多智能体队形控制
介绍3种经典的编队控制方法
1.介绍3种经典的编队控制方法, 即跟随领航者法、基于行为法和虚拟结构法。
2.包容了上述3种方法且基于图论的编队控制理论的研究成果,包括多智能体系统图论的建模,基于代数图论和基于刚性图论的多智能体编队控制律设计、编队构型变换等方面的研究成果。
3.与编队控制密切相关的一致性、聚集、同向、群集、蜂拥和包络控制的最新进展。
4.1)队形生成:多智能体系统如何设计并形成队形的问题;2)队形保持:多智能体系统在运动中如何保持队形不变,即队形稳定问题;3)队形切换:多智能体系统如何在队形间顺利切换,即由一种队形变换到另一种队形的问题;4)编队避障:运动中遇到障碍时,多智能体系统如何改变编队运动规划或编队结构避开障碍的问题;5)自适应:动态未知环境下,多智能体系统如何自动保持/改变编队以最好地适应环境的问题。
5.编队控制研究现状:(1)跟随领航者法:(2)基于行为法:(3)虚拟结构法:(4)基于图论法:图的顶点i<<V用来描述单个智能体,两个顶点的连线(i,j)<<E用来表述智能体间的关联/约束拓扑关系,比如感知、通信或控制。
(有向)刚性图论.当无向图的顶点运动时,任意两顶点之间的距离能够保持的性质称为图的刚性.如果没有其他刚性图与它有相同的顶点数和更少的边数,则该刚性图为最小刚性图。
刚性图论最早产生于结构及机械工程领域,现已应用于多个领域中来解决各种各样的问题,从分子生物学中的molecular conformations[61]到计算机视觉中的结构图配图问题[62]再到无碰撞机械臂动作规划问题[63],以及传感器网络定位[64-65],多智能体的编队控制[52,66]等.刚性图论的基础性工具包括Henneberg序列和Laman定理[60]:6.编队控制衍生的几个问题:(1)一致性:(2)聚集/同向:(3)群集/蜂拥:(4)包络控制:7.若干待解决的问题:(1)三维空间编队控制问题(2)具有强非线性模型的编队控制问题(3)异构多智能体系统的编队控制问题(4)通信、感知约束条件下的编队控制问题(5)多智能体编队控制系统实例研究(6)与无线传感器网络等领域的结合研究。
不同时延的二阶多智能体系统的编队协调控制
( 南京邮电大学 自 动化学院, 江苏 南京 204 ) 10 6
摘 要 : 能体 的编 队协调 控制 可 以作 为 c s CbrP yi l y e s信 息物理 系统 ) 一个 实 例 。多智 能体 之 间信 息 多智 P ( ye— hs a Ss m , c t 的
传 输存 在通信 时 延 , 个智 能体 的信 息处 理存 在输入 时延 , 史 文 献 中提 出 的具 有 时 延 的编 队协 调控 制 算 法只 实 现 了一 每 历 种 队形 的控 制 , 系统 中每 个智 能体 最后 并没 有定位 到各 自的 目标 位置 。文 中提 出了另 一种 具 有 不 同时延 的编 队协 调控 且 制 器算法 。本 控制 器算 法考 虑系 统 中每个 智能体 寻找 目标 位 置 的稳 定部 分 , 在 此 部分 考 虑 时延 问 题 , 并 最后 使 每 个智 能
关键 词 : 二阶 多智 能体 系统 ; 同时延 ; 不 目标 位置 ; 向生成 树 有 中圈分 类号 :P0 . T 3 16 文献 标识 码 : A 文章 编号 :63 69 21 )8 06 - 5 17 - 2XIo 20 —0 7 0
Fo ma i n Co r i a i n Co t o fS c n o d r M u t- g n r t o d n t n r lo e 0 d— r e li a e t o o
Abta tF r t nc odn t ncnrl fmut ae t yt sa xmpeo S ( b r P yia S s ms . h o t l lo src :oma o o ria o o t l- g n s msi le a l f i i oo i s e l CP Cye- h s l yt ) T ecnr g— c e oa
基于事件触发的多智能体分布式编队控制
Feb. 2021Vdl.2& No.22021年2月 第28卷第2期控制工程Control Engineering of China文章编号:1671 -7848(2021 )02-0319-08DOI: 10.14107/ki.kzgc.20190149基于事件触发的多智能体分布式编队控制张志晨,秦正雁,张朋朋,刘腾飞(东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819)摘 要:研究具有有向通信拓扑的多智能体分布式编队事件触发控制问题,被控对象采用两轮差速轮式机器人。
首先,建立轮式机器人运动学模型,并利用动态反馈线性化方法将 模型转化为线性双积分器模型。
其次,根据通信拓扑关系设计分布式编队控制器。
然后,基于李雅普诺夫稳定性定理,在满足稳定性的前提下设计事件触发器,从而实现分布式编队事件触发控制,并且保证系统不存在Zeno 行为。
最后,通过仿真实验与物理实验验证 了控制昇法的有效性,智能体间通信量显著降低。
关键词:轮式机器人;动态反馈线性化;编队;事件触发中图分类号:TP273 文献标识码:ADistributed Formation Control of Multi-agent Based on Event TriggerZHANG Zhi-chen, QIN Zheng-yan, ZHANG Peng-peng, LIU Teng-fei(State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819 China)Abstract: This paper studies the distributed formation event trigger control problem of multi-agent with adirected communication topology and the agents use the two-wheel differential robot. Firstly, the kinematic model of wheeled robot is developed and transformed into a linear double integrator model through dynamic feedback linearization. Then the distributed formation controller is designed based on communication topology.Based on Lyapunov stability theorem, this paper designs the event trigger on the premise of stability. Thereby, the distributed formation event trigger control is implemented. And it ensures that there is no Zeno behavior in the system. Lastly, the effectiveness of the control algorithm is verified by simulation experiments and physicalexperiments, and communication frequency between agents is significantly reduced.Key words: Wheeled robots; dynamic feedback linearization; formation; event trigger1引言由于单个智能体在执行任务时受到自身能力 的限制,因此多智能体集群控制得到了广泛关注⑴。
基于PDE模型的多智能体编队算法研究及实现
基于PDE模型的多智能体编队算法研究及实现基于PDE模型的多智能体编队算法研究及实现摘要:本文针对多智能体编队的问题,提出了一种基于PDE模型的编队算法。
该算法以微分方程为基础建立了一个统一的多智能体编队框架,并通过数值计算的方法进行实现。
首先,文中详细介绍了该算法的基本原理、模型建立与求解方法。
然后,结合仿真实验,对算法的性能进行了评价,并和现有的编队算法进行了对比。
结果表明,该算法能够完成多智能体编队控制任务,并且具有较好的收敛性和鲁棒性,能够适应一定范围内的环境变化和干扰。
关键词:多智能体编队、PDE模型、微分方程、数值计算、仿真实验。
一、引言随着先进控制理论和无人系统技术的不断发展,多智能体编队技术日益成为无人机、机器人等无人系统领域中的关键技术,其应用领域涉及到军事、民用、工业等多个领域。
多智能体编队技术的核心是控制多个智能体形成规定的队形,以完成某些特定的任务。
当前,基于机器学习、深度学习等自适应控制方法的多智能体编队算法得到了广泛应用,但由于这些方法和智能体数量和环境有很大的关联性,容易造成算法的复杂度和不稳定性。
为了克服这些问题,本文提出了一种基于PDE模型的多智能体编队算法。
该算法以微分方程为基础建立了一个统一的多智能体编队框架,并利用数值计算方法对系统进行模拟和分析。
通过建立统一的模型和控制框架,可以有效克服现有多智能体编队算法复杂度高、稳定性差等问题,实现智能体自组织、协同运动和信息同步等目标。
二、PDE模型建立与求解方法本章主要是针对多智能体编队问题,建立一个基于PDE模型的编队算法。
首先,通过建立编队模型,确定编队任务的物理和数学描述;然后,利用微分方程等数学方法,建立多智能体编队的动态模型,并求解该模型。
具体地,设多智能体编队包括N个智能体,在坐标系中每个智能体的运动状态由位置向量x和速度向量v组成。
因此,对于第i个智能体的位置向量和速度向量,可以表示为x_i和v_i。
多机器人远程监控系统的多智能体控制结构
Mu l t i . A g e n t 具有 自 主性、分布性、协调性,并具有自 组织能力、学习能力和推理能力 J 。使用 Mu l t i — A g e n t 技术
建立 MO MR遥操作系统的体系结构 , 把整个系统划分为若
错综复杂 ,使得系统的控制和实现难度大大增加。
收稿 日期 :2 0 1 3 — 0 1 — 0 7
修回日期 :2 0 1 3 — 0 3 - 1 5
E - ma i l :l i u x i n 8 9 0 1 2 8 @1 2 6 . c o n r
1 5 4
计
算 机
工 程
2 0 1 4年 2月 1 5日
立基于 Mu l t i — A g e n t 技术的共享控制 系统分层体系结构。 根据 MO MR遥操作系统的特点, 设计一种混合型 A g e n t 体 系结构,举例说明 A g e n t 的具体实现方法。
操作机器人位于 同一物理空间,多个操作者分布在不同的 地理位置,借助人机交互界面实时视频的辅助,与其他操 作者合作控制远端的多个机器人完成遥操作任务。按照功
2 系统物理结构
图1 所示为 MO MR遥操作系统的物理结构, 多个移动
能可将系统分为 6个子系统 :用户交互子系统,实时视频 子系统,通信子系统,安全保护子系统 ,协调控制子系统
能体( Mu l i t - A g e n t ) 模型建立了一种单机器人遥控焊接系统 的控制模型。文献[ 4 】 提出引用一种鲁棒性控制框架 , 通过
使用 N微调分散转移模块保证了系统的稳定性以及运动协
基金项 日:中央高校基本科研业务费专项基金资助项 N( J US R P 1 I A 4 8 ) 作者简介 : 刘 教授 鑫( 1 9 8 9 -) ,男, 硕士研究生,主研方向: 机器人遥操作技术 ; 于振中, 讲师、博士 ; 郑为凑 , 硕士研究生; 惠 晶,
多智能体协同控制算法及其在机器人领域中的应用
多智能体协同控制算法及其在机器人领域中的应用在机器人领域中,多智能体协同控制算法发挥着重要的作用。
它能够实现多个机器人之间的协同工作,使得机器人们能够完成复杂任务、提高工作效率和性能。
本文将介绍多智能体协同控制算法的基本原理和在机器人领域的应用。
多智能体协同控制算法是指通过多个智能体之间的通信和合作,对分布式系统进行协调和控制的算法。
该算法使得智能体能够共同完成一个共同的任务,通过互相之间的信息交流和合作,实现整体性能最优化,提高各个智能体的工作效率和任务完成能力。
多智能体协同控制算法的基本原理是建立一个分布式控制系统,其中每个智能体都有自己的决策和控制信息。
智能体之间通过通信协议来交换信息,并根据接收到的信息来更新自己的控制策略。
通过迭代的方式,智能体们能够逐渐找到最优的策略,并实现整体性能最优化。
在机器人领域中,多智能体协同控制算法的应用是非常广泛的。
它可以应用于多机器人协同工作、集群机器人系统、无人机编队飞行等领域。
下面将通过几个实际应用案例来具体介绍。
首先,多智能体协同控制算法在多机器人协同工作方面有很大的应用潜力。
在一个工厂生产线上,多个机器人可以通过智能体协同控制算法来协同完成生产任务。
机器人们通过通信交流各自的状态和所需资源,通过合作和协调来提高生产效率和品质。
通过多智能体协同控制算法,机器人们可以根据任务的优先级和所需资源进行调度,使得整个生产线能够保持高效运转。
其次,多智能体协同控制算法在集群机器人系统中也有广泛的应用。
集群机器人系统是由多台机器人组成的一个协同工作系统,每个机器人都具有自主决策和执行能力。
通过智能体协同控制算法,机器人们可以共同完成搜索、拍摄、物流配送等任务。
