[专升本类试卷]江苏省专转本(高等数学)模拟试卷64.doc
近十年江苏省专转本高等数学试题分类整理
江苏省普通高校“专转本”统一考试高等数学专转本高数试卷结构知识分类与历年真题●函数、极限和连续●一元函数微分学●一元函数积分学●向量代数与空间解析几何●多元函数微积分●无穷级数●常微分方程时间排序与参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案◆20XX年高等数学真题参考答案江苏省普通高校“专转本”统一考试高等数学试卷结构全卷满分150分一、单选题(本大题共6小题,每小题4分,满分24分) 二、填空题(本大题共6小题,每小题4分,满分24分) 三、解答题(本大题共8小题,每小题8分,满分64分) 四、综合题(本大题共2小题,每小题10分,满分20分) 五、证明题(本大题共2小题,每小题9分,满分18分)知识分类与历年真题一、函数、极限和连续(一)函数(0401)[](]333,0()0,2xx f x x x ⎧∈-⎪=⎨-∈⎪⎩是()A.有界函数B.奇函数C.偶函数D.周期函数(0801)设函数)(x f 在),(+∞-∞上有定义,下列函数中必为奇函数的是()A.()y f x =-B.)(43x f x y = C.()y f x =-- D.)()(x f x f y -+=(二)极限(0402)当0→x 时,x x sin 2-是关于x 的()A.高阶无穷小B.同阶无穷小C.低阶无穷小D.等价无穷小(0407)设xx x x f ⎪⎭⎫⎝⎛++=32)(,则=∞→)(lim x f x .(0601)若012lim 2x x f x →⎛⎫ ⎪⎝⎭=,则0lim 3x xx f →=⎛⎫ ⎪⎝⎭() A.21 B.2C.3D.31 (0607)已知0→x 时,(1cos )a x ⋅-与x x sin 是等价无穷小,则=a .(0613)计算311lim1x x x →--. (0701)若0(2)lim2x f x x→=,则1lim 2x xf x →∞⎛⎫= ⎪⎝⎭( ) A.41B.21 C.2D.4(0702)已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x n sin 又是x cos 1-的高阶无穷小,则正整数=n ( ) A.1B.2C.3D.4(0813)求极限:32lim xx x x →∞-⎛⎫⎪⎝⎭. (0901)已知22lim32x x ax bx →++=-,则常数b a ,的取值分别为( ) A.2,1-=-=b a B.0,2=-=b a C.0,1=-=b a D.1,2-=-=b a(0907)已知lim 2xx x x C →∞⎛⎫= ⎪-⎝⎭,则常数=C . (1001)设当0x →时,()sin f x x x =-与()ng x ax =是等价无穷小,则常数,a n 的值为 ( )A.1,36a n == B.1,33a n == C.1,412a n == D.1,46a n ==(1007) 1lim 1xx x x →∞+⎛⎫= ⎪-⎝⎭. (1101)当0→x 时,函数1)(--=x e x f x是函数2)(x x g =的( ) A.高阶无穷小 B.低阶无穷小C.同阶无穷小 D.等价无穷小(1107)已知22lim kxx x e x →∞-⎛⎫= ⎪⎝⎭,则=k _________. (1201)极限1sin 3lim 2sin x x x x x →∞⎛⎫+= ⎪⎝⎭( ) A.0B.2C.3D.5(1301)当0x →时,函数()ln(1)f x x x =+-是函数2()g x x =的( ) A.高阶无穷小B.低阶无穷小C.同阶无穷小D.等价无穷小(1310)设10lim xx a x e a x →+⎛⎫=⎪-⎝⎭,则常数a =. (三)连续(0413)求函数xxx f sin )(=的间断点,并判断其类型. (0501)0=x 是xx x f 1sin)(=的( ) A.可去间断点B.跳跃间断点C.第二类间断点D.连续点(0513)设()2sin 0()0f x xx F x xa x +⎧≠⎪=⎨⎪=⎩在R 内连续,并满足0)0(=f ,(0)6f '=,求a . (0602)函数21sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处( ) A.连续但不可导 B.连续且可导 C.不连续也不可导 D.可导但不连续(0608)若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.(0707)设函数1(1)0()20x kx x f x x ⎧⎪+≠=⎨⎪=⎩,在点0=x 处连续,则常数=k .(0807)设函数21()(1)x f x x x -=-,则其第一类间断点为.(0808)设函数0()tan 30a x x f x x x x+≥⎧⎪=⎨<⎪⎩在点0=x 处连续,则a =.(0902)已知函数423)(22-+-=x x x x f ,则2=x 为)(x f 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.震荡间断点(1123)设210arctan ()1010sin 2ax axe x ax x x xf x x e x x ⎧---<⎪⎪⎪==⎨⎪-⎪>⎪⎩,问常数为何值时:(1)0=x 是函数)(x f 的连续点? (2)0=x 是函数)(x f 的可去间断点? (3)0=x 是函数)(x f 的跳跃间断点? (1202)设()2(2)sin ()4x xf x x x -⋅=⋅-,则函数)(x f 的第一类间断点的个数为( ) A.0B.1C.2D.3(1207)要使函数()1()12xf x x =-在点0=x 处连续,则需补充定义(0)f =_________.(1303)设sin 20()011xx x f x x x x ⎧<⎪⎪=⎨⎪>⎪+-⎩,这点0x =是函数()f x 的( )A.跳跃间断点B.可去间断点C.无穷间断点D.连续点(1307)设1sin0()0x x f x xa x ⎧≠⎪=⎨⎪=⎩在点0x =处连续,则常数a =. 二、一元函数微分学(一) 导数与微分(0403)直线L 与x 轴平行且与曲线x e x y -=相切,则切点的坐标是( ) A.()1,1 B.()1,1- C.()0,1- D.()0,1 (0409)设()(1)(2)()f x x x x x n =+++,N n ∈,则=)0('f .(0415)设函数)(x y y =由方程1=-yxe y 所确定,求22d d x yx=的值.(0502)若2=x 是函数1ln 2y x ax ⎛⎫=-+ ⎪⎝⎭的可导极值点,则常数=a ( ) A.1-B.21C.21- D.1 (0514)设函数)(x y y =由方程cos sin cos x t y t t t =⎧⎨=-⎩所确定,求d d y x 、22d d yx .(0614)若函数)(x y y =是由参数方程2ln (1)arctan x t y t t⎧=+⎨=-⎩所确定,求d d y x 、22d d yx .(0708)若直线m x y +=5是曲线232++=x x y 的一条切线,则常数=m .(0714)设函数)(x y y =由方程xy e e yx=-确定,求d d x yx=、22d d x y x =.(0802)设函数)(x f 可导,则下列式子中正确的是( )A.0(0)()lim(0)x f f x f x →-'=- B.000(2)()lim ()x f x x f x f x x→+-'=C.0000()()lim()x f x x f x x f x x ∆→+∆--∆'=∆ D.0000()()lim 2()x f x x f x x f x x∆→-∆-+∆'=∆ (0814)设函数)(x y y =由参数方程sin 1cos x t t y t =-⎧⎨=-⎩(2t n π≠,n Z ∈)所决定,求d d y x 、22d d y x .(0903)设函数00()1sin 0x f x x x x α≤⎧⎪=⎨>⎪⎩在点0=x 处可导,则常数α的取值范围为( ) A.10<<αB.10≤<αC.1>αD.1≥α(0914)设函数)(x y y =由参数方程2ln (1)23x t y t t =+⎧⎨=+-⎩所确定,d d y x 、22d d yx . (0923)已知函数0()10x e x f x x x -⎧<=⎨+≥⎩,证明函数)(x f 在点0=x 处连续但不可导.(1008).若(0)1f '=,则0()()limx f x f x x→--=.(1014)设函数()y y x =由方程2x yy ex ++=所确定,求d d y x 、22d d y x . (1022)设()0()1x x f x xx ϕ⎧≠⎪=⎨⎪=⎩,其中函数()x ϕ在0x =处具有二阶连续导数,且(0)0ϕ=,(0)1ϕ'=,证明:函数()f x 在0x =处连续且可导.(1102)设函数)(x f 在点0x 处可导,且4)()(lim000=+--→hh x f h x f h ,则=')(0x f ( )A.4-B.2-C.2D.4(1110)设函数x y arctan =,则1d x y==_____________.(1114)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧=++=22ty e tt x y 所确定,求d d y x . (1208)设函数()22221xy x x x e =⋅+++,则=)0()7(y ________.(1209)设xy x =(0x >),则函数y 的微分=dy ___________.(1214)设函数)(x y y =由参数方程⎪⎩⎪⎨⎧+=-=tt y tt x ln 212所确定,求d d y x 、22d d y x . (1304)设1y f x ⎛⎫= ⎪⎝⎭,其中f 具有二阶导数,则22d d y x =( )A.231121f f x x x x ⎛⎫⎛⎫'''-+ ⎪ ⎪⎝⎭⎝⎭ B.231121f f x x x x ⎛⎫⎛⎫'''+ ⎪ ⎪⎝⎭⎝⎭ C.231121f f x x x x ⎛⎫⎛⎫'''--⎪ ⎪⎝⎭⎝⎭D.231121f f x x x x ⎛⎫⎛⎫'''-⎪ ⎪⎝⎭⎝⎭(1306)已知函数()f x 在点1x =处连续,且21()1lim 12x f x x →=-,则曲线()f x 在点()1,()f x 处切线方程为( )A.1y x =-B.22y x =-C.33y x =-D.44y x =-(1309)设函数由参数方程2211x t y t ⎧=+⎨=-⎩所确定,则221d d t yx ==.(二)中值定理及导数的应用(0423)甲、乙二城位于一直线形河流的同一侧,甲城位于岸边,乙城离河岸40公里,乙城在河岸的垂足与甲城相距50公里,两城计划在河岸上合建一个污水处理厂,已知从污水处理厂到甲乙二城铺设排污管道的费用分别为每公里500、700元.问污水处理厂建在何处,才能使铺设排污管道的费用最省?(0507)02limsin x x x e e xx x-→--=-. (0508)函数x x f ln )(=在区间[]1,e 上满足拉格郎日中值定理的=ξ. (0521)证明方程:0133=+-x x 在[]1,1-上有且仅有一根.(0603)下列函数在[]1,1-上满足罗尔定理条件的是( ) A.xe y =B.1y x =+C.21x y -= D.xy 11-= (0621)证明:当2x ≤时,332x x -≤.(0703)设函数()(1)(2)(3)f x x x x x =---,则方程()0f x '=的实根个数为( ) A.1B.2C.3D.4(0713)求极限01lim tan x x e x x x→--.(0722)设函数9)(23-++=cx bx ax x f 具有如下性质:(1)在点1-=x 的左侧临近单调减少; (2)在点1-=x 的右侧临近单调增加; (3)其图形在点(1,2)的两侧凹凸性发生改变. 试确定a ,b ,c 的值.(0724)求证:当0>x 时,22(1)ln (1)x x x -⋅≥-.(0809)已知曲线543223++-=x x x y ,则其拐点为. (0821)求曲线1y x=(0x >)的切线,使其在两坐标轴上的截距之和最小,并求此最小值. (0823)设函数)(x f 在闭区间[]0,2a (0a >)上连续,且)()2()0(a f a f f ≠=,证明:在开区间(0,)a 上至少存在一点ξ,使得()()f f a ξξ=+. (0824)对任意实数x ,证明不等式:(1)1x x e -⋅≤. (0904)曲线221(1)x y x +=-的渐近线的条数为( ) A.1B.2C.3D.4(0913)求极限30lim sin x x x x→-.(0921)已知函数13)(3+-=x x x f ,试求: (1)函数)(x f 的单调区间与极值; (2)曲线)(x f y =的凹凸区间与拐点;(3)函数)(x f 在闭区间[2,3]-上的最大值与最小值.(0924)证明:当12x <<时,24ln 23x x x x >+-.(1002)曲线223456x x y x x -+=-+的渐近线共有 ( )A.1条B.2条C.3条D.4条 (1006)设3()3f x x x =-,则在区间(0,1)内 ( )A.函数()f x 单调增加且其图形是凹的B.函数()f x 单调增加且其图形是凸的C.函数()f x 单调减少且其图形是凹的D.