寒假专题复习解三角形
(完整版)解三角形专题题型归纳
《解三角形》知识点、题型与方法归纳、知识点归纳(★☆注重细节,熟记考点☆★)1正弦定理及其变形a sin A变式: b c —— — 2R (R 为三角形外接圆半径)sin B sin C (1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式) (2) si nA,si nB ,si nC (角化边公式)2R 2R2R(3 a: b: c sin A:si nB:si nC一、a sin A a sin A b sin Bb sin Bc sin C c sin C2 •正弦定理适用情况:(1) 已知两角及任一边;(2) 已知两边和一边的对角(需要判断三角形解的情况) 3 •余弦定理及其推论2 22ab c 2bccosAb ac 2accosB 222cab 2abcosC4.余弦定理适用情况: (1)已知两边及夹角;注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作 用),统一成边的形式或角的形式•7. 实际问题中的常用角 (1)仰角和俯角b 22c 2 a2bc222ac b2ac2.22ab c (2)已知三边.5. 常用的三角形面积公式1(1) S ABC 底2 1(2) S 二一 absi nC26. 三角形中常用结论 1 1 acsin B bcsin A 24c R 为ABC 外接圆半径(两边夹一角);(1) a b c, b c (2) 在 ABC 中, A (3) 在 ABC 中,A Ba, a ③ tan A B tanC ;b(即两边之和大于第三边,两边之差小于第三边) b si nA si n B(即大边对大角,大角对大边) ,所以 ① sin A B sinC :② cos A B cosC ;A B C AB. C ④ sin cos ,⑤ cos sin2 2 2 2cos AcosB cosC 2ab在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图 ①)从指北方向顺时针转到目标方向线的水平角,如 B 点的方位角为a (如图②) 注:仰角、俯角、方位角的区别是:三者的参照不同。
解三角形知识点总结及典型例题
课前复习两角和与差的正弦、余弦、正切公式 1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式 tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-).简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=-解三角形知识点总结及典型例题一、 知识点复习 1、正弦定理及其变形2(sin sin sin a b cR R A B C===为三角形外接圆半径)12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式)2sin ,sin ,sin 222a b cA B C R R R===()(角化边公式) 3::sin :sin :sin a b c A B C =()sin sin sin (4),,sin sin sin a A a A b Bb Bc C c C=== 2、正弦定理适用情况: (1)已知两角及任一边(2)已知两边和一边的对角(需要判断三角形解的情况) 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+- 222222222cos 2cos 2cos 2b c a A bc a c b B aca b c C ab+-=+-=+-=4、余弦定理适用情况:(1)已知两边及夹角;(2)已知三边. 5、常用的三角形面积公式 (1)高底⨯⨯=∆21ABC S ; (2)B ca A bc C ab S ABCsin 21sin 21sin 21===∆(两边夹一角). 6、三角形中常用结论(1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边);(2)sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边).(3)在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+. 2sin 2cos ,2cos 2sin CB AC B A =+=+.二、典型例题 题型1 边角互化[例1 ]在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为【解析】由正弦定理可得7:5:3::=c b a ,,令c b a 、、依次为753、、, 则C cos =2222a b c ab +-=222357235+-⨯⨯=12-因为π<<C 0,所以=C 23π [例2 ] 若a 、b 、c 是ABC ∆的三边,222222)()(c x a c b x b x f +-++=,则函数)(x f 的图象与x 轴( ) A 、有两个交点 B 、有一个交点 C 、没有交点 D 、至少有一个交点 【解析】由余弦定理得2222cos b c a bc A +-=,所以222()2cos f x b x bc A x c =++=2222(cos )cos bx c A c c A ++-,因为2cos A <1,所以222cos c c A ->0,因此()f x >0恒成立,所以其图像与x 轴没有交点。
解三角形知识点汇总和典型例题
文成教育学科辅导教案讲义授课对象授课教师徐老师 授课时间 3月11日 授课题目 解三角形复习总结 课 型 复习课使用教具人教版教材教学目标 熟练掌握三角形六元素之间的关系,会解三角形教学重点和难点 灵活解斜三角形 参考教材人教版必修5第一章教学流程及授课详案解三角形的必备知识和典型例题及详解一、知识必备:1.直角三角形中各元素间的关系:在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。
