高二数学下期末测试题5 答案

合集下载

浙江省杭州市2023-2024学年高二下学期数学期末检测试卷(含解析)

浙江省杭州市2023-2024学年高二下学期数学期末检测试卷(含解析)

浙江省杭州市2023-2024学年高二下学期数学期末检测试卷考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( ){}{}31,1e M x x N x x =-<=<≤M N ⋂=A .B .C .D .{}23x x <≤{}24x x <<{}2e x x <≤{}1e x x <≤2.已知复数,则在复平面内对应的点位于( )i 31i z -=-z A .第一象限B .第二象限C .第三象限D .第四象限3.样本数据的中位数和平均数分别为( )27,30,28,34,35,35,43,40A .34,35B .34,34C .34.5,35D .34.5,344.已知直线与圆有公共点,则的可能取值为( )30kx y k --=22:1O x y +=k A .1B .C .D .131-2-5.在中,角的对边分别是,且,则ABC ,,A B C ,,a b c ()()2sin 2sin 2sin a A b c B c b C=+++( )cos A =A .B .C .D .12-1312236.已知正方体的棱长为为棱的中点,则四面体的体积为1111ABCD A B C D -2,P 1BB 1ACPD ( )A .2B C .D .837.已知,则( )4sin25α=-tan2πtan 4αα=⎛⎫+ ⎪⎝⎭A .4B .2C .D .2-4-8.已知双曲线的上焦点为,圆的圆心位于,且与的22:1C y x -=F A x C 上支交于两点,则的最小值为( ),BD BF DF+A.B CD21-二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知分别是定义域为的偶函数和奇函数,且,设函数()(),f x g x R ()()e xf xg x +=,则( )()()()g x G x f x =()G x A .是奇函数B .是偶函数C .在上单调递减D .在上单调递增R R 10.将函数的图象向左平移个单位长度后,所得的图象关于轴()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π3y 对称,则( )A .的图象关于直线对称B .的最小值为()f x π3x =ω12C .的最小正周期可以为D .的图象关于原点对称()f x 4π52π3f x ⎛⎫- ⎪⎝⎭11.如图,有一个棱台形的容器(上底面无盖),其四条侧棱均相1111ABCD A B C D -1111D C B A 等,底面为矩形,,容器的深度为,容器壁的厚度忽略11111111m 224AB BC A B B C====1m不计,则下列说法正确的是( )A .1AA =B .该四棱台的侧面积为(2mC .若将一个半径为的球放入该容器中,则球可以接触到容器的底面0.9m D .若一只蚂蚁从点出发沿着容器外壁爬到点A 1C 三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为 .(用数字作答)712x x ⎛⎫+ ⎪⎝⎭3x 13.已知椭圆的左、右焦点分别为为上一动点,则的取22224:1(0)3x y C a a a +=>12,,F F A C 12AF AF 值范围是.14.已知两个不同的正数满足,则的取值范围是.,a b 33(1)(1)a b a b ++=ab 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()1e 4xf x =(1)求曲线在点处的切线在轴上的截距;()y f x=()()1,1f l y (2)探究的零点个数.()f x 16.如图,在直三棱柱中,为棱上一点,111ABC A BC -12,1,AB BC AC AA M ====1CC 且.1AM BA ⊥(1)证明:平面平面;AMB ⊥1A BC (2)求二面角的大小.B AM C --17.设数列满足,且.{}n a ()122n n na n a +=+14a=(1)求的通项公式;{}n a(2)求的前项和.{}n a n n S 18.在机器学习中,精确率、召回率、卡帕系数是衡量算法性能的重要指标.科研机Q R k 构为了测试某型号扫雷机器人的检测效果,将模拟战场分为100个位点,并在部分位点部署地雷.扫雷机器人依次对每个位点进行检测,表示事件“选到的位点实际有雷”,表示事A B 件“选到的位点检测到有雷”,定义:精确率,召回率,卡帕系数()Q P A B =()R P B A =,其中.1o ee p p k p -=-()()()()()(),o e p P AB P AB p P A P B P A P B =+=+(1)若某次测试的结果如下表所示,求该扫雷机器人的精确率和召回率.Q R 实际有雷实际无雷总计检测到有雷402464检测到无雷102636总计5050100(2)对任意一次测试,证明:.()212Q R QR k Q R P AB +-=-+-(3)若,则认为机器人的检测效果良好;若,则认为检测效果一般;若0.61k <≤0.20.6k <≤,则认为检测效果差.根据卡帕系数评价(1)中机器人的检测效果.00.2k ≤≤k 19.已知抛物线的焦点为,以点为圆心作圆,该圆与轴的正、负半轴分别2:4C y x =F F x 交于点,与在第一象限的交点为.,H G C P (1)证明:直线与相切.PG C (2)若直线与的另一交点分别为,直线与直线交于点.,PH PF C ,M N MN PG T (ⅰ)证明:;4TM TN=(ⅱ)求的面积的最小值.PNT【分析】求得集合,可求{}24M x x =<<M N⋂【详解】因为,{}{}{}3124,1e M x x x x N x x =-<=<<=<≤所以.{}2e M N x x ⋂=<≤故选:C .2.B【分析】根据复数的四则运算和共轭复数的概念,以及复数的几何意义即可求解.【详解】因为,()()()()3i 1i i 342i 2i 1i 1i 1i 2z -++---====----+所以,2i z =-+故在复平面内对应的点为位于第二象限.z (2,1)-故选:B.3.D【分析】先将样本数据按从小到大进行排列,再根据样本数据的中位数、平均数概念公式进行计算即可.【详解】将样本数据按照从小到大的顺序排列可得,27,28,30,34,35,35,40,43故中位数为,343534.52+=平均数为.()12728303435354043348⨯+++++++=故选:D.4.B,求解即可.1≤【详解】由直线与圆有公共点,30kx y k --=22:1O x y +=可得圆心到直线的距离为,()0,0O 30kx y k--=1d =≤解得,所以的取值范围为.k ≤≤k ⎡⎢⎣故选:B.【分析】根据题意,利用正弦定理化简得,结合余弦定理,即可求解.222b c a bc +-=-【详解】因为,()()2sin 2sin 2sin a A b c B c b C =+++由正弦定理得,即,()()2222a b c b c b c=+++222b c a bc +-=-又由余弦定理得.2221cos 22b c a A bc +-==-故选:C.6.A【分析】设与交于点,证得平面,得到,且AC BD O AC ⊥11BDD B 113OPD V S AC =⨯中,结合,即可求解.AC =11BDD B 111111BDD B BOP B OP D P D ODD S S S S S =--- 【详解】设与交于点,在正方形中,,AC BD O ABCD AC BD ⊥又由正方体中,平面,1111ABCD A B C D -1DD ⊥ABCD 因为平面,可得,AC ⊂ABCD 1AC DD ⊥又因为且平面,所以平面,1BD DD D = 1,BD DD ⊂11BDD B AC ⊥11BDD B所以四面体的体积为,且,1ACPD 113OPD V S AC =⨯ AC =在对角面中,可得,11BDD B 111111BDD B BOP B D P OPD ODD S S S S S =-=--所以四面体的体积为.1ACPD 123V =⨯=故选:A.7.D【分析】由已知可得,利用,可求值.251tan tan 2αα+=-tan2tan 4απα⎛⎫+ ⎪⎝⎭22tan 1tan 2tan ααα=++【详解】因为,所以,2222sin cos 2tan 4sin2sin cos tan 15ααααααα===-++251tan tan 2αα+=-所以.2tan22tan 1tan tan 4ααπαα=⨯-⎛⎫+ ⎪⎝⎭221tan 2tan 2tan 41tan (1tan )1tan 2tan ααααααα-===-++++故选:D.8.B【分析】设出圆的方程与双曲线方程联立,可得,进而可得,利用两点1212,x x xx +22121x x +=间距离公式求出,并利用不等式方法求出其最小值.BF DF+【详解】由题可知.设圆,,.(F 22:()2A x a y -+=()11,B x y ()22,D x y 联立,得,则,22221()2y x x a y ⎧-=⎨-+=⎩222210x ax a -+-=212121,2a x x a x x -+==因此,故.()22212121221x x x x x x +=+-=222222121212112213y y x x x x +=+++=++=+=因为,所以,同理可得22111y x -=11BF===-.21DF =-故.)122BF DF yy +=+-又,且,故,从而22123y y +=12,1yy≥1y =≤=2y=≤=.())22121y y -≤所以)122BF DF y y +=+-2=2=2=2≥2==当时,有,,此时1a =()0,1B (D 11BF DF +=-+=所以的最小值是BF DF+故选:B.关键点睛:本题解题关键是由圆的方程与双曲线方程联立得到,再用不等式方法求22121x x +=其最小值.9.AD【分析】根据奇、偶性得到方程组求出、的解析式,从而得到的解析式,再()f x ()g x ()G x 由奇偶性的定义判断的奇偶性,利用导数判断函数的单调性.()G x 【详解】因为①,所以,()()e xf xg x +=()()e xf xg x --+-=即②,联立①②,解得,()()e xf xg x --=()()e e e e ,22x x x xf xg x --+-==所以,定义域为,又,()e e e e x x x x G x ---=+R ()()e e e e x xx xG x G x ----==-+所以是奇函数,又,()G x ()()()()()2222ee e e 40eeeexx x x xx xx G x ----+--=+'=>+所以在上单调递增,故A ,D 正确,B 、C 错误.()G x R 故选:AD10.ABD【分析】根据图象平移判断A ,根据关于直线对称可得判断B ,由周π3x =()132k k ω=+∈Z 期计算可判断C ,可先证明函数关于点对称,再由图象平移判断D.ω()f x 2π,03⎛⎫- ⎪⎝⎭【详解】对于A ,将的图象向左平移个单位长度后,关于轴对称,所以的图()f x π3y ()f x 象关于直线对称,故A 正确;π3x =对于B ,由题可知,解得,又,所以的最小()ππππ332k k ω+=+∈Z ()132k k ω=+∈Z 0ω>ω值为,故B 正确;12对于C ,若最小正周期,则,由B 项可知,不存在满足条件的,故C 错4π5T =2π52T ω==ω误;对于D ,因为,代入,得2π2ππsin 333f ω⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭()132k k ω=+∈Z ,()2πsin 2π03f k ⎛⎫-=-= ⎪⎝⎭所以的图象关于点对称,将的图象向右平移个单位长度可以得到()f x 2π,03⎛⎫- ⎪⎝⎭()f x 2π3的图象,2π3f x ⎛⎫- ⎪⎝⎭则对称中心对应平移到坐标原点,故的图象关于原点对称,故D 正确.2π,03⎛⎫-⎪⎝⎭2π3f x ⎛⎫- ⎪⎝⎭故选:ABD 11.BD【分析】由勾股定理即可判断A ,由梯形的面积公式代入计算,即可判断B ,做出轴截面图形代入计算,即可判断C ,将四棱台展开,然后代入计算,即可判断D 【详解】对于A ,由题意可得,故A错误;132AA ==对于B ,梯形11ADD A =所以梯形的面积为11ADD A 242+=梯形,11ABB A=所以梯形的面积为,11ABB A 122+=故该四棱台的侧面积为,故B正确;2⨯=对于C ,若放入容器内的球可以接触到容器的底面,则当球的半径最大时,球恰好与面、面、面均相切,11ADD A 11BCC B ABCD 过三个切点的截面如图(1)所示,由题意可知棱台的截面为等腰梯形,较长的底边上的底角的正切值为,则,12212=-tan 2MPN ∠=-由于互补,故,,MPN MON ∠∠tan 2MON ∠=则,所以,从而球的半径为22tan 21tan MOPMOP ∠=-∠tanMOP ∠=,0.9=<所以将半径为的球放入该容器中不能接触到容器的底面,故C 错误;0.9cm对于D ,将平面与平面展开至同一平面,ABCD 11DCC D 如图(2),则,1AC ==将平面与平面展开至同一平面,如图(3),ABCD 11BCC B 则,145333044AC ⎛=+=< ⎝D 正确.故选:BD难点点睛:解答本题的难点在于选项D 的判断,解答时要将空间问题转化为平面问题,将几何体侧面展开,将折线长转化为线段长,即可求解.12.672【分析】利用二项式定理,求得二项展开式中的通项,把含x 的进行幂运算合并,然后令指数等于3,即可求解.【详解】因为通项为,令,得,712x x ⎛⎫+ ⎪⎝⎭77721771C (2)2C rr r r r rr T x x x ---+⎛⎫== ⎪⎝⎭72r 3-=2r =所以的系数为.3x 72272C 672-=故672.13.1,33⎡⎤⎢⎥⎣⎦【分析】先根据椭圆、、之间的关系,求出,再根据椭圆的定义,把换成a b c 12c a=1AF ,最后根据,代入即可.22a AF -[]2,AF a c a c ∈-+【详解】设椭圆的半焦距为,则,C (0)c c >12c a==,12222221AF a AF aAF AF AF -==-因为,即,[]2,AF a c a c ∈-+213,22AF a a ⎡⎤∈⎢⎥⎣⎦所以,即.2211,33a AF ⎡⎤-∈⎢⎥⎣⎦121,33AF AF ⎡⎤∈⎢⎥⎣⎦故答案为.1,33⎡⎤⎢⎥⎣⎦14.10,4⎛⎫⎪⎝⎭【分析】本题将条件式化简后结合基本不等式得出关于ab 的不等式,再构造函数并利用函数的单调性求解即可.【详解】将两边展开,33(1)(1)a b a b ++=得到,22113333a a b b a b +++=+++从而,()()221130ab a b a b ⎛⎫-+-+-= ⎪⎝⎭故,而,()130a b a b ab ⎛⎫-++-= ⎪⎝⎭a b¹故,又,130a b ab ++-=00a b >,>故,133a b ab =++>从而.321+<设函数,则,()3223g x x x=+112gg ⎛⎫<= ⎪⎝⎭观察易得在,()g x ()0,∞+12<又,所以.0,0a b >>104ab <<故答案为.10,4⎛⎫ ⎪⎝⎭关键点点睛:本题考查函数与不等式的综合,其关键是利用均值不等式构造关于ab 的不等式,再构造函数并利用函数的单调性解决问题.321+<()3223g x x x =+15.(1)12-(2)有两个零点()f x【分析】(1)求得,,利用导数的几何意()1e 4x f x '=()e 1142f ='-()e 114f =-义,求得切线方程,进而求得其在轴上的截距;y(2)得到在上递增,结合,得到,()1e 4x f x '=()0,∞+()10,104f f ⎛⎫ ⎪⎝⎭''01,14x ⎛⎫∃∈ ⎪⎝⎭使得,进而求得单调性,结合零点的存在性定理,即可求解.()00f x '=()f x【详解】(1)解析:由函数,可得,()1e 4x f x =()1e 4x f x '=()e 1142f ='-又,所以的方程为,即,()e 114f =-l ()e 1e 11424y x ⎛⎫=--+- ⎪⎝⎭e 11422y x ⎛⎫=-- ⎪⎝⎭令,可得,所以直线在轴上的截距为.0x =12y =-l y 12-(2)解:因为和上均单调递增,1e 4x y =y =()0,∞+所以在上单调递增,()1e 4x f x '=()0,∞+又因为,所以,使得,()141111e 10,1e 04442f f ⎛⎫=-=''- ⎪⎝⎭01,14x ⎛⎫∃∈ ⎪⎝⎭()00f x '=所以,当时,,在单调递减;()00,x x ∈()0f x '<()f x ()00,x 当时,,在单调递增,()0,x x ∞∈+()0f x '>()f x ()0,x ∞+又因为,()()14100111e 1e 0,110,4e 2010041044f f f ⎛⎫=->=-=- ⎪⎝⎭所以有两个零点.()f x 方法点睛:已知函数零点(方程根)的个数,求参数的取值范围问题的三种常用方法:1、直接法,直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数的取值范围2、分离参数法,先分离参数,将问题转化成求函数值域问题加以解决;3、数形结合法,先对解析式变形,在同一平面直角坐标系中作出函数的图象,然后数形结合求解.结论拓展:与和相关的常见同构模型e xln x①,构造函数或;e ln e ln e ln a a a a b b b b ≤⇔≤()lnf x x x =()e xg x x =②,构造函数或;e e ln ln e ln a a a b b a b b <⇔<()ln x f x x =()e x g x x =③,构造函数或.e ln e ln e ln a a a a b b b b ±>±⇔±>±()lnf x x x =±()e xg x x =±16.(1)证明见解析(2)4π【分析】(1)由线面垂直得到,结合勾股定理逆定理得到,证明出1AA BC ⊥BC AC ⊥平面,得到,结合题目条件证明出平面,得到面面垂直;BC⊥11AA C C AMBC ⊥AM ⊥1A BC (2)建立空间直角坐标系,设点,根据向量垂直得到方程,求出()0,0,M a ,进而求出平面的法向量,得到二面角的余弦值,得到答案.a M ⎛=⎝【详解】(1)在直三棱柱中,平面,111ABC A B C -1AA ⊥ABC ∵平面,BC ⊂ABC ∴,1AA BC ⊥∵2,1,AB BC AC ===∴,222AB AC BC =+∴,BC AC ⊥,平面,1AC AA A⋂=1,AC AA ⊂11AA C C ∴平面.BC ⊥11AA C C 平面,AM ⊂ 11AA C C ∴,AM BC ⊥,平面,11,AM A B A B BC B ⊥= 1,A B BC ⊂1A BC ∴平面.AM ⊥1A BC 又平面,AM ⊂AMB平面平面.∴AMB ⊥1A BC (2)由(1)可知两两垂直,1,,CA CB CC 如图,以点为坐标原点,所在直线分别为轴、轴、轴建立空间直角坐标C 1,,CA CB CC x y z 系,Cxyz 则.())()10,0,0,,,0,1,0C AAB设点,()0,0,M a 则.()()()1,,0,1,0,AM a BA CB AB ==-==,解得.11,30AM BA AM BA ⊥∴⋅=-+=a M ⎛=∴ ⎝设平面的法向量为,AMB (),,m x y z =则可取.0,0,m AM z m AB y ⎧⋅==⎪⎨⎪⋅=+=⎩(m = 易知为平面的一个法向量.()0,1,0n CB ==AMCcos ,m n m n m n ⋅〈〉===⋅故由图可知二面角的大小为.B AM C --4π17.(1)()12nn a n n =+⋅(2)()21224+=-+⋅-n n S n n【分析】(1)由已知可得,累乘法可求的通项公式;()122n n n a a n ++={}n a (2)由(1)可得,利用错位相减法可求的前()1212223212nn S n n =⨯⨯+⨯⨯+++⋅ {}n a 项和.n n S 【详解】(1)由题易知,且,0n a ≠()122n n n a a n ++=所以,()2341231212324251231n n n a a a a a a a a n -+⨯⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯- 所以,()()121121212n n n n n a n n a --+⋅==+⋅⨯所以也满足该式,()112,n n a n n a =+⋅所以.()12nn a n n =+⋅(2),①()1212223212nn S n n =⨯⨯+⨯⨯+++⋅ ,②()()2121221212n n n S n n n n +=⨯⨯++-⋅++⋅ ②-①,得.()()11212212222n n n S n n n +=+⋅-⨯⨯+⨯++⋅ 设,③1212222nn T n =⨯+⨯++⋅ 则,④()23121222122n n n T n n +=⨯+⨯++-⋅+⋅ ④-③,得,()()()1121112222222122n n n n n n T n n n ++++=⋅-+++=⋅--=-+ 所以.()()()1121122124224n n n n S n n n n n +++=+⋅--⋅-=-+⋅-18.(1);.0.625=Q 0.8R =(2)证明见解析(3)0.32【分析】(1)利用条件概率的计算公式计算即可;(2)由条件概率与互斥事件的概率公式证明即可;(3)由(2)计算出的值,判断机器人的检测效果即可.k 【详解】(1),()()()400.62564P AB Q P A B P B ====.()()()400.850P AB R P B A P A ====(2),()()()()()()1111111o e oe e P AB P AB p p p k p p P A P B P A P B ----==-=-----要证明,()212Q R QR k Q R P AB +-=-+-需证明.()()()()()()()1221P AB P AB Q R QR Q R P AB P A P B P A P B --+-=+---等式右边:()()()()()()()()||2||22||2P A B P B A P A B P B A Q R QR Q R P AB P A B P B A P AB +-+-=+-+-.()()()()()()()()()()()()()22P AB P AB P AB P AB P B P A P B P A P AB P AB P AB P B P A +-⨯⨯=+-()()()()()()()22P A P B P AB P A P B P A P B +-=+-等式左边:因为,()()()()()1P A B P AB P A P B P AB ⋃=-=+-所以()()()()()()()()()()()()()121111P AB P AB P A P B P AB P A P B P A P B P A P B P A P B --+-=⎡⎤⎡⎤------⎣⎦⎣⎦.()()()()()()()22P A P B P AB P A P B P A P B +-=+-等式左右两边相等,因此成立.()212Q R QRk Q R P AB +-=-+-(3)由(2)得,因为,0.6250.820.6250.810.320.6250.820.4k +-⨯⨯=-=+-⨯0.20.320.6<<所以(1)中机器人的检测效果一般.19.(1)证明见解析(2)(ⅰ)证明见解析;(ⅱ)163【分析】(1)根据题意,表示出直线的方程,然后与抛物线方程联立,由即可证明;PG Δ0=(2)(ⅰ)根据题意,设直线的方程为,与抛物线方程联立,即可得到点的PF 1x ty =+,N H 坐标,从而得到直线的方程,再与抛物线方程联立,即可得到点的坐标,再结合相似PH M 三角形即可证明;(ⅱ)由条件可得,再由代入计算,即可43PNTPNES S =△△12PNES EP EN = 证明.【详解】(1)由题意知,()1,0F 设,则,()2,2(0)P n n n >21PF n =+所以,所以,21GF FH n ==+()2,0G n -所以直线的斜率为,方程为.PG 1n ()21y x n n =+联立方程得,()221,4,y x n n y x ⎧=+⎪⎨⎪=⎩22440y ny n-+=因为,所以直线与相切.Δ0=PG C (2)(ⅰ)设直线的方程为,PF 1x ty =+由可得,则,又因为,所以.24,1,y x x ty ⎧=⎨=+⎩2440y ty --=4P N y y =-()2,2P n n 212,N n n ⎛⎫- ⎪⎝⎭由(1)知,点,直线的斜率为,方程为,()22,0H n +PH n -()22y n x n=---由得,由,()224,2,y x y n x n ⎧=⎪⎨=---⎪⎩224480y y n n +--=248P M y y n =--得.22444,2M n n n n ⎛⎫++-- ⎪⎝⎭作,垂足为,则,直线的方程为,NE PG ⊥E EN PM ∥EN 212y n x n n ⎛⎫=---⎪⎝⎭将直线与的方程联立,得解得.EN PG ()2212,1,y n x n n y x n n ⎧⎛⎫=--- ⎪⎪⎪⎝⎭⎨⎪=+⎪⎩11,E n n ⎛⎫-- ⎪⎝⎭所以,所以,2211441,,4,4EN n PM n n n n n ⎛⎫⎛⎫=+--=+-- ⎪ ⎪⎝⎭⎝⎭ 4PM EN =由相似三角形的性质可得.4TM TN=(ⅱ)由(ⅰ)知,所以,故,4TM TN=4TP TE=43PNT PNES S =△△因为,221111,,1,EP n n EN n n n n ⎛⎫⎛⎫=++=+-- ⎪ ⎪⎝⎭⎝⎭ 所以(当且仅当时等号成立),()323311114222PNEn S EP EN n n n +⎛⎫===+≥ ⎪⎝⎭ 1n =故,即的面积的最小值为.41633PNT PNES S =≥△△PNT 163方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;()()1122,,,x y x y (2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,必要时计算;x y ∆(3)列出韦达定理;(4)将所求问题或题中的关系转化为、(或、)的形式;12x x +12x x 12y y +12y y (5)代入韦达定理求解.。