例如,当有大规模的搜索任务时,机器人们可以通过合作来分担搜索区域和信息交流,加快搜索速度并提高搜索效果。
另外,多智能体协同控制算法在无人机编队飞行方面也有重要的应用。
无人机编队飞行是指多台无人机同时飞行并保持一定队形的行为。
多智能体编队控制的新图论方法
多智能体编队控制的新图论方法多智能体编队控制的新图论方法摘要:多智能体协同控制是近年来热门的研究领域,其中多智能体编队控制是其中的一个重要方向。
传统的编队控制方法主要依赖于单一智能体之间的通信和协作,但这种方法在面对大规模智能体系统时存在着通信负荷大和算法复杂性高的问题。
针对这些问题,本文提出了一种基于新图论方法的多智能体编队控制框架,该方法可以有效地解决通信负荷和算法复杂性的挑战。
1.引言多智能体系统具有较高的适应性和鲁棒性,可以在各种复杂环境下执行任务。
多智能体编队控制是一种典型的多智能体协同控制方法,其目的是使多个智能体形成一个有序的队形并协同完成任务。
传统的编队控制方法通常基于图论,将智能体之间的关系建模为图,通过图论算法实现编队控制。
然而,传统方法在解决大规模智能体系统时存在着一些困难。
2.传统多智能体编队控制方法的问题传统的多智能体编队控制方法主要依赖于智能体之间的通信和协作。
在传统方法中,智能体之间需要实时地交换位置和状态信息,以实现编队控制。
然而,当智能体数量增加时,通信负荷呈指数增长,给通信带宽和计算资源带来了极大的压力。
同时,传统方法在处理大规模系统时,需要复杂的算法来解决图论问题,使得编队控制的效率较低。
3.新图论方法:基于稀疏图的编队控制为了解决传统方法存在的问题,本文提出了一种基于稀疏图的多智能体编队控制方法。
该方法通过构建稀疏图模型来描述智能体之间的关系,从而减少通信负荷和算法复杂性。
稀疏图是指图中边的数量远小于顶点的数量的图,可以用于表示智能体编队中的相对关系。
在编队控制过程中,智能体只需与其邻居进行通信,而不是与全部智能体进行通信,从而降低了通信负荷。
4.稀疏图构建和更新方法为了构建稀疏图,每个智能体需要利用传感器获取周围智能体的位置和状态信息。
基于这些信息,智能体可以计算出与其相邻的智能体,并将其连接构成稀疏图。
在编队控制过程中,稀疏图会随着智能体的位置变化而动态更新,以保持编队的稳定性。
多智能体系统中的协同控制与优化策略研究
多智能体系统中的协同控制与优化策略研究第一章引言多智能体系统是由多个独立的个体组成的一个整体,在许多领域都有广泛的应用,如机器人技术、通信网络、交通运输等。
在多智能体系统中,实现个体间的协同控制与优化策略是一个重要的研究方向。
本章将介绍多智能体系统的概念和研究意义,并简要介绍后续章节的内容安排。
第二章多智能体系统的建模与分析2.1 多智能体系统的定义和特点多智能体系统是由多个个体组成的一个整体,每个个体都有自己的感知和决策能力。
多智能体系统具有分布式、并行、非线性等特点,需要进行合理的建模与分析。
2.2 多智能体系统的建模方法多智能体系统的建模方法包括集中式方法和分布式方法。
集中式方法将多个个体的状态和动作集中在一个中央控制器中进行决策,而分布式方法则将决策分散到每个个体中进行局部决策。
2.3 多智能体系统的分析方法多智能体系统的分析方法包括动态分析和协同稳定性分析。
动态分析用于研究个体的运动规律和相互作用关系,而协同稳定性分析用于研究系统中个体间的协同性和系统的稳定性。
第三章多智能体系统的协同控制3.1 多智能体系统的协同控制方法多智能体系统的协同控制方法包括集中式控制和分布式控制。
集中式控制方法将多个个体的控制命令由一个中央控制器进行统一调度,而分布式控制方法则将控制命令分散到每个个体中进行局部调度。
3.2 多智能体系统的协同控制策略多智能体系统的协同控制策略包括一致性控制、队形控制、分工协同等。
一致性控制用于实现个体间的运动同步,队形控制用于实现个体间的位置和姿态的调整,分工协同用于实现个体间的任务分配和合作。
第四章多智能体系统的优化策略4.1 多智能体系统的优化目标多智能体系统的优化目标包括最大化系统整体性能、最小化系统能耗、最优化任务分配等。
4.2 多智能体系统的优化方法多智能体系统的优化方法包括遗传算法、粒子群算法、神经网络等。
通过这些优化方法,可以找到系统的最优解或近似最优解。
第五章多智能体系统的应用案例5.1 多智能体机器人系统多智能体机器人系统是多智能体系统在机器人领域的一个重要应用。
多智能体的鲁棒自适应有向三角编队控制
( 州职业大学 , 苏 扬州 扬 江 2 50 ) 2 0 9
摘
要 : 对 一 类 具 有 不确 定性 和 外 部 干 扰 的 三 个 智 能 体 系统 , 出 了基 于 距 离的 分 散 自适 应 有 向编 队 针 提
控 制 策 略 。利 用模 糊 系统 的 逼 近 能 力 对 单 个智 能体 的 不 确 定 动 态 进 行 逼 近 , 同时 通 过 参 数 自适 应 估 计 消 除 了 逼 近 误 差 和 外部 干扰 对 系统 的 影 响 ; 一 步 , 进 引入 势 能 函数 避 免 个 体 之 间的 碰 撞 。通 过 B b l 引理 能 够证 明 aa t a 所 提 控 制 算 法 能 够 保 证 期 望 的 三 角 队形 且 每 个 智 能 体都 能 达 到 期 望 的 速 度 。
第 1 5卷 第 2期 2 1 年 6月 01
扬 州 职 业 大 学 学 报
Ju n l f o r a o Ya g h u oye h i C l n z o P lt c n c ol
Vo பைடு நூலகம் 5 No 2 1 1 .
J n 2 1 u .0 1
多 智 能 体 的 鲁 棒 自适 应 有 向 三 角 编 队控 制
Z U Y —ogD n WA GQn H adn , UJ , N i i
( a ghuP leh i C l g , agh u2 50 , hn ) Y nzo o t nc oee Y nzo 2 0 9 C ia yc l
Absr c :I h s p p r e e taie da tv o to c meo r c e ra g e fr t n ba e n i tr t a t n t i a e ,a d c n r lz d a p i ec n r ls he fdie td tin l o ma i s d o n e — o a e td sa c si r e u o h e lia e ts se t n e t i o ln a y misa x e n ld s g n itn e swo k d o tfrt r e mu t- g n y t mswih u c ra n n n i e rd na c nd e t r a i- - ・ t r n e . Unc ran d n mi st r r p o i td b h is y e f z y t ms Att e s me tme,t e u ba c s e i y a c e msa e a prx ma e y t e frttp uzy s se . h a i t h ef cs o p r x mai n e r ra d e tr a it r n e r lmi ae y u i h d p ie e tmai n o a fe t fa p o i t ro n x e n ld su ba c sa e ei n td b sng t e a a tv si to fp — o r me e . Fu h r r a tr t r e mo e,t e i t ra e tpoe t lf n to s a e i to u e o a od t e c lii n bewe n e c — h n e - g n t ni u c in r n r d c d t v i h o lso t e a h a a g n .By t e Ba a a ’ e et h b lt Slmma,t e p o o e o to l o i h r p s d c n r lag rt hmsc n no n y a c mp ih t e de ie o main a to l c o ls h sr d f r to b ta s n ur ha p e s o l g n s c n eg o a c mmo aue d rn h to . u lo e s e t ts e d fala e t o v r e t o n v l u i g t e moi n Ke r s:mu t— g n y t m ;de e taie d p ie c n rl y wo d lia e ts se c n r lz d a a t o to ;die td tin l o mai n c n r l v r c e ra ge fr t o to o
水下多智能体系统快速编队控制
关 键 词 : 水 下 多 智 能 体 系统 ;编 队 控 制 ;收 敛 速 度 中 图 分 类 号 : T 1 P3 文 献标 识码 : A 文 章 编 号 : 17 - 6 9 2 1 ) 5 0 6 - 3 d i1 .4 4 ji n 1 7 — 6 9 2 1 . 5 0 5 6 2 74 (02 0 — 07 0 o :0 3 0 /.s . 6 2 7 4 . 0 2 0 . 1 s
s se u e t e fs o m ain c n r lp oo o o mai n f se ha et e sa a d fr t n c n r lp o o o y t m s h a tf r to o to r t c lfr t a trt n us h tnd r o mai o to r tc l o o
但 对 于任何 控制 系统 而言 , 去 的状 态都 值 得考 虑 , 过
而且 很 容易 得 到 ,本 文 提 出 的 快 速 编 队控 制 算 法 不 仅 利用 智能 体 当前 状 态 ,还 利 用 智 能体 过 去状 态 的
的 、 法预 知 的 或 危 险 的海 洋 环 境 之 中 ,完 成 自主 无
不适 合潜 水员 及 载 人 潜水 器 进 行 。作 为海 洋 资 源开
发工 具 , 下智 能 体 ( U 成 为 当今 各 国在 海 洋 工 水 A V) 程领 域 中 的研 究 热 点 。这 主要 是 由于 在 实 际 的 水 下
作 业 中 , U 可 以 自 主 地 运 行 在 远 程 的 、难 于 接 近 A V
sae n u d td t t s i r po e .Th a t fr t n o to r t te s a ay e nd r a u die td tt sa d o t ae sa e s p o s d e f s o ma i c n r lp oo o li n lz d u e n r c e o c mm u ia in g a h.Ba e o t e  ̄e u n l — o i a ay i a d o n c to r p sd n h q e tY d ma n n lss n marx h oy, i s h wn h t h ti t e r t s o t a t e i
多智能体编队控制方法
多智能体编队控制方法
多智能体编队控制方法有很多种,其中一种常见的方法是Leader-Follower 法。
这种方法的基本思想是在由多智能体组成的群组中,某个智能体被指定为领航者,其余的智能体被指定为跟踪领航者运动的跟随者。
跟随者以设定的距离或速度等参量跟踪领航智能体的位置和方向。
对同一个多智能体系统,领航者可以仅仅指定一个,也可以存在多个,但控制群组编队形状的领航者只能有一个。
通过设定领航者智能体与跟随智能体间不同的位置关系,便可得到不同的网络拓扑结构,即不同的编队队形。
该方法的突出特点在于,智能体群组成员间的协作作用是通过对领航智能体状态信息的共享来实现的。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询专业人士。
无人机群智能编队控制及路径规划方法
无人机群智能编队控制及路径规划方法无人机群智能编队控制及路径规划方法无人机群在现代应用中扮演着越来越重要的角色,无论是在事领域还是在民用领域,如环境监测、物流运输、灾难救援等。
智能编队控制和路径规划是无人机群应用中的关键技术,它们直接影响到无人机群的效率、安全性和任务完成的成功率。
本文将探讨无人机群智能编队控制及路径规划的方法。
一、无人机群编队控制概述无人机群编队控制是指通过控制算法,使多架无人机按照预定的队形和规则进行协同飞行。
编队控制不仅要求每架无人机能够飞行,还要求它们能够根据环境变化和任务需求进行动态调整。
编队控制的核心问题包括队形保持、队形变换、队形重构和队形优化等。
1.1 编队控制的基本原理编队控制的基本原理是通过设计控制律,使得无人机群能够根据领导者的指令或者预设的规则进行协同飞行。
这通常涉及到领导者-跟随者模型、虚拟结构模型和行为模型等不同的控制策略。
1.2 编队控制的关键技术编队控制的关键技术包括队形设计、队形稳定性分析、队形调整策略和队形优化算法。
队形设计需要考虑无人机的动力学特性和任务需求,设计出合理的队形结构。
队形稳定性分析则需要评估在不同环境和干扰下,编队能否保持稳定。
队形调整策略和优化算法则用于在飞行过程中对队形进行动态调整,以适应任务需求和环境变化。
二、无人机群路径规划方法路径规划是无人机群飞行中的一个重要环节,它涉及到从起点到终点的最优或可行路径的选择。
路径规划需要考虑多种因素,如飞行安全、飞行时间、能耗、避障等。
2.1 路径规划的基本原则路径规划的基本原则是确保无人机群能够安全、高效地从起点飞到终点。