(1)三边之间的关系:a 2+b 2=c 2。
(勾股定理) (2)锐角之间的关系:A +B =90°; (3)边角之间的关系:(锐角三角函数定义) sin A =cos B =c a ,cos A =sin B =c b ,tan A =ba。
2.斜三角形中各元素间的关系:在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。
(1)三角形内角和:A +B +C =π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等R Cc B b A a 2sin sin sin ===(R 为外接圆半径) (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C 。
3.三角形的面积公式: (1)∆S =21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);根据正弦定理, 0sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A(2)根据正弦定理, 0sin 28sin40sin 0.8999.20==≈b A B a 因为00<B <0180,所以064≈B ,或0116.≈B①当064≈B 时, 00000180()180(4064)76=-+≈-+=C A B ,②当0116≈B 时,180()180(40116)24=-+≈-+=C A B ,0sin 20sin2413().sin sin40==≈a C c cm A 点评:应用正弦定理时(1)应注意已知两边和其中一边的对角解三角形时,可能有两解的情形;(2)对于解三角形中的复杂运算可使用计算器 题型2:三角形面积例2.在∆ABC 中,sin cos A A +=22,AC =2,3=AB ,求A tan 的值和∆ABC 的面积。
解三角形知识点总结
解三角形知识点总结一、正弦定理正弦定理是指在任意一个三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。
即:$\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C} = 2R$(其中$R$为三角形外接圆的半径)。
正弦定理的应用非常广泛,主要包括以下几个方面:1、已知两角和一边,求其他两边和一角。
例如,已知三角形的两角$A$、$B$和一边$c$,则可以先通过三角形内角和为$180^{\circ}$求出角$C$,然后利用正弦定理求出其他两边$a$和$b$。
2、已知两边和其中一边的对角,求另一边的对角,进而求出其他的边和角。
此时需要注意可能会出现一解、两解或无解的情况。
二、余弦定理余弦定理是对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
对于边$a$,有$a^2 = b^2 + c^2 2bc\cos A$;对于边$b$,有$b^2 = a^2 + c^2 2ac\cos B$;对于边$c$,有$c^2 = a^2 + b^2 2ab\cos C$。
余弦定理的应用包括:1、已知三边,求三个角。
可以直接代入余弦定理的公式求出角的余弦值,进而得到角的大小。
2、已知两边和它们的夹角,求第三边和其他两个角。
三、面积公式三角形的面积公式有多种形式,常见的有:1、$S =\frac{1}{2}ab\sin C$2、$S =\frac{1}{2}bc\sin A$3、$S =\frac{1}{2}ac\sin B$这些公式可以根据已知条件的不同灵活选择使用。
四、三角形中的常见结论1、大边对大角,大角对大边。
即三角形中,较长的边所对的角较大,较大的角所对的边较长。
2、三角形内角和为$180^{\circ}$。
3、在锐角三角形中,$\sin A >\cos B$;在钝角三角形中,若$A$为钝角,$B$为锐角,则$\sin A <\cos B$。
专题一、二:解三角形
专题一正余弦定理知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即:2sin sin sin a b cR A B C===(R 为△ABC 外接圆的半径)常见的变形有:①::sin :sin :sin a b c A B C =;②sin sin a A b B =,sin sin a A c C =,sin sin b Bc C=;③sin sin sin sin sin sin a b c a b cA B C A B C++===++;④边化角公式:2sin a R A =,2sin b R B =,2sin c R C =;⑤角化边公式:sin 2a A R =,sin 2b B R =,sin 2c C R=;⑥sin sin sin sin sin sin A B a b A BA B a b A B A B a b A B <⇔<⇔<⎧⎪=⇔=⇔=⎨⎪>⇔>⇔>⎩;2.解三角形:一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素,已知三角形的几个元素求其他元素的过程叫做解三角形。
利用正弦定理可以解两类三角形:①已知三角形的任意两个角与一边,求其他两边和另一角。
②已知三角形的两边与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
剖析:已知两角与一边,用正弦定理,有解时,只有一解。
已知两边及其中一边的对角,用正弦定理,可能有两解、一解、或无解,一般常用的方法是利用大边对大角,小边对小角定理来验证。
3.在△ABC 中常见的公式:(如图)①111sin sin sin 222S ab C ac B bc A===②111222a b c S ah bh ch ===AcbaBCh aAcbaBC③4abcS R=(R 表示三角形外接圆的半径)④22sin sin sin S R A B C =⑤1()2S r a b c =++(r 表示三角形内切圆的半径)⑥海伦公式:S =,其中1()2p a b c =++.4.余弦定理定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍。