函数()f x 单调减少且其图形是凸的 (1013)求极限2|011lim tan x x x x →⎛⎫-⎪⎝⎭.(1021)证明:当1x >时,121122x e x ->+. (1103)若点(1,2)-是曲线23bx ax y -=的拐点,则( ) A.3,1==b a B.1,3-=-=b a C.3,1-=-=b a D.6,4==b a(1113)求极限()()22limln 1xx x eex -→-+.(1121)证明:方程()2ln 12x x ⋅+=有且仅有一个小于2的正实根.(1122)证明:当0>x 时,x x201120102011≥+. (1203)设232152)(xx x f -=,则函数)(x f ( )A.只有一个最大值B.只有一个极小值C.既有极大值又有极小值D.没有极值(1213)求极限()2302cos 2lim ln 1x x x x x →+-+. (1223)证明:当10<<x 时,361arcsin x x x +>. (1302)曲线22232x xy x x +=-+的渐近线共有( )A.1条B.2条C.3条D.4条(1313)求极限01lim ln (1)x x e x x →⎡⎤-⎢⎥+⎣⎦.(1323)证明:当1x >时,2(1ln )21x x +<-.三、一元函数积分学(一)不定积分(0410)求不定积分32arcsin d 1x x x=-⎰.(0416)设)(x f 的一个原函数为xe x,计算(2)d x f x x '⎰.(0503)若()d ()f x x F x C =+⎰,则sin (cos )d x f x x =⎰( )A.C x F +)(sinB.C x F +-)(sinC.C F +(cos)D.C x F +-)(cos(0515)计算3tan sec d x x x ⎰.(0522)设函数)(x f y =的图形上有一拐点(2,4)P ,在拐点处的切线斜率为3-,又知该函数的二阶导数6y x a ''=+,求)(x f .(0604)已知2()d x f x x e C =+⎰,则()d f x x '-=⎰( )A.C ex+-22B.C e x +-221 C.C e x +--22 D.C e x +--221(0615)计算1ln d xx x+⎰. (0622)已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程. (0704)设函数)(x f 的一个原函数为x 2sin ,则(2)d f x x '=⎰( )A.C x +4cosB.C x +4cos 21C.C x +4cos 2D.C x +4sin(0715)求不定积分2d xx e x -⎰.(0810)设函数)(x f 的导数为x cos ,且21)0(=f ,则不定积分()d f x x =⎰. (0815)求不定积分3d 1x x x +⎰. (0905)设()ln (31)F x x =+是函数)(x f 的一个原函数,则(21)d f x x '+=⎰( )A.C x ++461 B.C x ++463 C.C x ++8121 D.C x ++8123(0915)求不定积分sin21d x x +⎰.(1015)求不定积分arctan d x x x ⎰.(1115)设)(x f 的一个原函数为x x sin 2,求不定积分()d f x x x⎰. (1215)求不定积分sin 2d x x x ⎰. (1315)求不定积分sin 2d x x x ⎰.(二)定积分(0404)2228R y x =+设所围的面积为S ,则222208d R R x x -⎰的值为( )A.SB.4S C.2SD.S 2 (0421)证明:0(sin )d (sin )d 2x f x x f x x πππ=⎰⎰,并利用此式求20sin d 1cos xxx xπ+⎰.(0509)1211d 1x x xπ-+=+⎰.(0516)计算10arctan d x x ⎰.(0609)设)(x f 在[]0,1上有连续的导数且(1)2f =,10()d 3f x x =⎰,则1()d x f x x '=⎰.(0616)计算220cos d x x x π⎰.(0709)定积分()223241cos d x x x x --+⎰的值为.(0716)计算定积分212221d x x x-⎰. (0811)定积分1212sin d 1xx x -++⎰的值为.(0816)求定积分10d xe x ⎰.(0916)求定积分:212d 2x x x-⎰.(1009)定积分31211d 1x x x -++⎰的值为. (1016)计算定积分403d 21x x x ++⎰. (1111)定积分()32221sin d xx x ππ-+⋅⎰的值为____________.(1116)计算定积分3d 11x xx ++⎰ . (1216)计算定积分21d 21xx x -⎰.(1316)计算定积分22d 24x x+-⎰.(1324)设函数()f x 在[,]a b 上连续,证明:[]2()d ()()d a b b aaf x x f x f a b x x +=++-⎰⎰.(三)变限积分与广义积分(0417)计算广义积分2d 1xx x +∞⋅-⎰.(0422)设函数)(x f 可导,且满足方程20()d 1()x t f t t x f x =++⎰,求)(x f .(0705)设221()sin d x f x t t =⎰,则()f x '=( )A.4sin x B.2sin 2x x C.2cos 2x x D.4sin 2x x (0803)设函数)(x f 122sin d xt t t =⎰,则()f x '等于( )A.x x 2sin 42B.x x 2sin 82C.x x 2sin 42- D.x x 2sin 82-(0908)设函数20()d x t x te t ϕ=⎰,则()x ϕ'=.(1003)设函数22()cos d t xx e t t Φ=⎰,则函数()x Φ的导数()x 'Φ等于( )A.222cos x xe x B.222cos x xe x - C.2cos xxe x - D.22cos x e x -(1108)设函数2()ln (1)d x x t t Φ=+⎰ ,则=Φ'')1(____________.(1211)设反常积分1d 2x ae x +∞-=⎰,则常数=a ______. (1222)已知定义在(),-∞+∞上的可导函数)(x f 满足方程31()4()d 3xx f x f t t x -=-⎰,试求:(1)函数()f x 的表达式; (2)函数)(x f 的单调区间与极值; (3)曲线()y f x =的凹凸区间与拐点.(1224)设0()d 0()(0)0x g t t x f x g x ⎧≠⎪=⎨⎪=⎩⎰,其中函数)(x g 在(,)-∞+∞上连续,且3cos 1)(lim 0=-→xx g x .证明:函数)(x f 在0=x 处可导,且1(0)2f '=. (1322)已知251320()95d x F x t t t ⎛⎫=- ⎪⎝⎭⎰是()f x 的一个原函数,求曲线()y f x =的凹凸区间、拐点. (四)定积分的几何应用(0523)已知曲边三角形由x y 22=、0=x 、1=y 所围成,求:(1)曲边三角形的面积;(2)曲边三角形绕x 轴旋转一周的旋转体体积.(0623)已知一平面图形由抛物线2x y =、82+-=x y 围成.(1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.(0721)设平面图形由曲线21x y -=(0≥x )及两坐标轴围成.(1)求该平面图形绕x 轴旋转所形成的旋转体的体积;(2)求常数a 的值,使直线a y =将该平面图形分成面积相等的两部分.(0822)设平面图形由曲线2x y =,22x y =与直线1=x 所围成.(1)求该平面图形绕x 轴旋转一周所得的旋转体的体积;(2)求常数a ,使直线a x =将该平面图形分成面积相等的两部分.(0922)设1D 是由抛物线22x y =和直线x a =,0y =所围成的平面封闭区域,2D 是由抛物线22x y =和直线x a =,2x =及0=y 所围成的平面封闭区域,其中20<<a .试求:(1)1D 绕y 轴旋转所成的旋转体的体积1V ,以及2D 绕x 轴旋转所成的旋转体的体积2V ; (2)求常数a 的值,使得1D 的面积与2D 的面积相等.(1023)设由抛物线2y x =(0x ≥),直线2y a =(01a <<)与y 轴所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为1()V a ,由抛物线2y x =(0x ≥),直线2y a =(01a <<)与直线1x =所围成的平面图形绕x 轴旋转一周所形成的旋转体的体积记为2()V a ,另12()()()V a V a V a =+,试求常数a 的值,使()V a 取得最小值.(1024)设函数()f x 满足方程()()2xf x f x e '+=,且(0)2f =,记由曲线'()()f x y f x =与直线1y =,x t =(0t >)及y 轴所围平面图形的面积为()A t ,试求lim ()t A t →+∞. (1124)设函数)(x f 满足微分方程()2()(1)x f x f x a x '-=-+(其中a 为正常数),且1)1(=f ,由曲线()y f x =(1x ≤)与直线1x =,0y =所围成的平面图形记为D .已知D 的面积为32. (1)求函数)(x f 的表达式;(2)求平面图形D 绕x 轴旋转一周所形成的旋转体的体积x V ; (3)求平面图形D 绕y 轴旋转一周所形成的旋转体的体积y V .(1221)在抛物线2y x =(0x >)上求一点P ,使该抛物线与其在点P 处的切线及x 轴所围成的平面图形的面积为32,并求该平面图形绕x 轴旋转一周所形成的旋转体的体积. (1321)设平面图形D 是由曲线2x y =,y x =-与直线1y =所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕x 轴旋转一周所形成的旋转体的体积.四、向量代数与空间解析几何(一)向量代数(0510)设向量{}3,4,2=-a 、{}2,1,k =b ;a 、b 互相垂直,则=k . (0610)设1=a ,⊥a b ,则()⋅+=a a b . (0710)已知a 、b 均为单位向量,且12⋅=a b ,则以a 、b 为邻边的平行四边形面积为. (0804)设向量(1,2,3)=a ,(3,2,4)=b ,则⨯a b 等于( ) A.(2,5,4)B.(2,5,4)-- C.(2,5,4)- D.(2,5,4)--(0909)已知向量{}1,0,1=-a ,{}1,2,1=-b ,则+a b 与a 的夹角为. (1010)设{}1,2,3=a ,{}2,5,k=b ,若a 与b 垂直,则常数k =.(1109)若1=a ,4=b ,2⋅=a b ,则⨯=a b ____________.(1210)设向量a 、b 互相垂直,且3=a ,2=b ,则2+=a b ________. (1308)已知空间三点(1,1,1)A ,(2,3,4)B ,(3,4,5)C ,则ABC ∆的面积为.(二)平面与直线(0518)求过点(3,1,2)A -且通过直线L :43521x y z-+==的平面方程. (0619)求过点(3,1,2)M -且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.(0719)求过点(1,2,3)且垂直于直线20210x y z x y z +++=⎧⎨-++=⎩的平面方程.(0817)设平面∏经过点(2,0,0)A ,(0,3,0)B ,(0,0,5)C ,求经过点(1,2,1)P 且与平面∏垂直的直线方程. (0917)求通过直线12213-=-=z y x 且垂直于平面02=+++z y x 的平面方程. (1017)求通过点(1,1,1),且与直线23253x ty t z t =+⎧⎪=+⎨⎪=+⎩垂直,又与平面250x z --=平行的直线的方程.(1117)求通过x 轴与直线132zy x ==的平面方程. (1217)已知平面∏通过(1,2,3)M 与x 轴,求通过(1,1,1)N 且与平面∏平行,又与x 轴垂直的直线方程.(1318)已知直线10330x y z x y z -+-=⎧⎨--+=⎩在平面∏上,又知直线23132x ty t z t=-⎧⎪=+⎨⎪=+⎩与平面∏平行,求平面∏的方程.五、多元函数微积分(一)多元函数微分学(0418)设(,)z f x y xy =-,且具有二阶连续的偏导数,求x z ∂∂、yx z∂∂∂2.(0505)设yx y x u arctan ),(=,22(,)lnv x y x y =+,则下列等式成立的是( )A.y v x u ∂∂=∂∂ B.x v x u ∂∂=∂∂ C.x v y u ∂∂=∂∂ D.yvy u ∂∂=∂∂(0517)已知函数2(sin ,)z f x y =,其中),(v u f 有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.(0611)设x e u xysin =,=∂∂xu. (0620)设2(,)z x f x xy =⋅其中(,)f u v 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.(0711)设yxz =,则全微分d z =.