立体几何3

合集下载

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用

高考立体几何复习三部曲—空间直角坐标系的应用-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学立体几何三部曲—空间之直角坐标系专项一、积及坐标运算1.两个向量的数量积(1)a·b=|a||b|cos〈a,b〉;(2)a⊥b⇔a·b=0(a,b为非零向量);(3)|a|2=a2,|a|=x2+y2+z2.2.向量的坐标运算3、应用共线向量定理、共面向量定理证明点共线、点共面的方法比较:OP=x OM+y OAOP=x OA+(1-x)OB-一、空间向量的简单应用1.(课本习题改编)已知a=(-2,-3,1),b=(2,0,4),c=(-4,-6,2)则下列结论正确的是() A.a∥c,b∥c B.a∥b,a⊥cC.a∥c,a⊥b D.以上都不对2.(2012·济宁一模)若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是() A.{a,a+b,a-b} B.{b,a+b,a-b}C.{c,a+b,a-b} D.{a+b,a-b,a+2b}3.(教材习题改编)下列命题:①若A 、B 、C 、D 是空间任意四点,则有AB +BC +CD +DA =0; ②若MB =x MA +y MB ,则M 、P 、A 、B 共面; ③若p =x a +y b ,则p 与a ,b 共面. 其中正确的个数为( ) A .0 B .1 C .2D .34.在四面体O -ABC 中,OA =a ,OB =b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).5.013·大同月考)若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)6已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( ) A.627 B.637 C.607D.657二、利用空间向量证明平行或垂直[例] 已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,边长为2a ,AD =DE =2AB ,F 为CD 的中点.(1)求证:AF ∥平面BCE ; (2)求证:平面BCE ⊥平面CDE .8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.方法利用直线的方向向量与平面的法向量,可以判定直线与直线、直线与平面、平面与平面的平行和垂直.(1)设直线l1的方向向量v1=(a1,b1,c1),l2的方向向量v2=(a2,b2,c2).则l1∥l2⇔v1∥v2⇔(a1,b1,c1)=k(a2,b2,c2)(k∈R).l1⊥l2⇔v1⊥v2⇔a1a2+b1b2+c1c2=0.(2)设直线l的方向向量为v=(a1,b1,c1),平面α的法向量为n=(a2,b2,c2),则l∥α⇔v⊥n⇔a1a2+b1b2+c1c2=0.l⊥α⇔v∥n⇔(a1,b1,c1)=k(a2,b2,c2).(3)设平面α的法向量n1=(a1,b1,c1),β的法向量为n2=(a2,b2,c2),则α∥β⇔n1∥n2,α⊥β⇔n1⊥n2.1.2012·长春模拟)如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥平面ABCD,AD=1,AB=3,BC=4.(1)求证:BD⊥PC;(2)设点E在棱PC上,PE=λPC,若DE∥平面P AB,求λ的值.2.如图所示,平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CD=∠C1CB=∠BCD=60°.(1)求证:C1C⊥BD;(2)当CDCC1的值是多少时,能使A1C⊥平面C1BD请给出证明.3.如图所示,平面P AD⊥平面ABCD,ABCD为正方形,△P AD是直角三角形,且P A=AD=2,E、F、G分别是线段P A、PD、CD的中点.求证:PB∥平面EFG.三、利用向量求空间角1.两条异面直线所成的角的求法设两条异面直线a,b的方向向量为a,b,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a,b所成的角).2.直线和平面所成角的求法如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α所成的角为φ,两向量e与n的夹角为θ,则有sin φ=|cos θ|=|e·n| |e||n|.3.求二面角的大小(1)如图1,AB、CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=〈AB,CD〉.(2)如图2、3,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ=〈n1,n2〉(或π-〈n1,n2〉).1.(教材习题改编)已知向量m,n分别是直线l和平面α的方向向量、法向量,若cos〈m,n〉=-12,则l与α所成的角为()A.30°B.60°C.120°D.150°2.(教材习题改编)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为()A.45°B.135°C.45°或135°D.90°3.在如图所示的正方体A 1B1C1D1-ABCD中,E是C1D1的中点,则异面直线DE与AC 夹角的余弦值为( )A .-1010B .-120C.120D.10104.已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值为________.5.(教材习题改编)如图,在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值________.(一)异面直线所成的角[例1] (2012·陕西高考)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35本例条件下,在线段OB 上,是否存在一点M ,使C 1M 与AB 1所成角的余弦为13若存在,求出M 点;不存在,说明理由.1.(2012·安徽模拟)如图所示,在多面体ABCD -A 1B 1C 1D 1中,上、下两个底面A 1B 1C 1D 1和ABCD 互相平行,且都是正方形,DD 1⊥底面ABCD ,AB =2A 1B 1=2DD 1=2a .(1)求异面直线AB 1与DD 1所成角的余弦值; (2)已知F 是AD 的中点,求证:FB 1⊥平面BCC 1B 1. .(二)直线与平面所成角[例2] (2012·大纲全国卷)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,P A ⊥底面ABCD ,AC =22,P A =2,E 是PC 上的一点,PE =2EC .(1)证明:PC ⊥平面BED ;(2)设二面角A-PB-C为90°,求PD与平面PBC所成角的大小.2.(2012·宝鸡模拟)如图,已知P A⊥平面ABC,且P A=2,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.(1)求证:PC⊥平面ADE;(2)求直线AB与平面ADE所成角的大小.(三)二面角[例3]在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=5,BC=4,点A1在底面ABC的投影是线段BC的中点O.(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;3.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).(1)求证:对任意的λ∈(0,1],都有AC⊥BE;(2)若二面角C-AE-D的大小为60°,求λ的值.11A1如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(I )证明:11AC A B ⊥;(II )设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小.【课后练习题】1.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角为________.2.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为________.3.如图,在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成角为________.4.(2012·山西模拟)如图,在底面为直角梯形的四棱锥P -ABCD 中,AD ∥BC , ∠ABC =90°,P A ⊥平面ABCD ,P A =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面P AC ; (2)求二面角P -BD -A 的大小.5.(2012·辽宁高考)如图,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面A′ACC′;(2)若二面角A′-MN-C为直二面角,求λ的值.6.如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2.将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.(1)求证:A1C⊥平面BCDE;(2)若M是A1D的中点,求CM与平面A1BE所成角的大小;(3)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直说明理由.7.(2013·湖北模拟)如图所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E、F、G分别为PC、PD、BC的中点.(1)求证:P A⊥EF;(2)求二面角D-FG-E的余弦值.8.(2012·北京西城模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角若存在,确定E 点位置;若不存在,说明理由.9.(2012·北京东城模拟)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ; (2)求二面角Q -BP -C 的余弦值.10.(2012·天津高考)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AC ⊥AD ,AB ⊥BC ,∠BAC =45°,P A =AD =2,AC =1.(1)证明PC ⊥AD ;(2)求二面角A -PC -D 的正弦值;(3)设E 为棱P A 上的点,满足异面直线BE 与CD 所成的角为30°,求AE 的长.11.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2. (1)证明:当点E 在棱AB 上移动时,D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E ,使二面角D 1-EC -D 的平面角为π6若存在,求出AE的长;若不存在,请说明理由.12.(2012·湖北模拟)在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°.(1)若异面直线A1B与B1C1所成的角为60°,求棱柱的高;(2)设D是BB1的中点,DC1与平面A1BC1所成的角为θ,当棱柱的高变化时,求sin θ的最大值.11。

数学一轮复习第七章立体几何第3讲空间点直线平面之间的位置关系学案含解析

数学一轮复习第七章立体几何第3讲空间点直线平面之间的位置关系学案含解析

第3讲空间点、直线、平面之间的位置关系[考纲解读]1。

理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理,并运用它们证明一些空间图形的位置关系的简单命题.(重点)2.主要考查平面的基本性质,空间两直线的位置关系及线面、面面的位置关系,能正确求出异面直线所成的角.(重点、难点) [考向预测]从近三年高考情况来看,尽管空间点、线、面的位置关系是立体几何的理论基础,但却很少独立命题.预测2021年高考会有以下两种命题方式:①以命题形式考查空间点、线、面的位置关系;②以几何体为载体考查线、面的位置关系或求异面直线所成的角.题型为客观题,难度一般不大,属中档题型.1.空间两条直线的位置关系(1)位置关系分类错误!错误!(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的□04锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:错误!(0°,90°].(3)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角错误!相等或互补.2.空间直线与平面、平面与平面的位置关系图形语言符号语言公共点直线与平面相交错误!a∩α=A□021个平行错误!a∥α错误!0个在平面内错误!a⊂α错误!无数个续表图形语言符号语言公共点平面与平面平行错误!α∥β错误!0个相交错误!α∩β=l错误!无数个3.必记结论(1)唯一性定理①过直线外一点有且只有一条直线与已知直线平行.②过一点有且只有一个平面与已知直线垂直.③过平面外一点有且只有一个平面与已知平面平行.④过一点有且只有一条直线与已知平面垂直.(2)异面直线的判定定理平面外一点A与平面内一点B的连线与平面内不经过B点的直线互为异面直线.1.概念辨析(1)两两相交的三条直线最少可以确定三个平面.()(2)如果两个平面有三个公共点,则这两个平面重合.()(3)已知a,b是异面直线,直线c平行于直线a,那么c与b 不可能是平行直线.()(4)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()答案(1)×(2)×(3)√(4)×2.小题热身(1)对于任意的直线l与平面α,在平面α内必有直线m,使m与l()A.平行B.相交C.垂直D.互为异面直线答案C解析不论l∥α,l⊂α还是l与α相交,α内都存在直线m 使得m⊥l。

立体几何复习3

立体几何复习3

张家港高级中学2010~2011学年第一学期高二年级网校培训数学学案11. 如图,平面ADE⊥平面ABCD,△ADE是边长为a的正三角形,ABCD为矩形,F是AB的中点,EC与平面ABCD成30 角.(1)求证:EA⊥CD;(2)求四棱锥E-AFCD的体积;(3)求二面角E-FC-D的大小;(4)求点D到平面EFC的距离.(1) 平面ADE⊥平面ABCD平面ADE⋂平面ABCD=ADCD⊥AD 且CD⊂平面ABCD∴CD⊥平面ADE EA⊂平面ADE∴EA⊥CD为矩形,F 是AB 的中点,EC 与平面ABCD 成30 角. (1)求证:EA ⊥CD ;(2)求四棱锥E-AFCD 的体积; (3)求二面角E-FC-D 的大小; (4)求点D 到平面EFC 的距离.(2)在面ADE 内作EH ⊥AD 于点H ,连CH 由平面ADE ⊥平面ABCD ,平面ADE ⋂平面ABCD=AD 得EH ⊥平面ABCD∴∠ECH为EC 与平面ABCD 所成的角,即30△ADE 为边长为a 的正三角形 ∴2∴CH=32a ∴∴S 四边形AFCD=21)224a a a+⋅=∴2313428E AFC DV a -=⋅=为矩形,F 是AB 的中点,EC 与平面ABCD 成30 角. (1)求证:EA ⊥CD ;(2)求四棱锥E-AFCD 的体积; (3)求二面角E-FC-D 的大小; (4)求点D 到平面EFC 的距离.(3)RT △EAF 中 22a==又2C F=222EFFCEC∴+=∴CF ⊥EF又由EH ⊥平面ABCD 得CF ⊥EHEF ⋂EH=E EF 、EH ⊂平面EFH ∴CF ⊥平面EFH FH ⊂平面EFH ∴CF ⊥FH∴∠EFH就是二面角E-FC-D 的平面角变式:如图四棱锥S -ABCD 中,SD ⊥平面ABCD ,四边形ABCD 是菱形,AC =12,BD =16,E 是SB 上任意一点,△AEC 面积的最小值是24.求四棱锥S -ABCD 的体积.2.三棱锥P-ABC 中,PA,PB,PC 互相垂直,则顶点P 在底面ABC 上的射影是△ABC 的垂心.ACDESO B变式1:在空间四边形ABCD中,AB⊥CD,BC⊥AD,AC与BD的位置关系是.点A在平面BCD上的射影为△BCD的心.变式2:点P到ΔABC三边所在直线的距离相等,P在ΔABC内的射影为O,则O为ΔABC的心.变式3点P到ΔABC三个顶点的距离相等,P在ΔABC内的射影为O,则O为ΔABC的心.3.如图,已知PA ⊥α,PB β⊥,垂足分别为A ,B ,且l=⋂βα,二面角l αβ--大小为120 ,求∠APB 的大小.变式1:已知二面角l αβ--,从二面角内一点P 作PA ⊥α于A ,作PB β⊥于B ,∠APB=60 ,从点B 作BC l ⊥于C.(1)求证:PC l ⊥,并求二面角l αβ--的大小; (2)若PA=3,PB=2,求点P 到直线l 的距离.变式2:已知二面角βα--l 的大小为060,n m ,为异面直线,且βα⊥⊥n m ,,则n m ,所成的角为___________________.直线与圆【直线的倾斜角与斜率】直线的倾斜角与斜率的概念;直线的倾斜角与斜率的关系.注意数形结合思想方法的运用!..............4.已知点A(2,-3),B(-3,-7),直线l过点P(1,1),且与线段AB相交,则直线l的斜率k的取值范围是_____________.变式1:两直线40x y--=相交于第一象限的点,则a的+-=与20ax y范围是________.变式2:如果0,0,By+CAx不经过第象限.><那么直线0AC BC=+【直线的方程】直线方程的点斜式、两点式、斜截式、截距式; 直线方程的一般式.求直线方程的方法:直接法;待定系数法.....5.已知直线l :21)y x -=-,则过点P (1,2)且与直线l 所夹锐角为30 的直线方程为_____________.变式:已知直线l :21)y x -=-,则过点P (1,2)且倾斜角是直线l 倾斜角两倍的直线方程为_____________.:1l y x =+呢?:1l y =+呢?6.求过点P(3,2)且在两坐标轴上截距之和为0的直线方程.变式1:过点P(3,2)且在两坐标轴上截距相等的直线方程为__________________________.变式2:过点P(3,2)且到原点的距离为3的直线方程为_________________________________.变式3:过点P(3,2)并使A(2,-3)、B(6,1)到它的距离相等的直线方程为_________________________________.变式4:过点P(3,2)且与圆22(5)(3)4-++=相切的直线方程为x y________________________________.变式5:求过点P(3,2)且与x轴、y轴正半轴围成三角形面积最小时的直线方程.变式6:设点A在x轴上,点B在y轴上,线段AB的中点M的坐标为(2,-1),则直线AB的方程为_____________________________.变式7:过点P(3,0)作直线l,使它被两条相交直线2x-y-2=0和x+y+3=0所截得的线段恰好被P点平分,求直线l的方程.变式8:△ABC中,BC边上的高所在直线方程为x-2y+1=0,∠A的平分线所在直线方程为y=0,若B(1,2),求点A和点C的坐标.7.直线130kx y k-+-=,当k 变化时,直线恒过定点________.变式1:直线(1)2y k x k =++-一定经过第________象限.变式2:判断直线:210l m x y m -+-=与圆22:(1)(2)25C x y -+-=的位置关系.(课本P93例3)建立适当的直角坐标系,证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.已知圆C :0322=++++Ey Dx y x ,且圆C 关于直线01=-+y x 对称,圆心在第二象限,半径为2.(1)求圆C 的方程; (2)已知不过原点的直线l 与圆C 相切,且在x 轴、y 轴上的截距相等,求直线l 的方程.。