解三角形(知识点)
解三角形(知识点)第一章:解三角形一、正弦定理和余弦定理1、正弦定理:在∆AB C 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有A B ===CR a b c sin sin sin 2 (R 为∆AB C 的外接圆的半径)2、正弦定理的变形公式:①=A a R 2sin ,=B b R 2sin ,=c R C 2sin ; ②A =R a 2sin ,B =Rb 2sin ,=R Cc 2sin ; ③=A B C a b c ::sin :sin :sin ;3、三角形面积公式:=A ==B ∆AB S bc ab C ac C 222sin sin sin 111. 4、余弦定理:在∆AB C 中,有=+-A a b c bc 2cos 222,推论:=-+222cos 2A a c b bc-+=222cos 2c a b ac B ,推论: -+=222cos 2b a c ab C ,推论:=-+222cos 2C c b a ab二、解三角形处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解1、三角形中的边角关系(1)三角形内角和等于180°;(2)三角形中任意两边之和大于第三边,任意两边之差小于第三边;(3)三角形中大边对大角,小边对小角;(4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径.=-+222cos 2B b c a ac(5)在余弦定理中:2bc cos A =-+a c b 222.(6)三角形的面积公式有:S =12ah , S =12ab sin C=12bc sin A=12ac sinB , S =--⋅-c P b P a P P ()()()其中,h 是BC 边上高,P 是半周长.2、利用正、余弦定理及三角形面积公式等解任意三角形(1)已知两角及一边,求其它边角,常选用正弦定理.(2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理.(3)已知三边,求三个角,常选用余弦定理.(4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理.(5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理.3、利用正、余弦定理判断三角形的形状常用方法是:①化边为角;②化角为边.4、三角形中的三角变换(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
完整版)解三角形知识点归纳总结
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
解三角形知识点复习
解三角形知识点复习三角形是平面几何中最基本的图形之一,它由三条边和三个角组成。
解三角形即求解给定的三角形中的各个要素(边长、角度、面积等)。
1.三角形的分类:根据边长和角度的关系,三角形可分为等边三角形、等腰三角形、普通三角形和直角三角形。
等边三角形的三条边相等,三个角均为60度;等腰三角形的两边相等,两个底角相等;普通三角形的三边和三个角均不相等;直角三角形有一个90度的角。
2.三角形的性质:三角形的内角和为180度,即三个内角的和等于180度。
外角等于其对内角的补角,即外角=180°-内角。
三角形的两边之和大于第三边,任意两边之差小于第三边。
3.三角形的面积公式:三角形的面积可以通过周长和半周长以及三边长来计算。
设三角形的三边长分别为a,b,c,半周长为s,则三角形的面积可以使用海伦公式计算:面积=√[s(s-a)(s-b)(s-c)]。
4. 三角形的角度计算:利用余弦定理和正弦定理可以计算三角形的角度。
余弦定理:c²=a²+b²-2abcos(C),其中a,b为两边的长度,C为夹角;正弦定理:a/sin(A)=b/sin(B)=c/sin(C),其中a,b,c为边长,A,B,C为角度。
5. 三角形的边长计算:根据已知的角度和边长,可以通过正弦定理和余弦定理计算未知边长。
正弦定理:a/sin(A)=b/sin(B)=c/sin(C),其中a,b,c为边长,A,B,C为角度;余弦定理:c²=a²+b²-2abcos(C),其中a,b为两边的长度,C为夹角。
6.特殊三角形:特殊三角形包括等边三角形、等腰三角形和直角三角形。
等边三角形的三边相等,三个角均为60度;等腰三角形的两边相等,两个底角相等;直角三角形有一个90度的角,并且满足勾股定理:a²+b²=c²。
7.三角形的重心、外心和内心:三角形的重心是三条中线的交点,外心是三条垂直平分线的交点,内心是三条角平分线的交点。
解三角形知识点归纳总结
解三角形知识点归纳总结一、基本概念三角形:由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。
三角形的元素:三角形的三个角A、B、C和它们的对边a、b、c。
二、三角形的分类按角分:锐角三角形、直角三角形、钝角三角形。
锐角三角形:三个内角都小于90度。
直角三角形:有一个内角等于90度。
钝角三角形:有一个内角大于90度。
按边分:不等边三角形、等腰三角形、等边三角形。
等腰三角形:两边相等的三角形,相等的两边称为腰,另一边称为底边。
等边三角形:三边都相等的等腰三角形,也是特殊的等腰三角形。
三、三角形的性质三角形的内角和定理:三角形的三个内角之和等于180度。
三角形的稳定性:三角形的形状是固定的,具有稳定性。
四、解三角形的常用定理和公式正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中R是三角形的外接圆半径。
余弦定理:c² = a² + b² - 2ab·cosC(以及针对其他角的类似公式)。