(0717)设(23,)z f x y xy =+其中f 具有二阶连续偏导数,求yx z∂∂∂2.(0805)函数xyz ln=在点(2,2)处的全微分d z 为( ) A.11d d 22x y -+ B.11d d 22x y + C.11d d 22x y - D.11d d 22x y --(0818)设函数,y z f x y x ⎛⎫=+ ⎪⎝⎭,其中)(x f 具有二阶连续偏导数,求y x z ∂∂∂2.(0910)设函数(,)z z x y =由方程12=+yz xz 所确定,则xz∂∂=. (0919)设函数(sin ,)z f x xy =,其中)(x f 具有二阶连续偏导数,求yx z∂∂∂2.(1011)设函数2ln4z x y =+,则10d x y z===.(1018)设()2,xz y f xy e =⋅,其中函数f 具有二阶连续偏导数,求2zx y∂∂∂.(1104)设),(y x f z =为由方程8333=+-x yz z 所确定的函数,则=∂∂==00y x yz ( )A.21-B.21C.2-D.2(1118)设)(y x y xf z ,=,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.(1204)设3ln 2z x y=+在点()1,1处的全微分为 ( )A.d 3d x y -B.d 3d x y +C.1d 3d 2x y +D.1d 3d 2x y -(1218)设函数22(,)()z f x xy x y ϕ=++,其中函数f 具有二阶连续偏导数,函数()x ϕ具有二阶连续导数,求yx z∂∂∂2.(1314)设函数(,)z z x y =由方程3331z xy z +-=所确定,求d z 及22zx∂∂.(1317)设()223,x yz fx e+=,其中函数f 具有二阶连续偏导数,求2zy x ∂∂∂.(二)二重积分(0411)交换二次积分的次序2120d (,)d x x x f x y y -=⎰⎰.(0419)计算二重积分sin d d Dy x y y ⎰⎰,其中D 由曲线x y =及x y =2所围成. (0504)设区域D 是xoy 平面上以点(1,1)A 、(1,1)B -、(1,1)C --为顶点的三角形区域,区域1D 是D 在第一象限的部分,则(cos sin )d d Dxy x y x y +=⎰⎰( )A.⎰⎰1)sin (cos 2D dxdy y x B.⎰⎰12D xydxdyC.⎰⎰+1)sin cos (4D dxdy y x xyD.0(0511)交换二次积分的次序20111d (,)d x x x f x y y --+=⎰⎰;(0524)设)(x f 为连续函数,且1)2(=f ,1()d ()d uuyF u y f x x =⎰⎰(1u >). (1)交换)(u F 的积分次序; (2)求(2)F '.(0606)设对一切x 有(,)(,)f x y f x y -=-,22{(,)|1,0}D x y x y y =+≤≥,=1D 22{(,)|1,0,0}x y x y x y +≤≥≥,则(,)d d Df x y x y =⎰⎰( )A. 0B.1(,)d d D f x y x y ⎰⎰ C.21(,)d d D f x y x y ⎰⎰ D.41(,)d d D f x y x y ⎰⎰(0612)D 为以点(0,0)O 、(1,0)A 、(0,2)B 为顶点的三角形区域,d d Dx y =⎰⎰.(0624)设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续.(1)求a 的值使得)(t g 连续;(2)求)('t g .(0720)计算二重积分22d d Dx y x y +⎰⎰,其中{}22(,)|2,0D x y x y x y =+≤≥.(0723)设0>>a b ,证明:()232d ()d ()d b b b x y xx a ayay f x e x ee f x x ++⋅=-⎰⎰⎰.(0819)计算二重积分2d d Dx x y ⎰⎰,其中D 是由曲线xy 1=,直线y x =,2x =及0=y 所围成的平面区域.(0918)计算二重积分d Dy σ⎰⎰,其中22{(,)02,2,2}D x y x x y x y =≤≤≤≤+≥.(1005)二次积分1101d (,)d y y f x y x +⎰⎰交换积分次序后得 ( ) A.1101d (,)d x x f x y y +⎰⎰B.2110d (,)d x x f x y y -⎰⎰C.2111d (,)d x x f x y y -⎰⎰D.2111(,)d x dx f x y y -⎰⎰(1019)计算d d Dx x y ⎰⎰,其中D 是由曲线21x y =-,直线y x =及x 轴所围成的闭区域.(1105)若(,)d d Df x y x y ⎰⎰可转化为二次积分1201d (,)d y y f x y x +⎰⎰ ,则积分域D 可表示为( ) A.{}(,)01,11x y x x y ≤≤-≤≤ B.{}(,)12,11x y x x y ≤≤-≤≤ C.{}(,)01,10x y x x y ≤≤-≤≤ D.{}(,)12,01x y x y x ≤≤≤≤- (1119)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线22y x =-,直线x y -=及y 轴所围成的平面闭区域. (1205)二次积分dx y x f dy y),(11⎰⎰ 在极坐标系下可化为( )A.sec 40d (cos ,sin )d f πθθρθρθρ⎰⎰ B.sec 40d (cos ,sin )d f πθθρθρθρρ⎰⎰C.sec 24d (cos ,sin )d f πθπθρθρθρ⎰⎰ D.sec 24d (cos ,sin )d f πθπθρθρθρρ⎰⎰(1220)计算二重积分d d Dy x y ⎰⎰,其中D 是由曲线1y x =-,直线2xy =及x 轴所围成的平面闭区域.(1320)计算二重积分d d Dx x y ⎰⎰,其中D 是由曲线24y x =-(0x >)与三条直线y x =,3x =,0y =所围成的平面闭区域.六、无穷级数(一)数项级数(0506)正项级数(1)∑∞=1n nu、(2)∑∞=13n nu,则下列说法正确的是( )A.若(1)发散、则(2)必发散B.若(2)收敛、则(1)必收敛C.若(1)发散、则(2)不确定D.(1)、(2)敛散性相同(0605)设∑∞=1n nu为正项级数,如下说法正确的是( )A.若0lim 0=→n n u ,则∑∞=1n n u 必收敛 B.若l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛C.若∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D.若∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛(0706)下列级数收敛的是( )A.∑∞=122n n n B.∑∞=+11n n n C.∑∞=-+1)1(1n n n D.∑∞=-1)1(n n n(0906)设α为非零常数,则数项级数∑∞=+12n n n α() A.条件收敛B.绝对收敛C.发散D.敛散性与α有关(1004)下列级数收敛的是( )A.11n nn ∞=+∑ B.2121n n n n ∞=++∑ C.11(1)n n n ∞=+-∑ D.212n n n ∞=∑(1206)下列级数中条件收敛的是( )A.1(1)21nn nn ∞=-+∑B.13(1)2nn n ∞=⎛⎫- ⎪⎝⎭∑C.21(1)nn n ∞=-∑ D.1(1)nn n ∞=-∑(1305)下列级数中收敛的是( )A.211n n n∞=+∑ B.11nn n n ∞=⎛⎫ ⎪+⎝⎭∑ C.1!2n n n ∞=∑ D.13n n n ∞=∑(二)幂级数(0412)幂级数∑∞=-12)1(n nnx 的收敛区间为. (0420)把函数21)(+=x x f 展开为2-x 的幂级数,并写出它的收敛区间. (0512)幂级数1(21)nn n x∞=-∑的收敛区间为.(0519)把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间. (0618)将函数()ln (1)f x x x =+展开为x 的幂函数(要求指出收敛区间).(0812)幂函数12nnn x n ∞=⋅∑的收敛域为. (0911)若幂函数21n nn a x n∞=∑(0a >)的收敛半径为21,则常数=a .(1012)幂级数0(1)n nn x n ∞=-∑的收敛域为.(1106)若x x f +=21)(的幂级数展开式为0()n n n f x a x ∞==∑(22x -<<),则系数=n a ( )A.n 21B.121+nC.(1)2n n- D.1(1)2nn +- (1112)幂级数01nn x n ∞=+∑的收敛域为___________. (1212)幂级数1(1)(3)3n nnn x n ∞=--⋅∑的收敛域为____________. (1312)幂级数12n nn x n∞=∑的收敛域为. 七、常微分方程(一)一阶微分方程(0520)求微分方程0'=-+xe y xy 满足1x ye ==的特解.(0617)求微分方程22x y xy y '=-的通解. (0718)求微分方程22007xy y x '-=满足初始条件12008x y ==的特解.(0820)求微分方程22xy y x '=+的通解.(0912)微分方程2(1)d (2)d 0x y x y x y +--=的通解为. (1311)微分方程d d y x yx x+=的通解为. (二)二阶线性微分方程(0406)微分方程232x y y y xe '''-+=的特解*y 的形式应为( ) A.xAxe 2 B.x e B Ax 2)(+C.xeAx 22 D.x e B Ax x 2)(+(0712)设x x e C e C y 3221+=为某二阶常系数齐次线性微分方程的通解,则该微分方程为. (0806)微分方程321y y y '''++=的通解为( )A.1221++=--x x e c e c yB.21221++=--x xe c e c y C.1221++=-x x e c e c yD.21221++=-xx ec e c y (0920)求微分方程y y x ''-=的通解. (1020)已知函数xy e =和2xy e-=是二阶常系数齐次线性微分方程0y py qy '''++=的两个解,试确定常数p 、q 的值,并求微分方程xy py qy e '''++=的通解.(1120)已知函数(1)xy x e =+⋅是一阶线性微分方程2()y y f x '+=的解,求二阶常系数线性微分方程)(23x f y y y =+'+''的通解.(1219)已知函数)(x f 的一个原函数为xxe ,求微分方程)(44x f y y y =+'+''的通解. (1319)已知函数()y f x =是一阶微分方程d d yy x=满足初始条件(0)1y =的特解,求二阶常系数非齐次线性微分方程32()y y y f x '''-+=的通解.时间排序与参考答案20XX 年高等数学真题参考答案1、A .2、B .3、C .4、B .5、A .6、D .7、1-e .8、32241-+==-z y x .9、!n .10、C x +4arcsin 41. 11、12201d (,)d d (,)d yy y f x y x y f x y x -+⎰⎰⎰⎰.12、()3,1-.13、解:间断点为πk x =(Z k ∈),当0=x 时,1sin lim)(lim 00==→→xxx f x x ,为可去间断点;当πk x =(0≠k ,Z k ∈)时,∞=→xxx sin lim0,为第二类间断点.14、解:原式0430(tan sin )d tan sin limlim312xx x t t tx xx x →→--==⎰233001tan (1cos )12lim lim 121224x x x x x x x x →→⋅-===. 15、解:0=x 代入原方程得1)0(=y ,对原方程求导得0''=--y xe e y y y ,对上式求导并将0=x 、1=y 代入,解得:22''e y =.16、解:因为)(x f 的一个原函数为x ex ,所以2')1()(x e x x e x f xx -=⎪⎪⎭⎫ ⎝⎛=, 原式11(2)d(2)d (2)22xf x x x f x '==⎰⎰11(2)(2)d 22x f x f x x =-⎰222211(21)1(2)(2)d(2)24884x x x x x e e x x f x f x x C e C x x x--=-=-+=+⎰. 17、解:原式2111122d d 22arctan (1)12t x t tt t t t t π+∞=∞-+∞+===++⎰⎰.18、解:12zf f y x∂''=+⋅∂; []21112221221112222(1)(1)()zf f x f y f f x f x y f xy f f x y∂''''''''''''''''=⋅-+⋅++⋅-+⋅=-+-⋅+⋅+∂∂. 19、解:原式21100sin sin d d d d (1)sin d y y Dyy x y y x y y y y y ===-⎰⎰⎰⎰⎰ 1100(1)cos cos d 1sin1y y y y =--=-⎰.20、解:01111(2)()(1)24244414n n nn x f x x x ∞=-==⋅=--+-+∑)62(<<-x . 