2021-2022学年高二下学期期末考试数学试题含答案

2021-2022学年高二下学期期末考试数学试题含答案

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.78915⨯⨯⨯⋅⋅⋅⨯可表示为( ) A .915AB .815AC .915CD .815C2.从1~7这七个数字中选3个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .210B .120C .90D .453.()91x -的展开式的第6项的系数为( ) A .69CB .69C -C .59CD .59C -4.日常生活中的饮用水是经过净化的,随着水的纯净度的提高,所需净化费用不断增加.已知将1t 水净化到纯净度为x %时所需费用(单位:元)为()()528480100100c x x x=<<-,则净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的( ) A .30倍B .25倍C .20倍D .15倍5.根据分类变量X 与Y 的成对样本数据,计算得到26.147χ=.根据小概率值0.01α=的独立性检验(0.016.635x =),结论为( )A .变量X 与Y 不独立B .变量X 与Y 不独立,这个结论犯错误的概率不超过0.01 C .变量X 与Y 独立 D .变量X 与Y 独立,这个结论犯错误的概率不超过0.016.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X ,则()E X =( )A .2B .1C .43D .237.某人在11次射击中击中目标的次数为X ,若()~11,0.8X B ,若()P X k =最大,则k=( ) A .7 B .8C .9D .108.已知函数()()1e x f x x =+,过点M (1,t )可作3条与曲线()y f x =相切的直线,则实数t 的取值范围是( ) A .24,0e ⎛⎫-⎪⎝⎭B .242,e e ⎛⎫-⎪⎝⎭ C .36,2e e ⎛⎫-⎪⎝⎭D .36,0e ⎛⎫-⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.对经验回归方程,下列正确的有( ) A .决定系数2R 越小,模型的拟合效果越好 B .经验回归方程只适用于所研究的样本的总体C .不能期望经验回归方程得到的预报值就是响应变量的精确值D .残差平方和越小,模型的拟合效果越好10.甲、乙两地举行数学联考,统计发现:甲地学生的成绩()()2111~,0X N μσσ>,乙地学生的成绩()()2222~,0Y N μσσ>.下图分别是其正态分布的密度曲线,则( )A .甲地数学的平均成绩比乙地的低B .甲地数学成绩的离散程度比乙地的小C .()()90948290PX P X ≤<>≤< D .若28σ=,则()921240.84P Y ≤<≈(附:若随机变量()()2~,0X N μσσ>,则()0.6827P X μσμσ-<≤+≈,()220.9545P X μσμσ-<≤+≈,()330.9973P X μσμσ-<≤+≈)11.下列命题正确的有( )A .现有1、3、7、13四个数,从中任取两个相加得到m 个不相等的和;从中任取两个相减得到n 个不相等的差,则m +n =18B .在()()()567111x x x +++++的展开式中,含3x 的项的系数为65 C .若(5122a b =-(a ,b 为有理数),则b =-29D .02420202022202020222022202220222022C C C C C 2+++⋅⋅⋅++= 12.已知函数()()()ln 2f x x x ax a a =-+∈R 有两个极值点1x ,()212x x x <,则( )A .104a <<B .122x x +>C .()112f x >D .()20f x >三、填空题:本题共4小题,每小题5分,共20分. 13.已知函数()3f x x =,则曲线()y f x =在点(1,1)处的切线的方程为______.14.将4名博士分配到3个不同的实验室,每名博士只分配到一个实验室,每个实验室至少分配一名博士,则不同的分配方案有______种.15.某小微企业制造并出售球形瓶装的某种饮料,瓶子的制造成本是21.6r π分,其中r (单位:cm )是瓶子的半径,已知每出售1mL 的饮料,可获利0.4分,且能制作的瓶子的最大半径为6cm ,当每瓶饮料的利润最大时,瓶子的半径为______cm . 16.已知离散型随机变量X 的取值为有限个,()72E X =,()3512D X =,则()2E X =______. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取一件. (Ⅰ)求这件产品是次品的概率;(Ⅱ)已知取到的是次品,求它取自第一批产品的概率. 18.(本小题满分12分)若()*,0,na x a a n x ⎛⎫-∈≠∈ ⎪⎝⎭R N 的展开式中只有第4项的二项式系数最大,且展开式中的常数项为-20. (Ⅰ)求n ,a 的值; (Ⅱ)若()()()()220212022202220212020012202120221111a x a x x a x x a x x a x a +-+-+⋅⋅⋅+-+-=,求1232022a a a a +++⋅⋅⋅+.19.(本小题满分12分)某校组织数学知识竞赛活动,比赛共4道必答题,答对一题得4分,答错一题扣2分.学生甲参加了这次活动,假设每道题甲能答对的概率都是34,且各题答对与否互不影响.设甲答对的题数为Y ,甲做完4道题后的总得分为X . (Ⅰ)试建立X 关于Y 的函数关系式,并求()0P X <;(Ⅱ)求X 的分布列及()E X .20.(本小题满分12分) 已知函数()e ln x m f x x +=-.(Ⅰ)若()f x 在[)1,+∞上单调递增,求实数m 的取值范围;(Ⅱ)求证:2m ≥-时,()0f x >.21.(本小题满分12分)某公司对其产品研发的年投资额x (单位:百万元)与其年销售量y (单位:千件)的数据进行统计,整理后得到如下统计表:(Ⅰ)求变量x 和y 的样本相关系数r (精确到0.01),并推断变量x 和y 的线性相关程度(参考:若0.75r ≥,则线性相关程度很强;若0.300.75r ≤<,则线性相关程度一般;如果0.25r ≤,则线性相关程度较弱);(Ⅱ)求年销售量y 关于年投资额x 的线性回归方程;(Ⅲ)当公司对其产品研发的年投资额为600万元时,估计产品的年销售量. 参考公式:对于变量x 和变量y ,设经过随机抽样获得的成对样本数据为()11,x y ,()22,x y ,…,(),n n x y ,其中1x ,2x ,…,n x 和1y ,2y ,…,n y 的均值分别为x 和y .称()()niix x y y r --=∑x 和y 的样本相关系数.线性回归方程ˆˆˆybxa =+中,()()()121ˆniii n i i x x yy b x x ==--=-∑∑,ˆˆay bx=-. 7.14≈.22.(本小题满分12分) 已知函数()()()sin ln 1f x a x x a =-+∈R 在区间(-1,0)内存在极值点.(Ⅰ)求a 的取值范围; (Ⅱ)判断关于x 的方程()0f x =在()1,π-内实数解的个数,并说明理由.参考答案一、单项选择题(每小题5分,共40分)1.A 2.C 3.D 4.B 5.C 6.A 7.C 8.D 二、多项选择题(每小题5分,共20分) 9.BCD10.AD11.BC12.BD三、填空题(每小题5分,共20分)13.y =3x -2 14.36 15.6 16.916四、解答题(共70分) 17.(本小题满分10分)解:设事件B 为“取到的产品是次品”,()1,2A i =为“取到的产品来自第i 批”.(Ⅰ)由全概率公式,所求概率为()()()()()1122||P B P A P B A P A P B A =+40%5%60%4%0.044=⨯+⨯=.(Ⅱ)所求概率为()()()()()()1111||P BA P A P B A P A B P B P B ==40%5%50.04411⨯==.18.(本小题满分12分) (Ⅰ)解:由题意,n =6. 展开式的通项()662166C C kk kkkk k a T x a x x --+⎛⎫=-=- ⎪⎝⎭,k =0,1,…,6. 令6-2k =0,得k =3.由题意,得()336C 20a -=-,即32020a -=-.解得a =1.(Ⅱ)解法1:()202211x x ⎡⎤=+-⎣⎦()()()()2202120220202212021220202021202220222022202220222022C C 1C 1C 1C 1x x x x x x x x =+-+-+⋅⋅⋅+-+-又()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,所以202201220212022202220222022202220222022C C C C C 2ii a==+++++=∑. 解法2:由(Ⅰ),知()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=.令12x =,得2022202120202202201220221111111111222222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯-+⨯-+⋅⋅⋅+-= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,即20222022202220220122022111112222a a a a ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.上式两边同乘以20222,得202220222i i a ==∑.由()()()2202220222021202001220221111a x a x x a x x a x +-+-+⋅⋅⋅+-=,令1x =,得01a =.所以2022202220220121i ii i a a a===-=-∑∑.19.(本小题满分12分)(Ⅰ)由题意,X =4Y -2(4-Y )=6Y -8. 由X =6Y -8<0,得43Y <.所以Y =0,1. 所以()()()431413113001C 444256P X P Y P Y ⎛⎫⎛⎫<==+==+⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)由题意,知3~4,4Y B ⎛⎫ ⎪⎝⎭. X 与Y 的对应值表为:于是,()()4318014256P X P Y ⎛⎫=-===-= ⎪⎝⎭;()()31433321C 14464P X P Y ⎛⎫=-===⨯-⨯=⎪⎝⎭; ()()2224332742C 144128P X P Y ⎛⎫⎛⎫====⨯-⨯= ⎪ ⎪⎝⎭⎝⎭; ()()3343327103C 14464P X P Y ⎛⎫⎛⎫====⨯-⨯=⎪ ⎪⎝⎭⎝⎭; ()()43811644256P X P Y ⎛⎫===== ⎪⎝⎭. 法1:()()()132727818241016102566412864256E X =-⨯+-⨯+⨯+⨯+⨯=.法2:()()()36868648104E X E Y E Y ⎛⎫=-=-=⨯⨯-= ⎪⎝⎭.20.(本小题满分12分) (Ⅰ)因为()f x 在[)1,+∞单调递增,所以()1e 0x m f x x +'=-≥在[)1,+∞恒成立,即1ln x m x+≥. 所以1ln ln m x x x x≥-=--. 令()ln gx x x =--,显然()g x 在[)1,+∞上单调递减,所以()g x 在[)1,+∞上的最大值为()()max 11g x g ==-.因此,1m ≥-. (Ⅱ)当2m ≥-时,()2e ln e ln x m x f x x x +-=-≥-.只需证明2e ln 0x x -->.证法1:令()2e ln x gx x -=-,则函数()g x 的定义域为()0,+∞.()21e x g x x -'=-.因为2e x y -=是增函数,1y x=-在()0,+∞上单调递增, 所以()21e x g x x -'=-在()0,+∞上单调递增.又因为()101e e 0g -'=-<,()e 211e e 10e eg -'=->->,由零点存在性定理,存在唯一的()01,e x ∈,使得()02001e 0x g x x-'=-=.当()00,x x ∈时,()()00g x g x ''<=,()g x 单调递减;当()0,x x ∈+∞时,()()00g x g x ''>=,()g x 单调递增. 所以,()()0200min e ln x gx g x x -==-.由()02001e 0x g x x -'=-=,得0201e x x -=,002ln x x -=-. 于是()()00min01220g x g x x x ==+->=. 所以,()2e ln 0x gx x -=->.证法2:要证2e ln 0x x -->,即证2e ln x x x x -->-.设()21e x h x x -=-,则()21e1x h x -='-.()210e 12x h x x ->⇔>⇔>';()102h x x '<⇔<,所以()1h x 在(0,2)上单调递减,在()2,+∞上单调递增. 所以()()11min 21h x h ==-.设()2ln h x x x =-,则()2111x h x xx-'=-=.()2001h x x '>⇔<<;()201h x x '<⇔>,所以()2h x 在(0,1)上单调递增,在()1,+∞上单调递减. 所以()()22max 11h x h ==-.可见,()()12h x h x >.所以原结论成立.证法3:要证明2e ln 0x x -->,而()2e121x x x -≥+-=-,当且仅当2x =时取等号;1ln x x -≥,当且仅当1x =时取等号.所以2e ln x x ->,即2e ln 0x x -->.注:证明2e 1x x -≥-,1ln x x -≥各得3分,给出取等的条件各得1分. 21.(本小题满分12分)解:(Ⅰ)由题意,3x =,6y =,52155ii x==∑,51123i i i x y ==∑,521307.5i i y ==∑.()()nniii i x x y y x y nxyr ---==∑∑=0.92=≈.因为0.75r ≥,所以变量x 和y 的线性相关程度很强.(Ⅱ)()()()1122211ˆnniii ii i nniii i x x yy x ynxybx x xnx ====---==--∑∑∑∑21235363.35553-⨯⨯==-⨯. ˆ6 3.33 3.9a=-⨯=-. 所以年销售量y 关于年投资额x 的线性回归方程为ˆ 3.3 3.9y x =-. (Ⅲ)当x =6时,由(Ⅱ),ˆ 3.36 3.915.9y =⨯-=.所以研发的年投资额为600万元时,产品的年销售量约为15.9千件. 22.(本小题满分12分) (Ⅰ)解:()()1cos 101f x a x x x'=--<<+. ①当1a ≤时,因为0cos 1x <<,所以()11011x f x x x'<-=<++. 所以()f x 在(-1,0)上单调递减,所以()f x 在(-1,0)上无极值点.故1a ≤不符合题意.②当a >1时,因为cos y a x =在(-1,0)上单调递增,11y x=-+在(-1,0)上单调递增, 所以()f x '在(-1,0)上单调递增.又()111,0a -∈-,111cos 10f a a a a ⎛⎫⎛⎫'-=--< ⎪ ⎪⎝⎭⎝⎭,()010f a '=->, 所以存在唯一的111,0x a ⎛⎫∈- ⎪⎝⎭,使得()10f x '=.当()11,x x ∈-时,()0f x '<,()f x 单调递减;当()1,0x x ∈时,()0f x '>,()f x 单调递增.所以()f x 在(-1,0)内存在极小值点1x .满足题意.综上,a 的取值范围是()1,+∞.(Ⅱ)当02x π<<时,()()2sin 11x f x a x ''=-++单调递减.又()010f ''=>,()24022f a ππ⎛⎫''=--< ⎪⎝⎭+,所以存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,使得()00f x ''=.当00x x <<时,()0f x ''>,()f x '单调递增;当02x x π<<时,()0f x ''<,()f x '单调递减,又()()0010f x f a ''>=->,2022f ππ⎛⎫'=-< ⎪+⎝⎭,所以存在唯一的0,2x πα⎛⎫∈ ⎪⎝⎭,使得()0f α'=.当()0,x α∈时,()0f x '>;当,2x πα⎛⎫∈ ⎪⎝⎭时,()0f x '<.又当2x ππ≤<时,()0f x '<恒成立,。

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末数学试卷(含答案)

2023-2024学年重庆市高二(下)期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知f′(x)是函数f(x)的导函数,则满足f′(x)=f(x)的函数f(x)是( )A. f(x)=x 2B. f(x)=e xC. f(x)=lnxD. f(x)=tanx2.如图是学校高二1、2班本期中期考试数学成绩优秀率的等高堆积条形图,如果再从两个班中各随机抽6名学生的中期考试数学成绩统计,那么( )A. 两个班6名学生的数学成绩优秀率可能相等B. 1班6名学生的数学成绩优秀率一定高于2班C. 2班6名学生中数学成绩不优秀的一定多于优秀的D. “两班学生的数学成绩优秀率存在差异”判断一定正确3.对于函数f(x)=x 3+bx 2+cx +d ,若系数b ,c ,d 可以发生改变,则改变后对函数f(x)的单调性没有影响的是( )A. bB. cC. dD. b ,c4.某地根据以往数据,得到当地16岁男性的身高ycm 与其父亲身高xcm 的经验回归方程为y =1417x +29,当地人小王16岁时身高167cm ,他父亲身高170cm ,则小王身高的残差为( )A. −3cmB. −2cmC. 2cmD. 3cm5.若函数f(x)=(x 2+bx +1)e x ,在x =−1时有极大值6e −1,则f(x)的极小值为( )A. 0B. −e −3C. −eD. −2e 36.甲、乙、丙、丁、戊五个人站成一排照相,若甲不站最中间的位置,则不同的排列方式有( )A. 48种B. 96种C. 108种D. 120种7.若王阿姨手工制作的工艺品每一件售出后可以获得纯利润4元,她每天能够售出的工艺品(单位:件)均值为50,方差为1.44,则王阿姨每天能够获得纯利润的标准差为( )A. 1.2B. 2.4C. 2.88D. 4.88.若样本空间Ω中的事件A 1,A 2,A 3满足P(A 1)=P(A 1|A 3)=14,P(A 2)=23,P(−A 2|A 3)=25,P(−A 2|−A 3)=16,则P(A 1−A 3)=( )A. 114B. 17C. 27D. 528二、多选题:本题共3小题,共18分。

2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷(含答案)

2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷(含答案)

2023-2024学年吉林省长春市部分校高二下学期期末测试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设x ∈R ,则“1<x <2”是“|x−2|<1”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知集合A ={x|log 2x ≥1},B ={x|1<x <3},则A ∪B =( )A. [2,3)B. (1,+∞)C. [2,+∞)D. (0,+∞)3.命题“∃x ∈R,−x 2+ax−1>0”是假命题,则实数a 的取值范围是( ).A. (−∞,2]B. (−2,2)C. [−2,2]D. [2,+∞)4.已知函数f(x)=2e x ,则lim Δx→0f(1+Δx)−f(1)−3Δx =( )A. −2e3B. −2eC. 2e −3D. 2e5.曲线f(x)=3x 3−1x 在点(1,f(1))处的切线的方程为( )A. 10x +y−8=0B. 10x−y−8=0C. 8x−y−6=0D. 8x +y−6=06.若a =30.5,b =log 0.53,c =0.32,则a ,b ,c 的大小关系为( )A. b <a <cB. c <b <aC. c <a <bD. b <c <a7.定义在R 上的奇函数f (x ),满足f (x +3)=f (1−x ),x ∈[0,2]时,f (x )=me x −1,则f (31)=( )A. e +1B. e−1C. 1−eD. −e8.已知函数y =f (x )是定义在R 上的奇函数,f ′(x)是f (x )的导函数,且当x ∈(−∞,0)时,xf′(x )<2f (x ),f(−1)=0,则不等式f (x 2)>0的解集为( )A. (−∞,−1)∪(0,1) B. (−1,a )∪(0,1)C. (−1,0)∪(1,+∞)D. (−∞,−1)∪(1,+∞)二、多选题:本题共3小题,共15分。

高二下学期期末数学考试试卷含答案(共5套)

高二下学期期末数学考试试卷含答案(共5套)