培优提升立体几何3

培优提升立体几何3

第五讲立体几何【例 1】(05年武汉明心杯数学挑战赛)如图所示,一个555⨯⨯的立方体,在一个方向上开有115⨯⨯的孔,在另一个方向上开有215⨯⨯的孔,在第三个方向上开有315⨯⨯的孔,剩余部分的体积是多少?表面积为多少?【解析】求体积:开了315⨯⨯的孔,挖去31515⨯⨯=,开了115⨯⨯的孔,挖去11514⨯⨯-=;开了215⨯⨯的孔,挖去215(22)6⨯⨯-+=,剩余部分的体积是:555(1546)100⨯⨯-++=.(另解)将整个图形切片,如果切面平行于纸面,那么五个切片分别如图:得到总体积为:22412100⨯+=.求表面积:表面积能够看成外部和内部两部分.外部的表面积为55612138⨯⨯-=,内部的面积能够分为前后、左右、上下三个方向,面积分别为()22515121320⨯⨯+⨯-⨯-⨯=、()2153513132⨯⨯+⨯-⨯-=、()2151511214⨯⨯+⨯-⨯-=,所以总的表面积为138203214204+++=.(另解)使用类似于三视图的方法,记录每一方向上的不同位置上的裸露正方形个数:前后方向:32上下方向:30左右方向:40总表面积为()2323040204⨯++=.【总结】“切片法”:全面打洞(例如本题,五层一样),挖块成线(例如本题,在前一层的基础上,一条线一条线地挖),这里体现的思想方法是:化整为零,有序思考!【巩固】(2008年香港保良局第12届小学数学世界邀请赛)如图,原来的大正方体是由125个小正方体所构成的.其中有些小正方体已经被挖除,图中涂黑色的部分就是贯穿整个大正方体的挖除部分.请问剩下的部分共有多少个小正方体?【解析】对于这个类从立体图形中间挖掉一部分后再求体积(或小正方体数目)的题目一般第8题能够采用“切片法”来做,所谓“切片法”,就是把整个立体图形切成一片一片的(或一层一层的),然后分别计算每一片或每一层的体积或小正方体数目,最后再把它们相加.采用切片法,俯视第一层到第五层的图形依次如下,其中黑色部分表示挖除掉的部分.第1层第2层第3层第4层第5层从图中能够看出,第1、2、3、4、5层剩下的小正方体分别有22个、11个、11个、6个、22个,所以总共还剩下22111162272++++=(个)小正方体.【巩固】一个由125个同样的小正方体组成的大正方体,从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通,右图就是抽空的状态.右图中剩下的小正方体有多少个?【解析】解法一:(用“容斥原理”5525⨯=个,由侧面图形抽出的小正方体有5525⨯=个,⨯=个,由底面图形抽出的小正方体有4520正面图形和侧面图形重合抽出的小正方体有1221228⨯+⨯+⨯=个,正面图形和底面图形重合抽出的小正方体有13227⨯+⨯=个,底面图形和侧面图形重合抽出的小正方体有1211227⨯+⨯+⨯=个,三个面的图形共同重合抽出的小正方体有4个.根据容斥原理,252520877452++---+=,所以共抽出了52个小正方体.1255273-=,所以右图中剩下的小正方体有73个.注意这里的三者共同抽出的小正方体是4个,必须知道是哪4块,这是最让人头疼的事.但你能够先构造空的两个方向上共同部分的模型,再由第三个方向来穿过“花墙”.这里,化虚为实的思想方法很重要.解法二:(用“切片法”来解)能够从上到下切五层,得:⑴从上到下五层,如图:⑵或者,从右到左五片,如图:请注意这里的挖空的技巧是:先认一种方向.比如:从上到下的每一层,首先都应该有第一层的空四块的情况,即——如果挖第二层:第(1)步,把中间这些位置的四块挖走如图:第(2)步,把从右向左的两块成线地挖走.(请注意挖通的效果就是成线挖去),如图:第(3)步,把从前向后的一块(请注意跟第二层相关的仅仅一块!)挖成线!如图:【例 2】(2009年迎春杯高年级组复赛)右图中的⑴⑵⑶⑷是同样的小等边三角形,⑸⑹也是等边三角形且边长为⑴的2倍,⑺⑻⑼⑽是同样的等腰直角三角形,⑾是正方形.那么,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的倍.⑷⑶⑵⑴⑾⑽⑼⑻⑺⑹⑸【解析】本题中的两个图都是立体图形的平面展开图,将它们还原成立体图形,可得到如下两图:其中左图是以⑴⑵⑶⑷为平面展开图的立体图形,是一个四个面都是正三角形的正四面体,右图以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形,是一个不规则图形,底面是⑾,四个侧面是⑺⑻⑼⑽,两个斜面是⑸⑹. 对于这两个立体图形的体积,能够采用套模法来求,也就是对于这种我们不熟悉的立体图形,用一些我们熟悉的基本立体图形来套,看看它们与基本立体图形相比,缺少了哪些部分.因为左图四个面都是正三角形,右图底面是正方形,侧面是等腰直角三角形,想到都用正方体来套.对于左图来说,相当于由一个正方体切去4个角后得到(如下左图,切去1ABDA 、1CBDC 、111D AC D 、111B AC B );而对于右图来说,相当于由一个正方体切去2个角后得到(如下右图,切去1BACB 、1DACD ).D 1C 1B 1A 1D CBAABCDA 1B 1C 1D 1假设左图中的立方体的棱长为a ,右图中的立方体的棱长为b ,则以⑴⑵⑶⑷为平面展开图的立体图形的体积为:3231114233a a a a -⨯⨯⨯=,以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积为3231122233b b b b -⨯⨯⨯=.因为右图中的立方体的棱长即是题中正方形⑾的边长,而左图中的立方体的每一个面的对角线恰好是正三角形⑴的边长,通过将等腰直角三角形⑺分成4个相同的小等腰直角三角形能够得到右图中的立方体的棱长是左图中的立方体的棱长的2倍,即2b a =.那么以⑴⑵⑶⑷为平面展开图的立体图形的体积与以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积的比为:()33331212::21:163333a b a a =⨯=,也就是说以⑸⑹⑺⑻⑼⑽⑾为平面展开图的立体图形的体积是以⑴⑵⑶⑷为平面展开图的立体图形体积的16倍.【例 3】 图⑴和图⑵是以正方形和等边三角形为面的立体图形的展开图,图中所有的边长都相同.请问:图⑴能围起来的立体图形的体积是图⑵能围起来的立体图形的体积的几倍?图⑴图⑵【解析】首先,我们把展开图折成立体图形,见下列示意图:图⑴图⑵对于这类题目,一般采用“套模法”,即用一个我们熟悉的基本立体图形来套,这样做基于两点考虑,一是如果有类似的模型,可以直接应用其计算公式;二是如果可以补上一块或者放到某个模型里面,那么可以从这个模型入手.我们把图⑴中的立体图形切成两半,再转一转,正好放进去!我们看到图⑴与图⑶的图形位置的微妙关系:1和图3一致!60°图⑶图⑷由图⑷可见,图⑴这个立体的体积与图⑶这个被切去了8个角后的立体图形的体积相等.假设立方体的1条边的长度是1,那么一个角的体积是1111112222348⨯⨯⨯⨯=,所以切掉8个角后的体积是1518486-⨯=.再看图⑵中的正四面体,这个正四面体的棱长与图⑶中的每一条实线线段相等,所以应该用边长为12的立方体来套.如果把图⑵的立体图形放入边长为12的立方体里的话是可以放进去的.12这是切去了四个角后的图形,从上面的分析可知一个角的体积为148,所以图⑵的体积是:1111142224824⨯⨯-⨯=,那么前者的体积是后者的5120624÷=倍.【例 4】。