21、证:00(sin )d ()[sin ()]d ()(sin )d t xx f x xt f t t t f t I t πππππππ=-=---=-⎰⎰⎰(sin )d (sin )d (sin )d f x x x f x x f x x I πππππ=-=-⎰⎰⎰解得:0(sin )d (sin )d 2f x x f x x I x πππ==⎰⎰, 原命题证毕.222000sin sin d d arctan (cos )1cos 21cos 24x x x x x x x x ππππππ⋅==-=++⎰⎰. 22、解:等式两边求导得()2()x f x x f x '=+,即()()2f x x f x x '-=-,且(0)1f =-,x p -=,x q 2-=,而2()d 2x x xe e --⎰=,由公式求得通解:222222()2d 2x x x f x e xq x C C e -⎡⎤⎛⎫=-+=+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎰, 将初始条件(0)1f =-代入通解,解得:3-=C ,故22()23x f x e =-.23、解:设污水厂建在河岸离甲城x 公里处,则22()50070040(50)M x x x =++-(500≤≤x ),由2212(50)5007000240(50)x M x -'=+⨯⨯=+-解得:650050-=x (公里),唯一驻点,即为所求.20XX 年高等数学真题参考答案1、A .2、C .3、D .4、A .5、A .6、C .7、2.8、1-e .9、2π.10、5. 11、2111d (,)d y y y f x y x ---⎰⎰.12、(1,1)-.13、解:因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,'00()2sin ()(0)lim ()limlim 2(0)28x x x f x x f x f F x f x x→→→+-==+=+=, 解得:a F =)0(,故8=a .14、解:d d cos cos sin d d d sin d yy t t t t t t x x t t-+===--,22d ()csc d (cos )y t t x t '-=='. 15、解:原式22tan tan sec d (sec 1)d(sec )x x x xx x =⋅-⎰⎰积进去231sec d(sec )d(sec )sec sec 3x x x x x C =-=-+⎰⎰.16、解:原式211120002d 1d(1)arctan 1421x x x x x x x π+=--++⎰⎰积进去 ()12011ln 1ln 24242x ππ⎡⎤=-+=-⎣⎦.17、解:1cos z x f x ∂'=⋅∂,()21212cos 22cos zx f y y x f x y∂''''=⋅⋅=⋅∂∂. 18、解:直线L 的方向向量{}5,2,1=s ,过点()4,3,0B -,{}1,4,2AB =-;所求平面的法向量{}5218,9,22142AB =⨯==---i j kn s ,点法式为8(3)9(1)22(2)0x y z ----+=,即592298=--z y x .19、解:2222101111(1)()13216313212n nn n x x x x f x x x x x x ∞+=⎡⎤-⎛⎫=+=⋅+⋅=+⋅ ⎪⎢⎥+--⎝⎭⎣⎦+∑, 收敛域为:11<<-x .20、解:1x e y y x x '+⋅=,即1p x =,x e q x =,而1d 1x x e x-⎰=;故通解为1d xx e e C y x x C x x x ⎛⎫+=+=⎪⎝⎭⎰. 把初始条件1x ye ==解得:0=C ;故所求特解为:xe y x=.21、证:令13)(3+-=x x x f ,[]1,1x ∈-,且(1)30f -=>,(1)10f =-<,(1)(1)0f f -⋅<;由连续函数零点定理知:)(x f 在(1,1)-内至少有一实根;对于()1,1x ∈-恒有()22()33310f x x x '=-=-<,即)(x f 在(1,1)-内单调递减,故方程0133=+-x x 在[]1,1-上有且仅有一根; 原命题获证.22、解:设所求函数为)(x f y =,则有4)2(=f ,(2)3f '=-,(2)0f ''=;由()6f x x a ''=+和(2)0f ''=解得:12-=a ,即()612f x x ''=-,故21()312f x x x C '=-+,由(2)3f '=-解得:91=C ,故22396C x x x y ++-=,由(2)4f =解得:22=C ; 所求函数为:29623++-=x x x y .23、解:(1)112300111d 266S y y y ===⎰;(如图1所示) (2)()()112222012d 4x V x x x x πππ=-=-=⎰.24、解:积分区域D 为:u y ≤≤1,u x y ≤≤;(1)111()()d d ()d (1)()d u xuDF u f x x f x y x f x x σ===-⎰⎰⎰⎰⎰;(2)()(1)()F u u f u '=-,(2)(21)(2)(2)1F f f '=-==.20XX 年高等数学真题参考答案1、C .2、B .3、C .4、C .5、C .6、A .7、2. 8、)(0x f . 9、1-. 10、1.11、(sin cos )xy e y x x +. 12、1.13、解:原式322131lim 21341==--→x xx . 14、解:2211d 12d 21t t y y t t t x x t -'+==='+,2222d 1d d 122d 41t y x y t t x x t t '⎛⎫ ⎪+⎝⎭==='+. 15、解:原式3221ln d(1ln )(1ln )3x x x C =++=++⎰.16、解:原式()2222220d(sin )sin 2sin d x x x xx x πππ=-⎰⎰积进去222220sin 2sin d 2d(cos )4x xx x xx x ππππ-+⎰⎰积进去导出来yOS1x12y x=图1222202cos 2cos d 244x x x x ππππ=+-=-⎰.17、解:方程变形为2y y y x x ⎛⎫'=- ⎪⎝⎭,即得到了形如d d y y f x x ⎛⎫= ⎪⎝⎭齐次方程;令y u x =,则d d d d y u u x x x =+,代入得:2d d ux u x=-,分离变量得:211d d u x u x -=; 两边积分,得:211d d u x u x -=⎰⎰,1ln x C u =+,故ln xy x C=+. 18、解:令()ln (1)g x x =+,则(0)0g =;由于01()(1)1n n n g x x x ∞='==-+∑((]1,1x ∈-), 所以010(1)((1))d x n n n g x n x g t t ∞+='=+=-∑⎰((]1,1x ∈-),故 20(1)()1n n n f x x n ∞+=-=+∑,收敛域为:11x -<≤.19、解:由题意知:{}11,1,1=-n ,{}24,3,1=-n ;{}12311232,3,1431=⨯=-=++=-i j ks n n i j k ,故所求直线方程的对称式方程为:123123+=-=-z y x . 20、解:22z x f x ∂'=∂,2'2'''''3''2''22122221222(2)22z x f x f x f y x f x f x y f y x∂=+⋅+⋅=++∂∂. 21、证:令33)(x x x f -=,[]2,2x ∈-,由2()330f x x '=-=解得驻点:1±=x ,比较以下函数值的大小:(1)2f -=-,(1)2f =,(2)2f =-,(2)2f -=;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即332x x -≤,原命题获证.22、解:0)0(=y ,2y x y '=+,通解为:xCe x y +--=)22(;将0)0(=y 代入通解解得:2=C ,故所求特解为:xe x y 222+--=.23、解:(1)()2222648d 3S xx x -=--=⎰;(2)()()224804d 8d 16y V y y y y πππ=+-=⎰⎰.24、解:()d d d ()d ()d tt t tD f x x y x f x y t f x x ==⎰⎰⎰⎰⎰,0()d 0()0t f x x t g t a t ⎧≠⎪=⎨⎪=⎩⎰; (1)00lim ()lim()d 0t t t g t f x x →→==⎰,由)(t g 的连续性可知:0)(lim )0(0===→t g g a t ;(2)当0≠t 时,()()g t f t '=,当0=t 时,0000()d ()(0)(0)limlim lim ()(0)hh h h f x x g h g g f h f h h→→→-'====⎰; 综上,()()g t f t '=.20XX 年高等数学真题参考答案1、B .2、C .3、C .4、A .5、D .6、D .7、2ln .8、1.9、π2. 10、23.11、21d d xx y y y-. 12、06'5''=+-y y y . 13、解:212lim 21lim 1lim tan 1lim00200==-=--=--→→→→x x x x x x x x e x e x x e x x x e . 14、解:当0=x 时,0=y ;在方程xy e e yx=-两边对x 求导得:''xye e y y x y -⋅=+⋅,故d 'd x yy e y y x e x-==+; 将0=x ,0=y 代入解得:d 1d x x yy x=='==.在方程''x ye e y y x y -⋅=+⋅两边再次对x 求导得:()2'2x y y e e y e y y x y '''''-⋅-⋅=+⋅将0=x ,0=y ,01x y ='=代入解得:2200d 2d x x yy x==''==-.15、解:原式()()222d d x x x xe x e e x ---⎡⎤-=--⎣⎦⎰⎰积进去22d x x x e xe x ---+⎰导出来。
江苏省专转本高等数学模拟试卷带答案哈哈哈
专转本数学模拟试卷一.选择题(本大题共5小题,每小题2分,共10分,每项只有一个正确答案,请把所选项前的字母填在括号内) 1.若A x f x =-→)(lim 2,则对于给定的任意小的正数δ,使得当满足条件( )时,恒有ε<-A x f )((A)δ<-<00x x (B)δ<-<20x (C) δ<-<x 20 (D) δ<-<20x2.函数68x y -=的值域是( )(A)()+∞,0 (B) (]1,0 (C) ()1,0 (D) ()+∞∞-,3.⎰=)(sec xdx(A) c x x ++tan sec ln (B) c x x ++-tan sec ln (C) c x x +-cot csc ln (D) c x x +--cot csc ln 4.设在[]b a ,上0)(>x f ,0)(<'x f ,0)(>''x f ,令dx x f y b a⎰=)(1,))((2a b b f y -=,[]()a b b f a f y -+=)()(213,则有( )(A) 321y y y << (B) 312y y y << (C) 213y y y << (D) 132y y y <<5.两个非零向量a 与b垂直的充分必要条件是( )(A) 0=⋅b a(B) 0=⨯b a (C) 0=⨯a b (D) 0=⋅a a二.填空题(本大题共5小题,每小题2分,共10分,请把正确结果填在划线上) 1.方程()yx yee y x +=-确定的函数dxdy在()1,1的导数为 2. 函数x y sec =的导数为 3. xey y -=+'的通解是4.积分⎰'dx x v x u )()(=5.dx x ⎰-22sin ππ=三.计算题(本大题共14题,1-10题每题4分, 11-14题每题10分) 1. xxy cos 1sin 5+=,求导数y '2.求极限xx x x 2sin 1sinlim20→ 3.已知⎩⎨⎧=+=ty t x cos )1ln(2,求dx dy4.⎰+dx x x2cos 1cos5.⎰e edx x 1ln6.求方程xe y y y 36=-'+''的通解7.求)](cos[x f y =的一阶导数dx dy,二阶导数22dxy d8.试讨论函数x y sin =在0=x 处的连续性及可导性 9.求二重积分σd y x D⎰⎰22sin 3,其中D 为y 轴与曲线段y x cos =,22ππ≤≤-y 所围成的区域10.讨论函数)41(18363223≤≤+--=x x x x y 在何处取最大值11.设)(x f 在[]2,1上具有二阶导数)(x f '',且0)1()2(==f f ,如果)()1()(x f x x F -=,试证明至少存在一点()2,1∈ξ,使0)(=''ξF12.求由曲线)1ln(+=x y 在点()0,0处的切线与抛物线22-=x y 所围成的平面图形的面积13.设函数)(x f 在[]b a ,上连续,在()b a ,内可导,且0)()(==b f a f ,证明:在()b a ,内至少有一点ξ,使)(2)(ξξf f ='14.