这通常需要在满足飞行安全和任务需求的前提下,尽可能减少飞行时间和能耗。
2.2 路径规划的关键技术路径规划的关键技术包括环境感知、路径搜索算法、避障策略和多无人机协同规划。
环境感知技术用于获取无人机周围环境的信息,为路径规划提供依据。
路径搜索算法则用于在已知环境中搜索最优或可行的飞行路径。
多智能体系统中的协同控制与优化研究
多智能体系统中的协同控制与优化研究引言在现代科技的发展背景下,多智能体系统在许多领域中得到了广泛的应用,如自动驾驶、物流调度、无人机编队等。
这些系统中的智能体之间需要通过合作与协同来达到共同的目标。
同时,为了使得智能体之间能够高效地协同工作,协同控制与优化成为了研究的重点。
一、多智能体系统的协同控制多智能体系统中的协同控制是指智能体之间通过相互通信与协作,以实现整体性能的最大化。
协同控制的研究旨在解决多智能体系统中智能体之间的合作与协作问题,通过调整每个智能体的行为,使得整个系统能够达到某种性能指标。
为了实现协同控制,研究者们提出了各种协同算法与协同机制。
其中一种常用的方法是分布式控制。
分布式控制是将全局控制问题分解为每个智能体的个体控制问题,从而实现整体控制。
此外,还有一些集中式控制的方法,通过一个中心控制器来调度各个智能体的行为。
为了实现协同控制,智能体之间的通信与协作起着关键作用。
通信网络的选择与设计是实现协同控制的重要环节。
研究者们提出了基于图论的方法来描述智能体之间的通信拓扑结构,从而设计相应的协同控制算法。
二、多智能体系统的协同优化多智能体系统的协同优化是指通过智能体之间的合作与协作,以达到整体性能的优化。
协同优化的研究旨在解决多智能体系统中资源分配与任务分配的问题。
通过合理地分配资源和任务,使得整个系统的性能得到最大化。
在协同优化过程中,关键问题是如何设计合适的优化算法与机制。
常见的协同优化方法包括分布式优化与集中化优化。
分布式优化是将全局优化问题分解为每个智能体的个体优化问题,从而实现整体优化。
而集中化优化通过一个中心优化器来协调智能体的行为。
在协同优化中,合作与竞争的平衡也是一个重要的问题。
在多智能体系统中,智能体之间可能存在竞争关系,因此如何使得智能体相互合作,同时保持一定的竞争性,是协同优化研究的一个热点问题。
三、多智能体系统中的应用领域多智能体系统的协同控制与优化在许多领域中得到了广泛的应用。
多智能体控制概述
二阶积分的动态关系可以用双曲的PDE表示:
xtt (t, r, ) x(t, r, ) x x(t, R, ) u(t, )
Donghua University
PDE的平衡点
• PDE的平衡点对应系统的稳定状态
0 x(t, r, ) x x(t, R,) u(t,)
Donghua University
• 嵌入式机器人 • 飞机编队飞行,队形控制 • 小卫星群 • 无线传感网络
Donghua University
Donghua University
Donghua University
Donghua University
Donghua University
University
应用例子
• 例子 robotic submarine 寻找马航失联客机 autonomous underwater vehicle在海底寻找, 多个水下机器人形成协同搜索,效率更好,每个搜索
一片区域,相互之间传递消息。
• 应用于无人驾驶机群的编队飞行,可移动机器人的定位和位 置部署,可移动传感网络的布局,运输车辆的协调,飞行器 或者小卫星群的空间布局等无人网络系统的控制,在人类难 以到达或者危险的地方,完成环境探索、科学采样、地图绘 制、监测和侦查、搜索和营救以及分布式传感等协同任务。
• 多智能体协同控制的研究可派生出各种分布式算法,解决不 同领域的科学问题,例如异步网络通讯、分布式协同决策、 信息融合以及耦合振子系统等。
Donghua University
Donghua University
Research program: what are we after?
• Design of provably correct, distributed coordination algorithms 分布式协同算法设计
《多智能体系统的几类编队控制问题研究》
《多智能体系统的几类编队控制问题研究》一、引言多智能体系统由多个可以互相通信与合作的智能体组成,其应用领域广泛,包括无人驾驶车辆、无人机群、机器人集群等。
编队控制是多智能体系统研究的重要方向之一,它通过协调各智能体的运动,实现整体协同的编队行为。
本文将针对多智能体系统的几类编队控制问题进行研究,旨在为相关领域的研究与应用提供理论支持。
二、多智能体系统编队控制基本理论编队控制是多智能体系统协同控制的核心问题之一,它要求各智能体在动态环境中协同完成任务,形成特定的几何形状或空间布局。
编队控制的基本理论包括编队结构、通信机制、协同策略等。
编队结构是编队控制的基础,它决定了智能体的空间布局和运动轨迹。
常见的编队结构包括线性编队、环形编队、星形编队等。
通信机制是实现智能体之间信息交互的关键,它包括无线通信、视距通信等多种方式。
协同策略则是根据任务需求和系统状态,制定合适的控制策略,实现编队的稳定性和灵活性。
三、几类多智能体系统编队控制问题研究1. 固定环境下多智能体编队控制问题在固定环境下,多智能体需要形成稳定的编队结构,并按照预定的路径进行运动。
针对这一问题,可以采用基于规则的编队控制方法、基于优化的编队控制方法等。
其中,基于规则的编队控制方法通过设计合适的规则,使智能体根据自身状态和邻居状态进行决策;基于优化的编队控制方法则通过优化算法,求解最优的编队结构和控制策略。
2. 动态环境下多智能体编队跟踪问题在动态环境下,多智能体需要实时调整编队结构,以适应环境变化。
针对这一问题,可以采用基于领航者的编队跟踪方法、基于分布式控制的编队跟踪方法等。
其中,基于领航者的编队跟踪方法通过领航者引导智能体进行运动;而基于分布式控制的编队跟踪方法则通过分布式控制器实现各智能体的协同运动。
3. 异构多智能体编队控制问题异构多智能体系统中,各智能体的性能、能力等存在差异。
针对这一问题,需要研究异构智能体的协同策略、任务分配等问题。
《多智能体系统的几类编队控制问题研究》范文
《多智能体系统的几类编队控制问题研究》篇一一、引言随着科技的飞速发展,多智能体系统(Multi-Agent System, MAS)的编队控制问题已经成为众多领域研究的热点。
编队控制不仅在无人驾驶车辆、无人机群、机器人集群等实际应用中具有广泛的应用,而且在理论层面上也具有深远的研究价值。
本文将针对多智能体系统的几类编队控制问题进行深入研究,探讨其理论、方法及实际应用。
二、多智能体系统编队控制概述多智能体系统编队控制是指通过一定的控制策略,使多个智能体(如无人机、无人车等)在动态环境中协同工作,形成特定的队形,并保持队形稳定的一种技术。
编队控制涉及到智能体的通信、决策、执行等多个方面,是现代控制理论的重要组成部分。
三、几类编队控制问题研究1. 基于行为的编队控制基于行为的编队控制是一种常见的方法,其核心思想是通过设计每个智能体的行为规则来实现整体的编队。
这种方法的优点在于能够处理复杂的环境和任务,但需要精确地设计每个智能体的行为规则。
对于该类问题,本文将探讨如何设计有效的行为规则,以及如何通过学习来优化这些规则。
2. 基于领航者的编队控制基于领航者的编队控制是指通过指定一个或多个领航者来引导整个队伍的行动。
这种方法简单有效,但需要解决领航者与队伍之间的通信和协调问题。
本文将研究如何设计有效的领航者,以及如何通过优化算法来提高队伍的编队效果。
3. 分布式编队控制分布式编队控制是指每个智能体都根据自身的信息和周围智能体的信息进行决策,从而实现整个队伍的协同编队。
这种方法具有较好的鲁棒性和适应性,但需要解决智能体之间的通信和决策协调问题。
本文将探讨如何设计分布式编队控制的算法,以及如何通过优化算法来提高队伍的协同性能。
四、实验与分析本文将通过仿真实验和实际实验来验证所提方法的可行性和有效性。
首先,我们将使用仿真软件来模拟多智能体系统的编队控制过程,观察并分析编队效果。
其次,我们将进行实际实验,通过实际的硬件设备来实现多智能体的协同编队。
多智能体协同
协同优化方法的分类和特点
1.协同优化方法的分类介绍。 2.不同类型协同优化方法的特点分析。 3.协同优化方法的应用场景举例。 协同优化方法可以根据优化问题的类型和求解方法进行分类, 包括分布式协同优化方法、集中式协同优化方法、混合协同优 化方法等。不同类型的协同优化方法具有不同的特点和适用场 景,例如分布式协同优化方法具有较好的可扩展性和鲁棒性, 适用于大规模分布式系统的优化问题。 ---
多智能体协同的关键技术
▪ 感知与信息共享
1.利用先进的传感器技术,提高多智能体的环境感知能力。 2.建立感知信息共享机制,实现多智能体之间的协同感知和避 障。 3.通过深度学习等技术,优化感知信息的处理和解释,提高协 同感知的准确性。
▪ 任务分配与资源调度
1.设计有效的任务分配算法,根据多智能体的能力和资源进行 合理分配。 2.建立资源调度机制,确保多智能体能够高效地利用有限的资 源完成任务。 3.考虑任务分配和资源调度的动态性,适应不同场景和需求的 变化。
-▪-- 协同算法的分类和特点
1.协同算法的分类介绍。 2.不同类型协同算法的特点分析。 3.协同算法的应用场景举例。 协同算法可以根据智能体之间的交互方式和问题类型进行分类,包括分布式协同算法、集中 式协同算法、基于学习的协同算法等。不同类型的协同算法具有不同的特点和适用场景,例 如分布式协同算法具有较好的可扩展性和鲁棒性,适用于大规模分布式系统的优化和控制。 ---
智能体的基本模型与分类
▪ 智能体的感知与决策
1.智能体通过感知器感知环境信息,经过信息处理后做出决策。 2.智能体的决策过程包括问题定义、信息搜索和方案评估等步骤。 3.智能体的感知和决策能力受到信息质量和处理能力的限制。
▪ 智能体的学习与自适应
多智能体编队问题的研究
引言:多智能体的协同在很多工程中具有广泛应用背景,如区域搜索、战场环境侦察、多战机协同作战、舰队协同作战、导弹突防、目标多点跟踪等[1]。
在执行不同的任务时,需要依据不同的场景实现不同的编队形态,既能够实现既定任务,又能够保证协同作战时的灵活性。
因此,对于多智能体的编队问题研究对于多智能体协同执行任务是有较大的意义的。
多智能体编队问题包括固定编队控制和时变编队控制,其中固定编队控制是时变编队控制的特例。
由于在实际问题中多智能体编队往往需要针对不同的任务场景采用不同的编队形式,如导弹突防时多智能体需要采用间距较小的编队形式,而在巡航阶段需要采用间距较大的编队形式,所以可以看出多智能体的时变编队研究具有更高的实用意义。
基于上述的多智能体时变编队的优点,本文重点研究多智能体时变编队的控制问题。
一、多智能体编队控制的现状和当前存在的问题针对多智能体编队的研究,目前对于固定编队的研究方法较为成熟,且研究成果较多。
比较常见的一种方法是基于人工势场方法的编队保持策略,即系统建立多智能体之间的人工势场,通过感知势场梯度的变化来给单个智能体的控制器一个控制量,进而给出单个智能体的运动方向和运动速度。
该方法要求多智能体系统之间具有通信能力,至少应该保证系统的通信拓扑能够生成一个以图论语言描述的有向生成树。
简单来说就是任何一个智能体的状态信息发生变化时都可以通过通信网络将信息传递至整个多智能体网络。
该方法被广泛的应用于“领导-跟随者”、“虚拟领航者”以及多智能体编队问题的研究【摘要】 无人机或无人车等装备是军工领域中常见的现代作战装备之一。
然而在很多作战环境下单一的无人作战装备难以完成复杂的军事任务,因此提出了多智能体协同作战的理念。
多智能体在执行任务时往往需要实现不同的预设编队,进而实现避障、减小雷达反射截面积等任务,因此多智能体编队控制问题便成为需要解决的核心问题。
多智能体编队控制问题有固定编队及时变编队等问题,时变编队显然更具有实际的工程意义。
多智能体的鲁棒自适应有向三角编队控制
多智能体的鲁棒自适应有向三角编队控制朱亚东;杜晋;王芹【摘要】针对一类具有不确定性和外部干扰的三个智能体系统,提出了基于距离的分散自适应有向编队控制策略。
利用模糊系统的逼近能力对单个智能体的不确定动态进行逼近,同时通过参数自适应估计消除了逼近误差和外部干扰对系统的影响;进一步,引入势能函数避免个体之间的碰撞。
通过Babalat引理能够证明所提控制算法能够保证期望的三角队形且每个智能体都能达到期望的速度。