新高考 核心考点与题型 立体几何 第3讲 空间直线与平面的平行 - 解析

新高考 核心考点与题型 立体几何 第3讲  空间直线与平面的平行 - 解析

第3讲空间直线与平面的平行1.直线与平面平行(1)直线与平面平行的定义:直线l与平面α没有公共点,则称直线l与平面α平行.(2)判定定理与性质定理2.(1)平面与平面平行的定义:没有公共点的两个平面叫做平行平面.(2)判定定理与性质定理(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.[微点提醒] 平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a ⊄α,a ⊄β,则α⊄β. (2)平行于同一平面的两个平面平行,即若α⊄β,β⊄γ,则α⊄γ. (3)垂直于同一个平面的两条直线平行,即若a ⊄α,b ⊄α,则a ⊄b .考点一 直线与平面平行的判定与性质多维探究角度1 直线与平面平行的判定【例2-1】在如图所示的几何体中,四边形ABCD 是正方形,P A ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,P A =AB =1.证明:EF ∥平面PDC ; 证明 取PC 的中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 的中点,∴MF ∥CB ,MF =12CB ,∵E 为DA 的中点,四边形ABCD 为正方形,∴DE ∥CB ,DE =12CB ,∴MF ∥DE ,MF =DE ,∴四边形DEFM 为平行四边形,∴EF ∥DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC ,∴EF ∥平面PDC .规律方法 利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.【变式】如图,在直三棱柱ABC ­A 1B 1C 1中,点M ,N 分别为线段A 1B ,AC 1的中点.求证:MN ∥平面BB 1C 1C .证明:如图,连接A 1C .在直三棱柱ABC ­A 1B 1C 1中,侧面AA 1C 1C 为平行四边形. 又因为N 为线段AC 1的中点,所以A 1C 与AC 1相交于点N ,即A 1C 经过点N , 且N 为线段A 1C 的中点.因为M 为线段A 1B 的中点,所以MN ∥BC .又因为MN ⊄平面BB 1C 1C ,BC ⊂平面BB 1C 1C ,所以MN ∥平面BB 1C 1C .角度2直线与平面平行性质定理的应用【例2】如图所示,在正方体ABCD-A1B1C1D1中,棱长为2,E,F分别是棱DD1,C1D1的中点.(1)求三棱锥B1-A1BE的体积;(2)试判断直线B1F与平面A1BE是否平行,如果平行,请在平面A1BE上作出与B1F平行的直线,并说明理由.解(1)如图所示,V B1-A1BE =V E-A1B1B=13S△A1B1B· DA=13×12×2×2×2=43.(2)B1F∥平面A1BE.延长A1E交AD延长线于点H,连BH交CD于点G,则BG就是所求直线.证明如下:因为BA1∥平面CDD1C1,平面A1BH∩平面CDD1C1=GE,所以A1B∥GE.又A1B∥CD1,所以GE∥CD1.又E为DD1的中点,则G为CD的中点.故BG∥B1F,BG就是所求直线.规律方法在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.【变式1】如图,在四棱柱ABCD­A1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.求证:FG∥平面AA1B1B.证明:在四棱柱ABCD ­A1B1C1D1中,BB1∥CC1,BB1⊂平面BB1D,CC1⊄平面BB1D,所以CC1∥平面BB1D.又CC1⊂平面CEC1,平面CEC1与平面BB1D交于FG,所以CC1∥FG.因为BB1∥CC1,所以BB1∥FG.因为BB1⊂平面AA1B1B,FG⊄平面AA1B1B,所以FG∥平面AA1B1B.【变式2】如图所示,在四棱锥P ABCD-中,//BC平面PAD,12BC AD=,E是PD的中点.(⊄)求证://BC AD;(⊄)求证://CE平面PAB;(⊄)若M是线段CE上一动点,则线段AD上是否存在点N,使//MN平面PAB?说明理由.【分析】(⊄)根据线面平行的性质定理即可证明;(⊄)取PA的中点F,连接EF,BF,利用中位线的性质,平行四边形的性质,以及线面平行的判断定理即可证明;(⊄)取AD中点N,连接CN,EN,根据线面平行的性质定理和判断定理即可证明.【解答】(⊄)在四棱锥P ABCD-中,//BC平面PAD,BC⊂平面ABCD,平面ABCD⋂平面PAD AD=,//BC AD∴,(⊄)取PA的中点F,连接EF,BF,E是PD的中点,//EF AD∴,12EF AD=,又由(⊄)可得//BC AD,12BC AD=,//BC EF∴,BC EF=,∴四边形BCEF是平行四边形,//CE BF∴,CE⊂/平面PAB,BF⊂平面PAB,//CE∴平面PAB.(⊄)取AD中点N,连接CN,EN,E,N分别为PD,AD的中点,//EN PA∴,EN⊂/平面PAB,PA⊂平面PAB,//EN∴平面PAB,又由(⊄)可得//CE平面PAB,CE EN E=,∴平面//CEN平面PAB,M是CE上的动点,AN⊂平面CEN,//MN∴平面PAB,∴线段AD存在点N,使得//MN平面PAB.考点二面面平行的判定与性质典例迁移【例3】(经典母题)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:平面EF A1∥平面BCHG.证明:∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,∴平面EF A1∥平面BCHG.【变式1】在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1∥平面AC1D.证明如图所示,连接A1C交AC1于点M,⊄四边形A1ACC1是平行四边形,⊄M是A1C的中点,连接MD,⊄D为BC的中点,⊄A1B⊄DM.⊄A1B⊄平面A1BD1,DM⊄平面A1BD1,⊄DM⊄平面A1BD1,又由三棱柱的性质知,D1C1綉BD,⊄四边形BDC1D1为平行四边形,⊄DC1⊄BD1.又DC1⊄平面A1BD1,BD1⊄平面A1BD1,⊄DC1⊄平面A1BD1,又DC1∩DM=D,DC1,DM⊄平面AC1D,因此平面A1BD1⊄平面AC1D.【变式2】如图为一简单组合体,其底面ABCD 为正方形,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,求证:平面//EBC 平面PDA .【分析】推导出//AD BC ,//PD EC ,由此能证明平面//EBC 平面PDA . 【解答】底面ABCD 为正方形,//AD BC ∴,棱PD 与EC 均垂直于底面ABCD ,2PD EC =,//PD EC ∴, ADPD D =,BCEC C =,∴平面//EBC 平面PDA .【例4】如图,已知//αβ,P 是平面α,β外的一点,直线PAB ,PCD 分别与α、β相交于A 、B 和C 、D .(1)求证://AC BD ;(2)已知4PA =,5AB =,3PC =,求PD 的长.【分析】(1)由面面平行的性质即可得证;(2)由平行线的性质即可求解. 【解答】解:(1)证明://αβ,平面PBD AC α=,平面PBD BD β=,//AC BD ∴;(2)由(1)可知,PA PC PB PD =,即4345PD =+,∴274PD =. 规律方法 利用线面平行或面面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置.对于线段长或线段比例问题,常用平行线对应线段成比例或相似三角形来解决.【变式】如图,平面//αβ,线段AB 分别交α,β于M ,N ,线段AD 分别交α,β于C ,D ,线段BF 分别交α,β于F ,E ,若9AM =,11MN =,15NB =,78FMC S ∆=.求END ∆的面积.【分析】利用面面平行的性质得到两个三角形对应边的比,结合面积公式即可得解.【解答】解:平面//αβ,又平面AND ⋂平面MC α=,平面AND ⋂平面ND β=,//MC ND ∴, 同理//EN FM ,又9AM =,11MN =,15NB =,∴926,2015MC AM FM BM ND AN EN BN ====, 又FMC END ∠=∠,所以1sin 92678212015100sin 2FMC ENDFM MC FMCS SEN ND END ∠==⨯=∠,78FMC S ∆=,100END S ∆∴=.故END ∆的面积为:100.方法总结(1)线面平行思考途径 I.转化为直线与平面无公共点;II.转化为线线平行; III.转化为面面平行支持定理 ①; ②; ③配图助记(2)线线平行:思考途径 I.转化为判定共面二直线无交点;II.转化为二直线同与第三条直线平行; III.转化为线面平行; IV.转化为线面垂直; V.转化为面面平行.支持定理①;②;③;④配图助记(3)面面平行:思考途径 I.转化为判定二平面无公共点;II.转化为线面平行; III.转化为线面垂直.////a b b a a ααα⎫⎪⊂⇒⎬⎪⊄⎭////a a αββα⎫⇒⎬⊂⎭//a a a αββαα⊥⎫⎪⊥⇒⎬⎪⊄⎭////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭//a a b b αα⊥⎫⇒⎬⊥⎭////a a b b αβαγβγ⎫⎪=⇒⎬⎪=⎭//////a b c b a c ⎫⇒⎬⎭αb βa a b αb γβ α aαβaaαbβαa支持定理 ①;②;③配图助记空间平行的判定与性质 基础巩固题组(建议用时:40分钟)一、选择题1.若直线l 不平行于平面α,且l ⊄α,则( ) A.α内的所有直线与l 异面 B.α内不存在与l 平行的直线 C.α与直线l 至少有两个公共点 D.α内的直线与l 都相交解析 因为l ⊄α,直线l 不平行于平面α,所以直线l 只能与平面α相交,于是直线l 与平面α只有一个公共点,所以平面α内不存在与l 平行的直线. 答案 B2.已知直线l ,m ,平面α,β,γ,则下列条件能推出l ∥m 的是( ) A.l ⊂α,m ⊂β,α∥β B.α∥β,α∩γ=l ,β∩γ=m C.l ∥α,m ⊂αD.l ⊂α,α∩β=m解析 选项A 中,直线l ,m 也可能异面;选项B 中,根据面面平行的性质定理,可推出l ∥m ,B 正确;选项C 中,直线l ,m 也可能异面;选项D 中,直线l ,m 也可能相交.故选B. 答案 B3.如图所示的三棱柱ABC -A 1B 1C 1中,过A 1B 1的平面与平面ABC 交于DE ,则DE 与AB 的位置关系是( )A.异面B.平行C.相交D.以上均有可能解析 在三棱柱ABC -A 1B 1C 1中,AB ∥A 1B 1,,////,//a b a b o a b αααβββ⊂⊂⎫⎪=⇒⎬⎪⎭//a a ααββ⊥⎫⇒⎬⊥⎭//////αβαγγβ⎫⇒⎬⎭a β αbOβ aαβ αγ∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.答案B4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析对于选项A,若存在一条直线a,a∥α,a∥β,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B、C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到一个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.答案D5.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有()A.0条B.1条C.2条D.1条或2条解析如图所示,四边形EFGH为平行四边形,则EF∥GH.∵EF⊄平面BCD,GH⊂平面BCD,∴EF∥平面BCD.又∵EF⊂平面ACD,平面BCD∩平面ACD=CD,∴EF∥CD.又EF⊂平面EFGH,CD⊄平面EFGH.∴CD∥平面EFGH,同理,AB∥平面EFGH,所以与平面α(面EFGH)平行的棱有2条.答案C二、填空题6.如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析 根据题意,因为EF ∥平面AB 1C ,所以EF ∥AC .又E 是AD 的中点,所以F 是CD 的中点.因为在Rt △DEF 中,DE =DF =1,故EF = 2. 答案27.如图,平面α∥平面β,△ABC ,△A ′B ′C ′分别在α,β内,线段AA ′,BB ′,CC ′共点于O ,O 在α,β之间,若AB =2,AC =1,∠BAC =60°,OA ∶OA ′=3∶2,则△A ′B ′C ′的面积为________.解析 相交直线AA ′,BB ′所在平面和两平行平面α,β相交于AB ,A ′B ′,所以AB ∥A ′B ′.同理BC ∥B ′C ′,CA ∥C ′A ′.所以△ABC 与△A ′B ′C ′的三内角相等,所以△ABC ∽△A ′B ′C ′,A ′B ′AB =OA ′OA =23.S △ABC =12×2×1×32=32, 所以S △A ′B ′C ′=32×⎝⎛⎭⎫232=32×49=239.答案2398.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n ; ②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若α∩β=n ,m ∥n ,m ∥α,则m ∥β; ④若m ∥α,n ∥β,m ∥n ,则α∥β.其中是真命题的是________(填上正确命题的序号).解析 ①m ∥n 或m ,n 异面,故①错误;易知②正确;③m ∥β或m ⊂β,故③错误;④α∥β或α与β相交,故④错误. 答案 ② 三、解答题9.已知四棱锥P -ABCD 的底面ABCD 是平行四边形,侧面P AB ⊥平面ABCD ,E 是棱P A 的中点.(1)求证:PC ∥平面BDE ;(2)平面BDE 分此棱锥为两部分,求这两部分的体积比.(1)证明 在平行四边形ABCD 中,连接AC ,设AC ,BD 的交点为O ,则O 是AC 的中点.又E 是P A 的中点,连接EO ,则EO 是△P AC 的中位线,所以PC ∥EO , 又EO ⊂平面EBD ,PC ⊄平面EBD ,所以PC ∥平面EBD .(2)解 设三棱锥E -ABD 的体积为V 1,高为h ,四棱锥P -ABCD 的体积为V , 则三棱锥E -ABD 的体积V 1=13×S △ABD ×h ,因为E 是P A 的中点,所以四棱锥P -ABCD 的高为2h ,所以四棱锥P -ABCD 的体积V =13×S 四边形ABCD ×2h =4×13S △ABD ×h =4V 1,所以(V -V 1)∶V 1=3∶1,所以平面BDE 分此棱锥得到的两部分的体积比为3∶1或1∶3.10.如图,ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)连接AE ,则AE 必过DF 与GN 的交点O , 连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .能力提升题组 (建议用时:20分钟)11.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有()A.4条B.6条C.8条D.12条解析如图,H,G,F,I是相应线段的中点,故符合条件的直线只能出现在平面HGFI中,有FI,FG,GH,HI,HF,GI共6条直线.答案B12.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D项正确.答案D13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面P AO.解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥P A.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面P AO,QB⊄平面P AO,PO⊂平面P AO,P A⊂平面P AO,所以D1B∥平面P AO,QB∥平面P AO,又D1B∩QB=B,所以平面D1BQ∥平面P AO.故Q为CC1的中点时,有平面D1BQ∥平面P AO.答案Q为CC1的中点14.已知空间几何体ABCDE中,△BCD与△CDE均是边长为2的等边三角形,△ABC是腰长为3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD.(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积.解(1)如图所示,取DC的中点N,取BD的中点M,连接MN,则MN即为所求.证明:连接EM,EN,取BC的中点H,连接AH,∵△ABC是腰长为3的等腰三角形,H为BC的中点,∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH⊂平面ABC,∴AH⊥平面BCD,同理可证EN⊥平面BCD,∴EN∥AH,∵EN⊄平面ABC,AH⊂平面ABC,∴EN∥平面ABC.又M,N分别为BD,DC的中点,∴MN∥BC,∵MN⊄平面ABC,BC⊂平面ABC,∴MN∥平面ABC.又MN∩EN=N,MN⊂平面EMN,EN⊂平面EMN,∴平面EMN∥平面ABC,又EF⊂平面EMN,∴EF∥平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行.(2)连接DH,取CH的中点G,连接NG,则NG∥DH,由(1)可知EN∥平面ABC,∴点E到平面ABC的距离与点N到平面ABC的距离相等,又△BCD是边长为2的等边三角形,∴DH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH⊂平面BCD,∴DH ⊥平面ABC ,∴NG ⊥平面ABC , 易知DH =3,∴NG =32, 又S △ABC =12·BC ·AH =12×2×32-12=22, ∴V E -ABC =13·S △ABC ·NG =63.。

3立体几何综合大题讲义

3立体几何综合大题讲义

立体几何【典型例题】题型一、线面平行例1、(2012•山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(Ⅰ)求证:BE=DE;(Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC变式1:(2013•枣庄二模)一多面体的三视图和直观图如图所示,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示)直观图中的平面BEFC水平放置.(1)求证:AE∥平面DCF;变式2:(2013•潍坊一模)如图,四边形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD⊥平面EFDC,设AD中点为P.(I )当E为BC中点时,求证:CP∥平面ABEF(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值.例2、(2010•湖南)如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.变式:(2013•广州三模)如图,在等腰梯形PDCB中,PB∥CD,PB=3,DC=1,PD=BC=2,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD.(1)求证:平面PAD⊥平面PCD.(2)在线段PB上是否存在一点M,使截面AMC把几何体分成的两部分的体积之比为V PDCMA:V M-AC B=2:1,若存在,确定点M的位置;若不存在,说明理由.(3)在(2)的条件下,判断AM是否平行于平面PCD.练习1、(2013•宁德模拟)如图所示的多面体A1ADD1BCC1中,底面ABCD为正方形,AA1∥BB1∥CC1,AA12AB=2AA1=CC1=DD1=4,且AA1⊥底面ABCD.(Ⅰ)求证:A1B∥平面CDD1C1;(Ⅱ)求多面体A1ADD1BCC1的体积V.2、(2013•聊城一模)如图,四棱锥P-ABCD中,底面ABCD是平行四边形,∠ACB=90°,平面PAD⊥平面ABCD,PA=BC=1,PD=AB=2,E、F分别为线段PD和BC的中点(I)求证:CE∥平面PAF;(Ⅱ)求三棱锥P-AEF的体积.题型二、线面垂直 例3、(2011•辽宁)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,OA=AB=PD 21. (Ⅰ)证明PQ ⊥平面DCQ ;(Ⅱ)求棱锥Q-ABCD 的体积与棱锥P-DCQ 的体积的比值.变式:如图,P 为△ABC 所在平面外一点,AP=AC ,BP=BC ,D 为PC 中点,直线PC 与平面ABD 垂直吗?为什么?例4、(2012•福建)如图,在长方体ABCD-A 1B 1C 1D 1中,AB=AD=1,AA 1=2,M 为棱DD 1上的一点.(1)求三棱锥A-MCC 1的体积;(2)当A 1M+MC 取得最小值时,求证:B 1M ⊥平面MAC .变式2:(2011•惠州模拟)如图,己知△BCD 中,∠BCD=90°,BC=CD=1,AB ⊥平面BCD ,∠ADB 二60°,E 、F 分别是AC 、AD 上的动点,且)10(<<==λλAD AF AC AE . (1)求证:不论λ为何值,总有EF ⊥平面ABC :(2)若21=λ,求三棱锥BEF A -的体积.练习1、(2009•广州模拟)如图,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 是CD 的中点.(I )求证:A 1C ∥平面AD 1E ;(II )在对角线A 1C 上是否存在点P ,使得DP ⊥平面AD 1E ?若存在,求出CP 的长;若不存在,请说明理由.2、如图是长方体ABCD-A 1B 1C 1D 1被一个平面截去一部分后得到的几何体ABCD-A 1EFD 1,其中EF ∥BC ,且AB=2AA 1=2A 1D 1=2A 1E .(1)求异面直线CE 与DB 所成的角;(2)若在棱CD 上存在点G ,满足AF ⊥平面D 1EG ,试确定点G 的位置.3、(2013•浙江)如图,在四棱锥P-ABCD 中,PA ⊥面ABCD ,AB=BC=2,AD=CD=7,PA=3,∠ABC=120°,G 为线段PC 上的点.(Ⅰ)证明:BD ⊥平面PAC ;(Ⅱ)若G 是PC 的中点,求DG 与PAC 所成的角的正切值;(Ⅲ)若G 满足PC ⊥面BGD ,求GCPG 的值.题型三、面面平行例5、(2013•陕西)如图,四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=2.(Ⅰ) 证明:平面A 1BD ∥平面CD 1B 1;(Ⅱ) 求三棱柱ABD-A 1B 1D 1的体积.变式1:(2013•湛江二模)三棱柱ABC-A 1B 1C 1中,AA 1⊥平面ABC ,AB=BC=AC=AA 1,CD ⊥AC 1,E 、F 分别是BB 1、CC 1中点.(1)证明:平面DEF ∥平面ABC ;(2)证明:CD ⊥平面AEC 1.变式2:如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.(1)求证:直线MN∥平面EFDB;(2)求证:平面AMN∥平面EFDB.例6、(2013•海淀区二模)如图1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC 把△BAC沿AC折起到△PAC的位置,使得点P在平面ADC上的正投影O恰好落在线段AC上,如图2所示,点E,F分别为线段PC,CD的中点.(I)求证:平面OEF∥平面APD;(II)求直线CD⊥与平面POF(III)在棱PC上是否存在一点M,使得M到点P,O,C,F四点的距离相等?请说明理由.变式:如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?练习1、如图,棱柱ABCD-A 1B 1C 1D 1的底面ABCD 为菱形,平面AA 1C 1C ⊥平面ABCD .(1)证明:BD ⊥AA 1;(2)证明:平面AB 1C ∥平面DA 1C 1(3)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1?若存在,求出点P 的位置;若不存在,说明理由.2、如图,在三棱柱ABC-A 1B 1C 1中,AB ⊥BC ,BC ⊥BC 1,AB=BC 1,E ,F 分别为线段AC 1,A 1C 1的中点.(1)求证:EF ∥面BCC 1B 1;(2)求证:BE ⊥面AB 1C 1;(3)在线段BC 1上是否存在一点G ,使平面EFG ∥平面ABB 1A 1,证明你的结论.题型四、面面垂直例7、(2012•黑龙江)如图,三棱柱ABC-A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=121AA ,D 是棱AA 1的中点.(I ) 证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.变式1:(2009•湖南)如图,在正三棱柱ABC-A1B1C1中,AB=4,D是BC的中点,点E在AC上,且DE⊥A1E.(1)证明:平面A1DE⊥平面ACC1A1;(2)求直线AD和平面A1DE所成角的正弦值.例8、(2011•陕西)如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是高,沿AD把△ABD折起,使∠BDC=90°.(Ⅰ)证明:平面ADB⊥平面BDC;(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值.变式1:(2013•宜宾二模)如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D、E分别是AC、AB上的点,且DE∥BC,将△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如图2.(Ⅰ)求证:平面A1BC⊥平面A1DC;(Ⅱ)若CD=2,求BE与平面A1BC所成角的余弦值;(Ⅲ)当D点在何处时,A1B的长度最小,并求出最小值.变式2:(2013•日照二模)如图是一直三棱柱(侧棱CD⊥底面ABC)被削去上底后的直观图与三视图的侧(左)视图、俯视图,在直观图中,M是BD的中点,N是BC的重点,侧(左视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(Ⅰ)求该几何体的体积;(Ⅱ)求证:AN∥平面CEM;(Ⅲ)求证:平面BDE⊥平面BCD.练习1、(2010•沈阳一模)已知某几何体的直观图(图1)与它的三视图(图2),其中俯视图为正三角形,其它两个视图是矩形.(Ⅰ)求出该几何体的体积;(Ⅱ)D是棱A1C1上的一点,若使直线BC1∥平面AB1D,试确定点D的位置,并证明你的结论;(Ⅲ)在(Ⅱ)成立的条件下,求证:平面AB1D⊥平面AA1D.题型五、二倍角变式2:正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的大小为 .变式3:如图5,在椎体P ABCD -中,ABCD 是便常委边长为1的棱形,且060DAB ∠=,PA PD ==,2,PB =,E F 分别是,BC PC 的中点.(1) 证明:AD DEF ⊥平面;(2)求二面角P AD B --的余弦值。