某公司年产量为x 百台机床,总成本为c 万元,其中固定成本为2万元,每产1百台增加1万元,市场上每年可销售此商品4百台,其销售总收入)(x R (单位:万元)是x 的函数,⎪⎩⎪⎨⎧>≤≤-=4840214)(2x x x x x R 问每年生产多少台利润最大?参考答案一.选择题1. C2. B3. A4. B5. A 二.填空题 1.ee +-11 2. x x tan sec 3.xe c x y -+=)( 4.⎰'-dx x u x v x v x u )()()()( 5.2 三.计算题1.解:'⎪⎭⎫ ⎝⎛+='x x y cos 1sin 5=2)cos 1()sin 0(sin )cos 1(cos 5x x x x x +--+⋅=x cos 15+ 2.解:x x x x 2sin 1sinlim20→=xx x x x 22sin 21sinlim 0⋅→= 0120=⨯(注意本题不可用洛必塔法则) 3.解:t t t t t t dt dx dt dydx dy 2sin )1(12sin 22+-=+-==4.解:⎰+dx x x 2cos 1cos =⎰dx xx 2cos 2cos =⎰dx x cos 121=⎰xdx sec 21=c x x ++tan sec ln 215.解:⎰e edx x 1ln =⎰11ln edx x +⎰e dx x 1ln =⎰-11ln exdx +⎰exdx 1ln=[]⎰⋅+-11111ln e edx x x x x +[]dx x x x x e e⎰⋅-111ln=)1(01110---+-+-e e e e =)11(2e- 6.解:对应的齐次方程的特征方程为062=-+λλ得2,321=-=λλ于是对应的齐次方程的通解为x xe c ec y 2231+=-(其中21,c c 是任意常数)因为3=μ不是特征根,所以设特解为xAe y 3=*代入原方程,得61=A ,x e y 361=* 故原方程的通解为xx x e e c e c y y y 3223161++=+=-*(其中21,c c 是任意常数) 7.解:[])()(sin x f x f y '-='[][]2)()(cos x f x f y '-=''[])()(sin x f x f ''-8.解:)0(0sin lim )(lim 0f x x f x x ===→→∴x y sin =在0=x 处连续又1sin lim 0sin lim )0()(lim )0(000-=-=-=-='---→→→-x x x x x f x f f x x x 1sin lim 0sin lim )0()(lim )0(000==-=-='+++→→→+xxx x x f x f f x x x ∴x y sin =在0=x 处不可导9.解:σd y xD⎰⎰22sin 3=⎰⎰-22cos 022sin 3ππy ydx x dy =⎰-2232cos sin ππydy y=⎰232cos sin 2πydy y =()⎰-2022sin sin 1sin 2πy d y y=()⎰-2042sin sin sin2πy d y y=02sin 52sin 3253π⎪⎭⎫ ⎝⎛-y y =154 10.解:)2)(3(636662+-=--='x x x x y 令0='y ,得3,)(2=-=x x 舍去计算19)1(-=y ,63)3(-=y ,46)4(-=y 故)41(18363223≤≤+--=x x x x y 在1=x 处取得最大值19)1(-=y11.证明:设)1()2()()(f x x F x G --=,则)(x G 在[]2,1上连续,在)2,1(内可导而)1()1(f G =,)2()2(f G = 于是由0)1()2(==f f 知)2()1(G G =由罗尔定理知在)2,1(内至少有一点1ξ使0)(1='ξG ,即)1()(1f F ='ξ 又由)()1()()(x f x x f x F '-+='知)1()1(f F ='显然)()1()()(x f x x f x F '-+='在[]1,1ξ上满足罗尔定理条件于是在),1(1ξ内至少有一点ξ使0)(=''ξF 即在)2,1(内至少有一点ξ使0)(=''ξF 12.解:111)0(0=+='==x x y k ,切线方程为x y =切线与抛物线交点为()1,1--与()2,2 于是29)]2([212=--=⎰-dx x x S 13.证明:设)()(2x f ex F x-=,则)(x F 在[]b a ,上连续,在),(b a 内可导,且0)()(==b F a F于是由罗尔定理知在()b a ,内至少有一点ξ,使0)()(2)(22='+-='--ξξξξξf e f e F即)(2)(ξξf f ='14.解:设每年的产量为x 百台时利润为y 万元则⎪⎩⎪⎨⎧>--≤≤---=-=428402214)()(2x x x x x x x C x R y ⎩⎨⎧>-≤≤-='41403x x x y 令0='y 得3=x 计算()20-=y ,()253=y ,()24=y 故每年生产3百台时利润最大为()253=y 万元。
江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)
江苏省专转本(高等数学)模拟试卷2(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.已知连续函数f(x)满足f(x)=x2+x∫01f(x)dx,则f(x)=( )。
A.f(x)=x2+xB.f(x)=x2-xC.f(x)=x2+D.f(x)=x2+正确答案:C解析:用代入法可得出正确答案为C。
2.函数在x=0处( )。
A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:3.关于的间断点说法正确的是( )。
A.x=kπ+为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:对于x=kπ,当k=0,即x=0时,,x=0为可去间断点。
当k≠0时,,x=kπ为第二类无穷间断点。
4.设D:x2+y2≤R2,则=( )。
A.=πR3B.∫02πdθ∫0Rrdr=πR2C.∫02πdθ∫0Rr2dr=πR3D.∫02πdθ∫0RR2dr=2πR3正确答案:C解析:在极坐标中,0≤r≤R,0≤θ≤2π,。
5.抛物面在点M0(1,2,3)处的切平面是( )。
A.6x+3y-2z-18=0B.6x+3y+2z-18=0C.6x+3y+2z+18=0D.6x-3y+2z-18=0正确答案:B解析:设切平面方程为6x+3y+2z-18=0。
6.幂级数的收敛半径是( )。
A.0B.1C.2D.+∞正确答案:B解析:,收敛半径。
填空题7.,则a=______,b=______。
正确答案:-4,3解析:并且x2+ax+b=0,所以a=-4,b=3。
8.u=f(xy,x2+2y2),其中f为可微函数,则=______。
正确答案:yf’1+2xf’2解析:令w=xy,v=x2+y2,则u=f(w,v),=f’w(w,v)·y+f’v(w,v)·2x。
数学模拟试卷专转本
江苏省普通高校专转本统一考试高等数学模拟试卷(一)一、选择题(本大题共6小题,每小题4分,满分24分.)1.已知当时,函数是的等价无穷小,则常数( ).(A) (B) (C) (D)2.若是奇函数,在点处可导,则是函数的( ).(A) 跳跃间断点 (B) 可去间断点 (C) 无穷间断点 (D) 连续点3.对于反常积分的收敛性,正确的结论是( ).(A)当时收敛 (B)当时收敛 (C)当时收敛 (D)对的任意取值均不收敛4.直线与的位置关系是( ).(A)平行 (B)重合 (C)斜交 (D)垂直5.设曲线与在点处相切,则的值分别为( ).(A) (B) (C) (D)6..对级数,以下说法中正确的是( ).(A) 对任意常数,级数都发散 (B) 对任意常数,级数都条件收敛(C) 对任意常数,级数都绝对收敛 (D) 对不同常数,级数的敛散性不同二、填空题(本大题共6小题,每小题4分,满分24分.)7.设函数在点处连续的,则 .8.设,则 .9.设,则 .0.设, 则 .11.设,则 .12.将展开为的幂级数,得.三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设函数由方程确定,求.15. 求不定积分.16.计算定积分.17.求过点且与平面垂直,又与直线平行的平面的方程.18.计算二重积分,其中为由直线围成的闭区域.19.设函数可导,且满足,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设,求(1) 函数的单调区间与极值;(2) 曲线的凹凸区间与拐点;(3) 函数在区间上的最大值与最小值.22.求常数22.求常数的值,使直线位于曲线的上方(即对一切,恒有 ≥),且直线,,和曲线所围成的平面图形的面积最小.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数有二阶连续导数,令,若复合函数满足,证明:满足.24.设在上可导,且,证明:在内存在唯一的点,使所围平面图形被直线分成面积相等的两部分.江苏省普通高校专转本统一考试高等数学模拟试卷(二)一、选择题(本大题共6小题,每小题4分,满分24分.)1.若,则分别为( ).(A) (B) (C) (D)2.点是函数的( ).(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点3.设当时,是的高阶无穷小,而又是的高阶无穷小,则正整数=( ).(A) (B) (C) (D)4.考虑下列5个函数: ①; ②; ③; ④; ⑤.上述函数中,当时,极限存在的是 ( ).(A) ②③⑤ (B) ①④ (C) ③⑤ (D) ①②③⑤5.设二阶可导,,则( ).(A) (B)(C) (D)6.下列级数中,收敛的是( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设为多项式,,,则 .8.曲线在点处的切线方程为 .9.若函数在点处可导,且,则 .10.函数在闭区间上的最小值为 .11.设,则.12.幂级数的收敛域为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15. 求不定积分.16.计算定积分.17.求过点,且平行于平面,又与直线相交的直线方程.18.计算,其中.19.设具有二阶连续偏导数,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求由曲线,直线,和曲线的一条切线所围成图形面积的最小值.22.已知,试求: (1)函数的单调区间与极值; (2)曲线的凹凸区间与拐点;(3)曲线的渐近线.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数在上连续,且是偶函数,证明也是偶函数.24.设是大于的常数,且,证明:对任意,有.江苏省普通高校专转本统一考试高等数学模拟试卷(三)一、选择题(本大题共6小题,每小题4分,满分24分.)1.下列极限正确的是( ).(A) (B)(C) (D)2.设,则( ).(A)等于 (B)等于 (C)等于 (D)不存在3.函数的第一类间断点共有( ).(A)个 (B)个 (C)个 (D)个4.设,则( ).(A) (B) (C) (D)5.二次积分交换积分次序后得( ).(A) (B)(C) (D)6.下列级数中,收敛的是( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.定积分的值为 .8.设,则 .9.设,,且,则 .10.设的一个原函数为,则 .11.幂级数的收敛域为 .12.若是某二阶常系数齐次线性微分方程的一个特解,则该微分方程为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14设函数由参数方程所确定,求 ,.15. 已知,求16.求定积分.17.求通过直线且平行于直线的平面方程.18.计算二重积分,其中是由曲线,直线及轴所围成的平面闭区域.19.设,其中具有二阶连续偏导数,求20.求微分方程 的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.已知函数, (1)求函数的单调区间与极值; (2)讨论曲线的凹凸性;(3)求函数在闭区间上的最大值与最小值.22.设曲线与交于点,过坐标原点和点的直线与曲线围成一平面区域.(1)求平面区域绕轴旋转一周所形成的旋转体的体积;(2)问为何值时,取得最大值?五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数的定义域为,且对任意和均有,又在处连续,.试证明函数在上连续.24.证明:当时,.江苏省普通高校专转本统一考试高等数学模拟试卷(四)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设函数在点处可导,且,则( ).(A) (B) (C) (D)2.点是函数的( ).(A) 跳跃间断点 (B) 可去间断点 (C) 无穷间断点 (D) 振荡间断点3.若抛物线与曲线相切,则( ).(A) (B) (C) (D)4.是可导函数的极大值的充分条件为:对满足 的任意,都有( ).(A) (B) (C) (D)5.若的原函数为,则( ).(A) (B)(C) (D)6.