%In this paper, a decentralized adaptive control scheme of directed triangle formation based on interagent distances is worked out for three multi-agent systems with uncertain nonlinear dynamics and external disturbances. Uncertain dynamics terms are approximated by the first type fuzzy systems. At the same time, the effects of approximation error and external disturbances are eliminated by using the adaptive estimation ofpa- rameter. Furthermore, the inter-agent potential functions are introduced to avoid the collision between each a- gent. By the Babalat' s lemma, the proposed control algorithms can not only accomplish the desired formation but also ensure that speeds of all agents converge to a common value during the motion.【期刊名称】《扬州职业大学学报》【年(卷),期】2011(015)002【总页数】5页(P29-33)【关键词】多智能体系统;分散自适应控制;有向编队控制【作者】朱亚东;杜晋;王芹【作者单位】扬州职业大学,江苏扬州225009;扬州职业大学,江苏扬州225009;扬州职业大学,江苏扬州225009【正文语种】中文【中图分类】TP27320世纪90年代后期,多智能体的编队控制研究获得了深入的发展,相关研究成果在协同搜寻、营救、导航和多机器人规划、水下航行器控制及空间航行器的控制方面发挥了很大的作用[1-3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 8, AUGUST 20111791Leader-Enabled Deployment Onto Planar Curves: A PDE-Based ApproachPaul Frihauf, Student Member, IEEE, and Miroslav Krstic, Fellow, IEEEAbstract—We introduce an approach for stable deployment of agents onto families of planar curves, namely, 1-D formations in 2-D space. The agents’ collective dynamics are modeled by the reaction–advection–diffusion class of partial differential equations (PDEs), which is a broader class than the standard heat equation and generates a rich geometric family of deployment curves. The PDE models, whose state is the position of the agents, incorporate the agents’ feedback laws, which are designed based on a spatial internal model principle. Namely, the agents’ feedback laws allow the agents to deploy to a family of geometric curves that correspond to the model’s equilibrium curves, parameterized . However, many of by the continuous agent identity these curves are open-loop unstable. Stable deployment is ensured by leader feedback, designed in a manner similar to the boundary control of PDEs. By discretizing the PDE model with respect to , we impose a fixed communication topology, specifically a chain graph, on the agents and obtain control laws that require communication with only an agent’s nearest neighbors on the graph. A PDE-based approach is also used to design observers to estimate the positions of all the agents, which are needed in the leader’s feedback, by measuring only the position of the leader’s nearest neighbor. Hence, the leader uses only local information when employing output feedback. Index Terms—Boundary multiagent systems. control, cooperative control,I. INTRODUCTION UCH research has been conducted in multiagent formation control, leading to many approaches for stable deployment onto curves. However, the agents in many of these works implement controllers that depend on the desired deployment, hence the parameters of each agent’s controller must be updated to move the agents from one deployment to another, which may be cumbersome for systems with large numbers of agents. We propose a framework that enables agents to achieve deployment families while employing a single controller with no knowledge of the desired deployment. These families correspond to the potentially unstable, nonzero equilibria ofMManuscript received August 31, 2009; revised May 18, 2010; accepted October 06, 2010. Date of publication November 15, 2010; date of current version August 03, 2011. This work was supported by the Department of Defense (DoD), the Air Force Office of Scientific Research, the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a, the National Science Foundation, and the Los Alamos National Laboratory. Recommended by Associate Editor M. Egerstedt. The authors are with the Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 USA (e-mail: pfrihauf@; krstic@). Color versions of one or more of the figures in this paper are available online at . Digital Object Identifier 10.1109/TAC.2010.2092210either two decoupled, linear reaction–advection–diffusion partial differential equations (PDEs) or one complex-valued, linear Ginzburg–Landau PDE and are stabilized by a leader agent. The agents’ positions, needed for the leader’s feedback, are estimated by observers that require position information from only the leader’s nearest neighbor. Thus, when the leader employs output feedback, all the agents use only local information. We also propose a nonlinear approach for deployment to a family of circular arcs, including circles, that does not require leader feedback. This design, however, is limited to formations of fixed radius, whereas the leader-enabled design allows the agents to stabilize formations of any size with an arbitrary convergence rate. For large multiagent systems, our framework allows a user to deploy many agents to multiple configurations while communicating with only two agents. 1) Literature Review: This paper draws from multiagent systems research in formation control, estimation, and PDE-related designs. In formation control, feasible geometric patterns are characterized for agents with global information in [1], and stabilization of any geometric pattern using Laplacian controls are studied in [2]–[4]. Formation control for unicycles under cyclic pursuit is considered in [5], [6], a sequence of maneuvers between formation patterns is achieved with a behavior-based approach in [7], and planar formations are controlled in a Lie group setting in [8]. By selecting appropriate density functions that are known by all the agents, coverage control algorithms designed in [9] can be used to achieve deployments onto a desired planar curve and 2-D distributions within a desired planar curve. In [10], decentralized controllers that maintain connectivity are used to form geometric patterns specified by a smooth function. Deployment and rendezvous on a line are considered in [11] for agents connected by a data-rate-constrained network. Other works use a leader agent to influence the collective behavior of the agents. Artificial potentials and virtual leaders are used to control the group’s geometry and mission in [12]. In leader–follower systems, nonholonomic followers use nonlinear controllers to stabilize their relative