立体几何公理3

立体几何公理3
立体几何公理3
立体几何是研究空间中的图形和其性质的一个分支学科,是数学中非常重要的一门学科。而立体几何公理3是在研究立体几何的过程中被广泛应用的一个公理。
立体几何公理3是说如果平面上有两直线A和B,且它们分别与第三条直线C相交于点P和点Q,那么点P和点Q分别位于C的两侧。
这个Байду номын сангаас理在立体几何的研究中起到了非常重要的作用。首先,通过这个公理,我们可以判断出平面上的直线是否相交,并且可以得到相交点的位置关系。这对于解决一些与直线相关的问题非常有帮助。
立体几何公理3的应用范围非常广泛,不仅仅局限于立体几何的研究中。它在数学的其他领域,如代数、理论物理等方面也都有着重要的应用价值。因此,熟练掌握并灵活运用这个公理,对我们深入理解和应用立体几何知识具有指导意义。
总之,立体几何公理3是立体几何研究中的一个基础公理,它能够帮助我们解决与直线、平行线、位置关系等相关的问题。通过运用这个公理,我们能够更好地研究和理解空间中的图形和性质,同时也能够在数学的其他领域中充分发挥其应用价值。因此,在学习立体几何的过程中,我们应该加深对立体几何公理3的理解,并善于运用它解决实际问题。这样才能更好地掌握立体几何知识,提升数学素养。
其次,立体几何公理3也可以应用在研究平面的平分线问题上。例如,当我们研究如何将一个平面分成两个相等的部分时,可以利用这个公理来判断平分线的位置。
此外,立体几何公理3还可以指导我们使用平行线相关的方法解决一些证明问题。例如,当我们需要证明两个线段平行时,可以通过应用这个公理来得到结论。
不仅如此,立体几何公理3还可以帮助我们理解空间中的位置关系。例如,当我们将即将相交的两条直线延长至无穷远时,根据这个公理,我们可以得知它们将交于一个点,并且该点位于这两条直线的延长线上。

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 (3)

高中数学《立体几何》专题复习 三1.(2017·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π答案 A解析 如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R(R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R)2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A .16π B .20π C .24π D .32π答案 C解析 由V =Sh ,得S =4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以球的半径为R =1222+22+42= 6.所以球的表面积为S =4πR 2=24π.故选C.3.若一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π答案 C解析 设正方体的棱长为a ,则a 3=8.因此内切球直径为2,∴S 表=4πr 2=4π.4.(2017·课标全国Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径长为2的同一个球的球面上,则该圆柱的体积为( ) A .π B.3π4 C.π2 D.π4 答案 B解析 根据已知球的半径长是1,圆柱的高是1,如图,所以圆柱的底面半径r =22-122=32,所以圆柱的体积V =πr 2h =π×(32)2×1=34π.故选B. 5.(2018·安徽合肥模拟)已知球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,则三棱锥S -ABC 的体积为( ) A.324B.924 C.322 D.922答案 D解析 设该球球心为O ,因为球的直径SC =6,A ,B 是该球球面上的两点,且AB =SA =SB =3,所以三棱锥S -OAB 是棱长为3的正四面体,其体积V S -OAB =13×12×3×332×6=924,同理V O -ABC =924,故三棱锥S -ABC 的体积V S -ABC =V S -OAB +V O -ABC =922,故选D.6.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310 答案 C解析 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M. 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 7.(2018·广东惠州一模)已知一个水平放置的各棱长均为4的三棱锥形容器内有一小球O(质量忽略不计),现从该三棱锥形容器的顶端向内注水,小球慢慢上浮,当注入的水的体积是该三棱锥体积的78时,小球与该三棱锥各侧面均相切(与水面也相切),则小球的表面积等于( ) A.76π B.43πC.23π D.12π 答案 C解析 由题知,没有水的部分的体积是三棱锥形容器的体积的18,三棱锥形容器的体积为13·34·42·63·4=1623,所以没有水的部分的体积为223.设其棱长为a ,则其体积为13×34a 2×63a =223,∴a =2,设小球的半径为r ,则4×13×3×r =223,解得r =66,∴球的表面积为4π×16=23π,故选C.8.如图,ABCD -A 1B 1C 1D 1是棱长为1的正方体,S -ABCD 是高为1的正四棱锥,若点S ,A 1,B 1,C 1,D 1在同一个球面上,则该球的体积为( ) A.25π16 B.49π16 C.81π16 D.243π128答案 C解析 如图所示,O 为球心,设OG 1=x ,则OB 1=SO =2-x ,同时由正方体的性质可知B 1G 1=22,则在Rt △OB 1G 1中,OB 12=G 1B 12+OG 12,即(2-x)2=x 2+(22)2,解得x =78,所以球的半径R =OB 1=98,所以球的表面积S =4πR 2=81π16,故选C. 9.(2018·郑州质检)四棱锥P -ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .9πB .3πC .22πD .12π答案 D解析 该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC.由直线EF 被球面所截得的线段长为22,可知正方形ABCD 对角线AC 的长为22,可得正方形ABCD 的边长a =2,在△PAC 中,PC =22+(22)2=23,球的半径R =3,∴S 表=4πR 2=4π×(3)2=12π.10.(2014·湖南)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案 B解析 此几何体为一直三棱柱,底面是边长为6,8,10的直角三角形,侧棱为12,故其最大球的半径为底面直角三角形内切圆的半径,故其半径为r =12×(6+8-10)=2,故选B.11.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________. 答案 92π解析 设正方体的棱长为a ,则6a 2=18,得a =3,设该正方体外接球的半径为R ,则2R =3a =3,得R =32,所以该球的体积为43πR 3=43π(32)3=92π.12.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.答案63π解析 设正四面体的棱长为a ,则正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 13.已知一圆柱内接于球O ,且圆柱的底面圆的直径与母线长均为2,则球O 的表面积为________. 答案 8π解析 圆柱的底面圆的直径与母线长均为2,所以球的直径为22+22=8=22,即球半径为2,所以球的表面积为4π×(2)2=8π.14.(2017·衡水中学调研卷)已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________. 答案33解析 方法一:先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33.方法二:用等体积法:V P -ABC =V A -PBC 求解).15.(2018·四川成都诊断)已知一个多面体的三视图如图所示,其中正视图与侧视图都是直角边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为________.答案3π解析由三视图知几何体为四棱锥,且四棱锥的一条侧棱垂直于底面,高等于1,其底面是边长为1的正方形,∴四棱锥的外接球即是边长为1的正方体的外接球,∴外接球的直径为3,∴外接球的表面积S=4π×(32)2=3π.16.(2018·河北唐山模拟)已知矩形ABEF所在的平面与矩形ABCD所在平面互相垂直,AD=2,AB=3,AF=332,M为EF的中点,则多面体M-ABCD的外接球的表面积为________.答案16π解析记多面体M-ABCD的外接球的球心为O,如图,过点O分别作平面ABCD和平面ABEF的垂线,垂足分别为Q,H,连接MH并延长,交AB于点N,连接OM,NQ,AQ,设球O的半径为R,球心到平面ABCD的距离为d,即OQ=d,∵矩形ABEF所在的平面与矩形ABCD所在的平面互相垂直,AF=332,M为EF的中点,∴MN=332,∴AN=NB=32,NQ=1,∴R2=(4+92)2+d2=12+(332-d)2,∴d=32,R2=4,∴多面体M-ABCD的外接球的表面积为4πR2=16π.1.(2017·课标全国Ⅱ,文)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.答案14π解析依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R,则有2R=14,R=142,因此球O的表面积等于4πR2=14π.2.(2018·湖南长沙一中模拟)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为()A .8π B.25π2C .12π D.41π4答案 D解析 根据三视图得出,几何体是正方体中的一个四棱锥O -ABCD ,正方体的棱长为2,A ,D 为所在棱的中点.根据几何体可以判断,球心应该在过A ,D 的平行于正方体底面的中截面上,设球心到平面BCO的距离为x ,则到AD 的距离为2-x ,所以R 2=x 2+(2)2,R 2=12+(2-x)2,解得x =34,R=414,该多面体外接球的表面积为4πR 2=414π,故选D. 3.(2014·陕西,理)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3B .4πC .2π D.4π3答案 D解析 因为该正四棱柱的外接球的半径是四棱柱体对角线的一半,所以半径r =1212+12+(2)2=1,所以V 球=4π3×13=4π3.故选D.4.(2018·洛阳统一考试)如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π答案 D解析 由三视图知,该几何体可以由一个长方体截去3个角后得到,该长方体的长、宽、高分别为5、4、3,所以其外接球半径R 满足2R =42+32+52=52,所以该几何体的外接球的表面积为S =4πR 2=4π×(522)2=50π,故选D.5.(2018·广东清远三中月考)某一简单几何体的三视图如图所示,则该几何体的外接球的表面积是( )A .13πB .16πC .25πD .27π答案 C解析 由三视图可知该几何体是底面为正方形的长方体,底面对角线为4,高为3,设外接球半径为r ,则2r =(22)2+(22)2+32=5,∴r =52,∴长方体外接球的表面积S =4πr 2=25π.6.(2018·福建厦门模拟)已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为32R ,AB =AC =BC =23,则球O 的表面积为( ) A.163π B .16π C.643π D .64π答案 D解析 因为AB =AC =BC =23,所以△ABC 为正三角形,其外接圆的半径r =232sin60°=2,设△ABC 外接圆的圆心为O 1,则OO 1⊥平面ABC ,所以OA 2=OO 12+r 2,所以R 2=(32R)2+22,解得R 2=16,所以球O 的表面积为4πR 2=64π,故选D.7.(2018·四川广元模拟)如图,边长为2的正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,将△ADE ,△EBF ,△FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ′,若四面体A ′EFD 的四个顶点在同一个球面上,则该球的半径为________.答案62解析 由题意可知△A ′EF 是等腰直角三角形,且A ′D ⊥平面A ′EF.由于△A ′EF 可以补全为边长为1的正方形,则该四面体必能补全为长、宽、高分别为1,1,2的正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,易知正四棱柱的外接球的直径为12+12+22= 6.故球的半径为62. 8.(2017·德州模拟)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,该几何体的体积是________;若该几何体的所有顶点在同一球面上,则球的表面积是________.答案 133π解析 由三视图知该几何体是底面为1的正方形,高为1的四棱锥,故体积V =13×1×1×1=13,该几何体与棱长为1的正方体具有相同的外接球,外接球直径为3,该球表面积S =4π×(32)2=3π,正方体、长方体的体对角线即为外接球的直径.。

2021高考数学必考点解题方式秘籍 立体几何3 理(1)

2021高考数学必考点解题方式秘籍 立体几何3 理(1)

2021高考理科数学必考点解题方式秘籍:立体几何3一.专题综述:立体几何的要紧任务是培育学生的空间想像能力,固然推理中兼顾逻辑思维能力的培育,几何是研究位置关系与数量关系的学科,而位置关系与数量关系能够彼此转化,解决立体几何的大体方式是将空间问题转化为平面的问题,即空间问题平面化,平面化的手法有:平移(包括线、面、体的平移)、投影、展开、旋转等变换。

1.考纲要求(1)把握平面的大体性质。

会用斜二测的画法画水平放置的平面图形的直观图:能够画出空间两条直线、直线和平面的各类位置关系的图形,能够依照图形想像它们的位置关系。

(2)把握直线和平面平行的判定定理和性质定理:明白得直线和平面垂直的概念,把握直线和平面垂直的判定定理:把握三垂线定理及其逆定理。

(3)明白得空间向量的概念,把握空间向量的加法、减法和数乘。

(4)了解空间向量的大体定理;明白得空间向量坐标的概念,把握空间向量的坐标运算。

(5)把握空间向量的数量积的概念及其性质:把握用直角坐标计算空间向量数量积的公式;把握空间两点间距离公式。

(6)明白得直线的方向向量、平面的法向量、向量在平面内的射影等概念。

(7)把握直线和直线、直线和平面、平面和平面所成的角、距离的概念,关于异面直线的距离,只要求会计算已给出公垂线或在座标表示下的距离把握直线和平面垂直的性质定理把握两个平面平行、垂直的判定定理和性质定量。

(8)了解多面、凸多面体的概念,了解正多面体的概念。

(9)了解棱柱的概念,把握棱柱的性质,会画直棱柱的直观图。

(10)了解棱锥的概念,把握正棱锥的性质,会画正棱锥的直观图。

(11)了解球的概念,把握球的性质,把握球的表面积、体积公式。

2.考题设置与分值从近几年各地高考试题分析,立体几何题型一样是1至3个填空或选择题,1个解答题,分值25分左右3.考试重点与难度(1)空间大体的线、面位置关系。

一样以客观题的形式显现,试题很基础,但需要全面、准确把握空间线、面位置关系的判定、性质,还需要有好的空间感。

高中数学 立体几何 3.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(学生版)

高中数学 立体几何  3.(第二次修订版)八个有趣模型——搞定空间几何体的外接球与内切球(学生版)

八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略. 五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(3)题-1(引理)AC(3)题-2(解答图)AC(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(6)题图图2-1(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 . (3)正四面体的各条棱长都为2,则该正面体外接球的体积为(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R .例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 . (4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-31.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 .(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( )A .π B.3π C. 4π D.43π (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A.6 B.6 C.3 D.2类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直图5径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD.以上都不对侧视图正视图第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为ο120,则此四面体的外接球的体积为类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为 .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;图8-1A第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高; 第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为(3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 . 3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .。