i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。

2022-2023学年山东省枣庄市高二(下)期末数学试卷【答案版】

2022-2023学年山东省枣庄市高二(下)期末数学试卷【答案版】

2022-2023学年山东省枣庄市高二(下)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个质点运动的位移s (单位:米)与时间t (单位:秒)的关系可用s (t )=3﹣2t +t 2表示,那么质点在t =2秒时的瞬时速度是( ) A .2米/秒B .3米/秒C .4米/秒D .5米/秒2.下列求导运算正确的是( ) A .(1x )′=1x 2 B .(√x)′=12√xC .(x e x )′=x−1e xD .(cos x )′=sin x3.在对一组成对样本数据(x i ,y i )(i =1,2,3,⋯,n )进行分析时,从已知数据了解到预报变量y 随着解释变量x 的增大而减小,且大致趋于一个确定的值.则下列拟合函数中符合条件的是( ) A .y =kx +b (k >0) B .y =﹣klnx +b (k >0) C .y =−k √x +b(k >0)D .y =ke ﹣x +b (k >0)4.某品牌饮料正在进行有奖促销活动,一盒5瓶装的饮料中有2瓶有奖,消费者从中随机取出2瓶,记X 为其中有奖的瓶数,则E (5X +1)为( ) A .4B .5C .6D .75.在(1﹣x )5+(1﹣x )6+⋯+(1﹣x )10的展开式中,含x 2的项的系数为( ) A .165B .﹣165C .155D .﹣1556.现将甲、乙、丙、丁4位老师安排到A ,B ,C 三所学校工作,要求每所学校都有人去,每人只能去一所学校,则甲、乙两人至少有1人到A 学校工作的分配方案数为( ) A .12B .22C .24D .267.已知事件A ,B 满足P(A)=35,P(B|A)=23,P(B|A)=14,则P (B )=( ) A .12B .35C .710D .458.已知a =79,b =0.7e 0.1,c =cos 23,则( ) A .a >b >cB .b >a >cC .c >b >aD .c >a >b二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列等式成立的是( )A .A n m =n!m!B .C n m=m+1n+1C n+1m+1C .A n+1n+1−A n n =n 2A n−1n−1D .C n 1+C n 2+⋯+C n n=2n10.下列结论正确的是( )A .经验回归直线y =b x +a 恒过样本点的中心(x ,y),且在经验回归直线上的样本点越多,拟合效果越好B .在一个2×2列联表中,由计算得χ2的值,那么χ2的值越大,判断两个变量间有关联的把握就越大C .若散点图中所有点都在直线y =﹣x +1上,则相关系数r =1D .根据分类变量x 与y 的成对样本数据,计算得χ2=2.974.依据α=0.05的独立性检验P (χ2≥3.841=0.05),则变量x 与y 独立11.随机变量X ~N (30,62),Y ~N (34,22),则下列命题中正确的是( ) A .若P (X ≤27)=a ,则P (30≤X <33)=0.5﹣aB .随机变量X 的密度曲线比随机变量Y 的密度曲线更“瘦高”C .P (X ≤34)>P (Y ≤34)D .P (X ≤24)<P (Y ≤30)12.已知函数f(x)=x 2e x +e x−4−ax 有四个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则( ) A .x 1+x 2>2B .2e2<a <1e+1e 3C .ln (x 1x 2x 3x 4)﹣(x 1+x 2+x 3+x 4)=﹣8D .若x 2=2−√3,则x 4=2+√3三、填空题:本题共4小题,每小题5分,共20分.13.拟从5名班干部中选若干人在周一至周五期间值班(每天只需1人值班),要求同一名班干部不连续值班2天,则可能的安排方法有 种.(用数字作答) 14.已知变量x 和y 的统计数据如下表:若由表中数据得到经验回归直线方程为y =−3.2x +a ,则x =9时的残差为 .15.数学家波利亚说:“为了得到一个方程,我们必须把同一个量以两种不同的方法表示出来,即将一个量算两次,从而建立相等关系”这就是算两次原理,又称为富比尼原理.由等式(1+x )m (1+x )n=(1+x )m +n利用算两次原理可得C m 0C n k +C m 1C n k−1+C m 2C n k−2+⋯⋯+C m k C n 0= .16.已知定义在R 上的函数f (x )的导函数为f ′(x ),且满足f ′(x )﹣f (x )<0,f (2)=e ,则不等式f (x )>e x﹣1的解集是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)现有来自三个班级的考生报名表(一人一表),分装3袋.第一袋有6名男生和4名女生的报名表,第二袋有7名男生和3名女生的报名表,第三袋有5名男生和5名女生的报名表.随机选择一袋,然后从中随机抽取2份,求恰好抽到男生和女生的报名表各1份的概率.18.(12分)某中学为调查本校学生“保护动物意识的强弱与性别是否有关”,采用简单随机抽样的方法,从该校分别抽取了男生和女生各50名作为样本,经统计,得到了如图所示的等高堆积条形图: (1)根据已知条件,将如表2×2列联表补充完整:(2)根据(1)表中数据,依据小概率值α=0.005的独立性检验,分析该校学生保护动物意识的强弱与性别是否有关.附:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n =a +b +c +d .19.(12分)已知f(x)=(2x −1x )n (n ∈N ∗)的展开式中第5项与第3项的二项式系数相等. (1)求n 及展开式中各项系数的和; (2)求(1+1x 4)f(x)的常数项.20.(12分)已知函数f(x)=13x3−4x+4.(1)求曲线y=f(x)在点(3,1)处的切线方程;(2)若f(x)在区间(a,a+5)上既有最大值又有最小值,求a的取值范围.21.(12分)某学习平台中“挑战答题”积分规则如下:选手每天可参加一局“挑战答题”活动.每局中选手需依次回答若干问题,当累计回答正确3道题时,答题活动停止,选手获得10个积分;或者当累计回答错误2道题时,答题活动停止,选手获得8个积分.假定选手甲正确回答每一道题的概率均为p (0<p<1).(1)甲完成一局“挑战答题”活动时回答的题数记为X,求X的分布列;(2)若p=23,记Y为“甲连续9天参加‘挑战答题’活动获得的积分”,求E(Y).22.(12分)已知函数f(x)=lnx+ax−1x ,g(x)=xlnx+(a−1)x+1x.(1)讨论函数f(x)的单调性;(2)记f(x)的零点为x0,g(x)的极小值点为x1,当a∈(1,4)时,判断x0与x1的大小关系,并说明理由.2022-2023学年山东省枣庄市高二(下)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一个质点运动的位移s(单位:米)与时间t(单位:秒)的关系可用s(t)=3﹣2t+t2表示,那么质点在t=2秒时的瞬时速度是()A.2米/秒B.3米/秒C.4米/秒D.5米/秒解:因为函数s(t)=3﹣2t+t2,所以s′(t)=﹣2+2t,当t=2时,s′(2)=﹣2+2×2=2,故物体在t=2秒时的瞬时速度为2米/秒.故选:A.2.下列求导运算正确的是()A.(1x )′=1x2B.(√x)′=12√xC.(xe x )′=x−1e xD.(cos x)′=sin x解:对于A,(1x)′=(x−1)′=−x−2=−1x2,A错误;对于B,(√x)′=(x 12)′=12x−12=12√x,B正确;对于C,(xe x)′=e x−xe xe2x=1−xe x,C错误;对于D,(cos x)′=﹣sin x,D错误.故选:B.3.在对一组成对样本数据(x i,y i)(i=1,2,3,⋯,n)进行分析时,从已知数据了解到预报变量y随着解释变量x的增大而减小,且大致趋于一个确定的值.则下列拟合函数中符合条件的是()A.y=kx+b(k>0)B.y=﹣klnx+b(k>0)C.y=−k√x+b(k>0)D.y=ke﹣x+b(k>0)解:当k>0时,函数y=kx+b为增函数,k>0时,函数y=﹣klnx+b、y=−k√x+b、y=ke﹣x+b均为减函数,且当x→+∞,y=﹣klnx+b→﹣∞,y=﹣k√x+b→﹣∞,y=ke﹣x+b→b,故选:D.4.某品牌饮料正在进行有奖促销活动,一盒5瓶装的饮料中有2瓶有奖,消费者从中随机取出2瓶,记X 为其中有奖的瓶数,则E(5X+1)为()A .4B .5C .6D .7解:依题意,X 的可能值为0,1,2,则P(X =0)=C 32C 52=310,P(X =1)=C 31C 21C 52=35,P(X =2)=C 22C 52=110, 因此E(X)=0×310+1×35+2×110=45, 所以E (5X +1)=5E (X )+1=5. 故选:B .5.在(1﹣x )5+(1﹣x )6+⋯+(1﹣x )10的展开式中,含x 2的项的系数为( ) A .165B .﹣165C .155D .﹣155解:(1﹣x )5+(1﹣x )6+⋯+(1﹣x )10的展开式中含x 2的项的系数为:C 52+C 62+C 72+C 82+C 92+C 102=C 53+C 52+C 62+C 72+C 82+C 92+C 102−C 53 =C 63+C 62+C 72+C 82+C 92+C 102−10=C 73+C 72+C 82+C 92+C 102−10=C 83+C 82+C 92+C 102−10=C 93+C 92+C 102−10=C 103+C 102−10=C 113−10=165−10=155.故选:C .6.现将甲、乙、丙、丁4位老师安排到A ,B ,C 三所学校工作,要求每所学校都有人去,每人只能去一所学校,则甲、乙两人至少有1人到A 学校工作的分配方案数为( ) A .12B .22C .24D .26解:若甲乙两人中的1人到A 学校工作,有C 21种选择,其余3人到另外两个地方工作,先将3人分为两组,再进行排列,有C 32A 22安排种数, 故有C 21C 32A 22=12种;若甲乙两人中的1人到A 学校工作,有C 21种选择, 丙丁中一人也到A 学校工作,有C 21种选择,其余2人到另外两个地方工作,有A 22种选择,故安排种数有C 21C 21A 22=8种;若安排甲乙2人都到A 学校工作,其余丙丁2人到另外两个地方工作,安排种数有A 22=2种, 故总共有12+8+2=22种. 故选:B .7.已知事件A ,B 满足P(A)=35,P(B|A)=23,P(B|A)=14,则P (B )=( ) A .12B .35C .710D .45解:由题意可得:P(A)=1−P(A)=25,P(B|A)=1−P(B|A)=34,所以P(B)=P(B|A)P(A)+P(B|A)P(A)=23×35+34×25=710. 故选:C .8.已知a =79,b =0.7e 0.1,c =cos 23,则( ) A .a >b >cB .b >a >cC .c >b >aD .c >a >b解:∵a =79,b =0.7e 0.1, ∴lnb −lna =0.1+ln0.7−ln 79=110+ln 910=1−910+ln 910, 令f (x )=1﹣x +lnx ,则f ′(x)=−1+1x =1−xx ,当0<x <1时,f ′(x )>0,即f (x )在(0,1)上单调递增, ∴lnb −lna =f(910)<f(1)=0, ∴b <a ;c =cos 23=1−2sin 213,由0<sin 13<13, ∴c =cos 23=1−2sin 213>1−29=79, ∴c >a >b . 故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列等式成立的是( ) A .A n m =n!m!B .C n m=m+1n+1C n+1m+1 C .A n+1n+1−A n n =n 2A n−1n−1D .C n 1+C n 2+⋯+C n n =2n解:对于A ,A n m =n!(n−m)!,故A 错误;对于B ,C n m =n!m!(n−m)!,m+1n+1C n+1m+1=m+1n+1×(n+1)!(n−m)!(m+1)!=n!m!(n−m)!,所以C n m=m+1n+1C n+1m+1,故B 正确;对于C ,A n+1n+1−A n n =(n +1)!−n!=n!(n +1−1)=n ⋅n!,n 2A n−1n−1=n 2(n −1)!=n ⋅n!, 所以A n+1n+1−A n n =n 2A n−1n−1,故C 正确;对于D ,当n =2时,C 21+C 22=3≠22,则C n 1+C n 2+⋯+C n n =2n 不成立,故D 错误.故选:BC .10.下列结论正确的是( )A .经验回归直线y =b x +a 恒过样本点的中心(x ,y),且在经验回归直线上的样本点越多,拟合效果越好B .在一个2×2列联表中,由计算得χ2的值,那么χ2的值越大,判断两个变量间有关联的把握就越大C .若散点图中所有点都在直线y =﹣x +1上,则相关系数r =1D .根据分类变量x 与y 的成对样本数据,计算得χ2=2.974.依据α=0.05的独立性检验P (χ2≥3.841=0.05),则变量x 与y 独立解:经验回归直线y =b x +a 恒过样本点的中心(x ,y),拟合效果与样本点在经验回归直线上的多少无关,故A 错误;在一个2×2列联表中,由计算得χ2的值,那么χ2的值越大,判断两个变量有关系的犯错概率越小,判断两个变量间有关联的把握就越大,故B 正确;若散点图中所有点都在直线y =﹣x +1上,则相关系数r =1,故C 正确;根据分类变量x 与y 的成对样本数据,计算得χ2=2.974.依据α=0.05的独立性检验P (χ2≥3.841=0.05),∵χ2=2.974<3.841,∴依据小概率值α=0.05的独立性检验,变量x 与y 独立,故D 正确. 故选:BCD .11.随机变量X ~N (30,62),Y ~N (34,22),则下列命题中正确的是( ) A .若P (X ≤27)=a ,则P (30≤X <33)=0.5﹣aB .随机变量X 的密度曲线比随机变量Y 的密度曲线更“瘦高”C .P (X ≤34)>P (Y ≤34)D .P (X ≤24)<P (Y ≤30)解:随机变量X ~N (30,62),Y ~N (34,22),对于A ,当P (X ≤27)=a 时,P (30≤X <33)=P (27<X ≤30)=P (X ≤30)﹣P (X ≤27)=0.5﹣a ,A 正确;对于B ,由于6<2,则随机变量X 的密度曲线比随机变量Y 的密度曲线更“矮胖”,B 错误; 对于C ,P (X ≤34)=P (X ≤30)+P (30<X ≤34)>P (X ≤30)=0.5=P (Y ≤34),C 正确; 对于D ,P (X ≤24)=0.5﹣P (30﹣6<X ≤30),P (Y ≤30)=0.5﹣P (34﹣2×2<Y ≤34), 而P (30﹣6<X ≤30)<P (34﹣2×2<Y ≤34),因此P (X ≤24)>P (Y ≤30),D 错误. 故选:AC .12.已知函数f(x)=x 2e x +e x−4−ax 有四个零点x 1,x 2,x 3,x 4(x 1<x 2<x 3<x 4),则( )A .x 1+x 2>2B .2e2<a <1e+1e 3C .ln (x 1x 2x 3x 4)﹣(x 1+x 2+x 3+x 4)=﹣8D .若x 2=2−√3,则x 4=2+√3 解:由题意知x 2e x+ex−4−ax =0有四个不同的根,显然x ≠0,则xe x+e x e 4x−a =0,令t =xe x ,则t +1e 4t−a =0,即e 4t 2﹣e 4at +1=0, 另外y =x e x ,y ′=1−xex , 当x <1时,y ′=1−xe x >0;当x >1时,y ′=1−xe x <0; 故y =xe x在区间(﹣∞,1)上单调递增,在区间(1,+∞)上单调递减, 当x <0时,y =x e x <0,当x →+∞时,y =x e x →0,则y =x ex 的大致图像如图所示:根据题意知e 4t 2﹣e 4at +1=0存在两根t 1,t 2,不妨设t 1<t 2, 则满足0<t 1<t 2<1e,t 1t 2=1e 4,即有t 1=x 1e x 1=x 4e x 4,t 2=x 2e x 2=x 3e x 3, 则由图象可知0<x 1<x 2<1,所以x 1+x 2<2,故A 错误; 由于方程e 4t 2﹣e 4at +1=0的两根t 1,t 2满足0<t 1<t 2<1e,所以{ Δ=(−e 4a)2−4×e 4×1>00<a 2<1e e 4×(1e )2−e 4a ×1e+1>0,解得2e 2<a <1e +1e 3,故B 正确;由t 1=x 1e x 1=x 4e x 4,t 2=x 2e x 2=x 3e x 3,得x 1e x 1⋅x 2e x 2⋅x 3e x 3⋅x 4e x 4=(t 1t 2)2=1e 8, 两边取自然对数得ln(x 1x 2x 3x 4)−(x 1+x 2+x 3+x 4)=−lne 8=−8,故C 正确; 由t 1t 2=x 2e x 2⋅x 4e x 4=x 2x 4e x 2+x 4=1e 4,两边取自然底数得lnx 2+lnx 4=x 2+x 4﹣4, 若x 2=2−√3,则ln(2−√3)+lnx 4=(2−√3)+x 4−4, 所以lnx 4−x 4=−ln(2−√3)−2−√3=ln(2+√3)−(2+√3),令m (x )=lnx ﹣x ,x >1,则m(x 4)=m(2+√3),m ′(x)=1x −1=1−xx <0恒成立, 所以m (x )在(1,+∞)上单调递减,又2+√3>1,x 4>1,所以x 4=2+√3,故D 正确. 故选:BCD .三、填空题:本题共4小题,每小题5分,共20分.13.拟从5名班干部中选若干人在周一至周五期间值班(每天只需1人值班),要求同一名班干部不连续值班2天,则可能的安排方法有 1280 种.(用数字作答)解:安排周一有5种方法,由于同一名班干部不连续值班2天,则前一天值班的不值相邻后一天, 因此安排后面每一天值班的都有4种方法, 所以可能的安排方法种数是5×4×4×4×4=1280. 故答案为:1280.14.已知变量x 和y 的统计数据如下表:若由表中数据得到经验回归直线方程为y =−3.2x +a ,则x =9时的残差为 ﹣0.2 . 解:依题意,x =9+9.5+10+10.5+115=10,y =11+10+8+6+55=8, 经验回归直线方程为y =−3.2x +a , 则a =y +3.2x =8+3.2×10=40, 故y =−3.2x +40当x =9时,x =9时的残差为11﹣(﹣3.2×9+40)=﹣0.2. 故答案为:﹣0.2.15.数学家波利亚说:“为了得到一个方程,我们必须把同一个量以两种不同的方法表示出来,即将一个量算两次,从而建立相等关系”这就是算两次原理,又称为富比尼原理.由等式(1+x )m (1+x )n=(1+x )m +n利用算两次原理可得C m 0C n k +C m 1C n k−1+C m 2C n k−2+⋯⋯+C m k C n 0= C m+n k. 解:C m 0C n k +C m 1C n k−1+C m 2C n k−2+⋯⋯+C m k C n 0,表示(1+x )m (1+x )n 的展开式中的x k 的系数,即(1+x )m +n展开式中的x k 的系数,可得C m 0C n k +C m 1C n k−1+C m 2C n k−2+⋯⋯+C m k C n 0=C m+n k . 故答案为:C m+n k .16.已知定义在R 上的函数f (x )的导函数为f ′(x ),且满足f ′(x )﹣f (x )<0,f (2)=e ,则不等式f (x )>e x﹣1的解集是 (﹣∞,2) .解:依题意,令g(x)=f(x)x ,求导得g ′(x)=f′(x)−f(x)x<0,因此函数g (x )在R 上单调递减,不等式f(x)>e x−1⇔f(x)e x>1e,由f(2)=e,得1e=ee2=f(2)e2=g(2),则有g(x)>g(2),解得x<2,所以不等式f(x)>e x﹣1的解集是(﹣∞,2).故答案为:(﹣∞,2).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)现有来自三个班级的考生报名表(一人一表),分装3袋.第一袋有6名男生和4名女生的报名表,第二袋有7名男生和3名女生的报名表,第三袋有5名男生和5名女生的报名表.随机选择一袋,然后从中随机抽取2份,求恰好抽到男生和女生的报名表各1份的概率.解:记A i=“抽到第i袋”,i∈{1,2,3},B=“随机抽取2份,恰好抽到男生和女生的报名表各1份”,则P(A1)=P(A2)=P(A3)=13,P(B|A1)=C61C41C102=2445,P(B|A2)=C71C31C102=2145,P(B|A3)=C51C51C102=2545,所以P(B)=P(B|A1)P(A1)+P(B|A2)P(A2)+P(B|A3)P(A3)=13(2445+2145+2545)=1427.18.(12分)某中学为调查本校学生“保护动物意识的强弱与性别是否有关”,采用简单随机抽样的方法,从该校分别抽取了男生和女生各50名作为样本,经统计,得到了如图所示的等高堆积条形图:(1)根据已知条件,将如表2×2列联表补充完整:(2)根据(1)表中数据,依据小概率值α=0.005的独立性检验,分析该校学生保护动物意识的强弱与性别是否有关.附:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.解:(1)由等高堆积条形图知,男生保护动物意识强的有50×0.7=35人,女生保护动物意识强的有50×0.4=20人,于是2×2列联表如下:(2)零假设为H0:该校学生保护动物意识的强弱与性别无关,此时χ2=100(35×30−15×20)255×45×50×50=10011≈9.091>7.879=x0.005,根据小概率值α=0.005的独立性检验,我们推断H0不成立,即认为保护动物意识的强弱与性别有关,此推断犯错误的概率不大于0.005.19.(12分)已知f(x)=(2x−1x)n(n∈N∗)的展开式中第5项与第3项的二项式系数相等.(1)求n及展开式中各项系数的和;(2)求(1+1x4)f(x)的常数项.解:(1)由题意可知:C n4=C n2,解得n=6,即f(x)=(2x−1x)6,令x=1,可得展开式中各项系数的和为f(1)=(2﹣1)6=1.(2)因为(1+1x4)f(x)=f(x)+1x4f(x),对于f(x)=(2x−1x)6,可知其展开式的通项为T r+1=C6r(2x)6−r(−1x)r=(−1)r⋅26−r⋅C6r x6−2r,r=0,1,⋯,6,令6﹣2r=0,解得r=3,此时T4=(−1)3⋅23⋅C63=−160;令6﹣2r=4,解得r=1,此时T2=(−1)2⋅24⋅C61⋅x4=96x4;所以(1+1x4)f(x)的常数项为T4+1x4T2=−160+96=−64.20.(12分)已知函数f(x)=13x3−4x+4.(1)求曲线y=f(x)在点(3,1)处的切线方程;(2)若f(x)在区间(a,a+5)上既有最大值又有最小值,求a的取值范围.解:(1)函数f(x)=13x3−4x+4,求导得f′(x)=x2﹣4,则f′(3)=5,所以所求切线方程为y﹣1=5(x﹣3),即5x﹣y﹣14=0.(2)由(1)知,f′(x)=(x﹣2)(x+2),当x<﹣2或x>2时,f′(x)>0,当﹣2<x<2时,f′(x)<0,则函数f(x)在(﹣∞,﹣2),(2,+∞)上单调递增,在(﹣2,2)上单调递减,当x=﹣2时,函数f(x)取得极大值f(−2)=283,当x=2时,函数f(x)取得极小值f(2)=−43,由f(x)=283,即13x3−4x+4=283,得x3﹣12x﹣16=0,即(x+2)2(x﹣4)=0,解得x=﹣2或x=4,由f(x)=−43,即13x3−4x+4=−43,得x3﹣12x+16=0,即(x﹣2)2(x+4)=0,解得x=2或x=﹣4,作出函数f(x)的部分图象,如图,因为f(x)在区间(a,a+5)上既有最大值又有最小值,则有{−4≤a<−22<a+5≤4,解得﹣3<a<﹣2,所以a的取值范围是{a|﹣3<a<﹣2}.21.(12分)某学习平台中“挑战答题”积分规则如下:选手每天可参加一局“挑战答题”活动.每局中选手需依次回答若干问题,当累计回答正确3道题时,答题活动停止,选手获得10个积分;或者当累计回答错误2道题时,答题活动停止,选手获得8个积分.假定选手甲正确回答每一道题的概率均为p (0<p <1).(1)甲完成一局“挑战答题”活动时回答的题数记为X ,求X 的分布列;(2)若p =23,记Y 为“甲连续9天参加‘挑战答题’活动获得的积分”,求E (Y ). 解:(1)记事件A i (i =1,2,3,4)为“第i 个题目回答正确”, 记事件B i (i =1,2,3)为“第i 个题目回答不正确”, 易知X 的所有取值为2,3,4, 此时P(X =2)=P(B 1B 2)=(1−p)2,P (X =3)=P (A 1A 2A 3)+P (A 1B 2B 3)+P (B 1A 2B 3)=p 3+2p (1﹣p )2=3p 3﹣4p 2+2p , P (X =4)=P (A 1A 2B 3)+P (A 1B 2A 3)+P (B 1A 2A 3)=3p 2(1﹣p )=﹣3p 3+3p 2, 则X 的分布列为:(2)记事件Z 为“1天中参加‘挑战答题’活动获得的积分”, 易知Z 所有取值8,10, 若p =23,此时P (Z =10)=P (A 1A 2A 3)+P (A 1A 2B 3A 4)+P (A 1B 2A 3A 4)+P (B 1A 2A 3A 4) =p 3﹣3p 2(1﹣p )=(23)3+3(23)2(1−23)=1627, P (Z =8)=1﹣P (Z =10)=1127, 所以E (Z )=8×1127+10×1627=24827, 则E (Y )=9(E )=9×24827=2483.22.(12分)已知函数f(x)=lnx +ax −1x,g(x)=xlnx +(a −1)x +1x. (1)讨论函数f (x )的单调性;(2)记f (x )的零点为x 0,g (x )的极小值点为x 1,当a ∈(1,4)时,判断x 0与x 1的大小关系,并说明理由.解:(1)由f ′(x)=1x +a +1x 2=ax 2+x+1x 2,①若a ≥0,则f ′(x )>0, ∴f (x )在(0,+∞)上单调递增;②若a<0,令f'(x)>0,则0<x<−1−√1−4a2a,令f'(x)<0,则x>−1−√1−4a2a,∴f(x)在(0,−1−√1−4a2a)上单调递增,在(−1−√1−4a2a,+∞)上单调递减.(2)x0>x1,理由如下:证明:由g′(x)=lnx−1x2+a(x>0),设ℎ(x)=lnx−1x2+a,则ℎ′(x)=1x+2x3>0,∴h(x)在(0,+∞)上单调递增,即g'(x)在(0,+∞)上单调递增.又g′(1)=a−1>0,g′(12)=−ln2−4+a<0,∴存在x2∈(12,1),使g'(x2)=0,∴g(x)在(0,x2)单调递减,在(x2,+∞)上单调递增,∴x2为g(x)的极小值点,故x2=x1.由g'(x2)=0,x1=x2,∴lnx1−1x12+a=0,∴a=1x12−lnx1,∴f(x1)=lnx1+ax1−1x1=lnx1+x1(1x12−lnx1)−1x1=(1−x1)lnx1,又x1=x2∈(12,1),∴f(x1)=(1﹣x1)lnx1<0=f(x0),由(1)知a>0时,f(x)在(0,+∞)上单调递增,∴x0>x1.。