distances and orientation in [13], leader-to-formation stability gains are used to quantify a formation’s stability properties in [14], and bounds on a leader’s velocity and the curvature of its path, which guarantee the existence of a follower’s formation-maintaining controller, are determined in [15]. A leader agent is used to steer a formation in [4] and to optimally transfer agents to desired waypoints at specified times in [16]. In [17], leaders employ a hybrid Stop–Go policy to drive follower agents to a target location. Multiagent estimation research has focused mainly on dynamic consensus filters. Vehicles use an information exchange methodology, whose stability is decoupled from the local control of the vehicles, to reach consensus on a formation’s center0018-9286/$26.00 © 2010 IEEE1792IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 8, AUGUST 2011in [2]. Laplacian consensus dynamics are extended in [18] to handle time-varying signals, arbitrary time delays, and splitting and merging networks. Dynamic consensus filters are developed in [19] and implemented in [20] to estimate global information for use in an agent’s local controller to achieve the system’s desired global behavior. Dynamic consensus filters are also used in [21] to stabilize parallel or circular collective motion, recovering the results in [22]. Recent years have seen an increase in multiagent research utilizing PDEs for both design and analysis [23]–[28]. In particular, [24] uses a PDE from image processing to design boundary-tracking controllers, [26] models a swarm as an incompressible fluid for pattern generation, and [27] studies the stability of large vehicular platoons using a linear hyperbolic PDE. The Partial difference Equation (PdE) framework is used in [29] to show that Laplacian control, analyzed in [30] and [31], coincides with the heat equation. It is also used to develop control laws in [17] and [32], where in [32], agents use model reference adaptive control laws to track desired trajectories, using either the heat equation or the wave equation as reference models. 2) Results of This Paper: We introduce a framework for multiagent deployment into families of geometric curves. Our design employs linear reaction–advection–diffusion equations and boundary control techniques, which treat the agents as a continuum. These PDE models are an application of the internal model principle [33], but in a spatial sense, where the PDE models allow the agents to achieve a family of deployments that correspond to the models’ nonzero equilibria. Specifically, the follower agents’ feedback laws, incorporated by the PDE models, contain a model for a family of geometric curves, namely, signals in space rather than time. Consequently, the agents are able to achieve different formations while using the same controller, whereas other works require a controller’s parameters to be changed to achieve a new deployment. The follower agents’ feedback laws, however, do not ensure stability, and many, if not most, nonelementary deployments are derived from unstable PDE models. Other PDE-based designs utilize only inherently stable models. Stabilization of the planar curves is guaranteed by two boundary agents—the leader agent and the anchor agent—which serve as boundary conditions for the PDE models. These special agents execute control laws designed using the backstepping approach [34]. Even for standard deployments, which correspond to stable PDEs, such as rendezvous or deployment to a line, our leader feedback can achieve any desired convergence speed, in contrast to the convergence speeds of the standard consensus-based algorithms that are limited by the first eigenvalue of the heat equation [2], [11], [29]. The desired deployment shape is encoded in these boundary controls in the form of a bias term, which allows the leader and anchor to select a specific curve from the deployment family for the agents to stabilize. By adjusting their respective bias terms, the leader and anchor (and by extension, the user) can induce the agents to unknowingly deploy to other curves within the deployment family. Our framework also includes the design of observers, which are employed by the leader agent, using the backstepping approach for PDEs with boundary sensing [35]. These observers require knowledge of only the position of the leader’s nearestFig. 1. Communication topology imposed by spatial discretization. The leader needs global information (dashed) unless it uses output feedback. Legend: anchor; follower; leader.neighbor to estimate the positions of all the agents. By spatially discretizing the PDE models, observers, and boundary controllers, we obtain control laws for the follower agents, the anchor, and the leader. This discretization imposes a fixed communication topology on the agents, shown in Fig. 1, where if the leader employs output feedback, all the agents utilize only local information (in the sense of the communication topology) in their control laws. The unstable PDEs place special emphasis on the leader for stability. For this reason, we explore alternative ways to achieve deployment families. We focus on circles since they correspond to unstable PDE models in the leader-based design and are important benchmarks that extend the deployment ideas beyond linear deployments [3], [11]. We present a nonlinear PDE model for deployment to a circle and prove its stability. We use anchor agents to move the agents from one deployment to another, similar to the use of leading reference agents in [32]. A limitation of this method is that the deployment’s radius cannot be manipulated by the anchors (or user) without communicating the desired radius to all the agents. In contrast, the leader-based approach allows deployment to circles/ellipses of arbitrary size without the need to broadcast any parameters. 