设函数与在上均具有连续导数,且为奇函数,为偶函数,则( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设,则 .9.曲线在点处的切线方程为 .10.若向量与平行,且,则 .11.设,则 .12.将函数展开为的幂级数,得.三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设, 求. 15.设,求.16.计算定积分.17.求过点,并与直线垂直又与平面平行的直线方程.18.计算,其中为由直线,及围成的闭区域.19.设,其中具有二阶连续偏导数,求.20.求微分方程 满足初始条件的特解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设在取得极值,求常数的值,并求该曲线的凹凸区间与拐点.22.已知函数与满足下列条件:(1),; (2),,记由曲线与直线,,所围平面图形的面积为,求.五、证明题(本大题共2小题,每小题9分,满分18分.)23.证明:当,时,.24.证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(五)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设, ,则、的值分别为( ).(A) (B) (C) (D)2.设在处可导,且,则曲线在点处的切线的斜率为( ).(A) (B) (C) (D)3.设与都是恒大于零的可导函数,且,则当时,有( ).(A) (B)(C) (D)4.直线与平面的位置关系是( ).(A)平行 (B)垂直 (C)斜交 (D)直线在平面上5.设是连续函数,则( ).(A)(B)(C) (D)6.幂级数的收敛域为().(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设函数在处连续,则 .8.设直线是曲线的一条切线,则 .9. .10.设,则 .11.设,则.12.微分方程的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15.求不定积分.16.计算定积分.17.求通过点,,且平行于轴的平面方程.18.计算,其中为由曲线,直线,围成的闭区域.19.已知函数由方程确定, 求,.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设某平面图形由曲线与直线围成,求该平面图形的面积,以及该平面图形绕轴旋转一周所形成的旋转体的体积.22.已知,试求: (1)函数的单调区间与极值; (2)曲线的凹凸区间与拐点;(3)函数在闭区间上的最大值与最小值.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设在处连续,,证明:在处可导的充分必要条件是. 24.证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(六)一、选择题(本大题共6小题,每小题4分,满分24分.)1.若,则分别为( ).(A) (B) (C) (D)2.点是函数的( ).(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点2.若当时,与是等价无穷小,则( ).(A) (B) (C) (D)4.曲线的渐近线共有( ).(A)条 (B)条 (C)条 (D)条5.若为函数的一个原函数,则【 】(A) (B)(C) (D)6.设,则【 】(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设, 则 .9.设,则 .10. .11.微分方程的通解为 .12.级数的收敛半径为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.求由方程所确定的二元函数的全微分.15. 求不定积分.16.计算定积分.17.求过点且垂直于直线的平面方程.18.计算,其中为由直线及围成的平面闭区域.19.设其中具有连续二阶偏导数,求.20.求微分方程 满足初始条件的特解.21.求由曲线与直线,所围平面图形的面积以及该平面图形分别绕轴、轴旋转一周所形成的旋转体的体积.22.试确定常数、、,使函数的图形有一拐点,且在处有极值,并求出的图形的凸区间.23.设在[]上连续,且,证明:在()内有且仅有一点,使.24.证明:当时,.江苏省普通高校专转本统一考试高等数学模拟试卷(七)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设函数,则在点处( )(A)极限不存在 (B)极限存在但不连续(C) 连续但不可导 (D) 可导且导数为2.设在点处可导,且,则点是函数的( )(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点3.设,则()(A) 0 (B) 1 (C) 2 (D) 34.方程在内()(A) 仅有一个实根 (B) 有二个实根 (C) 至少有二个实根 (D) 没有实根5.设,,且与轴垂直,则 ( )(A) (B) (C) (D)6.下列级数中,发散的是( )(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设时,是比高阶的无穷小,则常数 .8.设,则.9.曲线的铅直渐近线的方程为 .10.函数在区间上的最大值为 .11.设,则全微分.12.幂级数的收敛域为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设 , 求.15.设,求.16. 求不定积分.17.计算定积分.18.求过点,且与直线垂直,又与平面平行的直线方程19.计算,其中.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求曲线上的一点,使在该点的切线和,,围成平面图形的面积最小.22.设函数在的某一邻域内具有二阶导数,且,,试求.五、证明题(本大题共2小题,每小题9分,满分18分.)23.证明:当时,.24.设,,,其中具有二阶连续偏导数,证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(八)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设 存在,且 ,则 ( )(A) 1 (B) 0 (C) 2 (D) -22.当时, 是 的( )(A)同阶无穷小 (B) 高阶无穷小 (C) 低阶无穷小 (D)等价无穷小3.设在点处连续,则在点处取得极大值的充分条件为:对满足的任意,都有( ) (A) (B) (C) (D)4.若函数在点处可导,则在点处( ).(A)一定连续但不一定可导 (B)一定连续但不可导(C)一定连续且可导 (D)不一定连续且不一定可导5.设,则在区间上( )(A) 函数单调减少且其图形是凹的 (B) 函数单调减少且其图形是凸的(C) 函数单调增加且其图形是凹的 (D) 函数单调增加且其图形是凸的6.级数条件收敛的充要条件是()(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设存在,且,则.9.已知是偶函数,且,则 .10.,则 .11.设,且是互相垂直的单位向量,则以为邻边的平行四边形面积为.12.将展开为的幂级数,得 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15. 求不定积分.16.计算定积分.17.一直线通过平面与直线的交点,且与直线平行,试求该直线方程.18.计算,其中D是直线所围成的闭区域.19.设,其中具有二阶连续偏导数,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求由曲线与直线所围平面图形的面积以及该平面图形分别绕轴、轴旋转一周所形成的旋转体的体积.22.设22.设,.(1)求的具体解析表达式;(2)讨论的连续性;(3)讨论的连续性.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数具有连续偏导数,证明由方程 所确定的函数满足 .24.证明方程有且仅有一个实根.。
江苏省专转本(数学)模拟试题及参考答案(一)
江苏省普通高校专转本模拟试题及参考答案高等数学 试题卷一、单项选择题(本大题共 8 小题,每小题 4 分,共 32 分.在下列每小题中选出一个正确答 案,请在答题卡上将所选项的字母标号涂黑)1. 要使函数21()(2)xx f x x −−=−在区间(0,2) 内连续,则应补充定义 f (1) =( )A. 2eB. 1e −C. eD. 2e − 2. 函数2sin ()(1)xf x x x =−的第一类间断点的个数为( )A. 0B. 2C. 3D. 1 3. 设'()1f x =,则0(22)(22)limh f h f h h→−−+=( )A. 2−B. 2C. 4D. 4−4.设()F x 是函数()f x 的一个原函数,且()f x 可导,则下列等式正确的是( ) A. ()()dF x f x c =+∫ B. ()()df x F x c =+∫ C.()()F x dx f x c =+∫ D.()()f x dx F x c =+∫5. 设2Dxdxdy =∫∫,其中222{(,)|,0}D x y x y R x =+≤>,则R 的值为( )A. 1B.D.6.下列级数中发散的是( )A 21sin n nn∞=∑. B. 11sin n n ∞=∑C. 1(1)nn ∞=−∑ D.211(1)sinnn n ∞=−∑ 7.若矩阵11312102A a −−= 的秩为2,则常数a 的值为( )A. 0B. 1C. 1−D. 28. 设1100001111111234D =−−,其中ij M 是D 中元素ij a 的余子式,则3132M M +=( ) A. 2− B. 2 C. 0 D. 1 二、填空题(本大题共6小题,每小题4分,满分24分) 9. 1lim sinn n n→∞=____________________________.10.设函数2sin ,0()10,0xx f x x x ≠ =+ =,则'(0)f =______________________________________.11.设函数()cos 2f x x =, 则(2023)(0)f =__________________________________________. 12.若21ax e dx −∞=∫,则常数a =___________________________________.13. 若幂级数1nnn a x +∞=∑的收敛半径为2,则幂级数11(1)nn n x a +∞=−∑的收敛区间为__________________. 14.若向量组1(1,0,2,0)α=,2(1,0,0,2)α=,3(0,1,1,1)α=,4(2,1,,2)k α=线性相关,则k =_____________________________________.三、计算题(本大题共8小题,每小题8分,满分64分) 15. 求极限22sin lim(cos 1)x x t tdtx x →−∫;16.求不定积分22x x e dx ∫;17.求定积分21sin 2x dx π−∫; 18.设函数(,)z z x y =由方程cos y x e xy yz xz =+++所确定的函数,求全微分dz . 19.求微分方程''4'5x y y y xe −−−=的通解; 20.求二重积分Bxydxdy ∫∫,其中D 为由曲线2(0)y x x ≥及直线2x y +=和y 轴所围成的平面闭区域;21.设矩阵A 与B 满足关系是2AB A B =+,其中301110014A= ,求矩阵B .22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 四、证明题(本大题10分)23.证明:当04x π−<<时,0sin xt e tdt x <∫.五、综合题(本大题共2小题,每小题10分,满分20分)24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点.参考答案一、单项选择题1. B2. D3. D4. D5. B6. B7. A8. B9. C 二、填空题9. 1 10. 1 11. 0 12. 1ln 2213. (1,3)− 14. 4三、计算题15. 2232022250022sin sin 2sin()4lim lim 4lim (1cos )63()2x x x x x t tdt t tdt x x x x x x x →→→===−∫∫; 16. 2222222222222222222224x x x x x x x xxe e x e e e x e e e x e dx x x dx x dx x c =−=−+=−++∫∫∫;17.26206111sin (sin )(sin )22212x dx x dx x dx πππππ−=−+−−∫∫∫; 18. 因为sin sin ,,z zz x y zx y yz x x x x y x ∂∂∂−−−−=+++=∂∂∂+ 且0,y yz zz e x z e x z y x y yy y x∂∂∂−−−=++++=∂∂∂+ 所以可得sin y x y z e x zdzdx dy y x y x−−−−−−=+++. 19. 