2022-2023学年广东省广州市执信中学高二(下)期末数学试卷【答案版】

2022-2023学年广东省广州市执信中学高二(下)期末数学试卷【答案版】

2022-2023学年广东省广州市越秀区执信中学高二(下)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|0<x<3},N={x|13≤x≤6},则(∁R M)∩N=()A.{x|0<x≤6}B.{x|1≤x<3}C.{x|3<x≤6}D.{x|3≤x≤6}32.复数z=4i,则z=()1+iA.﹣2﹣2i B.﹣2+2i C.2+2i D.2﹣2i3.函数y=x(sin x﹣sin2x)的部分图象大致为()A.B.C.D.4.用一个平行于圆锥底面的平面去截圆锥,截得的圆台上底面半径为1,下底面半径为2,且该圆台侧面积为3√5π,则原圆锥的母线长为()A.2B.√5C.4D.2√55.某兴趣小组研究光照时长x(h)和向日葵种子发芽数量y(颗)之间的关系,采集5组数据,作如图所示的散点图.若去掉D(10,2)后,下列说法正确的是()A .相关系数r 变小B .决定系数R 2变小C .残差平方和变大D .解释变量x 与预报变量y 的相关性变强6.已知函数f(x)=x(e x −e −x )2,则a =f(log 213),b =f(2−34),c =f(−243)的大小关系为( ) A .b <a <c B .a <b <c C .c <a <b D .a <c <b7.已知抛物线C 1:y 2=4x 的焦点为F ,过F 且斜率大于零的直线l 与C 1及抛物线C 2:y 2=−4x 的所有公共点从左到右分别为点A 、B 、C ,则|BC |=( ) A .4B .6C .8D .108.互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记P (a ,b ).若斜坐标系中,x 轴正方向和y 轴正方向的夹角为θ,则该坐标系中M (x 1,y 1)和N (x 2,y 2)两点间的距离为( )A .√(x 1−x 2)2+(y 1−y 2)2+2(x 1−x 2)(y 1−y 2)cosθB .√(x 1−x 2)2+(y 1−y 2)2−2(x 1−x 2)(y 1−y 2)cosθC .√(x 1−x 2)2+(y 1−y 2)2+2|(x 1−x 2)(y 1−y 2)|cosθD .√(x 1−x 2)2+(y 1−y 2)2−2|(x 1−x 2)(y 1−y 2)|cosθ二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列结论正确的是 ( )A .若随机变量X 服从两点分布,P (X =1)=12,则E (X )=12 B .若随机变量Y 的方差D (Y )=2,则D (3Y +2)=8 C .若随机变量ξ服从二项分布B (4,12),则 P (ξ=3)=14D .若随机变量η服从正态分布N (5,σ2),P (η<2)=0.1,则P (2<η<8)=0.8 10.已知函数f(x)=√3sinxcosx −cos 2x +12,则下列说法正确的是( )A .f(x)=sin(2x −π6) B .函数f (x )的最小正周期为πC .函数f (x )的图象的对称轴方程为x =kπ+π12(k ∈Z)D .函数f (x )的图象可由y =cos2x 的图象向左平移π12个单位长度得到11.一口袋中有除颜色外完全相同的3个红球和2个白球,从中无放回的随机取两次,每次取1个球,记事件A 1:第一次取出的是红球;事件A 2:第一次取出的是白球;事件B :取出的两球同色;事件C :取出的两球中至少有一个红球,则( ) A .事件A 1,A 2为互斥事件 B .事件B ,C 为独立事件C .P(B)=25D .P(C|A 2)=3412.已知函数f (x )=sin x +lnx ,将f (x )的所有极值点按照由小到大的顺序排列得到数列{x n },对于正整数n ,则下列说法中正确的有( ) A .(n ﹣1)π<x n <n πB .x n +1﹣x n <πC .{|x n −(2n−1)π2|}为递减数列D .f (x 2n )>﹣1+ln(4n−1)π2三、填空题:本题共4小题,每小题5分,共20分.13.函数f (x )=x •lnx 在x =e 处的切线方程为 .14.(2x −1x)n 的展开式的二项式系数之和为64,则展开式中常数项为 .15.某高中学校在新学期增设了“传统文化”、“数学文化”、“综合实践”、“科学技术”和“劳动技术”5门校本课程.小明和小华两位同学商量每人选报2门校本课程.若两人所选的课程至多有一门相同,且小明必须选报“数学文化”课程,则两位同学不同的选课方案有 种.(用数字作答) 16.费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P 为双曲线(F 1,F 2为焦点)上一点,点P 处的切线平分∠F 1PF 2.已知双曲线C :x 24−y 22=1,O 为坐标原点,l 是点P(3,√102)处的切线,过左焦点F 1作l 的垂线,垂足为M ,则|OM |= . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{a n }的前n 项和为S n ,数列{b n }为等比数列,满足a 1=b 2=2,S 5=30,b 4+2是b 3与b 5的等差中项.(1)求数列{a n },{b n }的通项公式;(2)设c n =(−1)n (a n +b n ),求数列{c n }的前20项和T 20.18.(12分)近年来,绿色环保和可持续设计受到社会的广泛关注,成为了一种日益普及的生活理念和方式.可持续和绿色能源,是我们这个时代的呼唤,也是我们每一个人的责任.某环保可持续性食用产品做到了真正的“零浪费”设计,其外包装材质是蜂蜡.食用完之后,蜂蜡罐可回收用于蜂房的再建造.为了研究蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类的关系,研究团队收集了黄、褐两种颜色的蜂蜡罐,对M,N两个品种的蜜蜂各60只进行研究,得到如下数据:(1)依据小概率值α=0.05的独立性检验,分析蜜蜂进入不同颜色的蜂蜡罐是否与蜜蜂种类有关联?(2)假设要计算某事件的概率P(B),常用的一个方法就是找一个与B事件有关的事件A,利用公式:P(B)=P(AB)+P(AB)=P(A)⋅P(B|A)+P(A)⋅P(B|A)求解,现从装有a只M品种蜜蜂和b只N品种蜜蜂的蜂蜡蠸中不放回地任意抽取两只,令第一次抽到M品种蜜蜂为事件A,第二次抽到M品种蜜蜂为事件B,求P(B)(用a,b表示P(B))附:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.临界值表:19.(12分)如图,在平面四边形ABCD中,AC=4,BC⊥CD.(1)若AB=2,BC=3,CD=√15,求△ACD的面积;(2)若∠B=2π3,∠D=π6,求(√36+12)AD−BC的最大值.20.(12分)如图,四棱锥P﹣ABCD的底面为正方形,AB=AP=2,P A⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面P AC;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E ﹣ABG 体积.21.(12分)已知函数f (x )=alnx +x 2﹣(2a +1)x ,其中a >0. (1)求函数f (x )的单调区间;(2)当0<a <12时,判断函数f (x )零点的个数.22.(12分)已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,√3),且它的离心率e =12. (1)求椭圆的标准方程;(2)与圆(x ﹣1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM →+ON →=λOC →,求实数λ的取值范围.2022-2023学年广东省广州市越秀区执信中学高二(下)期末数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x|0<x<3},N={x|13≤x≤6},则(∁R M)∩N=()A.{x|0<x≤6}B.{x|13≤x<3}C.{x|3<x≤6}D.{x|3≤x≤6}解:集合M={x|0<x<3},N={x|13≤x≤6},∴∁R M={x|x≤0或x≥3},则(∁R M)∩N={x|3≤x≤6}.故选:D.2.复数z=4i1+i,则z=()A.﹣2﹣2i B.﹣2+2i C.2+2i D.2﹣2i解:∵z=4i1+i=4i(1−i)(1+i)(1−i)=2+2i,∴z=2−2i.故选:D.3.函数y=x(sin x﹣sin2x)的部分图象大致为()A.B.C.D.解:函数f(x)=x(sin x﹣sin2x)的定义域为R,且f(﹣x)=﹣x[sin(﹣x)﹣sin2(﹣x)]=﹣x(﹣sin x+sin2x)=x(sin x﹣sin2x)=f(x),则f(x)为偶函数,其图象关于y轴对称,故排除选项BD;又f(π3)=0,f(π)=0,f(π2)=π2×(1−0)=π2>0,则排除选项A.故选:C.4.用一个平行于圆锥底面的平面去截圆锥,截得的圆台上底面半径为1,下底面半径为2,且该圆台侧面积为3√5π,则原圆锥的母线长为()A.2B.√5C.4D.2√5解:设圆台的母线长为l,∵该圆台的侧面积为3√5π,∴由圆台侧面积公式可得πl(1+2)=3πl=3√5π,解得l=√5,设截去的圆锥的母线为l′,由三角形相似可得l′l′+l =12,则2l′=l′+√5,解得l′=√5,∴原圆锥的母线长为l′+l=√5+√5=2√5.故答案为:2√5.故选:D.5.某兴趣小组研究光照时长x(h)和向日葵种子发芽数量y(颗)之间的关系,采集5组数据,作如图所示的散点图.若去掉D(10,2)后,下列说法正确的是()A.相关系数r变小B.决定系数R2变小C.残差平方和变大D.解释变量x与预报变量y的相关性变强解:由散点图知,去掉点D(10,2)后,y与x的线性相关性加强,则相关系数r变大,∴A错误,决定系数R2变大,∴B错误,残差平方和变小,∴C 错误,解释变量x 与预报变量y 的相关性变强,∴D 正确. 故选:D . 6.已知函数f(x)=x(e x −e −x )2,则a =f(log 213),b =f(2−34),c =f(−243)的大小关系为( ) A .b <a <cB .a <b <cC .c <a <bD .a <c <b解:由题意,得f (x )的定义域为R , ∵f(x)=x(e x −e −x )2, ∴f (﹣x )=−x(e −x −e x )2=x(e x −e −x )2=f (x ),即f (x )为偶函数, ∴a =f (log 213)=f (﹣log 23)=f (log 23),c =f (﹣243)=f (243),当x >0时,f ′(x )=(e x −e −x )+x(e x +e −x )2,∵x >0时,e x >1,0<e ﹣x <1,∴e x ﹣e ﹣x >0,x (e x +e ﹣x )>0, ∴f ′(x )>0,即f (x )在(0,+∞)上单调递增, ∵y =2x 在R 上单调递增,且−34<0<1<43, ∴0<2−34<1<2<243,又y =log 2x 在(0,+∞)上为增函数,则0<2−34<log 23<243,∴f (2−34)<f (log 23)<f (243),即b <a <c .故选:A .7.已知抛物线C 1:y 2=4x 的焦点为F ,过F 且斜率大于零的直线l 与C 1及抛物线C 2:y 2=−4x 的所有公共点从左到右分别为点A 、B 、C ,则|BC |=( ) A .4B .6C .8D .10解:抛物线C 1:y 2=4x 的焦点为F ,得F (1,0),过F 且斜率大于零的直线l ,设直线l 的方程为x =my +1(m >0), 由题意可得直线l 与抛物线C 1必有2个交点,直线l 与C 1及抛物线C 2:y 2=−4x 的所有公共点从左到右分别为点A 、B 、C ,如图, 直线l 与抛物线C 2相切,联立方程组{x =my +1y 2=−4x ,可得y 2+4my +4=0,所以Δ=16m 2﹣16=0,解得m =1,故直线l 的方程为x =y +1,与抛物线C 1方程联立{x =y +1y 2=4x,得x 2﹣6x +1=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=6,所以|AB |=x 1+x 2+2=8. 故选:C .8.互相垂直且有公共原点的两条数轴构成平面直角坐标系,但如果平面坐标系中两条坐标轴不垂直,则这样的坐标系称为“斜坐标系”.如图,在斜坐标系中,过点P 作两坐标轴的平行线,其在x 轴和y 轴上的截距a ,b 分别作为点P 的x 坐标和y 坐标,记P (a ,b ).若斜坐标系中,x 轴正方向和y 轴正方向的夹角为θ,则该坐标系中M (x 1,y 1)和N (x 2,y 2)两点间的距离为( )A .√(x 1−x 2)2+(y 1−y 2)2+2(x 1−x 2)(y 1−y 2)cosθB .√(x 1−x 2)2+(y 1−y 2)2−2(x 1−x 2)(y 1−y 2)cosθC .√(x 1−x 2)2+(y 1−y 2)2+2|(x 1−x 2)(y 1−y 2)|cosθD .√(x 1−x 2)2+(y 1−y 2)2−2|(x 1−x 2)(y 1−y 2)|cosθ解:设与x 轴方向相同的单位向量为e 1→,与y 轴方向相同的单位向量为e 2→,则OM →=x x 1e 1→+x y 1e 2→,ON →=x 2e 1→+y 2e 2→,则NM →=OM →−ON →=(x 1﹣x 2)e 1→+(y 1﹣y 2)e 2→, 所以|NM →|2=[(x 1﹣x 2)e 1→+(y 1﹣y 2)e 2→]2=(x 1﹣x 2)2e 1→2+(y 1﹣y 2)2e 2→2+2(x 1﹣x 2)(y 1﹣y 2)e 1→•e 2→=(x 1﹣x 2)2+(y 1﹣y 2)2+2(x 1﹣x 2)(y 1﹣y 2)cos θ,所以|MN |=√(x 1−x 2)2+(y 1−y 2)2+2(x 1−x 2)(y 1−y 2)cosθ.故选:A .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列结论正确的是 ( )A .若随机变量X 服从两点分布,P (X =1)=12,则E (X )=12B .若随机变量Y 的方差D (Y )=2,则D (3Y +2)=8C .若随机变量ξ服从二项分布B (4,12),则 P (ξ=3)=14D .若随机变量η服从正态分布N (5,σ2),P (η<2)=0.1,则P (2<η<8)=0.8 解:对A 选项,∵机变量X 服从两点分布,且P (X =1)=12, ∴E (X )=0×P (X =0)+1×P (X =1)=12,∴A 选项正确; 对B 选项,∵随机变量Y 的方差D (Y )=2, ∴D (3Y +2)=9D (Y )=18,∴B 选项错误; 对C 选项,∵随机变量ξ服从二项分布B (4,12),∴P (ξ=3)=C 43×(12)3×(1−12)=14,∴C 选项正确;对D 选项,∵随机变量η服从正态分布N (5,σ2), ∴正态曲线的对称轴为η=5,又P (η<2)=0.1,∴根据正态曲线的对称性可得:P (2<η<8)=1﹣2P (η<2)=1﹣0.2=0.8,∴D 选项正确, 故选:ACD .10.已知函数f(x)=√3sinxcosx −cos 2x +12,则下列说法正确的是( ) A .f(x)=sin(2x −π6)B.函数f(x)的最小正周期为πC.函数f(x)的图象的对称轴方程为x=kπ+π12(k∈Z)D.函数f(x)的图象可由y=cos2x的图象向左平移π12个单位长度得到解:f(x)=√3sinxcosx−cos2x+12=√32sin2x−1+cos2x2+12=√32sin2x−12cos2x=sin(2x−π6),故A正确;函数f(x)的最小正周期为T=2π2=π,故B正确;由2x−π6=π2+kπ(k∈Z),得x=π3+kπ2(k∈Z),故C错误;由y=cos2x的图象向左平移π12个单位长度,得y=cos2(x+π12)=cos(2x+π6)=cos[π2−(π3−2x)]=sin(π3−2x)=sin[π−(2π3+2x)]=sin(2x+2π3),故D错误.故选:AB.11.一口袋中有除颜色外完全相同的3个红球和2个白球,从中无放回的随机取两次,每次取1个球,记事件A1:第一次取出的是红球;事件A2:第一次取出的是白球;事件B:取出的两球同色;事件C:取出的两球中至少有一个红球,则()A.事件A1,A2为互斥事件B.事件B,C为独立事件C.P(B)=25D.P(C|A2)=34解:根据题意,依次分析选项:对于A,事件A1,A2不会同时发生,则两个事件是互斥事件,A正确;对于B,事件B发生或不发生时,事件C的概率不一样,则事件B,C不是独立事件,B错误;对于C,P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)=35×24+25×14=820=25,C正确;对于D,若事件A2发生,即第一次取出的是白球,此时袋中有3个红球和1个白球,若事件C发生,第二次必须为红球,则P(C|A2)=P(A2C)P(A2)=25×3425=34.故选:ACD.12.已知函数f(x)=sin x+lnx,将f(x)的所有极值点按照由小到大的顺序排列得到数列{x n},对于正整数n,则下列说法中正确的有()A .(n ﹣1)π<x n <n πB .x n +1﹣x n <πC .{|x n −(2n−1)π2|}为递减数列D .f (x 2n )>﹣1+ln(4n−1)π2解:f (x )的极值点为f ′(x)=cosx +1x在(0,+∞)上的变号零点, 即为函数y =cos x 与函数y =−1x 图象在(0,+∞)交点的横坐标,∵x ∈(0,+∞)时,−1x <0,k ∈N 时,cos (π+2k π)=﹣1<−1π+2kπ,k ∈N *, x ∈(0,π2)∪(−π2+2k π,π2+2kπ)时,cos x >0,据此可将两函数图象画在同一坐标系中,如图,对于A ,k ∈N 时,f ′(π2+2k π)=1π2+2kπ>0, f ′(π+2kπ)=−1+1π+2kπ<0,f ′(3π2+2kπ)=13π2+2kπ>0,结合图象得当n =2k ﹣1,k ∈N *,x n ∈((n −12)π,n π)⊆((n ﹣1)π,n π), 当n =2k ,k ∈N *时,x n ∈((n ﹣1)π,(n −12)π)⊆((n ﹣1)π,n π),故A 正确; 对于B ,由图象可知x 3>52π,x 2<32π,则x 3﹣x 2>π,故B 错误; 对于C ,|x 1−(2n−1)π2|表示两点(x n ,0)与((n −12)π,0)间距离, 数形结合得随着n 的增大,两点间的距离越来越近,即{|x n −(2n−1)π2|}为递减数列,故C 正确; 对于D ,由A 选项分析得:x 2n ∈((2n −1)π,4n−12π),n ∈N ∗, 数形结合得当x ∈(x 2n ,(4n−1)2π)时,cos x >−1x,此时f ′(x )>0, ∴f (x )在(x 2n ,(4n−1)π2)上是单调递增函数, ∴f (x 2n )<f ((4n−1)π2)=﹣1+ln(4n−1)π2,故D 错误.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.函数f (x )=x •lnx 在x =e 处的切线方程为 y =2x ﹣e . 解:因为f (x )=x •lnx ,则f (e )=e •lne =e , 又f ′(x )=lnx +1,则f ′(e )=lne +1=2,所以函数f (x )=x •lnx 在x =e 处的切线方程为y ﹣e =2(x ﹣e ),即y =2x ﹣e . 故答案为:y =2x ﹣e .14.(2x −1x )n 的展开式的二项式系数之和为64,则展开式中常数项为 ﹣160 . 解:由二项式系数的性质,可得2n =64,解可得,n =6;(2x −1x )6的展开式为T r +1=C 66﹣r •(2x )6﹣r •(−1x)r =(﹣1)r •26﹣r •C 66﹣r •(x )6﹣2r,令6﹣2r =0,可得r =3, 则展开式中常数项为﹣160. 故答案为:﹣160.15.某高中学校在新学期增设了“传统文化”、“数学文化”、“综合实践”、“科学技术”和“劳动技术”5门校本课程.小明和小华两位同学商量每人选报2门校本课程.若两人所选的课程至多有一门相同,且小明必须选报“数学文化”课程,则两位同学不同的选课方案有 36 种.(用数字作答) 解:根据题意,分2步进行分析:①小明必须选报“数学文化”课程,则小明的选法有C 41=4种, ②小明和小华两人所选课程至多有一门相同,有C 21C 31+C 32=9种选法,则有4×9=36种选法. 故答案为:36.16.费马定理是几何光学中的一条重要原理,在数学中可以推导出圆锥曲线的一些光学性质.例如,点P 为双曲线(F 1,F 2为焦点)上一点,点P 处的切线平分∠F 1PF 2.已知双曲线C :x 24−y 22=1,O 为坐标原点,l 是点P(3,√102)处的切线,过左焦点F 1作l 的垂线,垂足为M ,则|OM |= 2 . 解:延长F 1M ,PF 2交于点Q , 由题意可得△PF 1M ≌△PMQ , 即|PF 1|=|PQ |,且M 为F 1Q 的中点,由双曲线的定义可得|F 2Q |=|PF 1|﹣|PF 2|=2a =4, 又∵O 为F 1F 2的中点, ∴|OM|=|F 2Q|2=2.故答案为:2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{a n}的前n项和为S n,数列{b n}为等比数列,满足a1=b2=2,S5=30,b4+2是b3与b5的等差中项.(1)求数列{a n},{b n}的通项公式;(2)设c n=(−1)n(a n+b n),求数列{c n}的前20项和T20.解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,因为a1=2,所以S5=10+5×42d=30,解得d=2,所以a n=2+2(n﹣1)=2n,由题意知:2(b4+2)=b3+b5,因为b2=2,所以2(2q2+2)=2q+2q3,解得q=2,所以b n=2n−1;(2)由(1)得c n=(−1)n(2n+2n−1)=(−1)n⋅2n+(−1)n⋅2n−1,T20=(−2+4−6+8−⋯+40)+(−1+2−22+23−⋯+219)=2×10+−1×[1−(−2)20]1−(−2)=20+220−13=220+593.18.(12分)近年来,绿色环保和可持续设计受到社会的广泛关注,成为了一种日益普及的生活理念和方式.可持续和绿色能源,是我们这个时代的呼唤,也是我们每一个人的责任.某环保可持续性食用产品做到了真正的“零浪费”设计,其外包装材质是蜂蜡.食用完之后,蜂蜡罐可回收用于蜂房的再建造.为了研究蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类的关系,研究团队收集了黄、褐两种颜色的蜂蜡罐,对M,N两个品种的蜜蜂各60只进行研究,得到如下数据:(1)依据小概率值α=0.05的独立性检验,分析蜜蜂进入不同颜色的蜂蜡罐是否与蜜蜂种类有关联?(2)假设要计算某事件的概率P (B ),常用的一个方法就是找一个与B 事件有关的事件A ,利用公式:P(B)=P(AB)+P(AB)=P(A)⋅P(B|A)+P(A)⋅P(B|A)求解,现从装有a 只M 品种蜜蜂和b 只N 品种蜜蜂的蜂蜡蠸中不放回地任意抽取两只,令第一次抽到M 品种蜜蜂为事件A ,第二次抽到M 品种蜜蜂为事件B ,求P (B )(用a ,b 表示P (B ))附:χ2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n =a +b +c +d .临界值表:解:(1)根据列表得χ2=120×600602×9×30=409≈4.444>3.841, 所以依据α=0.05的独立性检验,蜜蜂进入不同颜色的蜂蜡罐与蜜蜂种类有关联, M 品种进入黄色蜂蜡罐的频率为23,M 品种进入褐色蜂蜡罐的频率为13,N 品种进入黄色蜂蜡罐的频率为56,N 品种进入褐色蜂蜡罐的频率为16,依据频率分析,M 品种的蜜蜂选择褐色蜂蜡罐的频率是N 品种的蜜蜂的两倍, 所以品种M 、N 的蜜蜂选择进入黄色蜂蜡罐与褐色蜂蜡罐有显著差异;(2)由已知上式知,P(A)=aa+b ,P(B|A)=a−1a+b−1,P(A)=ba+b ,P(B|A)=aa+b−1 则P(B)=P(AB)+P(AB)=P(A)⋅P(B|A)+P(A)⋅P(B|A), 所以P(B)=aa+b ⋅a−1a+b−1+ba+b ⋅a a+b−1, 所以P(B)=a(a+b−1)(a+b)(a+b−1)=aa+b ,所以P(B)=a a+b .19.(12分)如图,在平面四边形ABCD 中,AC =4,BC ⊥CD . (1)若AB =2,BC =3,CD =√15,求△ACD 的面积; (2)若∠B =2π3,∠D =π6,求(√36+12)AD −BC 的最大值.解:(1)在△ABC 中,AC =4,AB =2,BC =3,则cos ∠ACB =AC 2+BC 2−AB 22AC⋅BC=78, ∵BC ⊥CD ,∴sin ∠ACD =cos ∠ACB =78,∴△ACD 的面积为12AC ⋅CD ⋅sin∠ACD =12×4×√15×78=7√154; (2)设∠BCA =θ,0<θ<π3, 则∠ACD =π2−θ,∠BAC =π3−θ, 在△ABC 中,BC sin(π3−θ)=ACsin2π3,即BC =8√3sin(π3−θ), 在△ACD 中,ADsin(π2−θ)=ACsinπ6,则AD =8cos θ,(√36+12)AD −BC =(4√33+4)cosθ83sin(π3−θ)=4√63sin(θ+π4),当θ=π4时,(√36+12)AD −BC 的最大值为4√63.20.(12分)如图,四棱锥P ﹣ABCD 的底面为正方形,AB =AP =2,P A ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点. (1)求证:平面EFG ⊥平面P AC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E ﹣ABG 体积.(1)证明:连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ∥BD , ∵底面四边形ABCD 为正方形,∴BD ⊥AC , ∵P A ⊥平面ABCD ,BD ⊂平面ABCD ,∴P A ⊥BD ,又P A ∩AC =A ,∴BD ⊥平面P AC ,而EF ∥BD ,得EF ⊥平面P AC , 又EF ⊂平面EFG ,∴平面EFG ⊥平面P AC ;(2)解:以A 为坐标原点,分别以AB 、AD 、AP 所在直线 为x 、y 、z 轴建立空间直角坐标系,则A (0,0,0),E (1,0,1),F (0,1,1), P (0,0,2),C (2,2,0), 设PG =λPC ,(0<λ<1且λ≠12),则AG →=AP →+PG →=(0,0,2)+(2λ,2λ,−2λ)=(2λ,2λ,2﹣2λ), AE →=(1,0,1),AF →=(0,1,1), 设平面AEF 的一个法向量为n →=(x ,y ,z),由{n →⋅AE →=x +z =0n →⋅AF →=y +z =0,取z =﹣1,得n →=(1,1,−1). 设直线AG 与平面AEF 所成角为θ, sin θ=|cos <n →,AG →>|=|n →⋅AG→|n →||AG →|||√3×√4λ2+4λ2+(2−2λ)2|13, ∴√12λ2=√3,即3(6λ﹣2)2=12λ2﹣8λ+4,∴12λ2﹣8λ+1=0,解得λ=16(λ=12舍去). ∴PG =16PC ,由已知可得BC ⊥平面P AB ,则G 到平面P AB 的距离为16BC =13.∴V E−ABG =V G−ABE =13×12×12×2×2×13=19.21.(12分)已知函数f (x )=alnx +x 2﹣(2a +1)x ,其中a >0. (1)求函数f (x )的单调区间;(2)当0<a <12时,判断函数f (x )零点的个数. 解:(1)f ′(x)=ax +2x −(2a +1)=(2x−1)(x−a)x(x >0),令f′(x)=0得x=12,x2=a,当a=12时,f′(x)≥0,则函数f(x)在(0,+∞)上单调递增,当0<a<12时,0<x<a或x>12时,f′(x)>0,a<x<12时,f′(x)<0,所以函数f(x)在(0,a),(12,+∞)上单调递增,在(a,12)上单调递减,当a>12时,0<x<12或x>a时,f′(x)>0,12<x<a时,f′(x)<0,所以函数f(x)在(0,12),(a,+∞)上单调递增,在(12,a)上单调递减.综上所述,当a=12时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当0<a<12时,函数f(x)的单调递增区间为(0,a),(12,+∞),单调递减区间为(a,12);当a>12时,函数f(x)的单调递增区间为(0,12),(a,+∞),单调递减区间为(12,a).(2)当0<a<12时,函数f(x)仅有一个零点,理由如下:由(1)得当a∈(0,12)时,函数f(x)在(0,a),(12,+∞)单调递增,在(a,12)单调递减;则函数f(x)的极大值为f(a)=alna+a2﹣(2a+1)a=a(lna﹣a﹣1),且极小值为f(12)<f(a),令g(x)=lnx﹣x﹣1,x∈(0,12),则g′(x)=1x−1=1−xx>0,x∈(0,12),所以g(x)在x∈(0,12)上单调递增,所以g(x)<g(12)=−ln2−32<0,所以当a∈(0,12)时,f(a)=a(lna﹣a﹣1)<0,f(e2)=alne2+e4﹣(2a+1)e2=(e2﹣1)(e2﹣2a),因为a∈(0,12),所以2a∈(0,1),e2﹣1>0,e2﹣2a>0,可得f(e2)>0,如下图,作出函数f(x)的大致图象,由图象可得当0<a <12时,函数f (x )仅有一个零点.22.(12分)已知中心在坐标原点,焦点在x 轴上的椭圆过点P (2,√3),且它的离心率e =12. (1)求椭圆的标准方程;(2)与圆(x ﹣1)2+y 2=1相切的直线l :y =kx +t 交椭圆于M ,N 两点,若椭圆上一点C 满足OM →+ON →=λOC →,求实数λ的取值范围.解:(Ⅰ) 设椭圆的标准方程为x 2a 2+y 2b 2=1,a >b >0,由已知得:{ 4a 2+3b 2=1c a =12c 2=a 2−b 2,解得{a 2=8b 2=6,所以椭圆的标准方程为:x 28+y 26=1.(Ⅱ) 因为直线l :y =kx +t 与圆(x ﹣1)2+y 2=1相切,所以√1+k 2=1,2k =1−t 2t ,t ≠0,把y =kx +t 代入x 28+y 26=1,并整理得:(3+4k 2)x 2+8ktx +4t 2﹣24=0,设M (x 1,y 1),N (x 2,y 2),则有x 1+x 2=−8kt 3+4k2,y 1+y 2=kx 1+t +kx 2+t =k (x 1+x 2)+2t =6t 3+4k2,因为λOC →=(x 1+x 2,y 1+y 2), 所以C (−8kt (3+4k 2)λ,6t(3+4k 2)λ),又因为点C 在椭圆上,所以8k 2t 2(3+4k 2)2λ2+6t 2(3+4k 2)2λ2=1,λ2=2t23+4k2=2(1t2)2+(1t2)+1,因为t2>0,所以(1t2)2+(1t2)+1>1,所以0<λ2<2,所以λ的取值范围为(−√2,0)∪(0,√2).。

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析

哈尔滨师范大学附属中学2019_2020学年高二数学下学期期末考试试题文含解析
9. 若某10人一次比赛得分数据如茎叶图所示,则这组数据的中位数是( )
A。 82。5B。 83C。 93D. 72
【答案】A
【解析】
【分析】
由茎叶图得出所有数据并从小到大排序,由于偶数个,则中位数为中间两个数之和再除以2。
【详解】将这组数据从小到大排列为72,74,76,81,82,83,86,93,93,99,则这组数据的中位数是 ,即82。5
A. 3B. 4C。 6D。 7
【答案】B
【解析】
【分析】
类比二分法,将16人均分为两组,选择其中一组进行检测,再把认定的这组的8人均分两组,选择其中一组进行检测,以此类推,即可得解.
【详解】先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了1次检测。继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了2次检测。继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,为阴性则认定在另一组;若为阳性,则认定在本组,此时进行了3次检测。选认定的这组的2人中一人进行样本混合检查,为阴性则认定是另一个人;若为阳性,则认定为此人,此时进行了4次检测。所以,最终从这16人中认定那名感染者需要经过4次检测。
【解析】
【分析】
分析图形中火柴数 变化是以3位首项2为公差的等差数列,由此可算第100个图形所用火柴棒数。
【详解】由图形可知,第一个图形用3个火柴,以后每一个比前一个多两个火柴,则第n个使用火柴为 ,则第100个图形所用火柴棒数为2×100+1=201.
故答案为:201
【点睛】本题考查合情推理的应用,属于基础题.
70 29 17 12 13 40 33 12 38 26 13 89 51 03

2022-2023学年北京市西城区高二(下)期末数学试卷【答案版】

2022-2023学年北京市西城区高二(下)期末数学试卷【答案版】

2022-2023学年北京市西城区高二(下)期末数学试卷一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1.等差数列﹣2,1,4,…的第10项为( ) A .22B .23C .24D .252.设函数f (x )=sin x ,则f '(π)=( ) A .1B .﹣1C .0D .π3.某一批种子的发芽率为23.从中随机选择3颗种子进行播种,那么恰有2颗种子发芽的概率为( ) A .29B .827C .49D .234.记函数f(x)=1x 的导函数为g (x ),则g (x )( ) A .是奇函数B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数5.在等差数列{a n }中,若a 1=9,a 8=﹣5,则当{a n }的前n 项和最大时,n 的值为( ) A .5B .6C .7D .86.某钢厂的年产量由2010年的40万吨增加到2020年的60万吨,假设该钢厂的年产量从2010年起年平均增长率相同,那么该钢厂2030年的年产量将达( ) A .80万吨B .90万吨C .100万吨D .120万吨7.如果函数f (x )=xlnx ﹣ax 在区间(1,e )上单调递增,那么实数a 的取值范围为( ) A .[1,2]B .(﹣∞,2]C .[1,+∞)D .(﹣∞,1]8.在等比数列{a n }中,a 1=2,公比q =23,记其前n 项的和为S n ,则对于n ∈N *,使得S n <m 都成立的最小整数m 等于( ) A .6B .3C .4D .29.设随机变量ξ的分布列如下:则下列说法中不正确的是( ) A .P (ξ≤2)=1﹣P (ξ≥3)B .当a n =12n (n =1,2,3,4)时,a 5=124 C .若{a n }为等差数列,则a 3=15D .{a n }的通项公式可能为a n =1n(n+1)10.若函数f(x)={xe x +a ,x <1,a −x ,x ≥1有且仅有两个零点,则实数a 的取值范围为( )A .(0,e )B .(﹣∞,e )C .(0,1e )D .(−∞,1e )二、填空题共5小题,每小题5分,共25分。

高二数学下学期期末考试试卷含答案(共3套)

高二数学下学期期末考试试卷含答案(共3套)