3) Organization: Section II introduces leader-enabled deployment for both decoupled 1-D deployments and complexvalued deployments with – cross-coupling. Section III details the design of stabilizing controllers with closed-loop stability proven in Section IV. Observer design, model discretization, and numerical simulations are presented in Sections V–VII. We introduce deployment to circular arc families in Section VIII and conclude with Section IX. II. LEADER-ENABLED DEPLOYMENT For the planar deployment problem, we consider a large (continuum) group of fully actuated agents operating in a common reference frame, namely, we consider the dynamical model (1) where denotes the position of agent at time , are the control inputs for agent , , , and . We refer to the parameter as the agent identity, which serves as an agent’s identification number and as the spatial variable of a PDE model for the group’s collective dynamics. Discretizing (1) with respect to leads to the following dynamical model andFRIHAUF AND KRSTIC: LEADER-ENABLED DEPLOYMENT ONTO PLANAR CURVES1793for agent : , , . For , later use, we define the notation: . Our goal is to stably deploy a continuum of agents to families , . of planar curves by designing the controllers Then, a finite number of agents implement the discretized , . This 2-D deployment problem can be controllers approached either through: 1) two decoupled 1-D deployment problems, where the horizontal feedback is decoupled from vertical feedback, i.e., actuation in the -direction does not depend on the position measurement in the -direction, and vice-versa; or 2) as a single complex-valued deployment, where the real and imaginary components represent the horizontal and vertical coordinates, and actuation in each coordinate direction depends on the entire position vector. Restated, in 1), the horizontal velocity command is a function of only the -position, and the vertical velocity command is a function of only the -position. In 2), the complex-valued formulation allows for horizontal and vertical velocity commands that are functions of the planar . Using two decoupled 1-D deployments is position simpler than employing a single complex-valued deployment, so we consider it first for clarity. A. Decoupled 1-D Deployments It is common to approach the deployment problem through consensus-based control laws [2]–[4], [11], whose basic form is given by (2) where denotes the set of agents/neighbors that communicate with agent . In [29], (2) is formally shown to coincide with the heat equation (3) where each agent employs the diffusion-based feedback , which depends only on local agent interactions, i.e., an agent’s nearest neighbors. This simple agent strategy is stable, but it is limited in its convergence rate and is capable of achieving only linear formations [because the equilibrium equation is the simplest second-order ordinary ]. differential equation (ODE), Remark 2.1: Throughout this paper, “nearest-neighbor” refers to agents that are nearest in terms of the fixed communication topology, not in terms of physical distance. Drawing from the connection between consensus and the heat equation, we approach the PDE-based deployment with the more general linear reaction–advection–diffusion equation (4) where the agents’ velocity-actuated feedback laws are follows analogiven by the right-hand side of (4), and gously for the -dimension. These feedback laws maintain the simplicity of the diffusion-based feedback as they are still based only on nearest-neighbor information with all the agents applying the same constant gains and . In the sequel, we dropwhenever the context allows us to do so the arguments without harming clarity. We designate a special role for the two boundary agents, i.e., and agent , whose motions are governed by agent (5) where and are controls to be designed, and which act as the boundary conditions for the PDE (4). The leader agent and the anchor agent will control the follower . As indicated by their names, the leader agents , while the anchor simply stabilizes the deployment profile . Either the leader agent deploys to its designated position or both the leader and anchor agents may be treated as virtual agents if desired (and as suggested by the use of virtual edge leaders in [3]), but it is not necessary. The deployment families of interest correspond to the nonzero equilibrium curves of (4), which satisfy the two-point boundary value problem (6) and given. This allows for a much more general with family of deployments than the linear (in ) equilibrium curves of the heat (3). Equation (6), which is a second-order ODE with constant coefficients, characterizes all the achievable 1-D deployments with the follower agent feedbacks (4). While these feedbacks make these deployments feasible, they do not guarantee stability since the open-loop response of (4) is with eigenvalues , , and constants , whose values depend on the initial condition . In particular, deployment families are unstable. Hence, the leader and the where anchor agents play a crucial role in stabilizing the possibly nonlinear (in ) deployment curves. For planar deployment, we utilize a 1-D PDE model for each and , coordinate axis, which yields two deployments, that characterize a planar curve parameterized in(7) and are basis functions associated with where the solutions of (6) for the respective horizontal and vertical the PDE models. We term the coefficients, , , , and deployment coefficients, which are scalars the user is free to select to define a desired deployment. It is of interest to see how rich the family of possible geometric curves is. Table I categorizes the basis functions according to the values of and . To the user, who has particular planar formations in mind, the basis functions are a