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

2020版高考数学一轮复习第八章立体几何第3讲空间点、直线、平面之间的位置关系教案理(含解析)新人教A版

第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理1:如果一条直线上的□01两点在一个平面内,那么这条直线就在此平面内. 公理2:经过□02不在同一直线上的三点,有且只有一个平面. 公理3:如果不重合的两个平面有一个公共点,那么它们有□03且只有一条过□04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作□05A ∈α,点A 不在平面α内记作□06A ∉α. (2)点与线的位置关系点A 在直线l 上记作□07A ∈l ,点A 不在直线l 上,记作□08A ∉l . (3)线面的位置关系:直线l 在平面α内记作□09l ⊂α,直线l 不在平面α内记作□10l ⊄α.(4)平面α与平面β相交于直线a ,记作□11α∩β=a . (5)直线l 与平面α相交于点A ,记作□12l ∩α=A . (6)直线a 与直线b 相交于点A ,记作□13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线⎩⎨⎧□14平行.□15相交.异面直线:不同在□16任何一个平面内的两条直线.(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的□17锐角或直角叫做异面直线a ,b 所成的角(或夹角). ②范围:□18⎝ ⎛⎦⎥⎤0,π2.1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面; 推论2:经过两条相交直线有且只有一个平面; 推论3:经过两条平行直线有且只有一个平面. 2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.(2019·银川模拟)已知m,n是两条不同的直线,α,β是两个不同的平面,若m ⊥α,n⊥β,且β⊥α,则下列结论一定正确的是( )A.m⊥n B.m∥nC.m与n相交D.m与n异面答案 A解析若β⊥α,m⊥α,则直线m与平面β的位置关系有两种:m⊂β或m∥β.当m⊂β时,又n⊥β,所以m⊥n;当m∥β时,又n⊥β,所以m⊥n.故选A.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾,D错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成角.因为△PDC为等边三角形,所以∠PDC=60°.所以PD与AB所成角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1.∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.触类旁通共面、共线、共点问题的证明方法(1)证明点或线共面,①首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;②将所有条件分为两部分,然后分别确定平面,再证两平面重合.证明点共线,①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定的直线上.证明线共点,先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.即时训练 1. 如图,空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.(1)求证:E ,F ,G ,H 四点共面; (2)设EG 与FH 交于点P . 求证:P ,A ,C 三点共线.证明 (1)∵E ,F 分别为AB ,AD 的中点, ∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面. (2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形,∴GE 与HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 考向二 空间两条直线的位置关系角度1 两条直线位置关系的判定例2 (1)若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4即不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 构造如图所示的正方体ABCD -A 1B 1C 1D 1,取l 1为AD ,l 2为AA 1,l 3为A 1B 1,当取l 4为B 1C 1时,l 1∥l 4,当取l 4为BB 1时,l 1⊥l 4,故排除A ,B ,C ,选D.(2)(2019·贵州六盘水模拟)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是( )A.垂直B.相交C.异面D.平行答案 D解析∵α是一个平面,m,n是两条直线,A是一个点,m⊄α,n⊂α,A∈m,A∈α,∴n在平面α内,m与平面α相交,A是m和平面α的交点,∴m和n异面或相交(垂直是相交的特殊情况),一定不平行.故选D.角度2异面直线的判定例3 (2019·许昌模拟)如下图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________.答案②④解析①中HG∥MN;③中GM∥HN且GM≠HN,所以直线HG与MN必相交.触类旁通空间两条直线位置关系的判定方法即时训练 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;l⊂α时,在平面α内不存在与l异面的直线,∴D错误;l∥α时,在平面α内不存在与l 相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论序号都填上).答案③④解析 因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.考向三 异面直线所成的角例4 (1)如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为( )A.15B.25 C.35 D.45答案 D解析 连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1或其补角即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,则A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45.则异面直线A 1B 与AD 1所成角的余弦值为45.故选D.(2)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是________.答案 60°解析 如图所示,连接A 1B ,可知A 1B ∥E 1D ,∴∠A 1BC 1是异面直线E 1D 和BC 1所成的角.连接A 1C 1,可求得A 1C 1=C 1B =BA 1=3, ∴∠A 1BC 1=60°. 触类旁通用平移法求异面直线所成的角的三步法(1)一作:根据定义作平行线,作出异面直线所成的角.二证:证明作出的角是异面直线所成的角.三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.即时训练 4. 如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 和AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG .∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG . ∵AC ⊥BD ,∴FG ⊥EG , ∴∠FGE =90°,∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.在三棱锥S -ACB 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则SC 与AB 所成角的余弦值为________.答案1717解析 如图所示,取BC 的中点E ,分别在平面ABC 内作DE ∥AB ,在平面SBC 内作EF ∥SC ,则异面直线SC 与AB 所成的角为∠FED ,过F 作FG ⊥AB ,连接DG ,则△DFG 为直角三角形.由题知AC =2,BC =13,SB =29可得DE =172,EF =2,DF =52,在△DEF 中,由余弦定理可得cos ∠FED =DE 2+EF 2-DF 22DE ·EF =1717.(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图所示,连接AD 1,B 1D 1,BD .由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=22+12-2×2×1×cos60°=3,所以BD =3,所以B 1D 1= 3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C. 答题启示(1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形. 对点训练(2019·银川模拟)如图所示,长方体ABCD -A 1B 1C 1D 1中,AB =12,BC =3,AA 1=4,N 在A 1B 1上,且B 1N =4,则异面直线BD 1与C 1N 所成角的余弦值为( )A.25 B.35 C.45 D .-35答案 B解析 补一个与原长方体相同的,并与原长方体有公共面BC 1的长方体B 1F , 如图所示.连接C 1E ,NE ,则C 1E ∥BD 1,于是∠NC 1E 即为异面直线BD 1与C 1N 所成角(或其补角).在△NC 1E 中,根据已知条件可求C 1N =5,C 1E =13,EN =E 1N 2+EE 21=417.由余弦定理,得cos ∠NC 1E =C 1N 2+C 1E 2-EN 22C 1N ×C 1E =-35.所以BD 1与C 1N 所成角的余弦值为35.。

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)

2019-2020年高考数学大题专题练习——立体几何(三)53.如图,在四棱锥E ﹣ABCD 中,平面CDE ⊥平面ABCD ,∠DAB =∠ABC =90°,AB =BC =1,AD =ED =3,EC =2.(1)证明:AB ⊥平面BCE ;(2)求直线AE 与平面CDE 所成角的正弦值.54.如图1,2,已知ABCD 是矩形,M ,N 分别为边AD ,BC 的中点,MN 与AC 交于点O ,沿MN 将矩形MNCD 折起,设AB =2,BC =4,二面角B ﹣MN ﹣C 的大小为θ.(1)当θ=90°时,求cos ∠AOC 的值;(2)点θ=60°时,点P 是线段MD 上一点,直线AP 与平面AOC 所成角为α.若sin α=,求714线段MP 的长.55.在四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,底面ABCD 为直角梯形,∠CDA =∠BAD =90°,AD =DC =,AB =PA =2,且E 为线段PB 上的一动点.22(1)若E 为线段PB 的中点,求证:CE ∥平面PAD ;(2)当直线CE 与平面PAC 所成角小于,求PE 长度的3π取值范围.56.如图,在几何体中,平面底面,四边形是正方111ABC A B C -11A ACC ⊥ABC 11A ACC 形,,是的中点,且11B C BC ∥Q 1A B 112AC BC B C ==,. 2π3ACB ∠=(Ⅰ) 证明:平面;1B Q ∥11A ACC (Ⅱ) 求直线与平面所成角的正弦值.AB 11A BB57.如图,已知和所在平面互相垂直,且,ABC V BCD V 090BAC BCD ∠=∠=,点分别在线段,AB AC =CB CD =,E F ,BD CD上,沿直线将向上翻折使得与重EF EFD V D A 合(Ⅰ)求证:;AB CF ⊥(Ⅱ)求直线与平面所成角。

AE ABC 58.如图,四边形是圆台的轴截面,,点在底面圆周上,且ABCD 1OO 24AB CD ==M ,.2π=∠AOM DM AC ⊥(Ⅰ)求圆台的体积;1OO (Ⅱ)求二面角的平面角的余弦值.A DMO--59.如图,已知菱形与等腰所在平面相互垂直..ABCD PAB ∆120PAB BAD ∠=∠=为PB 中点 .E (Ⅰ)求证:平面ACE ;//PD (Ⅱ)求二面角的余弦值B CE D --60.如图,在四面体中,平面⊥平面,, ,ABCD ACD BCD 90BCA ∠=︒1AC =,为等边三角形.2AB =BCD ∆(Ⅰ)求证:⊥平面AC BCD(Ⅱ)求直线与平面所成角的正弦值.CDABD61.已知:平行四边形ABCD 中,∠DAB =45°,AB =AD =2,平面AED ⊥平面ABCD ,△22AED 为等边三角形,EF ∥AB ,EF =,M 为线段BC 的中点。

立体几何三视图练习题

立体几何三视图练习题

8.1空间几何体的三视图、直观图、表面积与体积练习题(1)1.(2014·福建,2,)某空间几何体的正视图是三角形,则该几何体不可能是( )A .圆柱B .圆锥C .四面体D .三棱柱2.(2013·四川)一个几何体的三视图如下图,则该几何体的直观图能够是( )3.(2016·课标Ⅰ,6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是( )A .17πB .18πC .20πD .28π4.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如下图,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π5.(2016·课标Ⅱ,6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π6.(2016·课标Ⅲ,9)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A .18+36 5B .54+185C .90D .817.(2015·浙江)某几何体的三视图如下图(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323 cm 3D.403 cm 3 8.(2014·安徽,7)一个多面体的三视图如下图,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .189.(2015·北京,5)某三棱锥的三视图如下左图所示,则该三棱锥的表面积是( )A .2+ 5B .4+ 5C .2+2 5D .510.(2016·北京房山区一模,5)某四棱锥的三视图如上右图所示,则最长的一条侧棱的长度为( )A. 2B. 3C. 5D.611.(2016·课标Ⅲ,10)在封闭的直三棱柱ABC ­A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4π B.9π2C.6π D.32π312.(2015·课标Ⅱ,9)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O­ABC体积的最大值为36,则球O的表面积为( )A.36πB.64πC.144πD.256π8.1空间几何体的三视图、直观图、表面积与体积练习题(2)1.(2015·江苏,9)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.2.(2013·课标Ⅰ,6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,假如不计容器的厚度,则球的体积为()A.500π3cm3 B.866π3cm3 C.1 372π3cm3 D.2 048π3cm33.(2016·四川,13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如上右图所示,则该三棱锥的体积是________.4.(2016·天津,11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下左图图所示(单位:m),则该四棱锥的体积为________m3.5.(2014·课标Ⅰ,12)如上右图所示,网络纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6 2 B.4 2 C.6 D.46.一个四面体的三视图如下图,则该四面体的表面积是()A.1+ 3 B.2+ 3 C.1+2 2 D.227.(2014·课标Ⅱ)正三棱柱ABC­A1B1C1的底面边长为2,侧棱长为3,D为BC中点,则三棱锥A­B1DC1的体积为()A .3 B.32 C .1 D.328.(2015·河北石家庄调研,8)已知球O ,过其球面上A ,B ,C 三点作截面,若O 点到该截面的距离是球半径的一半,且AB =BC =2,∠B =120°,则球O 的表面积为( )A.64π3B.8π3 C .4π D.16π99.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π410.(2015·山东淄博模拟,4)把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A ­BCD 的正(主)视图与俯视图如下图,则其侧(左)视图的面积为( )A.22B.12C.24D.1411.一个几何体的三视图如下图,则该几何体的体积为( )A.163B.203C.152D.13212.(2016·江西南昌,6)一个几何体的三视图及尺寸如下图,则该几何体的外接球半径为( )A.12B.316C.174D.174由三视图还原直观图的方法(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体.(2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线.(3)想象原形,并画出草图后实行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体.根据几何体的三视图判断几何体的结构特征(1)三视图为三个三角形,对应三棱锥;(2)三视图为两个三角形,一个四边形,对应四棱锥;(3)三视图为两个三角形,一个圆,对应圆锥;(4)三视图为一个三角形,两个四边形,对应三棱柱;(5)三视图为两个四边形,一个圆,对应圆柱.求解空间几何体表面积的方法(1)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.(2)多面体的表面积是各个面的面积之和,组合体的表面积应注意重合局部的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展开成平面图形计算,而表面积是侧面积与底面圆的面积之和.(4)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.求体积的常用方法(1)分割求和法:把不规则图形分割成规则图形,然后实行体积计算.(2)补形法:把不规则几何体补成规则几何体,不熟悉的几何体补成熟悉的几何体,便于计算其体积.(3)等积法:选择适当的底面图形求几何体的体积,常用于三棱锥的体积.。