B .C .D .8.若 S = ⎰ 2 x 2dx , S = ⎰ 2 dx, S = ⎰ 2 e x d x ,则 S , S , S 的大小关系为( )1 x 1 1高二年级下学期期末考试数学试卷(考试时间:120 分钟;满分:150 分)一、选择题(本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设 Z = 10i3 + i,则 Z 的共轭复数为( )A . -1 + 3iB . -1 - 3iC .1+ 3iD .1- 3i2.6 把椅子摆成一排,3 人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24v v v v3.已知 a = (1- t,2 t - 1,0), b = (2, t, t ), 则 b - a 的 最小值是( )A . 5B . 6C . 2D . 3uuuv uuuv uuuv v4.已知正三棱锥 P - ABC 的外接球 O 的半径为1 ,且满足OA + OB + OC = 0, 则正三棱锥的体积为()A .344 2 45.已知函数 f ( x ) = - x, 且a < b < 1,则 ( )e x A .f (a) = f (b )B . f (a) < f (b )C . f (a) > f (b )D . f (a),f (b )大小关系不能确定6.若随机变量 X ~ B(n, p ), 且 E( X ) = 6, D( X ) = 3,则P( X = 1) 的值为()A . 3 2-2B . 2-4C . 3 2-10D . 2-8作检验的产品件数为()A.6B.7C.8D.91123123A.S<S<S123B.S<S<S213C.S<S<S231D.S<S<S3211A . n + 1B . 2nC .D . n 2 + n + 112.设点 P 在曲线 y = e x 上,点 Q 在曲线 y = ln(2 x) 上,则 PQ 的最小值为()13.已知复数 z = (i 是虚数单位) ,则 z = __________;15.二项式 (x- )8的展开式中,x 2 y 2的系数为 __________; 16.已知 f (n ) = 1 + + + … + (n ∈ N * ), 经计算得f (4) > 2, f (8) > , f (16) > 3 ,f (32) > , 则有__________(填上合情推理得到的式子).17.已知曲线 C 的极坐标方程是 ρ = 2cos(θ + ) ,以极点为平面直角坐标系的原点,极轴为 x,9.平面内有 n 条直线,最多可将平面分成 f (n) 个区域,则 f (n) 的表达式为()n 2 + n + 2 210.设m 为正整数,( x + y)2m 展开式的二项式系数的最大值为 a ,( x + y)2m +1 展开式的二项式系数的最大值为 b .若13a = 7b ,则 m = ( )A .5B .6C .7D .811.已知一系列样本点 ( x , y ) (i = 1,2,3, … , n) 的回归直线方程为 y = 2 x + a, 若样本点 (r,1)与(1,s) ii的残差相同,则有( ) A . r = s B . s = 2r C . s = -2r + 3 D . s = 2r + 112A .1- ln2B . 2(1 - ln 2)C .1+ ln2D . 2(1 + ln2)二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)5i1 + 2i14.直线 2 ρcos θ = 1 与圆 ρ = 2cos θ 相交的弦长为__________;y y x1 1 1 52 3 n 272三、解答题(本大题共 6 小题,17 小题 10 分, 18-22 题每小题 12 分,共 70 分;解答应写出文字说明、证明过程或演算步骤)π 3轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线 l 的参数方程是⎧⎪ x = -1 - t, ⎨⎪⎩ y = 2 + 3t(t 是参数) 设点 P(-1,2) .(Ⅰ)将曲线 C 的极坐标方程化为直角坐标方程,将直线 l 的参数方程化为普通方程;(Ⅱ)设直线 l 与曲线 C 相交于 M , N 两点,求 PM PN 的值.已知从该班随机抽取1人为喜欢的概率是.(参考公式:K2=,其中n=a+b+c+d)20.已知数列{x}满足x=,xn+1=18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的2⨯2列联表:喜欢不喜欢合计男生18女生6合计6013(Ⅰ)请完成上面的2⨯2列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.072 2.7063.841 5.024 6.6357.87910.828n(ad-bc)2(a+b)(c+d)(a+c)(b+d)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设a,a,a分别表123示甲,乙,丙3个盒中的球数.(Ⅰ)求a=2,a=1,a=0的概率;123(Ⅱ)记ξ=a+a,求随机变量ξ的概率分布列和数学期望.1211n121+xn,其中n∈N*.(Ⅰ)写出数列{x}的前6项;n(Ⅱ)猜想数列{x}的单调性,并证明你的结论.2na21 .如图,四棱锥 P - ABCD 中,底面 ABCD 是梯形, AD / / B C , AD > BC , ∠BAD = 900 ,P A ⊥ 底面ABCD, P A = AB, 点 E 是PB 的中点 .(Ⅰ)证明: PC ⊥ AE ;(Ⅱ)若 AB = 1, AD = 3, 且P A 与平面 PCD 所成角的大小为 450 ,求二面角 A - PD - C 的正弦值.22.已知函数 g ( x ) =x, f ( x ) = g ( x ) - ax .ln x(Ⅰ)求函数 g ( x ) 的单调区间;(Ⅱ)若函数 f ( x ) 在 (1, +∞)上是减函数,求实数 的最小值;(Ⅲ)若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a(a > 0) 成立,求实数 a 的取值范围.12 1 2( x - )2 + ( y + )2 = 1 ;⎪⎪ (Ⅱ) 直线 l 的参数方程化为标准形式为 ⎨ (m 是参数) ,①19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为 , , .下学期高二年级期末考试数学参考答案一、选择题题号答案1D 2D 3C 4A 5C 6C 7C 8B9C10B 11C 12B二、填空题13.514.315.7016. f (2n) >n + 22(n ≥ 2, n ∈ N * )三、解答题17 . 解 : ( Ⅰ ) 曲 线 C 的 极 坐 标 方 程 化 为 直 角 坐 标 方 程 为 : x 2 + y 2 = x - 3 y,即1 32 2直线 l 的参数方程化为普通方程为: 3x + y + 3 - 2 = 0 .⎧1 x = -1 - m ,2 ⎪ y = 2 +3 m ⎪⎩ 2将①式代入 x 2 + y 2 = x - 3 y ,得: m 2 + (2 3 + 3)m + 6 + 2 3 = 0 ,②由题意得方程②有两个不同的根,设 m , m 是方程②的两个根,由直线参数方程的几何意义知:1 2PM PN = m m = 6 + 2 3 .1218.解:(Ⅰ)列联表如下;喜欢 男生 14 女生 6 合计20 不喜欢18 22 40 合计 32 28 60(Ⅱ)根据列联表数据,得到 K 2 = 60(14⨯ 22 - 6 ⨯18)2 32 ⨯ 28 ⨯ 20 ⨯ 40≈ 3.348 > 2.706,所以有 90%的可靠性认为“喜欢与否和学生性别有关”.1 1 16 3 2p=p(a=2,a=1,a=0)=C1()2()=.3633683323628 3626323328p(a=3,a=0,a=0)=.8期望E(ξ)=0⨯+1⨯+2⨯+3⨯=.20.解:(Ⅰ)由x=,得x==;21+x3由x=,得x==;31+x5由x=,得x==;51+x8由x=,得x==;81+x13由x=8,得x==;131+x21(Ⅰ)由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,111123(Ⅱ)由题意知,ξ可能的取值是0,1,2,3.1p(ξ=0)=p(a=0,a=0,a=3)=,12311113 p(ξ=1)=p(a=0,a=1,a=2)+p(a=1,a=0,a=2)=C1()()2+C1()()2= 123123p(ξ=2)=p(a=2,a=0,a=1)+p(a=1,a=1,a=1)+p(a=0,a=2,a=1)123123123 11111113=C1()2()+A3()()()+C1()2()=3p(ξ=3)=p(a=0,a=3,a=0)+p(a=1,a=2,a=0)+p(a=2,a=1,a=0)+ 1231231231123故ξ的分布列为:ξ0123P13883818 1331388882112121213232315343518454113565(Ⅱ)由(Ⅰ)知x>x>x,猜想:数列{x}是递减数列.2462n下面用数学归纳法证明:①当n=1时,已证命题成立;(Ⅰ)证明: AE = ⎛ 0, b , b ⎫⎪ , PC = (c, b , - b ) , 所以 AE ⋅ PC = 0 ⨯ c + b ⋅ b + b ⋅ (-b ) = 0 , r 由 ⎪⎨ur uuur即 ⎪⎨ 令 z = 1 ,得 m = ⎛ 1 , 1 - c , 1⎫⎪ . ⎩ ⎩ 1 ⎛ c ⎫2 3 ⎝ 3 ⎭ ur AP r |②假设当 n = k 时命题成立,即 x > x2k 2k +2易知 x > 0 ,当 n = k + 1时,2k.x2k +2- x 2k +4=11 + x2k +1-11 + x2k +3==x- x2k +32k +1(1+ x)(1+ x)2k +12k +3x - x2k 2k +2(1+ x )(1+ x )(1+ x2k 2k +1 2k +2)(1+ x2k +3)> 0即 x2( k +1)> x2( k +1)+ 2.也就是说,当 n = k + 1时命题也成立.根据①②可知,猜想对任何正整数 n 都成立.21. 解:解法一(向量法):建立空间直角坐标系 A - xyz ,如图所示.根据题设,可设 D(a, 0, 0), B(0, b , 0), P(0, 0, b ), C (c, b , 0) ,uuuruuu⎝2 2 ⎭ uuur uuur22uuur uuur所以 AE ⊥ PC ,所以 PC ⊥ AE .uuur(Ⅱ)解:由已知,平面 P AD 的一个法向量为 AB = (0, 1, 0) .ur设平面 PCD 的法向量为 m = ( x , y , z) ,ur uuur⎧m ⋅ PC = 0,⎪m ⋅ PD = 0,⎧cx + y - z = 0,⎪ 3x + 0 ⋅ y - z = 0,ur⎝ 3 3 ⎭uuur而 AP = (0, 0, 1) ,依题意 P A 与平面 PCD 所成角的大小为 45︒ ,ur uuur所以 sin 45︒ = 2 = | m ⋅ uuuu ,即 2 | m || AP | 1 1 = 2+ 1 - ⎪ + 17,, 1⎪⎪ . 3 cos θ = ur uuur = PG ⋅ DF 3解得 BC = c = 3 - 2 ( BC = c = 3 + 2 舍去),所以ur ⎛ 1m =  3 ,⎝2 ⎫⎭设二面角 A - PD - C 的大小为 θ ,则ur uuur m ⋅ AB | m || AB | 2 31 2+ + 1 3 3= 3 , 3所以 sin θ = 6 ,所以二面角 A - PD - C 的正 3弦值为6 3 . 解法二(几何法): Ⅰ)证明:因为 P A ⊥ 平面 ABCD ,BC ⊂ 平面 ABCD ,所以 BC ⊥ P A .又由 ABCD 是梯形, AD ∥ BC , ∠BAD = 90︒ ,知 BC ⊥ AB ,而 AB I AP = A , AB ⊂ 平面 P AB , AP ⊂ 平面 P AB ,所以 BC ⊥ 平面 P AB .因为 AE ⊂ 平面 P AB ,所以 AE ⊥ BC .又 P A = AB ,点 E 是 PB 的中点,所以 AE ⊥ PB .因为 PB I BC = B , PB ⊂ 平面 PBC , BC ⊂ 平面 PBC ,所以 AE ⊥ 平面 PBC .因为 PC ⊂ 平面 PBC ,所以 AE ⊥ PC .(Ⅱ)解:如图 4 所示,过 A 作 AF ⊥ CD 于 F ,连接 PF ,因为 P A ⊥ 平面 ABCD , CD ⊂ 平面 ABCD ,所以 CD ⊥ P A ,则 CD ⊥ 平面 PAF ,于是平面 PAF ⊥ 平面 PCD ,它们的交线是 PF .过 A 作 AG ⊥ PF 于 G ,则 AG ⊥ 平面 PCD ,即 P A 在平面 PCD 上的射影是 PG ,所以 P A 与平面 PCD 所成的角是 ∠APF .由题意, ∠APF = 45︒ .在直角三角形 APF 中, P A = AF = 1 ,于是 AG = PG = FG = 2 .2在直角三角形 ADF 中, AD = 3 ,所以 DF = 2 .方法一:设二面角 A - PD - C 的大小为 θ ,则 cos θ = △S PDG △SAPD 2 = = 2=P A ⋅ AD 1⨯ 3 3⨯ 2,8x = ln x - 1,+ 2 = , 即 x = e 2时, f '( x ) max = - a .所以 - a ≤ 0, 于是a ≥, 故a 的最小值为 .=1+ a = . 4 4所以 sin θ = 6 ,所以二面角 A - PD - C 的正弦值为 6 .33方法二:过 G 作 GH ⊥ PD 于 H ,连接 AH ,由三垂线定理,得 AH ⊥ PD ,所以 ∠AHG 为二面角 A - PD - C 的平面角,在直角三角形 APD 中, PD = P A 2 + AD 2 = 2 , AH = P A ⋅ AD = 1⨯ 3 = 3 .PD2 22在直角三角形 AGH 中, sin ∠AHG = AG = 2 = 6 ,AH 33 2所以二面角 A - PD - C 的正弦值为 6 .322.解:由已知,函数 g ( x ) , f ( x ) 的定义域为 (0,1) U (1,+∞),且 f ( x ) =x- ax .ln x(Ⅰ)函数 g '( x ) = 1ln x - x ⋅(ln x)2 (ln x)2当 0 < x < e 且x ≠ 1时,g '( x ) < 0 ;当 x > e 时,g '( x ) > 0 .所以函数 g ( x ) 的单调减区间是 (0,1),(1,e), 增区间是(e , ∞) .(Ⅱ)因 f ( x ) 在 (1, +∞) 上为减函数,故 f '( x ) =所以当 x ∈ (1,+∞) 时, f '( x )max ≤ 0 .ln x - 1 (ln x)2- a ≤ 0 在 (1, +∞) 上恒成立.又 f '( x ) = ln x - 1 1 1 1 1 1- a = -( )2 + - a = -( - )2 + - a,(ln x) ln x ln x ln x 2 4故当1 1 1ln x 2 4 1 1 1 4 4 4(Ⅲ)命题“若 ∃x , x ∈ [e , e 2 ], 使f ( x ) ≤ f '( x ) + a 成立 ”等价于1212“当 x ∈ [e , e 2 ]时, 有f ( x ) min≤ f '( x )max + a ” .由(Ⅱ)知,当 x ∈ [e , e 2 ]时, 有f '( x )- a,∴ f '( x )max1min≤”.①当a≥时,由(Ⅱ)知,f(x)在[e,e2]上为减函数,=f(e)=-ae2≤,故a≥-②当0<a<时,由于f'(x)=-(-)2+-a在[e,e2]上为增函数,故f'(x)的值域为[f'(e),f'(e2)],即[-a,-a].,ln x -ax≤,x∈(e,e2).4->->-=,与0<a<综上,得a≥1问题等价于:“当x∈[e,e2]时,有f(x)1 41 4则f(x)min2e21112424e2. 1111 4ln x2414由f'(x)的单调性和值域知,∃唯一x∈(e,e2)使f'(x)=0,且满足:00当x∈(e,x)时,f'(x)<0,f(x)为减函数;当x∈(x,e2)时,f'(x)>0,f(x)为增函数;所以,f(x)min =f(x)=x001所以,a≥1ln x11111114x ln e24e2444矛盾,不合题意.1-24e2.1.已知集合 M = x x 2 < 2x + 3 , N = x x < 2 ,则 M ⋂ N = (){}3⎩- log 2 ( x + 1) f ( x ) = ⎨ “ 12 ,则可以利用方程 x = 求得 x ,高二年级第二学期期末考试数学试题一、选择题(每小题 5 分,共 50 分){ }A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式 e i x = cos x + i sin x ( i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。

高二(下)期末数学试卷

高二(下)期末数学试卷

高二(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)复数z 在复平面内对应点的坐标为(3,6),则|2|(z i -= ) A .3B .4C .5D .62.(5分)5人排成一行,其中甲、乙两人相邻的不同排法共有( ) A .24种B .48种C .72种D .120种3.(5分)52()x x-的展开式中3x 的系数为( )66666666666666A .10B .10-C .5D .5-4.(5分)某铁球在0C ︒时,半径为1dm .当温度在很小的范围内变化时,由于热胀冷缩,铁球的半径会发生变化,且当温度为C t ︒时铁球的半径为(1)at dm +,其中a 为常数,则在0t =时,铁球体积对温度的瞬时变化率为( )(参考公式:34)3V R π=球A .0B .a πC .43a πD .4a π5.(5分)长时间玩手机可能影响视力.据调查,某校学生大约有40%的人近视,而该校大约有20%的学生每天玩手机超过1小时,这些人的近视率约为50%.现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率约为( ) A .0.125B .0.25C .0.375D .0.46.(5分)正四面体ABCD 中,M ,N 分别是BC ,AD 的中点,则直线AM 和CN 夹角的余弦值为( ) A .33B .63C .22D .237.(5分)如图,一个质点在随机外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位.若质点移动6次,则回到原点O 的概率为( )A .0B .14C .516 D .588.(5分)已知函数()f x xlnx =,()24g x x =-,若12()()f x g x =,则21x x -的最小值为()A .22e -B .3e -C .2e -D .1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分. 9.(5分)随机变量~(2,4)X N ,则( ) A .()2E X =B .()2D X =C .(4)(1)P X P X >><D .(1)(3)1P X P X >+>=10.(5分)已知函数()y f x =的导函数()y f x '=的图象如图所示,则(A .12()()f x f x <B .32()()f x f x <C .()f x 在(,)a b 内有2个极值点D .()f x 的图象在点0x =处的切线斜率小于011.(5分)把4个编号为1,2,3,4的球放入4个编号为1,2,3,4的盒子中,则()A .不同的放法有64种B .每个盒子放一个球的不同放法有24种C .每个盒子放一个球,且球的编号和盒子的编号都不相同的不同放法有9种D .恰有一个盒子不放球的不同放法有72种12.(5分)在棱长为1的正方体1111ABCD A B C D -中,点E ,F 分别满足AE AB λ=,BF BC μ=,其中[0λ=,1],[0μ∈,1],则( )A .当1μ=时,三棱锥11AB EF -的体积为定值 B .当12λ=时,点A ,B 到平面1B EF 的距离相等C .当12μ=时,存在λ使得1BD ⊥平面1B EF D .当λμ=时,11A F C E ⊥三、填空题:本题共4小题,每小题5分,共20分. 13.(5分)若31iz i-=+,则z z += . 14.(5分)已知(1A ,0,0),(0B ,1,0),(0C ,0,1),若点(P x ,1,1)在平面ABC 内,则x = .15.(5分)由0,1,2,3,4,5组成没有重复数字的三位数,其中偶数有 个.(用数字作答)16.(5分)函数,(),x xe x a f x x x a⎧=⎨>⎩,当0a =时,()f x 零点的个数是 ;若存在实数0x ,使得对于任意x R ∈,都有0()()f x f x ,则实数a 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.(10分)已知函数32()f x x ax b =++在2x =处有极值2-. (1)求()f x 的解析式;(2)求()f x 在[2-,3]上的最值.18.(12分)在国家政策扶持下,近几年我国新能源汽车产业迅速发展.某公司为了解职工购买新能源汽车的意愿,随机调查了30名职工,得到的部分数据如表所示:(1)请将上述22⨯列联表补充完整,并判断能否有99%的把握认为“该公司职工购买新能源汽车的意愿与性别有关”;(2)为进一步了解职工不愿意购买新能源汽车的原因,从不愿意购买新能源汽车的被调查职工中随机抽取3人进行问卷调查,求至少抽到2名女职工的概率. 附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.20()P K k0.100 0.050 0.010 0.001 0k2.7063.8416.63510.82819.(12分)如图,在三棱锥P ABC -中,PBC ∆是正三角形,AC BC ⊥,D 是AB 的中点. (1)证明:BC PD ⊥;(2)若2AC BC ==,22PA =,求二面角D PA C --的余弦值.20.(12分)为了解某地区未成年男性身高与体重的关系,对该地区12组不同身高i x (单位:)cm 的未成年男性体重的平均值i y (单位:)(1kg i =,2,,12)数据作了初步处理,得到下面的散点图和一些统计量的值.xyω1221()ii xx =-∑121()()ii i xx y y =--∑121()()ii i xx ωω=--∑11524.3582.95814300 6300 286表中(1i i lny i ω==,2,,12),112i i ωω==∑.(1)根据散点图判断y ax b =+和cx d y e +=哪一个适宜作为该地区未成年男性体重的平均值y 与身高x 的回归方程类型?(给出判断即可,不必说明理由). (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)如果体重高于相同身高的未成年男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么该地区的一位未成年男性身高为175cm ,体重为78kg ,他的体重是否正常?附:对于一组数据1(u ,1)v ,2(u ,2)v ,⋯⋯,(n u ,)n v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-,20.693ln ≈. 21.(12分)一个袋子中有10个大小相同的球,其中有4个白球,6个黄球,从中随机地摸4个球作为样本,用X 表示样本中黄球的个数,Y 表示样本中黄球的比例. (1)若有放回摸球,求X 的分布列及数学期望;(2)(ⅰ)分别就有放回摸球和不放回摸球,求Y 与总体中黄球的比例之差的绝对值不超过0.2的概率.(ⅱ)比较(ⅰ)中所求概率的大小,说明其实际含义. 22.(12分)已知函数()(1)()f x ln x ax a a R =++-∈. (1)讨论()f x 的单调性;(2)若()x a f x xe ax -+,求a 的取值范围.高二(下)期末数学试卷一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)复数212iz i=-的实部与虚部之和为( ) A .25-B .25C .45D .652.(5分)已知函数32()2f x x x =+,()f x '是()f x 的导函数,则f '(2)(= ) A .24B .26C .32D .283.(5分)函数()23x f x x =-在[0,2]上的平均变化率为( ) A .32 B .32-C .1D .2-4.(5分)4(23)x -展开式中的第3项为( ) A .216-B .216x -C .216D .2216x5.(5分)某学校高三年级总共有800名学生,学校对高三年级的学生进行一次体能测试.这次体能测试满分为100分,已知测试结果ξ服从正态分布2(70,)N σ.若ξ在[60,70]内取值的概率为0.2,则估计该学校高三年级体能测试成绩在80分以上的人数为( ) A .160B .200C .240D .3206.(5分)从1,2,3,4,5,6,7,8中不放回地依次取2个数,事件A 为“第一次取到的数是偶数”,事件B 为“第二次取到的数是偶数”,则(|)(P B A = ) A .12B .25 C .37D .387.(5分)已知复数1cos sin ()z i R θθθ=+∈,2z i =,且12z z 在复平面内对应的点在第一,三象限的角平分线上,则tan (θ= )A .2-B .2-+CD .8.(5分)某学校安排甲、乙,丙、丁、戊五位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲不参加数学竞赛,则不同的安排方法有()A .86种B .100种C .112种D .134种二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.(5分)已知复数(2)(1)z i i =+-,则( ) A .1z i =+B .||z =C .z 在复平面内对应的点在第四象限D .13zi i=- 10.(5分)已知~(4X B ,)(01)p p <<,则下列结论正确的有( )A .若13p =,则8()9E X =B .若13p =,则16(0)81P X ==C .()1maxD X =D .若(1)()3P x P X =>=,则102p <<11.(5分)下面四个结论中正确的有( )A .43)+展开式中各项的二项式系数之和为16B .用4个0和3个1可以组成35个不同的七位数C .0.290.251()x x+的展开式中不存在有理项D .方程10x y z ++=有36组正整数解12.(5分)已知函数2()(2)(2)f x x x a a =->,若函数()(()1)g x f f x =+恰有4个零点,则a 的取值可以是( ) A .52B .3C .4D .92三.填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.(5分)若随机变量ξ的分布列为.ξ0 1 2 Pa0.2a +0.3则a = .14.(5分)写出一个恰有1个极值点,且其图象经过坐标原点的函数()f x = . 15.(5分)某电影院的一个放映室前3排的位置如图所示,甲和乙各自买了1张同一个场次的电影票,已知他们买的票的座位都在前3排,则他们观影时座位相邻(相邻包括左右相邻和前后相邻)的概率为 .16.(5分)若221a lna c b d--==,则22()()a c b d -+-的最小值是 . 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)马拉松赛事是当下一项非常火爆的运动项目,受到越来越多人的喜爱.现随机在“马拉松跑友群”中选取100人,记录他们在某一天马拉松训练中的跑步公里数,并将数据整理如下: 跑步公里数 性别 [5,10) [10,15) [15,20) [20,25) [25,30) [30,35]男 4 6 10 25 10 5 女2581762(1)分别估计“马拉松跑友群”中的人在一天的马拉松训练中的跑步公里数为[5,15),[15,25),[25,35]的概率;(2)已知一天的跑步公里数不少于20公里的跑友被“跑友群”评定为“高级”,否则为“初级”,根据题意完成给出的22⨯列联表,并据此判断能否有95%的把握认为“评定级别”与“性别”有关.附:2K =,n a b c d =+++.2)k18.(12分)已知函数()f x 的导函数是()f x ',且21()(1)24f x f x f '=+(1)4x -. (1)求()f x 的解析式;(2)求经过点(0,6)-且与曲线()y f x =相切的直线方程. 19.(12分)已知6621201212(1)(1)x x a a x a x a x -+=+++⋯+.(1)求2221311a a a ++⋅⋅⋅+的值;(2)求2412a a a ++⋯+的值; (3)求46a a +的值.20.(12分)某小型企业在开春后前半年的利润情况如表所示:设第i 个月的利润为y 万元.(1)根据表中数据,求y 关于i 的回归方程ˆˆˆ(22)i yb i a =-+(系数精确到0.01); (2)由(1)中的回归方程预测该企业第7个月的利润是多少万元?(结果精确到整数部分,如98.1万元~98万元)(3)已知y 关于i 的线性相关系数为0.8834.从相关系数的角度看,y 与i 的拟合关系式更适合用ˆˆˆypi q =+还是ˆˆˆ(22)i y b i a =-+,说明你的理由. 参考数据:62221()1933.5,22523188,1418.5259ii yy =-=+=⨯=∑,1140.96109.44⨯=,取2005.4=.附:样本(i x ,)(1i y i =,2,⋯,)n的相关系数()()nii xx y y r --=∑线性回归方程ˆˆˆybx a =+中的系数1122211()()ˆ()nnii i ii i nniii i xx y y x ynxy b xx xnx ====---==--∑∑∑∑,ˆˆay bx =-. 21.(12分)在一个不透明的盒中,装有大小、质地相同的两个小球,其中1个是黑色,1个是白色,甲、乙进行取球游戏,两人随机地从盒中各取一球,两球都取出之后再一起放回盒中,这称为一次取球,约定每次取到白球者得1分,取到黑球者得0分,一人比另一人多3分或取满9次时游戏结束,并且只有当一人比另一人多3分时,得分高者才能获得游戏奖品.已知前3次取球后,甲得2分,乙得1分. (1)求甲获得游戏奖品的概率;(2)设X 表示游戏结束时所进行的取球次数,求X 的分布列及数学期望.22.(12分)已知函数234()sin 3f x x sin x m =-+.(1)求()f x 在[0,]π上的单调区间;(2)设函数4()2(2)(16)x g x x e ln x =--,若(0,)α∀∈+∞,[0β∀∈,]π,()()f g βα,求m 的取值范围.。

职业高中高二下学期期末数学试题卷5(含答案)

职业高中高二下学期期末数学试题卷5(含答案)

职业高中下学期期末考试 高二《数学》试题5一 选择题(3*10=30)1.某班有男生23人,女生26人,从中选一人担任班长,共有( )种选法。

A. 23 B.26 C.49 D.162.有5件产品,其中A 型产品3件,B 型产品2件,从中抽两件,他们都是A 型的概率是( )A.35 B.25 C. 310 D.320 3.sin 15°-cos 15°=( )A.√62 B.- √62 C.- √22 D.√22 4.如果cos α=12,则(sin α2)2=( )A.34 B.14 C.12 D.2−√345.在∆ABC 中,已知AB=2,AC=√7,BC=3,则 B =( ) A.π6 B. π4 C.π3 D.2π3 6.函数y=sin 2x +√3cos 2x 的最大值为( )A. -2B.√3C.2D.1 7.椭圆x 23+y 24=1的焦距为( )A.4B.3C. 1D.28. 已知P n 2=56,则n=( )A. 6B. 7C.8D.99.双曲线x 27−y 29=1的离心率是( )A.√74 B.74 C.4√77 D.4310.设方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 二 .填空题(3*8=24)11.用1,2,3,4,5,6这六个数字组成无重复数字的四位数,共有 个。

12.cos π12sin 5π12+sin π12cos 5π12=13.正弦型曲线y =2sin (3x −π6)是 由正弦型曲线y =2sin 3x 向右平移 个单位得到的。

14.若sin α+cos α=√2,则sin 2α= 15.(x −2x 2)8展开式的第四项为16.在(a +b )11的展开式中,与第三项二项式系数相等的项是第 项。

17.顶点在原点,关于x 轴对称,顶点与焦点的距离为3的抛物线的标准方程 是18.已知定点Q (5,2),动点P 为抛物线y 2=4x 上的点,F 为该抛物线的焦点,则使得︱︱PQ ︱+︱PF ︱︱取得最小值的点P 的坐标为 三.解答题(7*5=32)19.抛掷一颗骰子,观察掷出的点数,求C={点数是奇数或4}的概率专业 班级 姓名 学籍号 考场 座号20.抛掷两次骰子,求①两次都出现1点的概率②恰有一次出现1点的概率③没有出现1点的概率21.用1,2,3,4,5这五个数,组成无重复数字的三位数,求在下列情况,各有多少个?①奇数②能被5整除22.已知sinα=13,α∈(π2,π),cosβ=−35,β∈(π,3π2),求sin(α+β)和cos(α−β)的值。

高二下学期期末数学试题(含答案)

高二下学期期末数学试题(含答案)