starting point in selecting the strategies of the follower agents and also of the leader and anchor agents. The ability to use two disparate PDE models (one for each dimension) provides the user with a wide variety of basis-function combinations that produce various planar deployments. Interestingly, the well-known Lissajous curves, given by , , where , , , , and are scalars and , , are achieved when the 1-D deployments are governed by the reaction–diffusion equations,1794IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 8, AUGUST 2011TABLE I BASIS FUNCTIONS FOR 1-D DEPLOYMENT CURVES OF THE REACTION–ADVECTION–DIFFUSION EQUATIONB. Complex-Valued 2-D Deployment With – Cross-Coupling Until now, we have considered the already rich family of planar deployments that are created by pairing two independent 1-D deployments. We now extend this family of achievable deployments by utilizing an agent’s full position vector in a feedback law for each coordinate direction. To do so, we consider the complex-valued Ginzburg–Landau PDE as a continuum model of the collective dynamics of the agents in the plane. be the complex-valued Let position at time of agent , where denotes the imaginary . Now, consider the complex-valued reaction–advecunit, tion–diffusion equation (which is a linear Ginzburg–Landau PDE with constant coefficients)(10) . In the sequel, we use , , where for conciseness. Equation (10) represents and the followers’ velocity-actuated feedback laws. As before, the leader and anchor agents serve as the boundary conditions for the PDE (10) (11) and are controls to be designed. The openwhere is positive and large. loop system is unstable when The deployments associated with (10) are the equilibrium curves that satisfy the complex-valued two-point boundary value problem (12) and are given. The second-order complex where ODE (12) is in fact a fourth-order real ODE, whose solution is given in terms of four basis functions as , alternatively written asFig. 2. Lissajous curves for various values of , , and with . The dots represent agents. Legend: black dots agents. light dots, agent;and , and the following deployment coefficients are selected: , , , and . Fig. 2 depicts four possible deployments of 15 agents based on Lissajous curves. When the same PDE model is used in each dimension, the parameterized deployment can be written in vector form as (8)(13) and the coefficient matrix can be chosen to be a rotation, scaling, shear, or reflection matrix. For example, the coefficients can be selected to define the desired deployment (9) which is a counterclockwise rotation of the scaled curve , about the origin by the angle . are When two identical reaction–diffusion equations with , and (9) repused, resents a rotated ellipse. If the same PDE models are used, but , , with and (9) represents a rotated hyperbola. The presence of four basis functions affords the designer additional flexibility in shaping deployments, but the restrictive structure of the matrices in (13) prevents the user from being able to shear, reflect, or scale disproportionately the formations. The deployments can only be rotated or equally scaled. For the second-order complex-valued ODE (12), the resulting basis functions are not easy to categorize in terms of the values of the real and imaginary parts of , , , as was done in Table I for real second-order ODEs. We characterize the basis functions for specific subclasses of the complex-valued reaction–advec, the equilibrium profiles tion–diffusion equation. For are linear in , regardless of the value of . The more interesting cases are characterized next.FRIHAUF AND KRSTIC: LEADER-ENABLED DEPLOYMENT ONTO PLANAR CURVES17951) Advection–Diffusion Equation:where,. If two independent 1-D profiles. 2) Reaction–Diffusion Equation(14) , and , the deployment reduces to :(15) where ,, and denotes the signum function. The deployments become decoupled if . 3) Reaction–Advection–Diffusion Equation:one complex-valued deployment, the user applies the following steps. 1) Select a desired deployment family, i.e., a family of basis functions. 2) Select specific basis functions by choosing the coefficients of the appropriate PDE model(s). 3) Choose deployment coefficients to generate a specific planar deployment. 4) Choose the desired deployment convergence rate. 5) Discretize the PDE model(s) spatially to obtain implementable control laws for the leader, anchor, and follower agents. This procedure encompasses both feasibility (steps 1–3) and stability (steps 4 and 5). We have discussed deployment families for agents with feedback laws derived from PDE model(s), which guarantee feasibility, but not stability, of the deployments. and For stable deployment, we design the control laws for the anchor and the leader, and for the leader, observers to estimate the agents’ positions. We now focus on these designs. III. LEADER FEEDBACK DESIGN(16) where , , , , , , and . The deployments in each dimension . become decoupled if Clearly, selecting the appropriate PDE model (10)—specifically the coefficients , , and required for a desired deployment family—is not as straightforward as in the 1-D case due to the complicated expressions for and given in (14)–(16). However, interesting deployments can be found with some ef, , and fort. For example, by selecting , the deployment (14) becomesWe employ PDE backstepping boundary control [34] for the complex-valued PDE model (10) and (11) since leader-based control naturally leads to formulations with actuation at the boundary. PDE backstepping succeeds in deriving closed-form controllers that achieve exponential stability with only boundary actuation. This approach is more elegant than other boundary methods that produce complicated controllers, which require solving operator Riccati equations. This design also applies, as