第三节立体几何证明

第三节立体几何证明

第三节立体几何证明本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第三章几何第三节立体几何证明C3-001证明:如果四面体ABCD的对棱分别相等(即AB=CD,AC=BD,AD=BC),那么通过每组对棱中点的直线互相垂直,并且是四面体的对称轴.【题说】 1953年~1954年波兰数学奥林匹克三试题3.【证】如图,设 K、L、P、Q、M、N分别是四面体各棱中点.由于AD=BC,BD=AC,AB公用,所以△ABD≌△BAC,因而它们的对应中线DK=CK,由此知KL⊥CD,同理LK⊥AB.这说明A与B关于KL对称,C与D也关于KL对称.因此,KL是四面体的对称轴.BC的中点Q与DA的中点P对称,因而PQ⊥KL.同理可得结论中的其它部分.[别证] 将四面体的各组对棱分别作为一个平行六面体各面的对角线,由于各组对棱分别相等,所以这六面体为长方体,而长方体的对面中心的连线是对称轴并且互相垂直.C3-002 四面体ABCD,若AB⊥CD,AC⊥BD,则AD⊥BC.【题说】 1957年天津市赛初赛题 3,1979年上海市赛题4.【证】过A作BCD的垂线AH,连BH、CH、DH并延长,分别交CD、DB、BC于E、F、G,再连AE、AF、AG.因AH⊥平面BCD,AB⊥CD,得BE⊥CD.同理,CF⊥BD,故H为△BCD的垂心,所以DG⊥BC,得AD⊥BCC3-003 已知一个圆锥及其内切球,这个球外接一个圆柱,该圆柱的底面在圆锥底面上.并设V1是圆锥的体积,V2是圆柱的体积.(a)证明:不可能成立V1=V2;(b)求出使V1=KV2成立的最小的数K.并作出这种情况下的圆锥顶角.【题说】第二届(1960年)国际数学奥林匹克题 6.本题由保加利亚提供.【解】(a)轴截面如图.设球半径为R,锥底面半径为r,高为h=(c+2)R.V2=2πR3所以V1≠V2.C3-004证明:如果四面体被平面所截得的截面形状是平行四边形,那么这个平行四边形的半周长介于四面体的最长棱长和最短棱长之间.【题说】 1960年~1961年波兰数学奥林匹克三试题3.【证】设四面体ABCD被平面所截得的截面是平行四边形MNPQ,各点位置如图所示.因为PQ∥MN,所以PQ∥平面ABC,从而PQ平行于平面ABC与平面BCD的交线BC,因此MN∥BC.同理,MQ∥AD∥NP.于是由此得:设a和b分别是四面体的最小棱和最大棱,则a≤BC,AD≤b,由此得a≤MN+MQ≤bC3-005 设有一个四面体SABC有如下性质:有五个球与棱SA、SB、SC、AB、BC、CA或其延长线相切.证明:(a)该四面体是正四面体;(b)反之,对每一正四面体都有这样的五个球.【题说】第四届(1962年)国际数学奥林匹克题7.本题由前苏联提供.【证】设球K与四面体ABCD的各棱相切,则K与各个面,比如面ABC,相交得一个圆,这圆是△ABC的内切圆或旁切圆,记为K ABC.每两个这样的圆,如K ABC与K ABD有一个唯一的公共点,也就是球K与AB的切点.有两种情况:Ⅰ.所有的圆都是内切圆.由于K ABC与K ABD均唯一确定,而且不在同一平面上,所以如果有这样的球K,只可能有一个.Ⅱ.有一个圆为旁切圆.例如圆K ABD是与D相对的旁切圆,即它与DA、DB的延长线相切,那么K BCD、K CAD也是与D相对的旁切圆,而K ABC与AB、BC、CA相切于内点,所以是内切圆.与Ⅰ同理,对于每个顶点,这种球至多有一个.因而与四面体各棱都相切的球至多有五个,一个类型Ⅰ,四个类型Ⅱ.现在假定有五个球与四面体各棱都相切.由内切球K1,可得(设DA =a,DB =b,DC =c,BC =a′,CA =b′,AB =c′):a +a′=b +b′=c +c′=自A、B、C、D所作四条切线之和考虑D所对的旁切球,可得a-a′=b-b′=c-c′所以a=b=c,a′=b′=c′再考虑其他旁切球,可得a =b =c =a′=b′=c′所以ABCD为正四面体.反之,正四面体显然有五个和各棱都相切的球.C3-006 (a)已知一四面体ABCD.顶点D和底面△ABC的重心D1相连接,过A、B、C作DD1的平行线,分别交于该点相对的底面所在平面于A1、B1、C1.证明:四面体ABCD的体积是四面体A1B1C1D1体积的三分之一.(b)当点D1是底面△ABC内任一点时,结果又如何?【题说】第六届(1964年)国际数学奥林匹克题6.本题由波兰提供.【证】(a)设E、F、G分别为AD1、BD1、CD1与BC、CA、AB的交点.则A1在ED上,且△ED1D∽△EAA1,AA1 3DD1,同样BB1 CC1 3DD1,所以四面体A1B1C1D1的底面△A1B1C1≌△ABC,而四面体A1B1C1D1的高等于四面体ABCD的高的3倍.所以(b)当D1为任意点时,结论仍然成立.设DD1交平面A1B1C1于D1,A1D2、B1D2、C1D2分别交B1C1、C1A1、A1B1于E1、F1、G1.则过D1、D2任意作两个平行平面与直线AA1、BB1、CC1相截而得C3-007 在某个球形的星球上的居民,他能在星球表面上以不大的速度u移动,有一艘以速度v飞行的宇宙飞船.证明:若v/u>10,则从飞船上总能看到这个星球居民,假定他没有藏起来的话.【题说】 1965年全俄数学奥林匹克十一年级题5.【证】设行星半径是1,取任一直径的二端点为南北极N、S,过N、S引一条基准子午线.再将它分成若干段长度为ε的相等的弧,过这些分点作纬线.始,每次到达基准子午线时都下移ε到下一条纬线.这样,便能保证从飞船上看到行星上移动的居民.理由如下:假如飞船在点B上空,行星居民在A,A与B纬度相同.那么飞船因此,当纬线的弧(沿飞船飞行方向,从B到A)<π时,居民来不及逃避.当<π时,由于ε很小,可以认为飞船在到B之前,仍在同一纬度上飞行.由于飞船到B时,居民在A,所以飞船在A时(比到BC3-008 证明:一个正四面体的外接球球心,到它的四个顶点的距离之和,小于空间中的其它任一点到四个顶点的距离之和.【题说】第八届(1966年)国际数学奥林匹克题3.本题由保加利亚提供.【证】过这正四面体的各个顶点作对面的平行平面,围得一个大的正四面体.任一点P到原四面体各个顶点的距离和a不小于该点到大四的体积,因此a′等于大四面体的高h(当点P在大四面体外时,P到各面距离的代数和等于h,因而a′>h).而原四面体外接球球心到各顶点的距离和等于h.因此命题成立.C3-009以四面体ABCD的棱AB、AC、AD为直径各作一个球.证明:这些球覆盖了整个四面体.【题说】第二届(1968年)全苏数学奥林匹克十年级题3.【证】由A点作平面BCD的垂线AH,再由H点分别作线段BC、BD、CD的垂线HK、HL和HM.显然,棱锥ABKL、ACKM、ADML分别被相应的球所覆盖.C3-010证明:任何一个四面体总有一个顶点,以这个顶点引出的三条棱为三边可构成一个三角形.【题说】第十届(1968年)国际数学奥林匹克题4.本题由波兰提供.【证】设四面体ABCD中,AB是最长的棱.因为AC+BC>AB,AD+BD>AB,所以AC+AD+BC+BD>2AB.从而AC+AD>AB与BC+BD>AB中至少有一个成立.不妨设前者成立,这时AC、AD、AB可构成三角形.C3-011 一个给定的四面体ABCD是等腰的,即AB=CD,AC=BD,AD=BC.证明:该四面体的各面都是锐角三角形.【题说】第一届(1972年)美国数学奥林匹克题2.【证】由题设知,四面体各面为全等三角形.设其三内角分别为α、β、γ,则α+β+γ=180°.又α、β、γ中每一个角小于其它两个的和,所以每一个角都小于90°,即各个面都是锐角三角形.C3-012 在空间的八个点上放置探照灯,若它的照射范围是以此点为顶点的直三面角.证明:这些探照灯能照亮整个空间.【题说】第一届(1967年)全苏数学奥林匹克十年级题2.【证】作一平面,使已知点中的四个在它的一侧,其余四点在另一侧,则放在平面一侧的四个探照灯可以照遍另一侧.C3-013 设一个凸多面体P1的9个顶点为A1,A2,…,A9.设P i为由P1通过平移A1→A i(i=2,3,…,9)得到的凸多面体,证明:在多面体P1,P2,…,P9中至少有两个最少包含有一个公共内点.【题说】第十三届(1971年)国际数学奥林匹克题2.本题由前苏联提供.【证】以A1为原点建立一个坐标系,设A2,…,A9的坐标分别是v2,…,v9,令A′i的坐标为2v i(1≤i≤9),则P k的诸顶点的坐标为即A′i和A′k连线的中点.由于以A′i(1≤i≤9)为顶点的凸多面体P′是以A1为位似中心将P1放大到2倍的结果,它的体积是P1的8倍,而且P1,P2,…,P9都落在P′内部(因为它们都是凸的,并且顶点都在P′面上),它们的体积之和为P1的9倍,大于P′的体积,根据重叠原则,至少有两个P i(1≤i≤9)有公共内点.C3-014已知四个不重合的平行平面,试证:存在一个正四面体,使每个平面上都有该四面体的一个顶点.【题说】第十四届(1972年)国际数学奥林匹克题6.本题由英国提供.【证】设已知平面为E1,E2,E3,E4,并且在编号中,使平面E2,E3,E4依次在平面E1的同一侧,记平面E i与平面E i+1间的距离为d i(i=1,2,3).任取一正四面体P′1P′2P′3P′4.并且依照定比d1∶d2:d3分线段P′1P′4,依次得分点Q2和Q3,依照定比d2∶d3分线段P′2P′4得分点R3;依照定比d1∶d2分线段P′1P′3,得分点S2(如图a),于是有P′4Q3∶P′4Q2=P′4R3∶P′4P′从而可知Q3R3∥Q2P′2类似地,由P′1Q2∶P′1Q3=P′1S2∶P′1P′3可知Q2S2∥Q3P′3因此过Q2、P'2、S2的平面E′2与过Q3、R3、P′3的平面E′i3平行.设E′1和E′4分别是过点P′1和P′4且平行于E′2的平面(如图b),过点P′4引平面E′1的垂线交平面E′i于点T i(i=1,2,3),记平面E′i与E′i+1间的距离为t i(i=1,2,3).于是有t1∶t2∶t3=P′1Q2∶Q2Q3∶Q3P′4=d1∶d2∶d2(1)由(1)式可知,在空间可作一相似变换将平面E′1、E′2、E′3、E′4分别变换为平面E″1、E″2、E″3、E″4,使平面E″i与平面E″i+1间的距离为d i(i=1,2,3),在这相似变换下,正四面体P′1P′2P′3P′4变换为正四面体P″1P″2P″3P″4,并且点P″i在平面E′i内(i=1,2,3,4).最后,移动平面E″1、E″2、E″3、E″4使它们分别与平面E1、E2、E3、E4重合,于是正四面体P″1P″2P″3P″4变换为正四面体P1P2P3P4,并且P i在平面E i内(i=1,2,3,4).C3-015半径为1的球面上两点,用球内长度小于2的曲线连结起来,证明:这条曲线一定落在这个球的某个半球内.【题说】第三届(1974年)美国数学奥林匹克题3.【证】作点A、B所在的大圆,连结AB,并过球心O作平行AB的平面α,如图曲线整个地落在α以上的半球内.如若不然,曲线必与α交于某点P,连AP、BP,作A关于α的对称点A′,连AO、BO、A′O、A′P,曲线长≥AP+BP=A′P+BP>A′B=2.与已知矛盾.因此,原命题成立.C3-016 凸多面体N在每个顶点处都形成一个三面角.又知它的每个面是多边形,且内接于一个圆周.证明:该多面体能内接于一个球.【题说】第十一届(1977年)全苏数学奥林匹克十年级题3.【证】过多面体棱AB的两个界面的外接圆可唯一确定一个球面δ,球面δ含有上述两个界面上的所有顶点.如果BC和BD是由B出发的另外两条棱,那么包含B、C、D的圆(包含界面的外接圆)也属于δ,因为由棱BC连接的界面的顶点全部落在δ上.类似地研究由C出发的棱连接的界面,等等,一直到多面体的任意顶点全部落在球面δ上.C3-017 1.若四面体的六个二面角(即两面之间的夹角)相等,那么,这个四面体一定是正四面体.2.如果五个二面角相等,这个四面体一定是正四面体吗?【题说】第七届(1978年)美国数学奥林匹克题4.【证】作DE⊥AB,DF⊥AC,又作EG⊥AB,FG⊥AC,设EG与FG交于G.则AB⊥面DEG,AC⊥面DGF.所以AB⊥DG,AC⊥DG所以DG⊥面ABC∠DGE=∠DGF=90°由设∠DEG=∠DFG由是 Rt△DEG≌Rt△DFG,DE=DF因此 Rt△ADE≌Rt△ADF∠BAD=∠CAD同理可证∠ADB=∠ADC所以△ABD≌△ADC得 AB=AC,BD=DC再考虑以B、C为顶点的三面角,又得AB=BD,AC=DC,由此,该四面体六条棱皆相等,每个面都是等边三角形,因而是正四面体.2.结论不成立,可如下作出一个非正四面体,它有五个二面角相等:使∠ABC=∠CBD=∠DBA=∠ACB=∠BCD=∠DCA=40°,∠BAD=∠CAD=∠CDA=∠BDA=70°,∠BAC=∠BDC=100°.显然,这样的四面体存在,其中除二面角B-AD-C外,五个二面角皆相等,而它不是正四面体.[别解] 若取∠ABC等6个角为80°,∠BAD等4个角为80°,∠BAC=∠BDC=20°.则也有五个二面角相等的非正四面体.C3-018 众所周知,在欧氏几何中,三角形内角和为定值.试证明四面体的二面角的和不是定值.【题说】第十一届(1979年)加拿大数学奥林匹克题2.【解】考虑正三棱锥ABCD.设侧面与底面所成二面角为α,侧面间的二面角为β.当顶点A趋向于底面中心O时,α→0,β→π,四面体所有的二面角的和趋向于3π.当顶点A趋向于无穷时,α→π/2,β→π/3,四面体所有二面角的和趋向于3(π/2+π/3)=5π/2.由此可知,四面体的所有二面角的和不是定值.C3-019 已知四面体内切球的切点是四面体各面的重心,求证:该四面体是正四面体.【题说】第九届(1980年)美国数学奥林匹克题4.【证】设G1、G2分别是△ABC、△ADC的重心,则切线AG1=AG2,CG1=CG2.△ABC与△ADC中有两组中线对应相等,又共有AC.易知二者全等.因而得AB=AD,BC=DC同理 AC=AD,BC=BD;AD=BD,AC=BC.四面体六条棱都相等,故是正四面体.C3-020 过正方体ABCD-A1B1C1D1的一条对角线AC1任作一平面,截正方体.在截面不是对角面的情况下,能否使截面成为一个矩形?试证明你的结论.【题说】 1982年芜湖市赛题4.【解】如图,设截面为矩形AEC1F,则EF=AC1=BD1但矩形BB1D1D中,显然EF≤BD1,等号仅在EF是对角线BD1或B1D时成立.[别解] AB是面BCC1B1的垂线,所以BE是斜线AE在面BCC1B1上的射影,若AE⊥EC1,则BE⊥EC1,显然这是不可能的.C3-021 经过正方体中心的任一截面的面积不小于正方体的一个侧面面积,试证明.【题说】第十八届(1984年)全苏数学奥林匹克十年级题8.【证】显然正方体的截面是中心对称凸多边形,并且边数是偶数的,即或是四边形或是六边形.如果截面是四边形,那末它与正方体某两个相对的侧面不相交,并且截面在这两个侧面上射影是整个侧面,因此截面四边形的面积不小于正方体一个侧面的面积.如果截面是六边形,那末它与正方体的六个侧面都相交,考察正方体的侧面展开图,可知截面的周长P有不等式.其中a是正方体的棱长.截平面交正方体内切球的截圆半径为a/2,所以对截面积S,有这时截面六边形的面积也不小于正方体的一个侧面的面积.C3-022 AB、BC、CD为不在同一平面内的三条线段,AB、BC⊥BD.【题说】 1986年北京市赛高一题1(4).原题为选择题.【证】因P、Q、R分别为AB、BC、CD的中点,故PQ∥AC,QR∥BD.在△PQR中,有所以∠PQR=90°,即 PQ⊥QR,从而AC⊥BDC3-024 四面体ABCD的棱AB、CD之中点分别是E、F,过EF任作一个平面.试证:这个平面将四面体分成两个等积的部分.【题说】 1987年芜湖市赛题4,第二十九届(1988年)IMO预选题8.【证】如图,设截面为EGFH,DG∶AG=λ,d(x)表示点x到截面EGFH的距离,则所以设△BCD面积为S,A到平面BCD的距离为h,则同理可得三式相加,得C3-025 设A1A2A3A4是一个四面体,S1、S2、S3、S4分别是以A1、A2、A3、A4为球心的球,它们两两相切,如果存在一点Q,以这点为球心可作一个半径为r的球与S1、S2、S3、S4都相切,还可以作一个半径为R的球与四面体的各棱都相切.求证这个四面体是正四面体.【题说】第二届(1987年)全国冬令营赛题5.【证】设以A i为球心的球半径为r i(1≤i≤4).半径为R的球切棱A i A j于B ij,A i B ij=a i(1≤i,j≤4,i≠j).则r i+r j=a i+a j(1≤i,j≤4,i ≠j).从而r i=a i(1≤i≤4),又所以r i=r j(1≤i,j≤4,i≠j).从而各棱均相等,四面体为正四面体.C3-026 正方形ABCD中,M为AB上一点,N是BC上一点,且AM=BN.连DM、DN分别交对角线AC于P、Q,剪去△MNB.求证:(1)以DM、DN为折痕,将DA、DC重合,可以构成一个三棱锥的侧面;(2)以线段AP、PQ、QC为边,恰可构成有一个内角为60°的三角形.【题说】第一届(1990)希望杯高一二试题5.【证】(1)设∠ADP=α,∠CDQ=β,∠PDQ=γ.因为α+γ>45°>β,β+γ>45°>α,故只须证明α+β>γ.设AM =BN =a,CN =b,AB=1.则因此α+β>45°,从而α+β>γ.(2)在折成的四面体D-A(C)MN中,DA⊥AN,DA⊥AM,故DA⊥底面△AMN,且△AMN≌△BMN(图1中)故∠MAN=90°.又AQ平分∠DAN,AP平分∠DAM.过Q作QR∥AN交DA于R;过R作RS∥AM交AP于S.则四面体R-AQS 中,RS=RQ=RA,且∠ARQ=∠QRS=∠ARS=90°.60°.C3-027 在空间给定若干个点,其中任意四点不共面.给定的点具有以下性质:若有球面过其中任意四点,则所有其余的点均在该球面上或球面内.证明:所有给定的点,均在一个球面上.【题说】第十四届(1988年)全俄数学奥林匹克十年级题4.【证】在给定点中取点A、B、C,使其余的点都在平面ABC的同一侧.设D、E是另两个已知点,若E在过A、B、C、D的球面S的内部,则点D在过A、B、C、E的球面的外部,与已知矛盾.因此,点E必在球面S 上.同理可证所有其余的点均应在球面S上.C3-028 三维欧氏空间(xyz空间)所有点的集合为E.A1、A2、A3、A4、A5是E的非空子集,满足条件:(1)A1∪A2∪A3∪A4A2、A3、A4、A5中至少4个集合的点.【题说】 1990年日本第二轮选拔赛题1.【证】若存在直线l至少含3个相异子集A i的点,则过该直线及另一子集的点作平面即为所求.设任何直线至多含两个相异子集的点.设P i 分别为A i的点(i=1,2,3,4,5).考虑连结P1、P2的直线l,除P1、P2外l上还有A1或A2的点.不失一般性,设l上含A1的点Q1≠P1.过P2、P3、P4作平面L,若l在L内,则L即为所求;若l不在L内,过P5和l作平面M, M与L的交线为过P2的直线a.在M内,过P5的两条直线P1P5和P5Q1至少有一条与a相交,交点属于A1或A5,所以平面L必含有4个不同子集的点.C3-029 设AA′、BB′、CC′是球的不在同一平面的三条弦,它们相交于球内一点P.若过A、B、C、P的球面和过A′、B′、C′、P的球面相切,求证:AA′=BB′=CC′.【题说】第二十一届(1992年)美国数学奥林匹克题4.【证】过A、A′、B、B′的平面截三个球得三个圆,其中两个圆分别是△ABP及△A′B′P的外接圆,这两个圆相切于P点(如图).设RQ 是它们在P点的公切线.于是,有∠ABP=∠APQ=∠A′PR=∠A′B′P=∠BAP所以AP=BP同理A′P=B′p相加得 AA′=BB′同理BB′=CC′C3-036 四面体ABCD的四条高AA1、BB1、CC1、DD1相交于H点(A1、B1、C1、D1分别为垂足).三条高上的内分点A2、B2、C2满足AA2∶A2A1=BB2∶B2B1=CC2∶C2C1=2∶1.证明:H、A2、B2、C2、D1在同一个球面上.【题说】第二十一届(1995年)全俄数学奥林匹克第十一年级题7.【证】设M是△ABC重心,则它将中线AA3分为2∶1,于是MA2∥A3A1.因为AA2⊥面BCD,所以AA1⊥A3A1,从而MA2⊥A1A,∠MA2H=90°.同理∠MB2H=∠MC2H=90°.又DD1是四面体的高,所以DD1⊥MD1,即∠MD1H=90°.因此M、A2、B2、C2、D及H在以MH为直径的球面上.。