第二学期教学质量监测试卷高二数学本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数212⎛⎫+ ⎪ ⎪⎝⎭所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.下列命题中的假命题是 A .,lg 0x x R ∈∃>B .,sin 1x x ∃∈=RC .2,0x x ∈∀>RD .,20x x ∈∀>R 3.设()ln f x x x =,若0'()2f x =,则0x = A.2e B.e C.ln 22D.ln 24.已知A 是B 的充分不必要条件,C 是B 是必要不充分条件,A ⌝是D 的充分不必要条件,则C 是D ⌝的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知2~(,)Z N μσ,则()P Z μσμσ-<<+=0.6826,(22)P Z μσμσ-<<+=0.9544.若(),~51X N ,则(67)P X <<等于A .0.3413B .0.4772C .0.1359D .0.81856.在四面体OABC 中,OA a =uu r r ,OB b =uu u r r ,OC c =u u u r r,点M 在OA 上,且2OM MA =,点N 是BC 的中点,则MN =uuu rA .211322a b c -++r r rB .121232a b c -+r r rC .111222a b c +-r r rD .221332a b c +-r r r7.直线3,,022x x y ππ===及曲线cos y x =所围成图形的面积是A .2B .3C .πD .π28.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有 A .80种 B .100种 C .120种 D .126种9.抛物线22y px =的焦点为F ,M 为抛物线上一点,若OFM ∆的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为π9,则p =A .2B .4C .6D .8 10.以下命题正确的个数为(1)存在无数个∈βα,R ,使得等式βαβαβαsin cos cos sin )sin(+=-成立; (2)在ABC ∆中,“6A π>”是“1sin 2A >”的充要条件; (3)命题“在ABC ∆中,若sin sin A B =,则A B =”的逆否命题是真命题;(4)命题“若6πα=,则21sin =α”的否命题是“若6πα≠,则21sin ≠α”.A .1B .2C .3D .411.如图,已知椭圆221:110x C y +=,双曲线22222:1(0,0)x y C a b a b-=>>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于,A B 两点,且1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率为A .9B .5C .5D .312.已知函数)(x f 的导函数为()f x ',且()()f x f x '>对任意的x ∈R 恒成立,则下列不等式均成立的是 A .(1)(0)f ef <,2(2)(0)f e f < B .(1)(0)f ef >,2(2)(0)f e f < C .(1)(0)f ef <,2(2)(0)f e f > D .(1)(0)f ef >,2(2)(0)f e f > 二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线2221(0)3x y a a -=>的一个焦点恰好与抛物线28y x =的焦点重合,则双曲线的渐近线方程为 . 14.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t+=,则210t t --=,取正值得t =,用类似方法可得=⋅⋅⋅+++666 .15.用总长为24m 的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为 .16.在()()642x x y ++的展开式中,记m n x y 项的系数为(),f m n ,则()()3,45,3f f += .(用数字作答)三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知数列{}n a 中,1112,2(1,2,3...)n na a n a +==-=. (Ⅰ)求234,,a a a 的值,猜想出数列的通项公式n a ; (Ⅱ)用数学归纳法证明你的猜想.18.(本小题满分12分)已知函数()(,)bf x ax a b x=+∈R 的图象过点))1(,1(f P ,且在点P 处的切线方程为38y x =-. (Ⅰ)求b a ,的值; (Ⅱ)求函数)(x f 的极值.19.(本小题满分12分)如图四边形A B C D 为边长为2的菱形,G 为AC 与BD 交点,平面BED ⊥平面A B C D,2,BE AE ==(Ⅰ)证明:BE ⊥平面ABCD ;(Ⅱ)若120ABC ∠=,求直线EG 与平面EDC 所成角的正弦值.20.(本小题满分12分)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如下的频率分布直方图:第19题图DAGCE(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求X 的分布列和数学期望. 21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 22.(本小题满分12分)已知函数21()ln(1)2f x a x x x =++-,其中a 为实数. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个极值点12,x x ,且12x x <,求证:212()0f x x ->.高二(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数(+i)2所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A5:复数代数形式的乘除运算;A4:复数的代数表示法及其几何意义.【专题】38 :对应思想;4R:转化法;5N :数系的扩充和复数.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数(+i)2=+i=+i对应的点(,)位于第二象限.故选:B.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列命题中的假命题是()A.∃x∈R,lgx>0 B.∃x∈R,sinx=1 C.∀x∈R,x2>0 D.∀x∈R,2x>0【考点】2I:特称命题;2H:全称命题.【专题】35 :转化思想;4R:转化法;5L :简易逻辑.【分析】根据对数函数,正弦函数及指数函数的性质,分别判断,A,B,D为真命题,由当x=0时,x2=0,故C为假命题.【解答】解:对于A:当x>1时,lgx>0,故∃x∈R,lgx>0为真命题;对于B:当x=2kπ+,k∈Z时,sinx=1,则∃x∈R,sinx=1,为真命题;对于C:当x=0时,x2=0,故∀x∈R,x2>0,为假命题,对于D,由指数函数的性质可知:∀x∈R,2x>0,故为真命题,故选:C.【点评】本题考查逻辑语言与指数数、二次函数、对数函数、正弦函数的性质,属容易题.3.(5分)(2008•海南)设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C.D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.【点评】本题考查两个函数积的导数及简单应用.导数及应用是高考中的常考内容,要认真掌握,并确保得分.4.已知A是B的充分不必要条件,C是B是必要不充分条件,¬A是D的充分不必要条件,则C是¬D的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【分析】根据充分条件和必要条件的递推关系进行递推即可.【解答】解:∵¬A是D的充分不必要条件,∴¬D是A的充分不必要条件,则¬D⇒A∵C是B是必要不充分条件,∴B是C是充分不必要条件,B⇒C∵A是B的充分不必要条件,∴A⇒B,则¬D⇒A⇒B⇒C,反之不成立,即C是¬D的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义进行递推是解决本题的关键.5.已知Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.若X~N(5,1),则P(6<X<7)等于()A.0.3413 B.0.4772 C.0.1359 D.0.8185【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】38 :对应思想;49 :综合法;5I :概率与统计.【分析】计算P(4<X<6),P(3<X<7),于是P(6<X<7)=(P(3<X<7)﹣P(4<X<6)).【解答】解:P(4<X<6)=0.6826,P(3<X<7)=0.9544,∴P(6<X<7)=(0.9544﹣0.6826)=0.1359.故选C.【点评】本题考查了正态分布的对称性特点,属于基础题.6.如图,空间四边形OABC中,=,=,=,点M在线段OA上,且OM=2MA,点N为BC的中点,则=()A.﹣++B.﹣+C.+﹣D.+﹣【考点】M3:空间向量的加减法.【专题】5H :空间向量及应用.【分析】由题意,把,,三个向量看作是基向量,由图形根据向量的线性运算,将用三个基向量表示出来,即可得到答案,选出正确选项.【解答】解:=,=+﹣+,=++﹣,=﹣++,∵=,=,=,∴=﹣++,故选:A.【点评】本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.7.直线x=,x=,y=0及曲线y=cosx所围成图形的面积是()A.2 B.3 C.πD.2π【考点】6G:定积分在求面积中的应用.【专题】11 :计算题;35 :转化思想;4O:定义法;52 :导数的概念及应用.【分析】直接利用定积分公式求解即可.【解答】解:直线x=,x=,y=0及曲线y=cosx所围成图形的面积S=(﹣cosx)dx=﹣sinx|=2,故选:A.【点评】本题考查定积分的应用,考查计算能力.8.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有()A.80种B.100种C.120种D.126种【考点】D8:排列、组合的实际应用.【专题】11 :计算题;35 :转化思想;5O :排列组合.【分析】根据题意,先计算从9人中选出4人的选法数目,再排除其中“只有男生没有女生的选法”和“只有女生没有男生的选法”,即可得答案.【解答】解:根据题意,从5名男生和4名女生共9人中选出4人去参加辩论比赛,有C94=126种选法,其中只有男生没有女生的选法有C54=5种,只有女生没有男生的选法有C44=1种,则4人中既有男生又有女生的不同选法共有126﹣5﹣1=120种;故选:C.【点评】本题考查排列、组合的实际应用,可以使用间接法分析,避免分类讨论.9.抛物线y2=2px的焦点为F,M为抛物线上一点,若△OFM的外接圆与抛物线的准线相切(O为坐标原点),且外接圆的面积为9π,则p=()A.2 B.4 C.6 D.8【考点】K8:抛物线的简单性质.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.【解答】解:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径.∵圆面积为9π,∴圆的半径为3,又∵圆心在OF的垂直平分线上,|OF|=,∴+=3,∴p=4.故选B.【点评】本题考查圆与圆锥曲线的综合,考查学生的计算能力,属于基础题.10.以下命题正确的个数为()(1)存在无数个α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;(2)在△ABC中,“A>”是“sinA>”的充要条件;(3)命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题;(4)命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”.A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【专题】38 :对应思想;48 :分析法;5L :简易逻辑.【分析】(1),利用正弦的和差公式验证即可.(2),A>30°得不出sinA>,比如A=160°,若sinA>,根据正弦函数在(0,π)上的图象可得:30°<A<150°,能得到A>30°;(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题;(4),利用原命题与其否命题的关系判定.【解答】解:对于(1),sin(α﹣β)=sinαcosβ﹣sinβcosα=sinαcosβ+cosαsinβ.可得sinβcosα=0,所以只要β=kπ,α任意,或者α=2kπ+,β任意.故正确.对于(2),A>30°得不出sinA>,比如A=160°,若sinA>,∵sin30°=sin150°=,∴根据正弦函数在(0,π)上的图象可得:30°<A<150°,∴能得到A>30°;得A>30°是sinA>的必要不充分条件,故错;对于(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题,故正确对于(4),命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”,正确.故选:C【点评】本题考查了命题真假的判定,涉及到了三角、命题的否命题等基础知识,属于中档题.11.如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.9 B.5 C.D.3【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),则A(,),AB的一个三分点坐标为(,),由该点在椭圆C1上,求出=2,从而c==3a,由此能求出离心率.【解答】解:由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),∴A点坐标可表示为A(x0,kx0)(x0>0)∴=,即A(,),∴AB的一个三分点坐标为(,),该点在椭圆C1上,∴,即=1,得k=2,即=2,∴c==3a,∴离心率e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查椭圆性质、双曲线等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是()A.f(1)<ef(0),f(2)<e2f(0)B.f(1)>ef(0),f(2)<e2f(0)C.f(1)<ef(0),f(2)>e2f(0)D.f(1)>ef(0),f(2)>e2f(0)【考点】6A:函数的单调性与导数的关系.【专题】33 :函数思想;4R:转化法;52 :导数的概念及应用.【分析】令g(x)=,求出函数g(x)的导数,判断函数的单调性,从而求出答案.【解答】解:令g(x)=,则g′(x)=>0,故g(x)在R递增,故g(1)>g(0),g(2)>g(0),即f(1)>ef(0),f(2)>e2f(0),故选:D.【点评】本题考查了函数的单调性、导数的应用,构造函数g(x)=是解题的关键,本题是一道中档题.二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线﹣=1(a>0)的一个焦点恰好与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为y=±x .【考点】KC:双曲线的简单性质.【专题】11 :计算题;34 :方程思想;5D :圆锥曲线的定义、性质与方程.【分析】根据题意,由抛物线的标准方程求出其焦点坐标,即可得双曲线的焦点坐标,由双曲线的几何性质可得a2+3=4,解可得a=1,即可得双曲线的标准方程,由双曲线的渐近线方程即可得答案.【解答】解:根据题意,抛物线y2=8x的焦点坐标为(2,0),其双曲线﹣=1(a>0)的一个焦点也为(2,0),则有a2+3=4,解可得a=1,故双曲线的方程为:x2﹣=1,则双曲线的渐近线方程为:y=±x;故答案为:y=±x.【点评】本题考查双曲线、抛物线的标准方程,注意分析双曲线的焦点坐标.14.代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得= 3 .【考点】F3:类比推理.【专题】15 :综合题;35 :转化思想;4G :演绎法;5M :推理和证明.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.【点评】本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.15.用总长为24m的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为8m3.【考点】7F:基本不等式.【专题】11 :计算题;34 :方程思想;5T :不等式.【分析】根据题意,设长方体容器的底面边长为xm,高为ym,由题意可得8x+4y=24,即2x+y=6,用x、y 表示长方体的体积可得V=x2y=x2×(6﹣2x)=x×x×(6﹣2x),由基本不等式分析可得答案.【解答】解:根据题意,设长方体容器的底面边长为xm,高为ym,则有8x+4y=24,即2x+y=6,其体积V=x2y=x2×(6﹣2x)=x×x×(6﹣2x)≤[]3=8m3,当且仅当x=2时,等号成立;即这个容器体积的最大值8m3;故答案为:8m3.【点评】本题考查基本不等式的性质以及应用,关键是用x、y表示容器的体积.16.在(2+x)6(x+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,4)+f(5,3)= 400 .(用数字作答)【考点】DB:二项式系数的性质.【专题】11 :计算题;35 :转化思想;4O:定义法;5P :二项式定理.【分析】(2+x)6(x+y)4的展开式的通项为C6r26﹣r C4k x4+r﹣k y k,分别代入计算即可得到.【解答】解:(2+x)6(x+y)4的展开式的通项为C6r26﹣r x r C4k x4﹣k y k=C6r26﹣r C4k x4+r﹣k y k,∵x m y n项的系数为f(m,n),当k=4时,4+r﹣4=3,即r=3.∴f(3,4)=C6326﹣3C44=160,当k=3时,4+r﹣3=5,即r=4.∴f(5,3)=C6426﹣4C43=240,∴f(3,4)+f(5,3)=160+240=400,故答案为:400【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)(2017春•荔湾区期末)已知数列{a n}中,a1=2,a n+1=2﹣(n=1,2,3,…).(Ⅰ)求a2,a3,a4的值,猜想出数列的通项公式a n;(Ⅱ)用数学归纳法证明你的猜想.【考点】RG:数学归纳法;F1:归纳推理.【专题】38 :对应思想;4F :归纳法;55 :点列、递归数列与数学归纳法.【分析】(I)根据递推公式计算并猜想通项公式;(II)先验证n=1时猜想成立,再假设n=k猜想成立,推导n=k+1的情况,得出结论.【解答】解:(I)a2=2﹣=;a3=2﹣=;a4=2﹣=;猜想:a n=.(II)当n=1时,猜想显然成立;假设n=k(k≥1)时猜想成立,即a k=,则a k+1=2﹣=2﹣==,∴当n=k+1时,猜想成立.∴a n=对任意正整数恒成立.【点评】本题考查了数学归纳法证明,属于基础题.18.(12分)(2017春•荔湾区期末)已知函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的极值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【专题】34 :方程思想;4R:转化法;52 :导数的概念及应用.【分析】(Ⅰ),依题意列式计算得;(Ⅱ)由(Ⅰ)得,=得函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,f(x)极小值=f(﹣2),f(x)极大值=f(2)【解答】解:(Ⅰ)∵函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.∴,解得;(Ⅱ)由(Ⅰ)得,=当x∈(﹣∞,﹣2),(2,+∞)时,f′(x)<0,当x∈(﹣2,0),(0,2)时,f′(x)>0.即函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,∴f(x)极小值=f(﹣2)=4;f(x)极大值=f(2)=﹣4.【点评】本题考查了导数的几何意义,函数的单调性与极值,属于中档题,19.(12分)(2017春•荔湾区期末)如图四边形ABCD为边长为2的菱形,G为AC与BD交点,平面BED⊥平面ABCD,BE=2,AE=2.(Ⅰ)证明:BE⊥平面ABCD;(Ⅱ)若∠ABC=120°,求直线EG与平面EDC所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【专题】35 :转化思想;49 :综合法;5H :空间向量及应用.【分析】(Ⅰ)由AC⊥DB,平面BED⊥平面ABCD,得AC⊥平面BED,即AC⊥BE.又 AE2=AB2+BE2,得BE⊥AB,即可得BE⊥平面ABCD.(Ⅱ)由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系,则E(0,0,2),D(1,,0),G(,,0),C(2,0,0),利用向量法求解.【解答】解:(Ⅰ)证明:∵四边形ABCD为菱形,∴AC⊥DB又因为平面BED⊥平面ABCD,平面BED∩平面ABCD=DB,AC⊂平面ABCD.∴AC⊥平面BED,即AC⊥BE.又BE=2,AE=2,AB=2,∴AE2=AB2+BE2,∴BE⊥AB,且AB∩BD=B,∴BE⊥平面ABCD.(Ⅱ)取AD中点H,连接BH.∵四边形ABCD为边长为2的菱形,∠ABC=120°,∴BH⊥AD,且BH=.由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系(如图)则E(0,0,2),D(1,,0),G(,,0),C(2,0,0)设面EDC的法向量为,,由,可取cos==﹣直线EG与平面EDC所成角的正弦值为.【点评】本题考查了线面垂直的判定,向量法求线面角,属于中档题.20.(12分)(2017春•荔湾区期末)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CG:离散型随机变量及其分布列.【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由频率分布直方图先求出每条海鱼平均重量,由此能估计这批海鱼有多少条.(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)由频率分布直方图得每条海鱼平均重量为:=150×0.016×10+160×0.040×10+170×0.032×10+180×0.012×10=164(g),∵经销商购进这批海鱼100千克,∴估计这批海鱼有:(100×1000)÷164≈610(条).(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),P(X=0)==0.216,P(X=1)==0.432,P(X=2)==0.288,P(X=3)==0.064,∴X的分布列为:∴E(X)=3×0.4=1.2.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.21.(12分)(2017春•荔湾区期末)已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(Ⅰ)利用椭圆的离心率为,且经过点M(﹣3,﹣1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)将直线x﹣y﹣2=0代入中,得,x2﹣3x=0.求出点A(0,﹣2),B(3,1),从而|AB|=3,在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.将y=x+b代入,得4x2+6bx+3(b2﹣4)=0,由根的判别式求出点P(﹣3,1)时,△PAB的面积最大,由此能求出△PAB的最大面积.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.…(4分)(Ⅱ)将直线x﹣y﹣2=0代入中,消去y得,x2﹣3x=0.解得x=0或x=3.…(5分)∴点A(0,﹣2),B(3,1),∴|AB|==3.…(6分)在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.…(7分)将y=x+b代入,整理得4x2+6bx+3(b2﹣4)=0.…(8分)令△=(6b)2﹣4×4×3(b2﹣4)=0,解得b=±4.…(9分)将b=±4代入方程4x2+6bx+3(b2﹣4)=0,解得x=±3.由题意知当点P的坐标为(﹣3,1)时,△PAB的面积最大.…(10分)且点P(﹣3,1)到直线l的距离为d==3.…(11分)△PAB的最大面积为S==9.…(12分)【点评】本题考查椭圆方程的求法,考查三角形最大面积的求法,考查椭圆、直线方程、两点间距离公式、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.22.(12分)(2017春•荔湾区期末)已知函数f(x)=aln(x+1)+x2﹣x,其中a为实数.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:2f(x2)﹣x1>0.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【专题】35 :转化思想;49 :综合法;53 :导数的综合应用.【分析】(Ⅰ)求导数,分类讨论,利用导数的正负研究函数f(x)的单调性;(Ⅱ)所证问题转化为(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),根据函数的单调性证明即可.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),=.①当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;②当0<a<1时,由f'(x)=0得,,故f(x)在(﹣1,﹣)上单调递增,在(﹣,)上单调递减,在(,+∞)上单调递增;③当a<0时,由f'(x)=0得x1=,x2=﹣(舍)f(x)在(﹣1,)上单调递减,在(,+∞)上单调递增.(Ⅱ)证明:由(Ⅰ)得若函数f(x)有两个极值点x1,x2,且x1<x2,则0<a<1,,,∴x1+x2=0,x1x2=a﹣1且x2∈(0,1),要证2f(x2)﹣x1>0⇔f(x2)+x2>0⇔aln(x2+1)+﹣x2>0⇔(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),∵g′(x)=ln(x+1)+>0,∴g(x)在(0,1)递增,∴g(x)>g(0)=0,∴命题得证.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的构造与运用,转化思想.属于中档题。

2022-2023学年浙江省温州市十校联合体高二(下)期末数学试卷【答案版】

2022-2023学年浙江省温州市十校联合体高二(下)期末数学试卷【答案版】

2022-2023学年浙江省温州市十校联合体高二(下)期末数学试卷一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.集合A ={x ∈N|log 12x ≥−1},集合B ={x ∈Z |x 2≤4},则A ∩B =( )A .{2}B .{0,1,2}C .{1,2}D .∅2.复数z 的实部与虚部互为相反数,且满足z +a =1+5i1−i ,a ∈R ,则复数z 在复平面上对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.函数f(x)=sinx ⋅ln x−1x+1的大致图象为( )A .B .C .D .4.(x +ax )(x −2x )5的展开式中各项系数的和为﹣2,则该展开式中常数项为( ) A .﹣40B .﹣20C .20D .405.冯老师教高二4班和5班两个班的数学,这两个班的人数相等.某次联考中,这两个班的数学成绩均近似服从正态分布,其正态密度函数f(x)=1√2πσ−(x−μ)22σ2的图像如图所示,其中μ是正态分布的期望,σ是正态分布的标准差,且P (|X ﹣μ|≤σ)=0.6827,P (|X ﹣μ|≤2σ)=0.9545,P (|X ﹣μ|≤3σ)=0.9973.关于这次数学考试成绩,下列结论正确的是( )A .4班的平均分比5班的平均分高B .相对于5班,4班学生的数学成绩更分散C .4班108分以上的人数约占该班总人数的4.55%D .5班112分以上的人数与4班108分以上的人数大致相等6.冬季两项是冬奥会的项目之一,是把越野滑雪和射击两种不同特点的竞赛项目结合在一起进行的运动,其中冬季两项男子个人赛,选手需要携带枪支和20发子弹,每滑行4千米射击一轮,共射击4轮,每轮射击5次,若每有1发子弹没命中,则被罚时1分钟,总用时最少者获胜.已知某男选手在一次比赛中共被罚时3分钟,假设其射击时每发子弹命中的概率都相同,且每发子弹是否命中相互独立,记事件A 为其在前两轮射击中没有被罚时,事件B 为其在第4轮射击中被罚时2分钟,那么P (A |B )=( ) A .12B .14C .13D .387.我们知道:y =f (x )的图象关于原点成中心对称图形的充要条件是y =f (x )为奇函数,有同学发现可以将其推广为:y =f (x )的图象关于(a ,b )成中心对称图形的充要条件是y =f (x +a )﹣b 为奇函数.若f (x )=x 3﹣3x 2的对称中心为(m ,n ),则f (2023)+f (2021)+…+f (3)+f (﹣1)+f (﹣3)+f (﹣5)+f (﹣2019)+f (﹣2021)=( ) A .8088B .4044C .﹣4044D .﹣20228.设a =9109,b =ln 1.09,c =e 0.09﹣1,则下列关系正确的是( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a二、选择题(本大题共4小题,每小题5分,共20分。

湖北省武汉市江岸区2024年高二下学期7月期末质检数学试题(解析版)

湖北省武汉市江岸区2024年高二下学期7月期末质检数学试题(解析版)