a special case, to the real-valued PDE model (4) with boundary , , , and as real-valued and conditions (5) by treating . setting First, we introduce the deployment profile error(18) to shift the equilibrium of (10) to the origin. Substituting (18) into (10) and (11) yields (19) (20) (21) and we remind the reader that the coefficients , , and are . Next, we substitute the change of complex and variable [34] (22) into (19)–(21) to eliminate the advection term and obtain (23) (24) (25)(17) which represents a circle deployment centered about the . By simply changing the scalars and , point the deployment can be moved about the plane. In contrast, a circle deployment can also be formed using two independent, open-loop unstable 1-D reaction–diffusion equations with , whose equilibria correspond to a family of ellipses centered about the origin. The deployments (15) and (16) model families of spiral-like deployments. C. Design Procedure for Desired Deployment Profiles To achieve leader-enabled deployment onto possibly nonlinear (in ) planar curves using either two 1-D deployments or1796IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 8, AUGUST 2011Now, let be a new state that is defined by the coordinate transformation (26) defined on where the kernel is given by [34] (27) with , , In (27), denotes the first-order modified Bessel function of the first kind. The variable (26) is shown to satisfy the target PDE system (28) (29) (30) and this transformation can be inverted to obtain (31) where the inverse gain kernel [34]. As will be seen in Section IV, the parameter , which is selected by the user, determines the convergence rate of the deployment. From (18), (22), (26), and the boundary conditions (24) and (29), we obtain the anchor’s control law(26), and the boundary conditions (25) and (30), we arrive at the leader’s control law (35) that, with (32), stabilizes the deployment profile . Of note, the control laws (32) and (35) both contain a feedback term and a constant bias term, whose value is determined by the desired formation and can be computed prior to deployment. By simply changing the bias terms—without changing the feedback terms or the follower agents’ control strategy—different deployment profiles can be induced and stabilized by the anchor and the leader. To achieve a specific formation, the user to compute the selects the deployment coefficients . If the bias terms are zero, rendezvous at the origin bias is achieved. However, if the user has no knowledge of the deployment family and instead changes the bias values directly—i.e., and employs the boundary conditions , where denote bias terms set by the user—the agents will stabilize the deploy. ment profile This profile is found by applying the change of variable, , and the transformation (26) to the system (10) and (11) to obtain the target PDE system (28) and with boundary conditions . The equilibrium of (28) with these boundary conditions is(32) For the leader’s control law, we introduce the operator acting on the function as(36) . We use the inverse transformawhere , to tion (31) and change of variable, . obtain IV. CLOSED-LOOP STABILITY (33) Due to the dynamic character of the boundary conditions (29) and (30), there are several aspects in which the stability analysis here differs from [34] and other work on PDE boundary control. A boundary value-dependent perturbation term arises on the right-hand side of (28), and the dynamic boundary conditions necessitate that the analysis be conducted in the Sobolev space, , rather than the function space, . Theorem 1: The system (10) with boundary conditions (11) and control laws (32) and (35) is exponentially stable in the(34) where and indicate the second- and third-order modified Bessel functions of the first kind, respectively. From (18), (22),FRIHAUF AND KRSTIC: LEADER-ENABLED DEPLOYMENT ONTO PLANAR CURVES1797norm at the equilibrium such that for all , , and,, i.e., there exists , whereWe now apply the Cauchy-Schwarz and Young’s inequalities to obtain with the parameter(37) Proof: We begin by proving exponential stability of the be the Lyapunov functional target system (28)–(30). Let(38) where is a positive scalar to be determined. In the sequel, we unless needed for clarity. Taking the omit the arguments gives time derivative of where and . Selecting the parameters , we find(42)(39) where yields denotes the complex conjugate of . Substituting (30)(43) so that (The choice of assumes that and .) From the Comparison Lemma [36] and Lemma 4 in the Appendix, we have(40) Integrating by parts and substituting (28)–(30) gives where(44) , , and , are shown in (103) and (104). The stability result is obtained from (44) with . From Theorem 1, we see that the leader-enabled continuum design achieves exponential stability with a decay rate that can be arbitrarily set by the user, namely, the gain . V. LEADER OBSERVER DESIGN In the previous sections, we have assumed that the leader agent has knowledge of all the agents’ positions. Since the leader agent is acting as a boundary actuator, it is also natural to use it as a boundary sensor, providing measurements to an observer that estimates the positions of all the agents. We now consider two scenarios: 1) the leader knows the position of itself, its nearest neighbor, and the anchor agent, and 2) the leader knows the position of only itself and its nearest neighbor. In both cases, the leader agent also knows the anchor’s bias term. For these scenarios, we use backstepping for PDEs with boundary sensing [35] to design exponentially stable observers of the follower agents’ positions for use in the leader agent’s controller (35). As with boundary control, PDE backstepping leads to observer designs with closed-form observer gains, whereas other methods lead to more complicated designs.(41)。