高中数学2-1学案:第三章 空间向量与立体几何3

高中数学2-1学案:第三章 空间向量与立体几何3

3.1。

1空间向量及其线性运算[学习目标]1。

了解空间向量的概念,掌握空间向量的几何表示和字母表示.2。

掌握空间向量的线性运算及运算律,理解空间向量线性运算及其运算律的几何意义.知识点一空间向量的概念在空间中,我们把像位移、力、速度、加速度这样既有大小又有方向的量叫做空间向量,向量的大小叫向量的长度或模.知识点二空间向量的加减法(1)加减法定义空间中任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.(如图)错误!=错误!+错误!=a+b;错误!=错误!-错误!=a-b.(2)运算律交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).知识点三空间向量的数乘运算(1)定义实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.当λ>0时,λa与a方向相同;当λ〈0时,λa与a方向相反;当λ=0时,λa=0。

λa的长度是a的长度的|λ|倍.如图所示.(2)运算律分配律:λ(a+b)=λa+λb;结合律:λ(μa)=(λμ)a。

知识点四共线向量定理(1)共线向量的定义与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∥b。

(2)充要条件对空间任意两个向量a,b(a≠0),b与a共线的充要条件是存在实数λ,使b=λa.思考(1)若表示两个相等空间向量的有向线段的起点相同,则终点也相同.对吗?(2)零向量没有方向.对吗?(3)空间两个向量的加减法与平面内两向量的加减法完全一致.对吗?答案(1)正确.起点相同,终点也相同的两个向量相等.(2)错误.不是没有方向,而是方向任意.(3)正确.题型一空间向量的概念例1判断下列命题的真假.(1)空间中任意两个单位向量必相等;(2)方向相反的两个向量是相反向量;(3)若|a|=|b|,则a=b或a=-b;(4)向量错误!与错误!的长度相等.解(1)假命题.因为两个单位向量,只有模相等,但方向不一定相同.(2)假命题.因为方向相反的两个向量模不一定相等.(3)假命题.因为两个向量模相等时,方向不一定相同或相反,也可以是任意的.(4)真命题.因为错误!与错误!仅是方向相反,但长度是相等的.反思与感悟空间向量的概念与平面向量的概念相类似,平面向量的其他相关概念,如向量的模、相等向量、平行向量、相反向量、单位向量等都可以拓展为空间向量的相关概念.跟踪训练1如图所示,以长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)试写出与错误!相等的所有向量;(2)试写出错误!的相反向量;(3)若AB=AD=2,AA1=1,求向量错误!的模.解(1)与向量AB,→相等的所有向量(除它自身之外)有错误!,错误!及错误!共3个.(2)向量错误!的相反向量为错误!,错误!,错误!,错误!。

2013届一轮复习课件立体几何3-空间平行关系

2013届一轮复习课件立体几何3-空间平行关系

(2)∵H是B1C1的中点,∴B1H= 3 . 又B1G 1,
FC 2 又 , 且∠FCB=∠GB1H=90°, BC 3
∴△B1HG∽△CBF,∴∠B1GH=∠CFB=∠FBG,
∴HG∥FB.又由(1)知,A1G∥BE,
且HG∩A1G=G,FB∩BE=B,∴平面A1GH∥平面BED1F.
1.如图,在正方ABCD—A1B1C1D中, M、O分别是A1B、AC的中点. 求证:OM∥平面BB1C1C. 2.如图所示,在直四棱柱ABCD- A1B1C1D1中,底面ABCD为等腰梯形, AB∥CD,AB=2CD,E、E 1 、F分别 是棱AD、AA1、AB的中点. 证明:直线EE1∥平面FCC1. 3.如图所示,ABCD-A1B1C1D1是正四棱 柱,侧棱长为1,底面边长为2,E是棱 BC的中点. 求证:BD1∥平面C1DE.
(1)直线与直线平行的定义 (2)公理4:平行于同一条直线的两条直线互相平行,又叫做空 间平行线的传递性.符号表示为a∥c,b∥c 则a∥b . (3)直线和平面平行的性质:如果一条直线和一个平面平行,经 过这条直线的平面和这个平面相交,那么这条直线和交线平行. (4)直线和平面垂直的性质:如果两条直线同垂直于一个平面, 那么这两条直线平行. (5)两个平面平行的性质:如果两个平行平面同时和第三个平面 相交,那么它们的交线平行.
∵DF⊂平面 PAD, CM⊄平面 PAD, ∴CM∥平面 PAD. 法二:取 AB 的中点 E, 连接 EM, CE, CM. 1 在四边形 ABCD 中, CD AB, 2 E 为 AB 的中点, ∴AE DC,
∴四边形 AECD 为平行四边形. ∴CE∥DA. ∵DA⊂平面 PAD, CE⊄平面 PAD, ∴CE∥平面 PAD. 同理, 根据 E, M 分别为 BA, BP 的中点, 得 EM∥平面 PAD. ∵CE⊂平面 CEM, EM⊂平面 CEM, CE∩EM =E, ∴平面 CEM∥平面 PAD. ∵CM⊂平面 CEM, ∴CM∥平面 PAD.

立体几何三 八大定理 线面关系

立体几何三  八大定理  线面关系

lmβααbaNMCB AD A 1B 1C 1D 1αDCBA立体几何(三)线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言: 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α 作用:线线平行⇒线面平行典例:在正方体1111ABCD A B C D -中,,M N 分别是11,A B CC 的中点,求证://MN ABCD 平面二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行典例:如图,//,//,,AB AC BD C D ααα∈∈,求证:AC BD =CABB 1A1C 1D Eb a FE γβαDCB A文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 作用:线线平行⇒ 面面平行典例:如图,在三棱柱111ABC A B C -中,点,D E 分别是BC 与11B C 的中点, 求证:平面1//A EB 平面1ADC四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行典例:如图,////αβγ,直线a 与b 分别交,,αβγ于点,,A B C 和点,,D E F , 求证:AB DEBC EF=nmAαaαbaFEPD CBA 文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言: 符号语言: ,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭作用:线线垂直⇒线面垂直典例:已知四棱锥,P ABCD PD -⊥底面ABCD ,底面ABCD 为正方形,且PD CD =,,E F 分别为,PB PC 的中点,求证:(1)AC ⊥平面PBD (2)PA AB ⊥(3)PC ⊥平面ADFE六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言://a a b b αα⊥⎫⇒⎬⊥⎭作用:线面垂直⇒线线平行BA l βαaβαC CBAP文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