解:因为特征方程为2450r r −−=,特征值为125,1r r ==−,所以齐次微分方程''4'50y y y −−=的通解为5112x x y c e c e −=+; 设''4'5x y y y xe −−−=的一个特解为*()x y x ax b e −=+,可得11*()1236x y x x e −=−+,所以原方程的通解为:511211*()1236x x x y y y c e c e x x e −−=+=+−+.20. 由22y x x y =+= 可得交点坐标(11),, 可得21116xBxydxdydx xydy ==∫∫∫∫; 21. 因为2AB A B =+,所以可得(2)A E B A −=,从而可得:1(2)B A E A −=−;又因1211(2)221111A E −−−−=−−− ,所以可得1522(2)432223B A E A −−− =−=−− − ; 22.求方程组12341234123436536222x x x x x x x x x x x x ++−=−++=− −+−= 的通解; 解:111361113611136101241513601012010120101212212031240011200112100120101200112−−−−−−→−→−→− −−−−−−− →− − 一个特解为2220 ,齐次线性方程组12341234123430530220x x x x x x x x x x x x ++−=−++= −+−= 的一组基础解系为:11111η= ,所以原方程组的通解为:123412121210x x c x x=+. 四、证明题 23.证明:当04x π−<<时,0sin xt e tdt x <∫.证明:令0()sin xt f x x e tdt =−∫,则有'()1sin x f x e x =−,令:''()sin cos 0x x f x e x e x =−−=,可得4x π=−,当04x π−<<,''()0f x <,所以当04x π−<<时,'()1sin x f x e x =−为递减函数,可得'()1sin '(0)1x f x e x f =−>=,所以当04x π−<<时,0()sin xt f x x e tdt =−∫为递增函数,因此可得:0()sin (0)0xt f x x e tdt f =−>=∫,从而可证得:0sin x t e tdt x <∫; 五、综合题 24.求曲线x =及直线2y =与y 轴所围成的平面图形的面积并计算该图形绕y 轴旋转一周所得的旋转体的体积..解:x x y = ⇒ =,则图形面积为:20Aydx dx = 旋转体的体积:2222200022y V x dy ydy ππππ====∫∫; 25.设定义在(,)−∞+∞上的函数()f x 满足方程'()()f x f x x −=,且(0)0f =,求: (1)函数()f x 的解析式;(2)曲线()y f x =的单调区间和极值点. 解:(1)()()()1dxdxx x x f x e xe dx c e xe dx c x ce −−−−−∫∫=+=+=−++∫∫,又因为(0)0f =,所以可得:1c =−,即:()1x f x x e −=−+−; (2)令'()10x f x e −=−+=,可得0x =; x(,0)−∞ 0 (0,)+∞ '()f x −+因此可知:(,0)−∞为函数()1x f x x e −=−+−的递减区间,(0,)+∞为函数()1x f x x e −=−+−的递增区间,点(0,0)为函数()1x f x x e −=−+−的极小值点.。
江苏省普通高校“专转本”统一考试数学模拟试卷全真8套试卷兴国版本(1)
一、单项选择题(每小题 4 分,共 24 分)
1.当 x 0,1 cos2x 与 ln(1 ax 2 ) 是等价无穷小,则 a (
)。
A1
B2
C3
D4
2.曲线
y
xx
x2 x
1x
2 的垂直渐近线为(
)。
A x 0 B x 1 C x 2 D 无垂直渐近线
)。
A xy
B 2xy
xy 1
C
8
6.下列级数中,发散的是 (
1n
n
A
n1
n2 1
C
1n sin
1
n1
n 1
D xy 1
)。
B
n1
1 n
n 2n
1n n3 1 n3 1
D
n1
二、填空题(每小题 4 分,共 24 分)
lim 2x 12x
7.极限 x 2x 1 =
。
8.设
f
(1) x
。 。
。
10.交换二次积分次序
C 高阶无穷小
D 低阶无穷小
2.曲线
y
ex ex
ex ex
的渐近线共有(
)条。
A 1 B 2 C3 D4
3.设 f x 的一个原函数为 x2 tet2 dt ,则 f x =( 0
)。
A
2 2x2 ex2 B 6x 4x3 ex2
C 6x 2 8x 6 e x4
D 2 4x 4 e x4
图形为 D。 (1)求 D 的面积;
(2)求 D 绕 x 轴旋转所得几何体的体积。
江苏省专转本《高等数学》全真模拟试卷 2
5专转本高等数学模拟试题一
1 江苏省专转本高等数学模拟试卷(一)一.选择题(本大题共5小题,每小题2分,共10分,每项只有一个正确答案,请把所选项前的字母填在括号内)1.)(2sinlim =¥®xx x p (A) 0 (B) 1 (C) ¥(D) p22.设)(x F 是)(x f 在()+¥¥-,上的一个原函数,且)(x F 为奇函数,则)(x f 是()(A) 奇函数(B) 偶函数(C) 非奇非偶函数(D) 不能确定3.ò=)(tan xdx (A) c x +cos ln (B) cx +-cos ln (C) cx +-sin ln (D) cx +sin ln 4.设)(x f y =为[]b a ,上的连续函数,则曲线)(x f y =,a x =,b x =及x 轴所围成的曲边梯形面积为()(A)òbadxx f )((B) òb adxx f )((C) òb adxx f )((D) ò-ba dxx f )(5.方程0132222=+-+++y x z y x 所表示的曲面为()(A)球(B) 柱面(C) 双曲线(D) 双曲面二.填空题(本大题共5小题,每小题2分,共10分,请把正确结果填在划线上)1.方程0333=-+axy y x 所确定的隐函数)(x y y =的导数为2.)3(tan 312y x y +=¢的通解为3.函数3x y =在处不可导4.积分ò-21121dx x = 5.二次积分òò124xxdy dx=三.计算题(本大题共14题,1-10题每题4分, 11-14题每题10分)分)1. 532+-=x x y ,求导数y ¢2.求极限11lim 31--®x x x3.已知x x xy y x sin )ln(22+=+,求=x dx dy4.ò+dx x x2cos 1sin 5.ò1arctan xdx x6.求方程22x y y y =-¢+¢¢的通解的通解 7.求)(2x f y =的一阶导数dx dy ,二阶导数22dxyd 8.试讨论函数ïîïíì=¹+=001)(1x x exx f x在0=x 处的连续性及可导性处的连续性及可导性9.求二重积分s d yxDòò22,其中D 是由直线2=x ,x y =及直线1=xy 所围成的闭合区域成的闭合区域 10.求函数)0(12³+=x xxy 在何处取最大值在何处取最大值11.设)(x f 在[]b a ,上连续,在()b a ,内二阶可导,且)()(==b f a f ,且存在点()b a c ,Î使得0)(>c f ,试证明至少存在一点()b a ,Îx ,使0)(<¢¢x f12.设函数ïîïíì>-££--<-=2161221121)(32x x x x x xx f求(1)写出)(x f 的反函数)(x g 的表达式;的表达式;(2))(x g 是否有间断点,不可导点,若有请指出。
江苏省专转本高数模拟试题与解析第六套
江苏省专转本高数模拟试题与解析第六套江苏省2022年普通高校“专转本”统一考试模拟试卷(六)解析高等数学注意事项:1.考生务必将密封线内的各项填写清楚。
2.考生必须要钢笔或圆珠笔将答案直接写在试卷上,写在草稿纸上无效。
3.本试卷五大题24小题,满分150分,考试时间120分钟。
一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,只有一项是符合要求的,请把所选项前的字母填在题后的括号内)。
1、下列各极限正确的是()1某A、lim(1)e某0某C、lim某in某1B、lim(1)某e某某1111D、lim某in1某0某某2、已知当某0时,某2ln(1某2)是inn某的高阶无穷小,而inn某又是1co某的高阶无穷小,则正整数n()A、1B、2C、3D、43、若f(某)f(某),且在0,内f(某)0、f(某)0,则在(,0)内必有()''A、f(某)0,f(某)0''B、f(某)0,f(某)0C、f(某)0,f(某)0D、f(某)0,f(某)0某244、曲线y2的渐近线共有()某5某6A、1条B、2条C、3条D、4条5、设f(某)有连续的导函数,且a0、1,则下列命题正确的是()A、f(a某)d某1f(a某)CB、f(a某)d某f(a某)CaC、(f(a某)d某)af(a 某)D、6、下列级数条件收敛的是()f(a某)d某f(某)C2nA、2n1nB、n1nn11(1)nC、nn1D、n1(1)nn二、填空题(本大题共6小题,每小题6分,共24分,请把正确答案的结果添在划线上)。
7、已知f(0)2,则limh0f(h)f(h)h8、已知曲线y2某33某24某5,则其拐点为9、设函数(某)1te2cotdt,则函数(某)的导数(某)某2某tan2某21某)d某10、(11某211、交换积分次序20d某f(某,y)dy某2某12、如果a3,,2,b,2,1,且ab,则____________三、计算题(本大题共8小题,每小题8分,共64分)。
(完整版)江苏省普通高校“专转本”统一考试《高等数学》试卷.doc
2018 年江苏省普通高校 “专转本 ”统一考试一、 选择题(本大题共 6 小题,每小题 4 分,满分 24 分)1、当 x0 时,下列无穷小与f xxsin 2 x 同阶的是 ()A. cos x 21B.1 x 3 1C. 3x 1D. 1 x2312、设函数 f (x)x a ,若 x1 为其可去间断点,则常数 a ,b 的值分别为()x2x bA. 1, 2B. 1,2C.1, 2D. 1,23、设 f ( x)1 x ,其中x 为可导函数,且1 3 ,则 f 0 等于 ()1 xA. 6B. 6C.3D. 34、设 F x e 2 x 是函数 f x 的一个原函数,则xf x dx()A. e2 x1x 1 C B. e 2x 2x 1 C C. e 2x1x 1 C D. e 2 x 2x 1 C225、下列反常积分发散的是( )x111e dx3 dx dxdx A.B.x C.1 x 2D.11 x6、下列级数中绝对收敛的是()(1)n1 21nsin n( 3)nA.B.C.nnn 1n 2D.n 1n 1n 1n 3二、填空题(本大题共6 小题,每小题 4 分,共 24 分)127 设 lim 1ax x lim xsin,则常数 a _________.x 0xx8、设函数 y x xx 0 ,则 y____________.9、设 zz x, y 是由方程 z 2 xyz 1所确定的函数,则z ___________ .x10、曲线 y3x 4 4x 3 6x 2 12 x 的凸区间为 ___________ .11、已知空间三点 M 1,1,1 , A 1,1,0 , B 2,1,2 ,则AMB 的大小为 __________ .12、幂级数 ( x 4) n的收敛域为 ____________ .n 1n5n三、计算题(本大题共8 小题,每小题8 分,共 64 分)13、求极限lim 1 1 .x2 ln 1 x2x 014、设函数y y( x) 由参数方程x3 xt 2 t 1 0y t 3 t 1 所确定,求dy .dx t 015、求不定积分1 dx .x x 116、计算定积分22x 1 ln xdx .1x 1 3t17、求通过点M 1,2,3 及直线y 1 4t 的平面方程.z 1 5t18、求微分方程y3 2 x2 y dx 2x3dy 0 的通解.19、设z xf y,x,其中函数具有一阶连续偏导数,求全微分dz .y20、计算二重积分xydxdy,其中 D x, y2y2 1,0 y x .x 1D四、证明题(本大题共 2 小题,每小题9 分,共18 分)21、证明:当x20 时,ln x x .ex22、设F ( x)f (t )dt 0,其中函数 f ( x) 在 ( , ) 上连续,且 lim f ( x) 1,证明: F ( x) 在0 xx=x 0xx 0点 x 0处连续。
江苏专升本高等数学真题(附答案)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
江苏专转本高等数学模拟测试题.doc
一.选择题( 每小题 4 分, 共24 分)1. 当x 0 时, 1 cos 2x 与l n(1 ax ) 是等价无穷小,则常数a的值为( )2A. 1B. 2C.3D. 4解:本题考查无穷小阶的比较,就是求两个函数比值的极限,条件说是等价无穷小,那么比值的极限是1,即有12(2 x)x1 cos2 2 2lim lim 12 2x 0 x 0ln(1 ax ) ax a则a 2 ,选B。
2. 曲线y2x xx(x 1)(x 2)的垂直渐近线是( )A. x 0B. x 1C. x 2D. 没有垂直渐近线解:所谓垂直渐近线就是若lim f (x) (也可以是单侧极限,即左极限或右极限为无穷大),则称x x0 x x 为垂直渐近线。
