难点:确定形如 k h x a y +-=2)(的二次函数的顶点坐标和对称轴。
4.解决办法:四、教具准备 三角板或投影片1.教师出示投影片,复习222)(,,h x a y k ax y ax y -=+==。
2.请学生动手画1)1(212-+-=x y 的图像,正好复习图像的画法,完成表格。
3.小结k h x a y +-=2)(的性质⎪⎪⎩⎪⎪⎨⎧平移顶点坐标对称轴开口方向4.练习五、教学过程提问:1.前几节课,我们都学习了形如什么样的二次函数的图像? 答:形如222)(,h x a y k ax y ax y -=+==和。
(板书)2.这节课我们将来学习一种更复杂的二次函数的图像及其相关问题,你能先猜测一下我们将学习形如什么样的二次函数的问题吗?由学生参考上面给出的三个类型,较容易得到:讨论形如k h x a y +-=2)(的二次函数的有关问题.(板书)一、复习引入首先,我们先来复习一下前面学习的一些有关知识.(出示幻灯) 请你在同一直角坐标系内,画出函数222)1(21,121,21+-=--=-=x y x y x y 的图像,并指出它们的开口方向,对称轴及顶点坐标. 这里之所以加上画函数2)1(21+-=x y 的图像,是为了使最后通过图像的观察能更全面一些,也更直观一些,可以同时给出图像先沿y 轴,再沿x 轴移动的方式,也可以给出图像 先沿x 轴再沿y 轴移动的方式,使这部分知识能更全面,知识与知识之间的联系能更清晰、更具体.画这三个函数图像,可由学生在同一表中列值,但是要根据各自的不同特点取自变量x 的值,以便于学生进行观察.教师可事先准备好表格和画有直角坐标系的小黑板,由一名同 学上黑板完成,其他同学在练习本上完成,待同学们基本做完之后加以总结,然后再找三名 同学,分别指出这三个图像的开口方向、对称轴及顶点坐标,填入事先准备好的表格中. 然后提问:你能否在这个直角坐标系中,再画出函数1)1(212-+-=x y 的图像? 由于前面几节课我们已经画了不少二次函数的图像,学生对画图已经有了一定的经验, 同时可在画这个图时,把这些经验形成规律,便于学生以后应用.(l )关于列表:主要是合理选值与简化运算的把握,是教学要点.在选值时,首先要考虑的是函数图像的对称性,因此首先要确定中心值,然后再左,右取相同间隔的值;其次,选值时尽量选取整数,便于计算和描点.在选取x 的值之后,计算y 的值时,考虑到对称性,只需计算中心值一侧的值,另一侧由对称性可直接填入,但一定要保证运算正确.(2)关于描点:一般可先定顶点(即中心值对应的点,然后利用对称性描出各点,以逐步提高速度.)(3)关于连线:特别要注意顶点附近的大致走向。
最后画的抛物线应平滑,对称,并符合抛物线的特点.由学生在上面的练习中所列的表中填上这个函数及其对应值,然后画出它的图像,同样 找一名同学板演.学生画完,教师总结完之后,让学生观察黑板上画出的四条抛物线,提问:(1)你能否指出抛物线1)1(212-+-=x y 的开口方向,对称轴,顶点坐标?(2)我们已知抛物线的开口方向是由二次函数k h x a y +-=2)(中的a 的值决定的,你能通过上表中的特征,试着总结出抛物线的对称轴和顶点坐标是由什么决定的吗?这个问题由于是本节课的重点问题,而且不是很容易说清楚,可由学生进行广泛的讨论,先得出对称员的表示方法,再得出顶点坐标。
若学生在讨论时没有头绪,教师可适当引导,让学生把这四个函数都改写成k h x a y +-=2)(的形式,可得0)0(212122+--=-=x x y ;[]0)1((21)1(211)0(211212222+---=+-=---=--=x x y x x y[])1()1((21)1(2122-+---=+-=x x y 。
然后从这四个式子中加以观察,分析,得出结论;(板书)一般地,抛物线k h x a y +-=2)(有如下特点: ①0>a 时,开口向上;0<a 时,开口向下; ②对称轴是直线h x =; ③顶点坐标是),(k h 。
(3)抛物线1)1(21,)1(21,121,212222-+-=+-=--=-=x y x y x y x y 有什么关系?答:形状相同,位置不同。
(4)它们的位置有什么关系?这个问题可视学生的程度来决定问还是不问,以及回答到什么程度。
根据上节课的学习,学生能想到是平移科来的,可把这四个图像分成以下几个问题来讨论:①抛物线1212--=x y 是由抛物线221x y -=怎样移动得到的? ②抛物线2)1(21+-=x y 是由抛物线221x y -=怎样移动得到的?③抛物线1)1(212-+-=x y 是由抛物线1212--=x y 怎样移动得到的?④抛物线1)1(212-+-=x y 是由抛物线2)1(21+-=x y 怎样移动得到的?⑤抛物线1)1(212-+-=x y 是由抛物线221x y -=怎样移动得到的?这个问题分两种方式回答:先沿y 轴,再沿x 轴移动;或先沿x 轴,再沿y 轴移动。