《立体几何》微专题3 空间中的截面

《立体几何》微专题3   空间中的截面

《立体几何》微专题3 空间中的截面一、内容解析在立体几何中,截面是指用一个平面去截一个几何体(如圆柱、圆锥、球、棱柱、棱锥、长方体等)所得的平面图形.高考中涉及空间几何体截面的地方较多,如:判断截面图形的形状,判断截面与其他直线(平面)的位置关系,计算截面的边长、周长和面积(或者求相关几何体的表面积、体积)等.在破解较复杂的综合问题的过程中,要把握好“定位”、“定形”、“定量”这三个环节.首先,由已知条件作出截面与空间几何体的交线;其次,根据线面位置关系相关定理确定截面的基本特征;再次,运用平面几何的有关知识计算截面的边长、周长、面积等.其中,作出空间几何体的截面图形是解决问题的关键.现将空间几何体中截面作图的主要原理(三个公理+两个定理)梳理如下:1.三个公理ABPPA唯一的注:平面的三公理说明了三个问题:(1)平面是平的,平面是无限延展的;(2)要确定两平面交线,可以找两个两平面的交点;(3)确定一个平面的4种方法.【应用举例】如图所示,G是正方体ABCD-A1B1C1D1的棱DD1延长线上的一点,E,F是棱AB,BC的中点.试分别画出过下列各点、直线的平面与正方体表面的交线.(1)过点G及AC;(2)过三点E,F,D1.【分析】我们可以将截面与空间几何体表面的交集(交线)叫做截线,将截面与空间几何体的棱的交集(交点)叫做截点.本题的关键在于确定截点,有了位于多面体同一表面上的两个截点即可连接成截线,从而得到截面.【作法】(1)连接GA交A1D1于点M,连接GC交C1D1于点N;连接MN,AC,则MA,CN,MN,AC为所求平面与正方体表面的交线.如图①所示.(2)连接EF交DC的延长线于点P,交DA的延长线于点Q;连接D1P交CC1于点M,连接D1Q交AA1于点N;连接MF,NE,则D1M,MF,FE,EN,ND1为所求平面与正方体表面的交线.如图②所示.2.两个定理则过这条直线的任一平面与此平面的交【应用举例】(1)在三棱锥P-ABC中,G为△PAC的重心,过点G作三棱锥的截面α,使其平行于PB 和AC,请画出截面α与三棱锥表面的交线.【分析】若截面α与PB和AC平行,则交线分别与PB和AC中的一条平行.【作法】如图,过G作EF∥AC,分别交PA,PC于点E,F,过点F作FM∥PB交BC于点M,过点E作EN∥PB交AB于点N,连接MN,可知EN∥FM,所以E、F、M、N四点共面,且MN∥AC∥EF,EN∥PB∥FM,则EF,FM,MN,EN即为截面α与三棱锥表面的交线.(2)如图,一个四面体木块ABCD,在△ABC的面内有一点P,过点P作一个截面α,使其垂直于直线AD,请画出截面α与四面体表面的交线.【分析】若截面α与AD垂直,则交线与AD垂直.由于在平面ABD和平面ACD内垂直于AD的直线有无数条,故根据面面平行的性质定理,可采用平移法,先作出AD的一个垂面,再平移至点P.【作法】如图,在AD上任取异于A,D的一点Q,过点Q分别在平面ABD和平面ACD 内作QR⊥AD,QS⊥AD,分别交AB,AC于R,S两点.连接RS,过点P在平面ABC内作EF∥RS交AB,AC于E,F两点.过F在平面ACD内作FG∥SQ交AD于G,连接EG,可先证明平面QRS∥平面EFG,再由面面平行的性质定理证明RQ∥EG,从而可证直线AD垂直于平面EFG,则EF,FG,GE即为截面α与四面体表面的交线.【注】截面问题中与平行有关的定理不仅可以用于在截面作图的过程中确定截面的交线,还可以判断截面图形的形状.有关线面、面面垂直的定理在解题时主要用于确定截面的位置关系,故不再专门列出.通过上述分析,可以将空间几何体中截面作图方法小结如下:① 若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的一个面的截线; ② 若面上只有一个已知点,应设法在同一平面内再找出第二个确定的点; ③ 若已知两个点分别在两个相邻的面上,应找出这两个平面的交线与截面的交点; ④ 若所做截面要求与多面体的某一条棱平行,则由一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行的性质,可得截面与平面的交线; ⑤ 若两平行平面中的一个平面与截面有交线,另一个面上只有一个已知点,则由平行平面与第三个平面相交,那么它们的交线互相平行的性质,可得截面与平面的交线; ⑥ 若有一个点在面上而不在棱上,则可通过作辅助平面转化为棱上的点的问题;同理,若已知点在体内,则可通过辅助平面使它转化为面上的点,再转化为棱上的点的问题来解决.下面以正方体为例,列举其基本斜截面图形如下(横截面和竖截面均为正方形): ① 三角形(锐角三角形) (等腰三角形) (等边三角形)注:可以分别用反证法和余弦定理证明,不可能出现直角三角形和钝角三角形截面. ② 四边形(梯形) (平行四边形) (菱形) (矩形) 注:可以用反证法证明,不可能出现直角梯形截面. ③ 五边形1A1A1A1A1A1A1A(普通五边形)注:可以用反证法证明,不可能出现正五边形截面. ④ 六边形(普通六边形) (正六边形)其他空间多面体和旋转体的截面也可以类似作出,并进行分类研究. 二、典型例题题型一、判断截面图形的形状例1 过正方体ABCD -A 1B 1C 1D 1的棱AB ,BC 的中点E ,F 作一个截面使截面与底面所成的角为45o ,则此截面的形状为( )A .三角形或五边形B .三角形或六边形C .六边形D .三角形 【分析】此题中可以直接去找与底面成45o 角的截面,也可以找一些特殊位置的截面,通过计算其与底面所成角得出所求截面的相对位置,体现了运动变化的动态探究. 【答案】B 【解析】如图,显然,本题中的截面有两个,其中一个与线段B 1B 相交,截面为三角形,故只需判断另一个截面的位置和形状.111A1A A连接BD 交EF 于G ,设上下底面中心分别为O 1,O ,设过点D 1的截面与底面的所成角为α,易得tan α=tan ∠D 1GD =223<1, 故α<45o ;设过棱A 1C 1的截面与底面的所成角为β,易得tan β=tan ∠O 1GO =22>1,故α>45o , 故所求截面应与A 1D 1,C 1D 1都相交(不过其端点),为六边形. 故选B .【注】若截面与棱D 1D 相交,则截面为五边形;若截面与棱A 1D 1,C 1D 1都相交(不过其端点),则截面为六边形;若截面与棱A 1B 1,B 1C 1都相交(不过点B 1),则截面为四边形.题型二、判断截面与其他直线(平面)的位置关系例2 如图,在下列三个正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 均为所在棱的中点,过E ,F ,G 作正方体的截面.在各正方体中,直线BD 1与平面EFG 的位置关系描述正确的是( )① ② ③ A . BD 1∥平面EFG 的有且只有①;BD 1⊥平面EFG 的有且只有② B . BD 1∥平面EFG 的有且只有②;BD 1⊥平面EFG 的有且只有① C . BD 1∥平面EFG 的有且只有①;BD 1⊥平面EFG 的有且只有②③ D . BD 1∥平面EFG 的有且只有②;BD 1⊥平面EFG 的有且只有③【分析】无论是线面位置关系,还是面面位置关系,归根结底都应转化为对线线位置关系的探求.在判断截面与其他直线(平面)的位置关系的问题中,可以借助截面图形中现有的直线探寻位置关系,也可以将截面进行延展,作出与空间几何体的交线,通过交线(也可以是截面中的其他直线)探寻位置关系. 【答案】C【解析】若从图①研究起,取A 1D 1中点H ,通过截面EFHG 与对角面BDD 1B 1平行,可得BD 1∥面EFG ,从而排除B ,D 选项;1A1A1A若从图②研究起,可通过证明BD 1⊥EF ,BD 1⊥EG ,得证BD 1⊥平面EFG ,从而排除B ,D 选项;对比A ,C 选项,只需考查图③对应的结论:取AA 1中点M ,连EM ,FM ,仿图②,可证BD 1⊥平面EFM ,故BD 1⊥EF ;类似可证得BD 1⊥GF (BD 1⊥EG ) .从而BD 1⊥平面EFG ,排除A . 故选C .题型三、计算截面的面积和周长例3 有一正三棱柱(底面为正三角形的直棱柱)木料ABC -A 1B 1C 1,各棱长都为2.已知O 1,O 2分别为上,下底面的中心,M 为O 1O 2的中点,过A ,B ,M 三点的截面把该木料截成两部分,则截面面积为( )A . 7B . 1639C . 3194D . 2【分析】本题中构造截面并发现截面的特征是解决问题的关键,而构造截面的过程需运用面面平行的性质定理. 【答案】 B【解析】如图,在正三棱柱ABC -A 1B 1C 1中,各棱长都为2,M 为O 1O 2的中点, 由面面平行的性质定理,可知过A ,B ,M 三点的截面为等腰梯形ABEF , 则EF =13A 1B 1=23,梯形的高为PD =22+(233)2=433,则截面面积为S =12×(23+2)×433=1639. 故选B .例4 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 为CC 1的中点,若AM ⊥平面α,且B ∈平面α,则平面α截正方体所得截面的周长为( )1AA . 32+2 5B . 4+4 2C . 22+2 5D . 6 2【分析】本题中构造与AM 垂直的截面是解决问题的关键,而构造截面的过程需运用线面垂直的判定定理(定义)和面面平行的性质定理. 【答案】A【解析】如图,取BB 1中点N ,A 1B 1中点E ,连接MN ,AN ,BE ,可证AM ⊥面DBE , 由面面平行的性质定理可知截面α与正方体的上下底面的交线平行.由E 为A 1B 1中点可取A 1D 1中点F ,则α即为截面BEFD ,易求周长为32+25,故选A .三、反馈练习A 组(一)单选题:1.截一个几何体,所得各截面都是圆面,则这个几何体一定是( )A. 圆柱B. 圆锥C. 球D. 圆台【答案】C【解析】A.圆柱的轴截面是一个矩形,此选项错误; B.圆锥的轴截面是一个三角形,此选项错误; C.球的截面是一个圆面,此选项正确; D.圆台的轴截面一个梯形,此选项错误. 故选C .2.如图,在四棱锥P -ABCD 中,AD 与BC 相交.若平面α截此四棱锥得到的截面是一个平行四边形,则这样的平面α的个数是( )A .不存在B .恰有1个C .恰有5个D .有无数个1A【答案】D【解析】 在平面ABCD 中作直线MN ∥AB ,交AD 、BC 于点M 、N ,在平面PAB 中作EF ∥AB ,交PA 、PB 于点E 、F ,使MN =EF ,由线面平行的性质定理可知四边形EFNM 为平行四边形,这样的平行四边形显然可以做无数个,且平行四边形所在平面即为所求的平面α. 故选D .(二)多选题:3. (多选题)过正方体中心的截面图形可以是( )A .三角形B .四边形C .五边形D .六边形 【答案】BD【解析】过正方体中心的截面图形至少与正方体的四个面相交,所以不可能是三角形.又因为截面是五边形时不过正方体的中心.过正方体一面上相邻两边的中点及正方体的中心的截面形状为正六边形. 故答案为BD .4.(多选题)用一个平面截正四面体,下列结论中正确的是( ) A .正四面体的截面不可能是正方形; B .正四面体的截面可能是等腰梯形; C .正四面体的截面可能是直角三角形;D .若正四面体的截面是三角形,一定是等腰三角形. 【答案】BC【解析】利用正四面体的性质,分析4个选项,取正四面体各条棱的中点连接而成的截面图形是正方形,故选项A 错误;当截面只与正四面体对棱中的一条平行时,截面为等腰梯形,故选项B 正确;对于选项C 、D ,正四面体的截面可以是三角形,但不一定为等腰三角形,A如下图,过点A 作AO ⊥平面BCD ,要构造截面直角三角形APQ ,只需先在底面BCD 内构造直角三角形OPQ ,故选项C 正确,选项D 错误,故答案为BC .(三)填空题:5.过正方体ABCD -A 1B 1C 1D 1的顶点A 1,C 1,B 的平面与底面ABCD 所在的平面的交线为l ,则l 与A 1C 1的位置关系是________. 【答案】平行【解析】由于平面ABCD ∥平面A 1B 1C 1D 1,平面A 1B 1C 1D 1∩平面A 1C 1B =A 1C 1,平面ABCD ∩平面A 1C 1B =l ,所以l ∥A 1C 1.6.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,平面α与正方体每条棱所成的角均相等,则平面α截正方体所形成的三角形截面中,截面面积的最大值为_____________;平面α与正方体每条棱所成的角的正弦值为_____________. 【答案】32,33 【解析】如图,在正方体ABCD -A 1B 1C 1D 1中,与A 1B 1,A 1D 1, A 1A 平行的直线各有4条, ∵A 1B 1=A 1D 1=A 1A ,∴三棱锥A 1-AB 1D 1是正三棱锥,∴A 1B 1,A 1D 1,A 1A 与平面AB 1D 1所成角相等,∴与正方体的12条棱所在直线所成角均相等的一个平面α是平面A 1BD 1(或平面AB 1C 或平面ACD 1),且截面面积最大,1A由棱长为1,故AB 1=2,再由三角形AB 1D 1为正三角形,其面积为34×(2)2=32,故答案为32. 由顶点A 1到平面AB 1D 1的距离为体对角线的13,则平面α与正方体每条棱所成的角的正弦值为33a a =33.(四)解答题:7.如图所示,在正方体ABCD −A 1B 1C 1D 1中,试作出过AC 且与直线D 1B 平行的截面,并说明理由.【解答】如图,连接DB 交AC 于点O ,取D 1D 的中点M ,连接MA ,MC ,MO ,则截面MAC 即为所求作的截面.证明:∵MO 为△D 1DB 的中位线,∴D 1B ∥MO .∵D 1B ⊄平面MAC ,MO ⊂平面MAC ,∴D 1B ∥平面MAC ,则截面MAC 为过AC 且与直线D 1B 平行的截面.8.下图表示以AB =4,BC =3的矩形ABCD 为底面的长方体被一平面斜截所得的几何体,其中四边形EFGH 为截面.已知AE =5,BF =8,CG =12,1A A1A(1)截面四边形EFGH 是否为菱形?证明你的结论;(2) 求DH 的长. 【解答】(1)截面EFGH 为菱形.证明如下:∵平面ABFE ∥平面DCGH ,且平面EFGH 分别截平面ABFE 与平面DCGH 得直线EF 与直线GH ,∴EF ∥GH .同理,FG ∥EH ,∴四边形EFGH 为平行四边形.又∵EF 2=AB 2+(BF -AE )2=25,FG 2=BC 2+(CG -BF )2=25,∴EF =FG =5, ∴四边形EFGH 为菱形.(2) ∵几何体是长方体被一平面斜截所得的,∴AE +CG =BF +DH ,将AE =5,BF =8,CG =12代入得,DH 的长为9.B 组填空题:9.各面均为等边三角形的四面体ABCD 的外接球的表面积为12π,过棱AB 作球的截面,则截面面积的最小值为________. 【答案】2π【解析】根据题意,球的半径为3,面积最小的截面是以AB 为直径的截面,将四面体ABCD 放置于正方体中,可得正方体的外接球就是四面体ABCD 的外接球,设AB =a ,则△ABC 的外接圆半径为32a ×23=33a ,可求得三棱锥的高为a 2-13a 2=63a 2,则63a -32+33a 2=32,解得a =2,进而截面面积的最小值为π×22=2π.故答案为2π.10.如图,已知球O 是棱长为1的正方体ABCD -A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为________.AE【答案】π6 【解析】根据题意知,平面ACD 1是边长为2的正三角形,且球与以点D 为公共点的三个面的切点恰为三角形ACD 1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由上图得,△ACD 1内切圆的半径是22×tan30o =66, 则所求的截面圆的面积是π×(66)2=π6.故答案为66.11. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,动点P 在对角线BD 1上,过点P 作垂直于BD 1的平面γ,记这样得到的截面多边形(含三角形)的周长为y ,设BP=x ,则当x ∈[33a ,233 a ]时,函数y=f (x )的值域为________.【答案】{32a } 【解析】1AA1A如图,当x ∈[33a ,233 a ]时,截面多边形为六边形HIJKLM , 设11111B I HIA CBC λ==,则11111C I IJ B C B C λ==-,故HI+IJ=2a 为定值,从而截面多边形(含三角形)的周长为32a .12.如图,在四面体ABCD 中,AB =CD =2,AC =BD =3,AD =BC =5,E ,F 分别是AD ,BC 的中点.若用一个与直线EF 垂直,且与四面体的每个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积的最大值为________.【答案】62 【解析】将四面体补成长、宽、高分别为3,2,1的长方体,如图,∵EF ⊥α,∴截面为平行四边形MNKL ,可得KL +KN =5,G 1A ABGHDA设异面直线BC 与AD 所成的角为θ,则sin θ=sin ∠HFB =sin ∠LKN ,可得sin θ=265, S MNKL =NK ·KL sin ∠NKL ≤62(NK +KL 2)2=62,当且仅当KL =KN 时取等号,故该多边形截面面积的最大值为62.四、真题再现1. (2015全国2文 19)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由); (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 【解答】(Ⅰ)交线围成的正方形EHGF 如图:(Ⅱ)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EB 1=12,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,AH =10,HB =6. 因为长方形被平面α分成两个高为10的直棱柱,所以其体积的比值为97(79也正确).2. (2016年全国1文 11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为A .32 B .22 C .33 D .13【答案】A1A AAA 1【解析】因为过点A 的平面α与平面CB 1D 1平行,平面ABCD ∥平面A 1B 1C 1D 1,所以m ∥B 1D 1∥BD ,又A 1B ∥平面CB 1D 1,所以n ∥A 1B ,则BD 与A 1B 所成的角为所求角,所以m ,n 所成角的正弦值为32,选A .3. (2018全国1理 12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A .334B .233C .324D .32【答案】A【解析】记该正方体为ABCD -A'B'C'D',正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A'A ,A'B',A'D'与平面α所成的角都相等,如图,连接AB',AD',B'D',因为三棱锥A'-AB'D'是正三棱锥,所以A'A ,A'B',A'D'与平面AB'D'所成的角都相等,分别取C'D',B'C',BB',AB ,AD ,DD'的中点E ,F ,G ,H ,I ,J ,连接EF ,FG .GH ,IH ,IJ ,IE ,易得E ,F ,G ,H ,I ,J 六点共面,平面EFGHIJ 与平面AB'D'平行,且截正方体所得截面的面积最大,又EF =FG =GH =IH =IJ =JE =22,所以该正六边形的面积为6×34×(23)2=334,所以α截此正方体所得截面面积的最大值为334,故选A .4.(2019全国2文 16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】26,2-1.【解析】如图,依题意知,题中的半正多面体的上、下、左、右、前、后6个面都在正方体的表面上,且该半正多面体的表面由18个正方形,8个正三角形组成,故该半正多面体共有18+8=26个面,或者逐层计算得8+8+8+2=26个面.关注到该半正多面体的俯视图(或水平截面、竖直截面)的轮廓是一个正八边形,设该半正多面体的棱长为x,则x+22x+22x=1,解得x=2-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

网络课程内部讲义
几何体的表面积和体积
教师:齐智华
“在线名师”→ 资料室免费资料任你下载
11.3 几何体的表面积和体积
[基础秘诀] (问中学)
问1试建构“棱柱、棱锥、棱台表面积公式表”.
问2试建构“柱、锥、台的体积公式表”.
问3写出球的面积和体积公式.
[范例评注] (例中学)
例1如图, 已知三棱柱ABC—A1B1C1的
体积为V,则
三棱锥A1—ABC的体积为________;
四棱锥A1—BB1C1C的体积为________.
例2过球面上一点且两两垂直的三条弦长分别
为3、4、5, 则这个球的表面积为_________.
例3半径为R的半圆卷成一个圆锥, 则它的体积为___________.
例4正四棱台的上底边长为4, 下底边长为8, 17,求其侧面积和体积.
例5降水量是指水平面上单位面积的降水深度. 用上口直径为38cm, 底面直径为24cm,
深为35cm的圆台形水桶来测量降水量. 若用此桶盛得的雨水正好是桶深的1
7
, 则其
降水量是多少?(精确到1mm)
例6如图矩形ABCD, 已知AB=3, BC=4.
将矩形ABCD以对角线AC为轴旋转
一周, 求所得旋转体的表面积.
A B
C1
A1
B1 B
“在线名师”→答疑室随时随地提问互动
[检测3](做中学, 用中学)
1.轴截面为正方形的圆柱的侧面积与全面积的比是
A. 1: 2
B. 1: 3
C. 1: 4
D. 2 : 3
2.圆台上下底面面积之比为1: 9, 则圆台的中截面分圆台上下两部分的体积之比
为________.
3.已知长方体ABCD—A1B1C1D1的长、宽、高依次为5、4、3, 求从顶点A沿长
方体表面到顶点C1的最短距离.
4.如图所示, 有一轴截面为正三角形的圆锥形容器,在容器内放一个半径为r的钢球, 并
向容器内注水, 使水面恰好与钢球相切, 将球取出后, 容器内的水深是多少?
5.如图, 在多面体ABCDEF中,已知ABCD是边长为1 的正方形, 且ΔADE、ΔBCF均
为正三角形,EF∥AB, EF=2,求该多面体的体积.
6.如图, 一个圆锥形的空杯子上面放着一个半球形的冰淇淋, 如果冰淇淋融化了, 会溢
出杯子吗?
[检测3答案]
1. D
2. 7:19
3.74
4.315
5.
2
3
6.
2
1,.
3
V
V
=<
半球
圆锥
故不会溢出
4
12
6题图
A B
C
E F
5题图
4题图。

相关文档
最新文档