一般拿来讨论极限的x 为函数中无定义的点,本题有三个无定义的点,即x 0 ,x1,x 2,但是在求极限时01y函数经过化简后变成,因此只有x 2 limx 2 x12,所以选C。
3. 设sin x( ) ln(1 )x t t dt ,则(x) ( ) 0A. sin x cos x ln(1 sin x)B. sin x l n(1 sin x)C. sin x c os x l n(1 sin x)D. sin x l n(1 sin x)解:本题考查变上限积分函数求导公式,选A。
4. 下列级数中条件收敛的是( )A.n ( 1)2n n 1 B.n( 1)n n11C.n1n( 1)n12n1D.n 1n( 1)n2解:本题考查绝对收敛与条件收敛的概念,首先要知道无论是绝对收敛还是条件收敛都是满足收敛,只是收敛的“强度”不同罢了。
选项 A 与D都是满足绝对收敛的,选项C一般项的极限不是零,显然发散,只有选项 B 满足条件收敛。
5. 将二重积分D2 2x y dxdy ,D{( x, y) |x y 2 x2 ,0 x 1}化成极坐标下的二次积分,则得( )A.2 24 d r dr B.0 02 24 d r dr C.0 0242 2d r dr D.242 2d r dr解:本题考查二重积分的极坐标变换,首先关键是画出积分区域来,作图如下:本题积分区域形如右图阴影部分,显然答案选D。
江苏省专转本(高等数学)模拟试卷10(题后含答案及解析)
江苏省专转本(高等数学)模拟试卷10(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.若=( )。
A.B.C.2D.4正确答案:B解析:令,当x→∞时,t→0,则。
2.要使f(x)=在点x=0处连续,应给f(0)补充定义的数值是( )。
A.kmB.C.lnkmD.ekm正确答案:A解析:=lnekm=km,∴f(0)=km,选A项。
3.设f(x2)=x4+x2+1,则f’(1)=( )。
A.1B.3C.-1D.-3正确答案:C解析:(1)∵f(x2)=(x2)2+x2+1,∴f(x)=x2+x+1。
(2)f’(x)=2x+1,f’(-1)=-2+1=-1,选C项。
4.已知f(x)=(x-3)(x-4)(x-5),则f’(x)=0有( )。
A.一个实根B.两个实根C.三个实根D.无实根正确答案:B解析:(1)∵f(x)在[3,4]连续在(3,4),可导且f(3)=f(4)=0,∴f(x)在[3,4]满足罗尔定理条件,故有f’(ξ1)=0(3=( )。
A.e-x(x+1)+CB.-e-x(x+1)+CC.e-x(1-x)+CD.e-x(x-1)+C正确答案:A解析:∵F(x)=e-x,f(x)=F’(x)=-e-x,∴原式=∫xdF(x)=xF(x)-∫F(x)dx=xe-x-∫e-xdx=(x+1)e-x+C选A项。
填空题7.=______。
正确答案:解析:本题是考查幂指函数求极限,先把极限变形为,此题是形如1∞型的不定式,可以利用两个重要极限公式的推广公式求解:,注:等价无穷小替换,x→0+。
8.函数f(x)=2x2-x+1在区间[-1,3]上满足拉格朗日中值定理的ξ=______。
正确答案:ξ=1解析:由已知可得f’(x)=4x-1,令4x-1==3,解该方程即为满足拉格朗日定理的ξ=1。
9.=______,其中D为以点O(0,0)、A(1,0)、B(0,2)为顶点的三角形区域。
江苏省专转本(高等数学)模拟试卷64(题后含答案及解析)
江苏省专转本(高等数学)模拟试卷64(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.已知连续函数f(x)满足f(x)=x2+,则f(x)=( )。
A.f(x)=x2+xB.f(x)=x2—xC.f(x)=x2+D.f(x)=x2+正确答案:C解析:用代入法可得出正确答案为C。
2.函数f(x)=在x=0处( )。
A.连续但不可导B.连续且可导C.不连续也不可导D.可导但不连续正确答案:B解析:=0f(x)=f(x)=f(0)=0,则此分断函数在x=0处连续,又=0,=0,则,故分段函数x=0可导。
3.关于y=的间断点说法正确的是( )。
A.x=kπ+为可去间断点B.x=0为可去间断点C.x=kπ为第二类无穷间断点D.以上说法都正确正确答案:D解析:f(x)=的间断点为x=kπ,kπ+,k∈Z f(x)=0,所以x=kπ+为可去间断点,对于x=kπ,当k=0,即x=0时,=1,x=0为可去间断点,当k≠0时,=∞,x=kπ为第二类无穷间断点。
4.设D:x2+y2≤R2,则=( )。
A.=πR3B.=πR2C.D.=2πR3正确答案:C解析:在极坐标中,0≤r≤R,0≤θ≤2π,5.抛物面++=1在点M0(1,2,3)处的切平面是( )。
A.6x+3y—2z一18=0B.6x+3y+2z一18=0C.6x+3y+2z+18=0D.6x一3y+2z一18=0正确答案:B解析:设F(x,y,z)=—1,则Fx=x,Fy=,Fz=,Fx(1,2,3)=,Fy(1,2,3)=,Fz(1,2,3)=切平面方程为6x+3y+2z一18=0。
6.幂级数的收敛半径是( )。
A.0B.1C.2D.+∞正确答案:B解析:ρ==1收敛半径R==1填空题7.x+y=tany确定y=y(x),则dy=________。
正确答案:8.函数y=,y″(0)=________。
专升本(高等数学一)模拟试卷64(题后含答案及解析)
专升本(高等数学一)模拟试卷64(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题1.=( )A.e-2B.e-1C.eD.e2正确答案:D解析:=e,∴原式=e2.附:该式属于公式记忆性运用,答题时可直接拿出.2.设y=e-5x,则dy=( )A.一5e-5xdxB.一e-5xdxC.e-5xdxD.5e-5xdx正确答案:A解析:y′=e-5x.(一5x)′=-5e-5x,∴dy=-5e-5xdx.3.设函数f(x)=xsinx,则f′()一( )A.B.1C.D.2π正确答案:B解析:f′(x)=x′sinx+x(sinx)′=sinx+xcosx ∴f′()=1.4.设函数f(x)在[a,b]连续,在(a,b)可导,f′(x)>0.若f(a).f(b)<0,则y=f(x)在(a,b) ( )A.不存在零点B.存在唯一零点C.存在极大值点D.存在极小值点正确答案:B解析:∵f(x)在[a,b]连续,在(a,b)可导且f′(x)>0,∴f(x)在(a,b)上严格递增且无极值;f(a).f(b)<0,满足零点存在条件,存在唯一零点.5.∫x2ex3 dx=( )A.x2ex3+CB.3x2ex3+CC.ex3+CD.3ex3+C正确答案:C解析:∴原式=ex3+C.6.(3x2+sin5x)dx=( )A.一2B.一1C.1D.2正确答案:D解析:∫( 3x2+sin5x)dx=x3一cos3x-cosx+C∴原式=1-cos3(一1)-cos(一1)]=2.7.e-x dx=( )A.一eB.-e-1C.e-1D.e正确答案:C解析:∫e-xdx=一e-x+C.∴原式=-e-∞+e-1=e-18.设二元函数z=x2y+xsiny,则=( )A.2xy+sinyB.x2+xcosyC.2xy+xsinyD.x2y+siny正确答案:A解析:将y看作常数,=y(x2)′+x′siny=2xy+siny.9.设二元函数z=,则=( ) A.1B.2C.x2+y2D.正确答案:A解析:将y,x分别看作常数,∴原式==1.10.设球面方程为(x-1)2+(y+2)2+(z-3)2=4,则该球的球心坐标与半径分别为( )A.(一1,2,一3);2B.(一1,2,一3);4C.(1,一2,3);2D.(1,一2,3);4正确答案:C解析:依表达式可知:球心坐标为(1,一2,3),半径的平方为4,半径为2.填空题11.=__________.正确答案:解析:12.设y=,则y′=___________.正确答案:解析:y′=13.设函数y=arccos,则dy=__________.正确答案:dx解析:dy=(arccos dx.14.dx=_________.正确答案:ln |1+x3|+C解析:=ln|1+x3|+C.15.dx=_________.正确答案:解析:16.设二元函数z=ln(x+y2),则dz=__________.正确答案:dx+dy解析:zx=,zy==1,所以dx+dy.17.设函数z=x2+yex,则=_________.正确答案:ex解析:=ex.18.过点P(2,3,一1),且与点P和原点的连线垂直的平面方程为___________.正确答案:2x+3y—z一14=0解析:平面的法向量n=289={2,3,—1},又平面过点P(2,3,一1),所以由点法式可知平面的方程为:2(x一2)+3(y一3)一(z+1)=0,化简得:2x+3y—z一14=0.19.设D为x2+y2≤9且y≤0,则2dxdy=__________.正确答案:9π解析:由题意可知,积分区域为圆x2+y2=9的下半圆,所以2dxdy=2××32π=9π.20.微分方程y′=x3+cos 2x的通解为y=_________.正确答案:sin 2x+C解析:y=(x3+cos 2x)dx=sin 2x+C.解答题21.计算.正确答案:=e-2 22.设求.正确答案:所给问题为参数方程求导问题,由于=6.sin t.cost,因此23.设函数f(x)=试确定a,b的值,使f(x)在点x=1处既连续又可导.正确答案:f(1一0)=x2=1,f(1+0)=(ax +b)=a+b,因f(x)在x=1连续,f(1一0)=f(1+0),故a+b=1,b=1一A.又(x+1)=2,=a,要使f(x)在x=1可导,必须(1)故a=2.于是b=1一a,b=-1.所以,当a=2,b=一1时,函数f(x)在点x=1处既连续又可导.24.计算xln xdx.正确答案:25.求方程(y—x2y)y′=2x的通解.正确答案:分离变量得ydy=dx,两边积分得d(1-x2),即y2=-ln |1-x2|+C,或y2=-2ln|1一x2|+C.26.求幂级数x2n+1的收敛区间.正确答案:当x2<1,即x2<2时,所给级数收敛,因此,收敛区间为(一).27.求过点M0(0,3,2),且与两个平面π1,π2都平行的直线方程,其中π1:x+y一2x一1=0,π2:x+2y—z+1=0.正确答案:平面π1的法向量n1={1,1,一2},平面π2的法向量n2={1,2,一1},设直线的方向向量s={x,y,z),由题意知,s⊥n1,且s⊥n2,所以有:得即直线的方向向量为{3,一1,1}.直线方程为:28.计算xydxdy,,其中D由y=x,y=1与y轴围成.正确答案:解法1解法2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21求y=(x一1) 的极值与单且在点(x,y)处的切线斜率等于2x+y,求此曲线方程。
23某地域人口总数为50万,为在此地域推广某项新技术,先对其中1万人进行了培训,使其掌握此项新技术,并开始在此地域推广。设经过时间t,已掌握此新技术的人数为x(t)(将x(t)视为连续可微变量),其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,且比例常数为k(k>0),求x(t)。
8函数y= ,y″(0)=________。
9设u=exysinx, =________。
10若f′(ex)=xex,f(1)=0,则f(x)=________。
11交换二次积分得 + =________。
12幂级数 的收敛半径R=________。
三、解答题
解答时应写出推理、演算步骤。
13已知F(x)在0点连续,F(x)是f(x)+2SinX在0处的导数并且f(x)连续在0处导数为f′(0)=6,求 F(x)。
五、证明题
24设f(x)在[1,2]上具有二阶导数f″(x),且f(2)=f(1)=0,如果F(x)=(x一1)f(x),试证明至少存在一点ξ∈(1,2),使F″(ξ)=0。
[专升本类试卷]江苏省专转本(高等数学)模拟试卷64
一、选择题
在每小题给出的四个选项中,只有一项是符合要求的。
1已知连续函数f(x)满足f(x)=x2+ ,则f(x)=( )。
(A)f(x)=x2+x
(B)f(x)=x2—x
(C)f(x)=x2+
(D)f(x)=x2+
2函数f(x)= 在x=0处( )。
(A)连续但不可导
(B)连续且可导
(C)不连续也不可导
(D)可导但不连续
3关于y= 的间断点说法正确的是( )。
(A)x=kπ+ 为可去间断点
(B)x=0为可去间断点
(C)x=kπ为第二类无穷间断点
(D)以上说法都正确
4设D:x2+y2≤R2,则 =( )。
(A) =πR3
(B) =πR2
(C)
(D) =2πR3
5抛物面 + + =1在点M0(1,2,3)处的切平面是( )。
(A)6x+3y—2z一18=0
(B)6x+3y+2z一18=0
(C)6x+3y+2z+18=0
(D)6x一3y+2z一18=0
6幂级数 的收敛半径是( )。
(A)0
(B)1
(C)2
(D)+∞
二、填空题
7 x+y=tany确定y=y(x),则dy=________。
14计算 x2cosxdx。
15求 。
16设f(x)= x一cos2x,求f(x)的极值。
17求微分方程yy″一y′2=0的通解。
18若z=z(x,y)是由方程x2+y2+z2=3xyz所确定的隐函数,求 。
19求 (2x+1)″的收敛半径和收敛域。
20平面π通过直线 且垂直于平面x+2y+3z=1,求平面π的方程。