2023~2024学年度第二学期期末质量检测高二数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合03xA xx =< − ,集合(){}3log11B x x =−<,则A B ∪=( )A. {}03x x << B. {}13x x <<C. {}04x x <<D. {}14x x <<【答案】C 【解析】【分析】由分式不等式的求解方法求集合A ,再由对数函数的性质解不等式求得集合B ,结合并集的概念即可得答案.【详解】因为(){}{}3003A x x x x x =−<=<<,(){}{}{}3log1101314B x x x x x x =−<=<−<=<<, 因此,{}04A Bx x ∪=<<.故选:C.2. 设0,0a b >>,则“()lg 0a b +>”是“()lg 0ab >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】将对数不等式进行等价变换,结合0a >,0b >,可判断a b +,ab 的取值范围,从而判断()lg a b +与()lg ab 的关系.【详解】因为lg (aa +bb )>0⇔lg (aa +bb )>lg1⇔aa +bb >1,又0,0a b >>, 所以aa +bb ≥2√aabb >1,当且仅当a b =时取等号,即14ab >, 又lg (aabb )>0⇔lg (aabb )>lg1⇔aabb >1, 所以14ab >不能推出1ab >,所以()lg 0a b +>是()lg 0ab >的不充分条件;又aabb >1⇒aabb >14,所以()lg 0a b +>是()lg 0ab >的必要条件, 所以()lg 0a b +>是()lg 0ab >的必要不充分条件. 故选:B.3. 若随机变量(),0.4X B n ,且() 1.2D X =,则()4P X =的值为( )A. 420.4×B. 430.4×C. 420.6×D. 430.6×【答案】B 【解析】【分析】根据二项分布求方差公式得到方程,求出5n =,从而得到()4P X =.【详解】由题意得()0.410.4 1.2n ×−=,解得5n =, ()()44454C 0.410.430.4P X ==⨯-=⨯.故选:B4. 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2视力 性别 好 差 总计男 4 16 20 女 12 20 32 总计163652表3智商 性别 偏高 正常 总计男 8 12 20 女 8 24 32 总计 163652表4阅读量 性别 丰富 不丰富 总计男 14 6 20 女 2 30 32 总计 163652A. 成绩B. 视力C. 智商D. 阅读量【答案】D 【解析】【分析】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得: A.2252(6221014):0.00916363220A K×−×≈×××;2252(4201216): 1.76916363220B K×−×≈×××;2252(824812): 1.316363220C K×−×≈×××;2252(143062):23.4816363220D K×−×≈×××选项D 的值最大,所以与性别有关联的可能性最大,故选D.【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题. 5. 已知0,0x y >>,且满足341x y+=,则( ) A. xy 的最小值为48 B. xy 的最小值为148 C. xy 最大值为48 D. xy 的最大值为148【答案】A 【解析】【分析】对给定式子合理变形,再利用基本不等式求解即可.【详解】由题意得234()xy xy x y =+,所以2291624()xy xy x y xy=++,所以9162424y x xy x y =++≥=48, 当且仅当916yxx y=时取等,此时6,8x y ==,故A 正确. 故选:A6. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列{}n a 是由正数组成的等方差数列,且方公差为2,135a =,则数列11nn a a ++ 的前n 项和n S =( )A.B.C.1D.1−【答案】A 【解析】【分析】借助所给新定义与等差数列定义可得数列{}n a 通项公式,再利用裂项相消法计算即可得解.【详解】由题意可得2212n n a a +−=,则数列{}2n a 是以21a 为首项,2为公差的等差数列, 则()22121n a a n =+−,由135a =,故()22131213125a a =+−=,即11a =(负值舍去), 故()212121n a n n =+−=−,故na =的的则11n n a a +=+12,故12nS =+++ 故选:A.7. 某医院要派2名男医生和4名女医生去A ,B ,C 三个地方义诊,每位医生都必须选择1个地方义诊.要求A ,B ,C 每个地方至少有一名医生,且都要有女医生,同时男医生甲不去A 地,则不同的安排方案为( ) A. 120种 B. 144种 C. 168种 D. 216种【答案】D 【解析】【分析】先求出2名男医生到3地的可能结果,再安排4名女医生,结合分步乘法计数原理计算即可求解. 【详解】设2名男医生分别为甲、乙, 若乙去A ,则甲可能去B 或C ,有2种结果; 若乙去B ,则甲可能去B 或C ,有2种结果; 若乙去C ,则甲可能去B 或C ,有2种结果, 共有6种结果;将4名女医生分配到A ,B ,C 三个地方,分为211三组,可能的结果有21342322C C A 36A =种, 所以满足题意的有636216×=种结果. 故选:D8. 已知定义在R 上的函数()()2e x axf x x a −+=∈R ,设()f x 的极大值和极小值分别为,m n ,则mn 的取值范围是( ) A. e ,2−∞−B.1,2e −∞−C. e ,02−D. 1,02e−【答案】B 【解析】【分析】求出函数的导数,利用导数求出,m n ,结合韦达定理用a 表示mn ,再求出指数函数的值域得解. 【详解】()()()22222e e 21e −+−+−+′′=+−++=−+xaxx ax x ax f x x ax x x ax ,令()221g x x ax =−++,显然函数()g x 的图象开口向下,且()01g =, 则函数()g x 有两个异号零点12,x x ,不妨设120x x <<,有12121,22+==−ax x x x , 而2e 0xax−+>恒成立,则当1x x <或2x x >时,()0f x ′<,当12x x x <<时,()0f x '>,因此函数()f x 在()1,x −∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又当0x <时,()0f x <恒成立,当0x >时,()0f x >恒成立,且()00f =, 于是()f x 的最大值()22222e −+==x ax m f x x ,最小值()21111e −+=x ax nf x x ,于是()()()222221212121121241212e12e e −−+++−++++===−a x x ax ax x x a x x x x mn x x x x ,由a ∈R ,得[)211,4a−∈−+∞,2141e ,e −∈+∞a ,则2141e,212e −∈−∞−− a ,所以mn 的取值范围是1,2e−∞−. 故选:B.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知变量x 和变量y 的一组成对样本数据(),i i x y (1,2,,i n =⋅⋅⋅)的散点落在一条直线附近,11ni i x x n ==∑,11ni i y y n ==∑,相关系数为r ,线性回归方程为ˆˆˆybx a =+,则( )参考公式:r =()()()121ˆniii nii x x y y bx x ==−−=−∑∑.A. 当r 越大时,成对样本数据的线性相关程度越强B. 当0r >时,ˆ0b> C. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的相关系数r ′满足r r ′= D. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的线性回归方程ˆˆˆydx c =+满足ˆˆdb = 【答案】BCD 【解析】【分析】根据线性相关、相关系数、线性回归方程等知识,对选项逐一分析,即可得到答案. 【详解】对于A ,当r 越接近1时,成对样本数据的线性相关程度越强,故A 错误;对于B ,当0r >时,成对样本数据正相关,相关系数r 与符号ˆb相同,则ˆ0b >,故B 正确; 对于C ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故相关系数r 的表达式中的分子和分母均不变,故C 正确;对于D ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故线性回归方程中的斜率的表达式中的分子和分母均不变,所以ˆˆdb =,故D 正确; 综上所述,正确的有B 、C 、D. 故选:BCD.10. 已知(),,a b c a b c <<∈R ,且230a b c ++=,则( ) A. 0<<a c B. ,a c ∃使得22250a c −= C. a c +可能大于0 D.212b c a c +<−+ 【答案】AD 【解析】【分析】对于A ,据已知条件变形即可证明;对于B ,根据已知得50a c +>,得05ac >−>,即可证明;对于C ,据已知条件变形即可证明;对于D ,将条件变形为()2a c b c +=−+,再利用0ca c<+即可证明结论.【详解】对于A ,由a b c <<及230a b c ++=, 得623230a a a a a b c =++<++=,所以a<0, 又023236a b c c c c c =++<++=,所以0c >,A 正确;对于B ,由a b c <<及230a b c ++=,得230a c c ++>,所以50a c +>,得05ac >−>, 所以2225a c >,得22250a c −<,B 错误; 对于C ,由abc <<及230a b c ++=,得33230a c a b c +<++=,所以0a c +<, C 错误.对于D ,由230a b c ++=,得()2a c b c +=−+,所以212b c b c c b c c ca c a c a c a c a c++++==+=−++++++. 因0a c +<,0c >,所以0ca c <+,所以212b c a c +<−+,D 正确. 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法,其基本思想是:通过对待排序序列{}12,,,n x x x …从左往右,依次对相邻两个元素{}()1,1,2,,1k k x x k n +=…−比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4最终完成了冒泡排序,同样地,序列{}1,4,2,3需要依次交换{}{}4,2,4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序()3n ≥,设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则( ) A. 序列{}2,7,1,8是需要交换3次的序列B. ()12n n n a −=为C. 1n b n =−D. 59c =【答案】BCD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,n ,由题意可判断A 中序列交换次数;再根据等差数列前项和公式即可判断B ;得出只要交换1次的序列的特征即可判断C ;利用累加法求出通项公式即可判断D.【详解】对A ,序列{}2,7,1,8,比较{}2,7,无需交换位置,比较{}7,1,需要交换1次位置,得到新序列{}2,1,7,8,比较{}7,8,无需交换位置,最后比较{}2,1,需要交换1次位置,得到新序列{}1,2,7,8,完成冒泡排序,共需要交换2次,故A 错误;对B ,不妨设序列的n 个元素为1,2,3,n ,交换次数最多的序列为{},1,2,1n n − , 将元素n 冒泡到最右侧,需交换次1n −次, 将元素n -1冒泡到最右侧,需交换次2n −次,,故共需要()()()()()1111122122n n n n n n −+−−−+−+++==,即最大交换次数()12n n n a −=,故正确;对C ,只要交换1次的序列是将{}1,2,3,n 中的任意相邻两个数字调换位置的序列,故有1n −个这样的序列,即1n b n =−,故C 正确;对D ,当n 个元素的序列顺序确定后,将元素n +1添加进原序列, 使得新序列(共n +1个元素)交换次数也是2, 则元素n +1在新序列的位置只能是最后三个位置, 若元素n +1在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素n +1在新序列的倒数第二个位置,则会增加1次交换, 故原序列交换次数为1(这样的序列有个1n b n =−), 若元素n +1在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个),因此,111n n n c c n c n ++−++,所以5432479c c c c =+=+=+,显然20c =, 所以59c =,故D 正确. 故选:BCD.【点睛】关键点点睛:在解与数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数()()ln ,ex xf x f x =′为()f x 的导函数,则()1f ′的值为______. 【答案】1e##1e − 【解析】【分析】首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.【详解】因为()211e ln ln e e x x x x x x x f x −−==′, 所以()11ln1111e ef− ′ ==.故答案为:1e. 13. ()62x x y −+的展开式中53x y 的系数为______.(用数字作答) 【答案】60− 【解析】【分析】根据二项式展开式有关知识求得正确答案.【详解】因为()25323··x y x x y =,而()62x x y −+表示6个因式相乘, 在6个因式中,有2个选2x ,1个x −,3个选y所以()62x x y −+的展开式中含有53x y 项为()()222133643C ?C ?C x x y −, 所以()62x x y −+中含有53x y 项的系数为()213643C ?C ?1?C 60−=−. 故答案为:60−.14. 设,A B 是一个随机试验中的两个事件,且117(),(),()3412P A P B P AB AB ==+=,则()P A B =∣______. 【答案】13【解析】【分析】根据对立事件的概率与互斥事件的概率计算公式求解即可.【详解】因为11(),()34P A P B ==,故()()23,34P A P B ==,因为,AB AB 互斥,所以()0P ABAB =, 所以()()()B P P A AB AB B P A ++=()()()()P B P AB P A P AB =−+−()21234P AB =+− ()11721212P AB =−=, 解得()16P AB =,所以()()()()()()11146|134P AB P B P AB P AB P B P B −−====. 故答案为:13.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 已知集合402x M x x−=≥ −,非空集合{123}N x m x m =−<<−∣,(1)若3m =时,求M N ∩;(2)是否存在实数m ,使得R x M ∈ 是R x N ∈ 必要不充分条件?若存在,求实数m 的取值范围;若不恶在,请说朋理由.【答案】(1){23}∣∩=<<M N xx (2)存在,72m >的【解析】【分析】(1)由分式不等式化简{24}M xx =<≤∣,即可由交集的定义求解, (2)将问题转化为M ⫋N ,即可列不等式求解. 【小问1详解】 集合40{24}2x M xx x x−=≥=<≤ −∣当3m =时,非空集合{23}N x x −<<∣ {23}M N x x ∴∩=<<∣【小问2详解】假设存在实数m ,使得R x M ∈ 是R x N ∈ 的必要不充分条件,则R N ⫋R M ,即M ⫋N ,则�2mm −3>41−mm ≤2,解得72m >.故存在实数72m >,使得R x M ∈ 是R x N ∈ 的必要不充分条件. 16. 树人中学对某次高三学生的期末考试成绩进行统计,从全体考生中随机抽取48名学生的数学成绩()x 和物理成绩()y ,得到一些统计数据:484811115280,,6i i i i x y ===∑∑,其中,i i x y 分别表示这48名同学的数学成绩和物理成绩,1,2,,48,i y = 与x 的相关系数0.77r =. (1)求y 关于x 的线性回归方程;(2)从概率统计规律看,本次考试该校高三学生的物理成绩ξ服从正态分布()2,N µσ,用样本平均数y作为µ的估计值,用样本方差2s 作为2σ的估计值.试求该校高三共1000名考生中,物理成绩位于区间()63.05,95.9的人数Z 的数学期望.附:①回归方程ˆˆˆy abx =+中:()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==−−==−−∑∑②相关系数r =③若()2,N ηµσ,则()()0.68,220.95P P µσηµσµσηµσ−≤≤+≈−≤≤+≈④48221110.9548i i y y =−=≈∑ 【答案】(1)0.4227.8ˆyx +(2)815 【解析】【分析】(1)根据题意,利用公式,求得ˆ0.42b=,得到ˆ27.8a =,即可得到回归方程; (2)根据题意,得到()74,120N η∼,求得(63.0595.9)0.815P η<<=,结合正态分布()74,120Z N ∼,得到()815E Z =,即可求解.【小问1详解】解:由题中数据可得,48481111110,744848i i i i x x y y =====∑∑,由480.77x x y y r−−,可得60.770.411ˆ2b =×=, 可得8ˆ741100.4227.a=−×=,所以回归方程为0.4227.8ˆy x +.【小问2详解】解:由()48482222111174,1204848i i i i y s y y y y ====−=−=∑∑,所以()74,120N η∼, 10.95≈,所以(63.0584.95)0.68,(52.195.9)0.95P P ηη<<=<<=, 所以0.680.95(63.0595.9)0.8152P η+<<==, 因为()1000,0.815ZB ∼,所以()10000.815815E Z =×=, 所以物理成绩位于区间()63.05,95.95的人数Z 的数学期望为815.17. 已知等差数列{}n a 的前n 项利为25,6,45n S a S ==,数列{}n b 的前n 项和为()1312nnT =−. (1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈ = =∈ ,求()*1222121n n n a c a c a c n −+++∈N . 【答案】(1)3n a n =,13n n b −=(2)1333n n +−− 【解析】【分析】(1)设出公差,由等差数列通项公式和求和公式基本量计算得到方程,求出首项和公差,得到通项公式,再利用11,1,2n nn S n b S S n −= = −≥ 求出{}n b 的通项公式;(2)变形得到()11222121333213nn n n n a c a c a c n −−+++=+⋅++− ,错位相减法求和,【小问1详解】设{}n a 的公差为d ,由题设得11651045a d a d +=+= ,解得13,3a d ==,所以3n a n =, 当2n ≥时,11113,1n n n n b T T b T −−=−===,也符合上式,所以13n n b −=;【小问2详解】20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈= =∈ , ()1222121113090321n n n n n a c a c a c b b n b −−+++=+++++−()()113321n n b b n b −=+++− ()1333213n n n −+⋅++− ,记()1333213nn W n −+⋅++− ①,则()()121333233213n n W n n −−=+⋅++−+− ②,②-①得,()()()11613232323213212322313n n n n n W n n n −−−=+⋅++⋅−−=+−−=⋅−−− ,故1333n W n +−−,所以11222121333n n n n a c a c a c n +−+++=−−18. (1)如图,在一条无限长的轨道上,一个质点在随机外力的作用下,从位置0出发,每次向左或向右移动一个单位的概率都为12,设移动n 次后质点位于位置n X .(i )求随机变量4X 的概率分布列及()4E X ; (ii )求()n E X ;(2)若轨道上只有0,1,2,n …这1n +个位置,质点向左或右移动一个单位的概率都为12,若在0处,则只能向右移动;现有一个质点从0出发,求它首次移动到n 的次数的期望.【答案】(1)(i )分布列见解析,0;(ii )0;(2)2n . 【解析】【分析】(1)由题意分析出随机变量4X 可能取值,根据独立重复试验概率公式计算相应的概率,从而得出分布列;质点向右移动的次数设为随机变量Y ,则Y 服从二项分布,则随机变量n X 可以用Y 表示,从而求得()n E X ;(2)根据题意先设首次从k 到n 的步数期望为k a ,从而得出101221+−=+=+−k k a a a k k a ,再由1(21)−=+∑n k k 求和,由0na=可得20a n =.【详解】(1)(i )4X 可能取值为4,2,0,2,4−−,()44114216P X =−==, ()131441112C 224P X =−==,.()222441130C 228P X ===, ()313441112C 224P X ===,()44114216P X ===, 所以随机变量4X 的分布列为:()()()4113114202401648416E X ∴=×−+×−+×+×+×=; (ii )设质点n 次移动中向右移动的次数为Y ,显然每移动一次的概率为12,则1,2Y B n∼, ()2n X Y n Y Y n =−−=−,所以()()12202n E X E Y n n n =−=××−=.(2)设首次从k 到n 的步数期望为k a ,则有()()11111122k k k a a a +−=+++,所以112k k k k a a a a +−−=−+,可得1012k k a a k a a +−=+−.又小球在0处,只能向前移动到1,则有011a a −=, 所以1200(21)n n k a a k n −=−=+=∑,又有0n a =,则20a n =.【点睛】关键点点睛:(1)关键是分析出该问题属于独立重复试验,分析求解即可;(2)关键是设首次从k 到n 的步数期望为k a ,从而构造出1012k k a a k a a +−=+−,分析出011a a −=且0n a =,即可求解. 19. 已知函数()1ex x f x +=. (1)求函数()f x 的单调区间;(2)证明()0,x ∈+∞时,12e e ln x x x x f x x −− −≥⋅;(3)若对于任意的()0,x ∈+∞,关于x 的不等式22e 2ln x mx x x x −≥−−恒成立,求实数m 的取值范围. 【答案】(1)增区间为(),0∞−,减区间为[)0,∞+ (2)证明见解析 (3)1,2−∞【解析】【分析】(1)求出导函数,再根据导函数正负求出单调区间即可;(2)证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.; (3)分类情况讨论转化恒成立问题求参. 【小问1详解】()()()2e 1e e ex x x x x x f x −+−==′, 当0x <时,()0f x ′>;当0x >时,()0f x ′<,()f x ∴的增区间为(),0∞−,减区间为[)0,∞+.【小问2详解】令1ln (0)t x x x =−−>,111x t x x−′=−=, 当01x <<时,0t ′<;当1x >0t ′>,∴当1x =时,min 00t t =∴≥即1ln 0x x −−≥,原不等式等价于2e 1e x tt f x − +≥⋅ ()2e x f t f x −⇔≥,()f x 为()0,∞+上的减函数,2e 0,0x t x−≥>,∴只需证明2e x t x−≤即2ln 2e 1ln e x x x x x x −−−−−≤=1e t t −⇐≤, 令()()()11e 01e t t g t t t g t −−=−≥=−′, 当01t ≤≤时,()0g t ′>,当1t >时,()0g t ′<,()()1min ()100e t g t g g t t −∴==∴≤∴≤∴原不等式成立.【小问3详解】当12m ≤时,由(2)知2e 1ln x x x x −≥−−又0x >,22e ln x x x x x −∴≥−−22ln mx x x x ≥−−,∴原不等式在()0,∞+上恒成立.当12m >时,令()()2ln 110x x x ϕϕ=−−=−< . ()422ln20ϕ=−>,()x ϕ∴在()1,4内必有零点,设为0x ,则002ln x x −=,020e x x −∴=, ()020*******e 12ln 122120x x ax x ax x a x x x −∴+−+=+−+−=−<,0220000e 2ln 0x ax x x x −∴−++<,而0220000e 2ln x ax x x x −<−−,综上所述实数m 的取值范围是1,2−∞.【点睛】方法点睛:证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.。

高二数学下学期期末考试试卷 文含解析 试题

高二数学下学期期末考试试卷 文含解析 试题

2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。

在每一小题给出的四个选项里面,选出符合题目要求的一项。

,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。

常州市2022-2023学年高二下学期期末考试数学试题含答案

常州市2022-2023学年高二下学期期末考试数学试题含答案

常州市教育学会学业水平监测高二数学 2023年6月注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知z 为复数,z 为z 的共轭复数,且||15i z z =−+,则z 的虚部是A .5iB .5i −C .5D .-52.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列选项中能得出a ⊥b 的是A .a ⊂α,b ⊥β,α∥βB .a ⊥α,b ⊥β,α∥βC .a ⊥α,b ∥β,α⊥βD .a ⊂α,b ∥β,α⊥β3.投掷3枚质地均匀的正方体骰子,观察正面向上的点数,则对于这3个点数,下列说法正确的是A .有且只有1个奇数的概率为18B .事件“都是奇数”和事件“都是偶数”是对立事件C .在已知有奇数的条件下,至少有2个奇数的概率为47D .事件“至少有1个是奇数”和事件“至少有1个是偶数”是互斥事件4.已知平面上的三点A ,B ,C 满足||2||AB BC = =,,向量AB 与BC 的夹角为45°,且()BC AB AB λ−⊥,则实数λ= A .0B .1C .-2D .25.一个不透明的盒子里装有10个大小形状都相同的小球,其中3个黑色、7个白色,现在3个人依次从中随机地各取一个小球,前一个人取出一个小球记录颜色后放回盒子,后一个人接着取球,则这3个人中恰有一人取到黑球的概率为A .310B .21733103A A A ⋅ C .3210C 0.70.3⨯⨯ D .123C 0.70.3⨯⨯6.已知圆锥的高为1,体积为π,则过圆锥顶点作圆锥截面的面积最大值为AB .2C.D .3π7.对一个十位数1234567890,现将其中3个数位上的数字进行调换,使得这3个数字都不在原来的数位上,其他数位上的数字不变,则可以得到不同的十位数(首位不为0)的个数为 A .120B .232C .240D .3608.正四棱锥S ABCD −,各侧棱长为2,各顶点都在同一个球面上,则过球心与底面平行的平面截得的台体体积是 ABCD二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知复数123z z z ,,,则下列说法正确的有 A .123231z z z z z z ⋅⋅=⋅⋅B .11222()(0)z zz z z =≠ C .若1212||||z z z z −=+,则120z z ⋅= D .若1223z z z z ⋅>⋅,则13||||z z >10.下列说法正确的有A .在ABC ∆中,0BC CA ⋅<,则ABC ∆为锐角三角形B .已知O 为ABC ∆的内心,且o o 3060A B = =,,则320OA OB OC ++=C .已知非零向量 ,a b 满足:242⋅= =+ ,a b a c a b ,则||||⋅b c b c 的最小值为12D .已知(12)(11)= = ,,,a b ,且a 与λ+a b 的夹角为钝角,则实数λ的取值范围是5()3−∞−,11.某课外兴趣小组在探究学习活动中,测得()x y ,的10组数据如下表所示:由最小二乘法计算得到线性回归方程为11ˆˆy a b x =+,相关系数为;经过观察散点图,分析残差,把数据(16889) ,去掉后,再用剩下的9组数据计算得到线性回归方程为22ˆˆˆy a b x =+,相关系数为.则 A .12ˆˆaa < B .12ˆˆb b < C .2212r r <D .12ˆˆ00b b > >, 12.已知在棱长为4的正方体1111ABCD A B C D −中,点O 为正方形1111A B C D 的中心,点P 在棱1CC 上,下列说法正确的有 A .BD PO ⊥B .当直线AP 与平面11BCC B 所成角的正切值为45时,3PC =C .当1PC =时,点1C 到平面1APD 的距离是32D .当2PC =时,以O 为球心,OP 为半径的球面与侧面11ABB A 三、填空题:本题共4小题,每小题5分,共20分.13.101(2)2x +的展开式中二项式系数最大的项的系数是 .(用数字作答)14.在平面直角坐标系xOy 中,已知0)(01)A B ,,,以A 为旋转中心,将线段AB 按顺时针方向旋转30°,得到线段AC ,则向量AB 在向量AC 上的投影向量的坐标是 . 15.已知平面四边形ABCD ,o 90ADC ∠=,34AB BC CD AD === =,,则AC BD ⋅= .16.已知在矩形ABCD 中,2AB BC = =,P 为AB 的中点,将ADP ∆沿DP 翻折,得到四棱锥1A BCDP −,则二面角1A DC B −−的余弦值最小是 .12r四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)设z 是虚数,在平面直角坐标系xOy 中,1z z z,,对应的向量分别为OA OB OC ,,.(1)证明:O B C ,,三点共线; (2)若31z =,求向量OA OC +的坐标.18.(12分)如图,在六面体1111ABCD A B C D −中,11AA CC ,平面11AAC C ⊥菱形ABCD .证明:(1)11B B D D ,,,四点共面; (2)1BD DD ⊥.19.(12分)在平面直角坐标系中三点A ,B ,C 满足(12)(23)AB AC = =− ,,,,D E ,分别是线段BC AC ,上的点,满足22BD CD CE AE = =,,AD 与BE 的交点为G . (1)求BGD ∠的余弦值; (2)求向量AG 的坐标.A 1B 1C 1D 1DCBA20.(12分)某种季节性疾病可分为轻症、重症两种类型,为了解该疾病症状轻重与年龄的关系,在某地随机抽取了患该疾病的3s 位病人进行调查,其中年龄不超过50岁的患者人数为s ,轻症占56;年龄超过50岁的患者人数为2s ,轻症占13. (1)完成下面的22⨯列联表.若要有99%以上的把握认为“该疾病症状轻重”与“年龄”有关,则抽取的年龄不超过50岁的患者至少有多少人?附:2()()()()()n ad bc a b c d a c b d χ−=++++(其中n a b c d =+++),2 6.6350.01()P χ=>. (2)某药品研发公司安排甲、乙两个研发团队分别研发预防此疾病的疫苗,两个团队各至多安排2个周期进行疫苗接种试验,每人每次疫苗接种花费t (0t >)元.甲团队研发的药物每次疫苗接种后产生抗体的概率为p (01p <<),根据以往试验统计,甲团队平均花费为236tp t −+.乙团队研发的药物每次疫苗接种后产生抗体的概率为q (01q <<),每个周期必须完成3次疫苗接种,若第一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个疫苗接种周期.假设两个研发团队每次疫苗接种后产生抗体与否均相互独立.若p q <,从两个团队试验的平均花费考虑,该公司应如何选择团队进行药品研发?21.(12分)记1011()(1)n n n n n n f x x a x a x a x a −−=+=++++,*n ∈N .(1)化简:1(1)ni i i a =+∑;(2)证明:12()2()()()n n n k n f x f x kf x nf x +++2+++++(*n ∈N )的展开式中含项的系数为221(1)C n n n +++.22.(12分)如图,在多面体EF ABCD −中,底面ABCD 是菱形,且CE ⊥底面ABCD ,AFCE ,1AC CD CE AF ====,点M 在线段EF 上.(1)若M 为EF 的中点,求直线AM 和平面BDE 的距离; (2)试确定M 点位置,使二面角D AM B −−的余弦值为3567−.F EDCBA常州市教育学会学业水平监测高二数学(参考答案)一、选择题:本题共8小题,每小题5分,共40分.1.D 2.A 3.C 4.D 5.D 6.B 7.B 8.C 二、选择题:本题共4小题,每小题5分,共20分. 9.AB10.BD11.BCD12.ABD三、填空题:本题共4小题,每小题5分,共20分.13.25214.3()2,15.7216四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.解:(1)设i 0z a b b =+ ≠,,则i z a b =−,a b ∈R ,, 所以()OB a b = −,. ……………………2分 2211i i a b z a b a b −==++,所以222211()OC a b OB a b a b= −=++,. 所以OB OC .……………………4分 又因为O 为公共点,所以O B C ,,三点共线. ……………………5分 (2)因为31z =,则2(1)(1)0z z z −++=,又因为z 是虚数,所以210z z ++=. ……………………8分2111z z z z++==−,所以(10)OA OC +=− ,. ……………………10分 18.证明:(1)由11AA CC ,1AA ⊄平面11BCC B ,1CC ⊂平面11BCC B ,所以1AA 平面11BCC B .……………………2分 又因为1AA ⊂平面11ABB A ,平面11ABB A ⋂平面111BCC B BB =, 所以11AA BB . ……………………4分 同理:11AA DD ,所以11BB DD ,所以11B B D D ,,,四点共面. ……………………6分 (2)菱形ABCD 中AC BD ⊥,又因为平面11AAC C ⊥平面ABCD , 且平面11AAC C平面ABCD AC =,BD ⊂平面ABCD ,所以BD ⊥平面11AA C C .……………………10分因为1AA ⊂平面11AA C C ,所以1BD AA ⊥, 由(1)有11AA DD ,所以1BD DD ⊥. ……………………12分19.解:(1)因为22BD CD BD CD = =,,所以128(1)333AD AB AC =+=− ,. ……………………2分 又125(,1)333BE BC BA =+=−−. ……………………4分5833cos BGD −+∠==.……………………6分 (2)由A G D ,,三点共线,1233AG AD AB AC λλλ==+, 又1(1)(1)3AG AB AE AB AC μμμμ=+−=+−. ……………………8分由平面向量基本定理,得1321(1)33λμλμ⎧= ⎪⎨⎪=−⎩,.……………………10分 所以17μ=,所以1238()7777AG AB AC =+=− ,. ……………………12分 20. (1) 列联表如下:……………………2分要有99%以上的把握认为“该疾病症状轻重”与“年龄”有关,则225423()26363 6.635333222s s s s s s s s s s χ⨯−⨯==>⨯⨯⨯. ……………………4分 解得9.9525s >,由题意知,s 的最小整数值为12.所以抽取的年龄不超过50岁的患者至少有12人. ……………………6分(2)甲研发团队试验总花费为X 元,根据以往试验统计得2()36E X tp t =−+, 设乙研发团队试验总花费为Y 元,则Y 的可能取值为3t ,6t ,所以223323(3)(1)23P Y t C q q q q q ==−+=−+,32(6)123P Y t q q ==+−,所以323232()3(23)6(123)696E Y t q q t q q tq tq t =−+++−=−+. ……………………10分 因为01p q <<<,所以3222()()696(36)6(1)0E Y E X tq tq t tp t tq q −=−+−−+<−<, 所以乙团队试验的平均花费较少,所以该公司应选择乙团队进行研发. ……………………12分21.(1)11(1)(1)nnii n i i i a i C ==+=+∑∑. ……………………2分1211(1)23(1)nin nn n n n n i i CC C nC n C −=+=+++++∑,012111(1)23(1)n i n nn n n n n n i i C C C C nC n C −=++=++++++∑. ……………………4分右侧倒序相加得,012112(1(1))(2)()(2)2ni n nn nn n n n n i i C n C C C C C n −=++=++++++=+∑,所以11(1)(2)21nn i i i a n −=+=+−∑. ……………………6分(2)(1)2(2)()()f x n f x n kf x n k f x n ++ +++ +++ 2,,,,的展开式中含n x 项的系数为123223n n nnn n n n C C C nC +++++++,因为1()!()!()!(1)(1)!!!(1)!(1)!(1)!nn n k n k n k n k n k kC kn n C n k n k n k ++++++===+=+−+−. …………………9分 所以含n x 项的系数为:1111123212322111223223(1)()(1)()n n nn n n n n n n n n n n n n n n n n n n n n C C C nC n C C C C n C C C C +++++++++++++++++++++=+++++ =+++++ 211332221(1)()(1).n n n n n n n n n C C C n C +++++++ =++++ =+……………………12分22.(1)连接BD 交AC 于O ,取EF 中点G ,因为四边形ABCD 为菱形, 所以AC BD ⊥,O 为AC 中点. 因为AFCE ,AF CE =,所以四边形ACEF 为平行四边形. 因为O G ,分别为AC EF ,中点, 所以OG CE .因为CE ⊥平面ABCD ,AC BD ⊂,平面ABCD , 所以CE AC CE BD ⊥ ⊥,, 所以OG AC OG BD ⊥ ⊥,. ……………………3分 以O 为原点,建立如图空间直角坐标系O xyz −, 则3311(00)(001)(00)(00)(01)2222A MB D E − − ,,,,,,,,,,,,,,,所以31(300)(1)22BD BE = = − ,,,,,,设平面BDE 的法向量0000()n x y z = ,,, 0000n BD n BE ⎧=⎪⎨=⎪⎩,,所以00003031022x x y z ⎧=⎪⎨−+=⎪⎩,,所以01(021)(01)2n AM = = − ,,,,,. ……………5分 0102102n AM =−+=,设A 到平面BDE 距离为d ,00||351(0)225||AB n AB d n = ==,,,,所以直线AM 和平面BDE 的距离为55. ………7分(2)设11(01)[]22M m m ∈− ,,,,,31(0)(011)22AD AM m = − = − ,,,,,,31(0)22AB =− − ,,, 设平面ADM ,平面ABM 的法向量分别为11112222()()n x y z n x y z = = ,,,,,, 12120000AD n AB n AM n AM n ⎧⎧= = ⎪⎪⎨⎨= = ⎪⎪⎩⎩,,,,取1233(133)(133)22n m n m = −+ = − −,,,,,.………9分 因为二面角D AM B −−的余弦值为3567−,所以2121221213()2352|cos |||167||||3()42m n n n n n n m −+< >===−+,. 解得1344m = ,(舍),即14FM FE =. ……………………12分OABCDEFxyz G。