通过这5个问题可使学生由浅入深地得到这四者之间的关系,如图所示:注意:基本形式中的符号,特别是h 。
练习:P120练习口答,及时纠正错误。
(四)总结、扩展一般的二次函数,都可以变形成k h x a y +-=2)(的形式,其中: 1.a 能决定什么?怎样决定的?答:a 的符号决定抛物线的开口方向;a 的绝对值大小抛物线的开口大小。
2.它的对称轴是什么?顶点坐标是什么? 六、布置作业教材P124中1(3);P124中3(1)、(2);P125中1B二次函数试题成功! 一选择题:1、y=(m-2)x m2- m 是关于x 的二次函数,则m=( ) A -1 B 2 C -1或2 D m 不存在2、下列函数关系中,可以看作二次函数y=ax 2+bx+c(a ≠0)模型的是( ) A 在一定距离内,汽车行驶的速度与行驶的时间的关系B 我国人中自然增长率为1%,这样我国总人口数随年份变化的关系C 矩形周长一定时,矩形面积和矩形边长之间的关系D 圆的周长与半径之间的关系3、在Rt △ABC 中,∠C=90。
,AB=5,AC=3.则sinB 的值是( ) A53 B 54 C 43 D 34 4、将一抛物线向下向右各平移2个单位得到的抛物线是y=-x 2,则抛物线的解析式是( ) A y=—( x-2)2+2 B y=—( x+2)2+2 C y=— ( x+2)2+2 D y=—( x-2)2—2 5、抛物线y=21 x 2-6x+24的顶点坐标是( ) A (—6,—6) B (—6,6) C (6,6) D (6,—6) 6、已知函数y=ax 2+bx+c,①abc 〈0 ②a +c 〈b③a+b+c 〉0 ④A 1B 2C 3D 47、函数y=ax 2-bx+c (a ≠0)的图象过点(-1,0),则 c b a + =ca b + =ba c+ 的值是( )A -1B 1C 21D -218、已知一次函数y= ax+c 与二次函数y=ax 2+bx+c (a ≠0),它们在同一坐标系内的大致图象是图中的( ) 9、如图所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 的面积为( )A 6B 4C 3 D110、如图所示,在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α= 53, AB=4,则AD 的长为( )A 3 B316 C 320 D 51611 某学校的围墙上端由一段段相同的拱形栅栏组面,如图所示,其拱形图形为抛物线的一部分,栅栏的路径A B 间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米,以OA CDE为原点, OC所在的直线为y 轴建立平面直角坐标系,根据以上的数据,则一段栅栏所需立柱的总长度(精确到0.1米)为( )米A 1.5B 1.9C 2.3D 2.512、如图所示,已知△ABC 中,BC =8,BC 上的高h=4,D为BC上一点.EF∥BC,交AB与点E,交AC于点F(EF不过A、B),设E到BC的距离为x ,则△DE F的面积y 关于x 的函数的图象大致为( )二填空题:13、无论m 为任何实数,总在抛物线y=x 2+2mx +m 上的点的坐标是———————————————。
14、函数y=x--211中的自变量的取值范围是———————————————。
15、已知α为等边三角形的一个内角,则sin α等于———————————————。
16、若抛物线y=ax 2+bx+c (a ≠0)的对称轴为直线x =2,最小值为-2,则关于方程ax 2+bx+c=-2的根为———————————————。
17、抛物线y=(k+1)x 2+k 2-9开口向下,且经过原点,则k =————————— 18、如图,在直角坐标系中,将矩形OABC沿OB对折,使点A落在点A1处,已知OA=3,AB=1,则点A1的坐标是———————、解答题:19 计算:2cos60°+3sin60°-3tan45°20、 如图,河对岸有古塔AB,小敏在C处测得塔顶A的仰角α,向塔前进s 米到达D点,在D处测得A 的仰角为β,则塔高是多少米?C BD FAE C D A21 已知抛物线y=x2+(n-3)x+n+1经过坐标原点O。
⑴求这条抛物线的顶点P的坐标⑵设这条抛物线与x轴的另外一个交点为A,求以直线PA为图象的一次函数解析式22 已知:在△ABC中,BC=20,高AD=16,内接矩形EFGH的顶点E、F在BC上,G、H 分别在AC、AB上,求内接矩形EFGH的最大面积。