长沙市2021_2022学年高二数学下学期期末试题(含答案)

长沙市2021_2022学年高二数学下学期期末试题(含答案)

长沙市2021-2022学年 高二数学下学期期末试题一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合{}|2A x x =≥,{}1|3B x x =-<<,则A B ⋂=( ) A.{}|2x x ≥B.{}|23x x ≤<C.{}2|x x <D.{}|12x x -≤<2.已知123a =,122b =,3log 2c =,则a ,b ,c 的大小关系为( ) A.a b c << B.b a c <<C.c a b <<D.c b a <<3.函数()221xf x x =-的图象大致为( ) A. B.C. D.4.点A 的坐标为(1,3),将点A 绕原点逆时针旋转4π后到达C 点位置,则C 的横坐标为( )A. B.-2C.D.5.为了宣传2022年北京冬奥会和冬残奥会,某学校决定派小明和小李等5名志愿者将两个吉祥物“冰墩墩”和“雪容融”安装在学校的体育广场,每人参与且只参与一个吉祥物的安装,每个吉祥物都至少由两名志愿者安装,若小明和小李必须安装不同的吉祥物,则不同的分配方案种数为( ) A.8B.10C.12D.14★6.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是( )A.在区间(-2,1)上,()f x 是增函数B.当2x =时,()f x 取到极小值C.在区间(1,3)上,()f x 是减函数D.在区间(4,5)上,()f x 是增函数7.已知函数()e ,0,ln ,0,x x f x x x ⎧≤=⎨>⎩()()g x f x x a =++.若()g x 存在2个零点,则a 的取值范围是( ) A.[)1,0-B.[)0,+∞C.[)1,-+∞D.[)1,+∞ 8.若函数()()sin 03f x x πωω⎛⎫=+> ⎪⎝⎭在,2ππ⎛⎫⎪⎝⎭上单调,且在0,3π⎛⎫ ⎪⎝⎭上存在极值点,则ω的取值范围是( ) A.17,26⎛⎤⎥⎝⎦B.1,22⎡⎫⎪⎢⎣⎭C.1,23⎛⎤ ⎥⎝⎦D.70,6⎛⎤ ⎥⎝⎦二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分) 9.已知复数5i12iz =+,则下列各项正确的为( ) A.复数z 的虚部为iB.复数2z -为纯虚数C.复数z 的共轭复数对应的点在第四象限D.复数z 10.如图,在ABC △中,2AB =,3AC =,60BAC ∠=︒,2DB AD =,2CE EB =.设AB 在AC 上的投影向量为AC λ,则下列命题正确的是( )A.λ的值为12B.λ的值为13C.199DE =D.193DE =11.已知定义在R 上的函数()f x 满足()()f x f x =-,()()11f x f x +=-,且当[]0,1x ∈时,()22f x x x =-+,则下列结论正确的是( )A.()f x 的图象关于直线1x =对称B.当[]2,3x ∈时,()266f x x x =-+-C.当[]2,3x ∈时,()f x 单调递增D.()20220f =12.关于函数()1ln f x x x=+,下列说法正确的是( ) A.()1f 是()f x 的极大值 B.函数()y f x x =-有且只有1个零点C.()f x 在(0,1)上单调递减D.设()()g x xf x =,则1e g g⎛⎫< ⎪⎝⎭三、填空题(本题共4小题,每小题5分,共20分) 13.()()42121xx ++的展开式中3x 的系数为______.14.已知随机变量X 服从正态分布()22,N σ,且()2 2.50.36P X <≤=,则()2.5P X >=______.15.若函数()()()lg 1lg 1f x ax x =---在区间[)2,+∞上是增函数,则a 的取值范围是______.16.费马点是指到三角形三个顶点距离之和最小的点,当三角形三个内角均小于120°时,费马点在三角形内,且费马点与三个顶点连线正好三等分费马点所在的周角,即该点对三角形三边的张角相等,均为120°.已知ABC △的三个内角均小于120°,P 为ABC △的费马点,且3PA PB PC ++=,则ABC △面积的最大值为______.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.★18.(12分)在5道试题中有3道代数题和2道几何题,每次从中随机抽出1道题,抽出的题不再放回,求:(1)第1次抽到代数题且第2次抽到几何题的概率;(2)在第1次抽到代数题的条件下,第2次抽到几何题的概率.19.(12分)已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,满足sin sin 1sin sin sin sin A b BB C b A c B+=++.(1)求角C ;(2)CD 是ACB ∠的角平分线,若3CD =,ABC △的面积为c 的值. 20.(12分)设平面向量213sin ,cos 2a x x ⎛⎫=- ⎪⎭,()cos ,i b x =-,函数()f x a b =⋅. (1)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域; (2)若锐角α满足124f α⎛⎫=⎪⎝⎭,求2cos 23πα⎛⎫+⎪⎝⎭的值. 21.(12分)某靶场有A 、B 两种型号的步枪可供选用,其中甲使用A 、B 两种型号的步枪的命中率分别为14,13. (1)若出现连续两次子弹脱靶或者子弹打光耗尽的现象便立刻停止射击,若击中标靶至少3次,则可以获得一份精美礼品,若甲使用B 型号的步枪,并装填5发子弹,求甲获得精美礼品的概率;(2)现在A 、B 两把步枪中各装填3发子弹,甲打算轮流使用A 、B 两种步枪进行射击,若击中标靶,则继续使用该步枪,若未击中标靶,则改用另一把步枪,甲首先使用A 种型号的步枪,若出现连续两次子弹脱靶或者其中某一把步枪的子弹打光耗尽的现象便立刻停止射击,记X 为射击的次数,求X 的分布列与数学期望. 22.(12分)已知函数()()21ln 2a f x xb x x =-+-,且当0a =时,()f x 的最大值为-1. (1)当0a =时,求()f x 的图象在点()()1,1f 处的切线方程; (2)当()1,e a ∈时,证明:()f x 的极大值小于23-. 参考答案一、二选择题 1.B 2.D 3.A 4.D 5.C 6.D 7.C 8.A 9.BCD10.BD11.ACD12.BCD3.A 【解析】由题可得函数()f x 定义域为{}|1x x ≠±,且()()221xf x f x x --==--,故函数为奇函数,故排除BD ,由()4203f =>,1143234f ⎛⎫==- ⎪⎝⎭-,故C 错误,故选A.4.D 【解析】设角α的终边过()1,3A ,则sin α==cos α=,r =, 将α绕原点按逆时针方向旋转4π,得β,则4πβα=+,设C 的坐标为(),x y ,则3cos 42102x r πβα⎛⎫==+=-⨯= ⎪⎝⎭⎭则点C的横坐标为.故选D.5.C 【解析】按除去小明和小李后,剩余3人与小明同组的人数确定分组方法,即1233C C 6+=种方法,这两组安装吉祥物的方法为22A =2,故按要求这五人共有6212⨯=种方法.故选C.6.D 【解析】在(4,5)上()0f x '>恒成立,∴()f x 是增函数.7.C 【解析】函数()()g x f x x a =++存在2个零点,即关于x 的方程()f x x a =--有2个不同的实根,即函数()f x 的图象与直线y x a =--有2个交点,作出直线y x a =--与函数()f x 的图象如图所示,由图可知,1a -≤,解得1a ≥-.8.A 【解析】依据函数在,2ππ⎛⎫⎪⎝⎭上单调,可知2ω≤,计算出函数的对称轴,然后根据函数在所给区间存在极值点可知76ππω≥,最后计算可知结果.因为()f x 在,2ππ⎛⎫⎪⎝⎭上单调,所以T π≥,则2ππω≥,由此可得2ω≤.因为当32x k ππωπ+=+,即()6x k k ππ=+∈Z 时,函数取得极值,欲满足在0,3π⎛⎫⎪⎝⎭上存在极值点,因为周期T π≥,故在0,3π⎛⎫⎪⎝⎭上有且只有一个极值,故第一个极值点63x ππω=<,得12ω>.又第二个极值点776122x πππω=≥>,要使()f x 在,2ππ⎛⎫ ⎪⎝⎭上单调,必须76ππω≥,得76ω≤.综上可得,ω的取值范围是17,26⎛⎤⎥⎝⎦.故选A. 9.BCD 【解析】()()()5i 15i 5i2i 12i 12i 12i z -===+++-,复数z 的虚部为1,故A 错误;复数22i 2i z -=+-=为纯虚数,故B 正确;复数z 的共轭复数对应点(2,-1)在第四象限,故C 正确;z ==D 正确.故选BCD.10.BD 【解析】AB 在AC 上的投影向量为111cos 2233AC AB BAC AC AC AC ⋅∠=⨯⋅=,∴13λ=. ()212111333333DE DB BE AB BC AB AC AB AB AC =+=+=+-=+, ()()2221111194291322399929DE DE AB ACAB AC ⎛⎫==+=+⋅+=+⨯⨯⨯= ⎪⎝⎭, ∴193DE =. 11.ACD 【解析】因()()11f x f x +=-,则有函数()f x 图象关于直线1x =对称,A 正确; 由()()11f x f x +=-得()()2f x f x +=-,又R 上的函数()f x 满足()()f x f x =-,因此有()()2f x f x +=,于是得函数()f x 是周期为2的周期函数,当[]2,3x ∈时,[]20,1x -∈,则()()()()22222268f x f x x x x x =-=--+-=-+-,B 不正确;当[]2,3x ∈时,()268f x x x =-+-,因此()f x 在[2,3]上单调递增,C 正确;函数()f x 是周期为2的周期函数,则()()202200f f ==,D 正确;故选ACD. 12.BCD 【解析】()1ln f x x r =+,()0,x ∈+∞,()22111x f x x x x-'=-+=, ()0,1x ∈时,()0f x '<,此时函数()f x 单调递减;()1,x ∈+∞时,()0f x '>,此时函数()f x 单调递增,可得:函数()f x 在1x =时取极小值即最小值,()11f =,∴A 不正确,而C 正确.令()()h x f x x =-,则()()2221110x x x h x x x --+-'=-=<,因此函数()h x 在()0,x ∈+∞上单调递减,而()10h =,因此函数()h x 只有一个零点1,因此B 正确.()()1ln g x xf x x x ==+,()ln 1g x x '=+在()0,x ∈+∞上单调递增,而10e g ⎛⎫'= ⎪⎝⎭,∴1e x =是函数()g x 的极小值点,∴1e g g⎛⎫< ⎪⎝⎭,因此D 正确.故选BCD.三、填空题 13.1214.0.14【解析】∵随机变量X服从正态分布()22,N σ,∴()()2 2.5 2.50.5P X P X <≤+>=,∴()2.50.50.360.14P X >=-=,故答案为:0.14. 15.112a <<【解析】由题意可得:()1lg1ax f x x -=-, ∵lg y x =在定义域上是单调增函数,且函数()()()lg 1lg 1f x ax x =---在区间[)2,+∞上是增函数, ∴1111ax a y a x x --==+--在[)2,+∞上是增函数,∴10a -<,∴1a <, 当01a <<时,函数的定义域为1,a ⎛⎫+∞ ⎪⎝⎭,∴12a <,∴12a >,当0a ≤时,定义域为∅,∴112a <<.16. 4【解析】 ∵()()222292PA PB PC PA PB PC PA PB PA PC PB PC =++=+++⋅+⋅+⋅()3PA PB PA PC PB PC ≥⋅+⋅+⋅,∴3PA PB PA PC PB PC ⋅+⋅+⋅≤.∴()1sin12024ABC S PA PB PA PC PB PC =⋅+⋅+⋅︒≤△,当且仅当PA PB PC ==时,等号成立. 四、解答17.【解析】(1)当12x ≤-时,()()()2113f x x x x =-+--=-, 当112x -<<时,()()()2112f x x x x =+--=+, 当1x ≥时,()()()2113f x x x x =++-=,则(),,,13212123,,,1x x f x x x x x ⎧-≤-⎪⎪⎪=+-<<⎨⎪≥⎪⎪⎩画出()y f x =的图象.(2)当[)0,x ∈+∞时,()f x ax b ≤+,当0x =时,()020b a f =≤⋅+,∴2b ≥,当0x >时,要使()f x ax b ≤+恒成立, 则函数()f x 的图象都在直线y ax b =+的下方或在直线上,∵()f x 的图象与y 轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当3a ≥且2b ≥时,不等式()f x ax b ≤+在[)0,+∞上成立,即a b +的最小值为5.18.【解析】(1)设事件A 表示“第1次抽到代数题”,事件B 表示“第2次抽到几何题”, 则()35P A =,()3235410P AB =⨯=. (2)由(1)可得,在第1次抽到代数题的条件下,第2次抽到几何题的概率为()()()3110325P AB P B A P A ===.19.【解析】(1)由正弦定理及sin sin 1sin sin sin sin A b B B C b A c B +=++,知21a b b c ab bc+=++,化简得,222a b c ab +-=.由余弦定理知,2221cos 222a b c ab C ab ab +-===,因为()0,C π∈,所以3C π=.(2)因为ABC △的面积11sin 22S ab C ab ===8ab =, 由角平分线定理知AD b BD a =,因为A ,D ,B 三点共线,所以a b CD CA CB a b a b=+++, 所以()22222a b ab CD CA CB CA CB a b a b a b ⎛⎫⎛⎫=++⋅⋅ ⎪ ⎪++⎝⎭⎝⎭+, 即()222161232ab ab ab ab a b a b a b ⎛⎫⎛⎫=++⋅⋅ ⎪ ⎪++⎝⎭⎝⎭+,化简得,()()()2223163643ab a b a b ⨯==++, 解得6a b +=,所以()2222362820a b a b ab +=+-=-⨯=,由(1)知,22220812c a b ab =+-=-=,所以c =. (第2小问,用面积和得6a b +=做更简便)20.【解析】(1)()211cos cos sin 2cos 2sin 22226f x x x x x x x π⎛⎫=-+=-=- ⎪⎝⎭. 当2,0x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, ∴1sin 2162,x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,即函数()f x 的值域为112,⎡⎤-⎢⎥⎣⎦. (2)1sin 264f απα⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,1cos cos sin 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=--=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, ∴22217cos 22cos 1213348ππαα⎛⎫⎛⎫⎛⎫+=+-=⨯--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 21.【解析】(1)甲击中5次的概率为5113243⎛⎫= ⎪⎝⎭,甲击中4次的概率为4511110C 133243⎛⎫⎛⎫-⋅=⎪ ⎪⎝⎭⎝⎭, 甲击中3次的概率为()32251128C 3133243⎛⎫⎛⎫-⋅-=⎪ ⎪⎝⎭⎝⎭, 所以甲获得精美礼品的概率为11028391324324324324381++== (2)X 的所有可能取值为2,3,4,5,()1132121143432P X ⎛⎫⎛⎫==-⨯-=⨯= ⎪ ⎪⎝⎭⎝⎭,()11111331114434416P X ⎛⎫⎛⎫==⨯-⨯-+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()11111115411111433433424P X ⎛⎫⎛⎫⎛⎫⎛⎫==-⨯⨯⨯+-⨯⨯-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()111111111111551111111144334334443348P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⨯-⨯⨯-⨯+-⨯⨯-⨯⨯+⨯-⨯⨯⨯=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以X 的分布列为:所以()2345216244812E X =⨯+⨯+⨯+⨯=. 22.【解析】(1)()f x 的定义域为()0,+∞. 当0a =时,()ln f x b x x =-. ①若0b ≤,因为11ln 2122f b ⎛⎫=-->-⎪⎝⎭,所以不满足题意. ②若0b >,()1bf x x'=-.当0x b <<时,()0f x '>,当x b >时,()0f x '<, 所以()f x 在()0,b 上单调递增,在(),b +∞上单调递减, 故x=b 是()f x 在()0,+∞上的唯一最大值点. 由于()11f =-,所以1b =.所以()11f x x'=-,()10f '=, 故所求切线方程为()101y x +=⨯-,即切线方程为1y =-.11 (2)()()()()11111x ax f x a x x x--'=-+-=, 令()0f x '=,得11x =,21x a =, 当1a e <<时,111e a <<,因为当10x a<<时,()0f x '>, 当\frac{1}{a}<x<1时,f'\left(x\right)<0,当x>1时,()0f x '>,所以()f x 在0,1a ⎛⎫ ⎪⎝⎭上是增函数,在11,a ⎛⎫ ⎪⎝⎭上是减函数,在()1,+∞上是增函数. 所以()f x 的极大值为2111111ln ln 1222a a f a a a a a a ⎛⎫⎛⎫=-+-=--- ⎪ ⎪⎝⎭⎝⎭. 设()1ln 122a g a a a=---,其中()1,a e ∈, 则()()2222211112102222a a a g a a a a a --+'=+-==>, 所以()g a 在()1,e 上是增函数,所以()()1111122232222233e g a g e e e e ⎛⎫⎛⎫<=--=--<--=- ⎪ ⎪⎝⎭⎝⎭,即()f x 的极大值小于23-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18. 证:(1)EF//AC , EF ⊥BD , EF ⊥BB 1 ,
可知EF ⊥平面BDD 1B 1, …………2分 又EF ⊂面B 1EF ,
111B BDD EFB 面面⊥∴. …………4分
(2)在对角面BDD 1B 1中,作D 1H ⊥B 1G ,垂足为H ,易证D 1H ⊥面B 1EF
H D d 1=∴在,sin ,1111111H B D B D H D HB D Rt ∠⋅=∆中 …………6分
1111111111111114,sin sin 81
(3)3
1116212323
B D B EF
B B D B B D B H B GB GB d D H U U EFD U B EF d S ∆∴===∠=∠==∴==
==-=-=⋅⋅=⋅=⋅⋅⋅⋅⋅⋅分

19 解析:(1)设分数在[70,80)内的频率为x ,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x =1,可得x =0.3, -------------------------2分
所以频率分布直方图如图所示:
-------------------------------4分
(2)平均分为x =45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.
----------------------------------6分
(3)成绩在[40,60)内的有0.25×60=15(人),在[60,80)内的有0.45×60=27(人),在[80,100]
内的有 0.3×60=18(人),易知ξ的可能取值是0,1,2,3,4, ----------------------------8分
则P (ξ=0)=C 215C 260=7118,P (ξ=1)=C 115C 1
27
C 260=27118,P (ξ=2)=C 115C 118+C 227C 2
60=207590
, P (ξ=3)=C 127C 118C 260=81295,P (ξ=4)=C 218
C 260=51590

所以ξ的分布列为
10分
Eξ=0×
7118+1×27118+2×207590+3×81295+4×51
590
= 2.1. -------------------------12分
20.解:(1)∵ABB 1A 1是菱形,∠A 1AB=60°,且M 为A 1B 1的中点,
∴BM ⊥A 1B 1, …………2分 又A 1B 1∥AB ,∴MB ⊥AB.平面ABB 1A 1⊥平面ABC , ∴MB ⊥平面ABC.
又AC ⊂平面ABC ,∴BM ⊥AC . …………6分 (2)作CN ⊥AB 于N ,由于△ABC 为正三角形,知N 为AB 为中点,又平面ABB 1A 1⊥平面ABC ,∵CN ⊥平面A 1ABB 1,作NE ⊥MB 于E 点,连CE ,由三垂线定理可知CE ⊥BM ,
∴∠NEC 为二面角A 1—BM —C 的平面角.………9分 由题意可知CN=3,在Rt △CNE 中,,
3NE
NEC tg =
∠要∠NEC 最小,只要NE 取最大值.
又∵△A 1B 1B 为正三角形,∴当M 为A 1B 1中点时,MB ⊥平面ABC ,即E 与B 重合. 此时NE 取最大值且最大值为1,∴3≥∠NEC tg . ∴∠NEC 的最小值为60°, ……10分
此时2
133121311
1
=⨯⨯⨯⨯==--B MA C CB A M V V . ……14分
21(文) 解:(Ⅰ)当a=2时,32()631,()3(22f x x x x f x x x '=-++=--
当(,2x ∈-∞时()0,()f x f x '>在(,2-∞单调增加;
当(2x ∈时()0,()f x f x '<在(2单调减少;
当(2)x ∈+∞时()0,()f x f x '>在(2)+∞单调增加;
综上所述,()f x 的单调递增区间是(,2-∞和(2)+∞,
()f x 的单调递减区间是(2
(Ⅱ)363)(2'+-=ax x x f ,由0)('=x f 得0122
=+-ax x ,
当0442
≤-=∆a ,即11≤≤-a 时,()0,()f x f x '≥为增函数,故()f x 无极值点;
当442
-=∆a >0,即a <1-或a >1时,()0f x '=有两个根. 根据题意,()0f x '=在区间(2,3
a f a f 1830)3(,1215)2(''-=-=.
抛物线363)(2
'
+-=ax x x f 中,对称轴为a x =
. 当()0f x '=在区间(2,3)中有一个根时,得
(1) ⎩⎨
⎧<--=⋅>-<0
)1830)(1215()3()2(1
,1'
'
a a f f a a 或.
当()0f x '=在区间(2,3)中有两个根时,得
(2) ⎪⎪⎩
⎪⎪⎨⎧<<>-=>-=>-<3201830)3(01215)2(1
,1'
'
a a f a f a a 或.
由(1)解得
55
43
a <<,而(2)无解, 因此a 的取值范围是5543⎛⎫
⎪⎝⎭
,. (理)(Ⅰ)()()()()'
'1,01,00kx f
x kx e f f =+==,
曲线()y f x =在点(0,(0))f 处的切线方程为y x =. (Ⅱ)由()()'
10kx f
x kx e =+=,得()1
0x k k =-≠,
若0k >,则当1,x k ⎛⎫∈-∞-
⎪⎝

时,()'
0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫
∈-
+∞ ⎪⎝⎭
时,()'0f x >,函数()f x 单调递增, 若0k <,则当1,x k ⎛
⎫∈-∞-
⎪⎝

时,()'
0f x >,函数()f x 单调递增, ' '
)x
当1,,x k ⎛⎫
∈-
+∞ ⎪⎝⎭
时,()'0f x <,函数()f x 单调递减, (Ⅲ)由(Ⅱ)知,若0k >,则当且仅当1
1k
-
≤-, 即1k ≤时,函数()f x ()1,1-内单调递增, 若0k <,则当且仅当1
1k
-
≥, 即1k ≥-时,函数()f x ()1,1-内单调递增,
综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1- .
22.(1)2
21a a b ===,所以椭圆的方程是2
212
x y +=, 联立直线方程,化简为2222(21)4220k x k x k +-+-=
设A(11,x y ),B(22,x y )2
12121212(1)(1)OA OB x x y y x x k x x →

∴⋅=+=+--
OA OB →

⋅=22221k k -+ (#) 令22221
k k -+=m 则2
212m k m +=
-0≥ 122m ∴-≤<,1
22
OA OB →→∴-≤⋅<
当K 不存在时,(1,22
A B -,则OA OB →→⋅=12 综上,1
22
OA OB →→
-≤⋅≤
(6分)
(2)1212(,)OA OB x x y y →

⋅=++1212)y y x x ∴-+=+,
1212(1)(1))k x k x x x ∴--+-=+
由韦达定理知 0k =或k =
#)得20OA OB →→
⋅=-或
当2OA OB →

⋅=-时,A,O,B 共线,不存在外接圆
当0OA OB →→⋅=时,OA OB →→
⊥,外接圆直径为AB ,圆心为
122x x y ++1y (,)22即4(,55
-
2
21825r OC ==
,22418()(5525
x y ∴-++= (12分)。

相关文档
最新文档