面积公式:S = 1/2 * bc * sinA(以及针对其他角的类似公式),或者S = √[p(p - a)(p - b)(p - c)],其中p是半周长,即p = (a + b + c) / 2。
五、解三角形的过程解三角形通常涉及已知三角形的几个元素(如两个角和一条边,或三条边等),然后利用上述定理和公式求出其他未知元素的过程。
六、应用解三角形在实际问题中有广泛应用,如在航海、测量、地理、工程等领域中,经常需要利用三角形的性质进行角度和距离的计算。
通过学习和掌握这些知识点,可以更深入地理解三角形的性质和应用,为解决实际问题提供有力工具。
同时,解三角形也是培养逻辑思维和空间想象能力的重要途径。
解三角形知识点总结及典型例题
课前复习两角和与差的正弦、余弦、正切公式1两角和与差的正弦公式,sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.2两角和与差的余弦公式,cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcos+sinαsinβ3两角和、差的正切公式tan(α+β)=,tan tan 1tan tan βαβα-+ (()()tan tan tan 1tan tan αβαβαβ-=-+); tan(α-β)=.tan tan 1tan tan βαβα+-(()()tan tan tan 1tan tan αβαβαβ+=+-). 简单的三角恒等变换二倍角的正弦、余弦和正切公式:⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-= ⑶22tan tan 21tan ααα=- 默写上述公式,检查上次的作业 课本上的!解三角形知识点总结及典型例题2+=(A x c恒成立,所以其图像与x轴没有交点。
中,分别根据下列条件解三角形,其中有两解的是=30A;︒B;=30︒S=ABC题型4 判断三角形形状5] 在【解析】把已知等式都化为角的等式或都化为边的等式。
解三角形方法与技巧例题和知识点总结
解三角形方法与技巧例题和知识点总结一、解三角形的基本概念在平面几何中,三角形是一个非常重要的图形。
解三角形就是通过已知的三角形的一些元素(如边、角),求出其他未知元素的过程。
三角形中的基本元素包括三个角(通常用 A、B、C 表示)和三条边(通常用 a、b、c 表示)。
解三角形的主要依据是三角形的内角和定理(A + B + C = 180°)以及正弦定理和余弦定理。
二、正弦定理正弦定理的表达式为:\(\frac{a}{\sin A} =\frac{b}{\sin B} =\frac{c}{\sin C}\)。
正弦定理可以用于以下两种情况:1、已知两角和一边,求其他两边和一角。
例如:在三角形 ABC 中,已知角 A = 30°,角 B = 45°,边 c =10,求边 a 和边 b。
首先,根据三角形内角和定理,角 C = 180° 30° 45°= 105°。
然后,利用正弦定理\(\frac{a}{\sin A} =\frac{c}{\sin C}\),可得\(a =\frac{c\sin A}{\sin C} =\frac{10\times\sin 30°}{\sin 105°}\)。
同样,\(\frac{b}{\sin B} =\frac{c}{\sin C}\),\(b =\frac{c\sin B}{\sin C} =\frac{10\times\sin 45°}{\sin 105°}\)。
2、已知两边和其中一边的对角,求另一边的对角和其他边。
例如:在三角形 ABC 中,已知边 a = 6,边 b = 8,角 A = 30°,求角 B。
由正弦定理\(\frac{a}{\sin A} =\frac{b}{\sin B}\),可得\(\sin B =\frac{b\sin A}{a} =\frac{8\times\sin 30°}{6} =\frac{2}{3}\)。
解三角形(正弦定理、余弦定理)知识点、例题解析、高考题汇总及答案
解三角形【考纲说明】1、掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识梳理】一、正弦定理1、正弦定理:在△ABC 中,R CcB b A a 2sin sin sin ===(R 为△ABC 外接圆半径)。
2、变形公式:(1)化边为角:2sin ,2sin ,2sin ;a R A b R B c R C === (2)化角为边:sin ,sin ,sin ;222a b cA B C R R R=== (3)::sin :sin :sin a b c A B C = (4)2sin sin sin sin sin sin a b c a b c R A B C A B C++====++.3、三角形面积公式:21111sin sin sin 2sin sin sin 22224ABCabc S ah ab C ac B bc A R A B C R∆====== 4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一) 二、余弦定理1、余弦定理:A bc c b a cos 2222-+=⇔bcac b A 2cos 222-+=B ac a c b cos 2222-+=⇔cab ac B 2cos 222-+=C ab b a c cos 2222-+=⇔abc b a C 2cos 222-+=2、余弦定理可以解决的问题:α北东h i l=θ(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一) 三、正、余弦定理的应用 1、仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).图1 图2 图3 图42、方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图2). 3、方向角相对于某一正方向的水平角(如图3).4、坡角:坡面与水平面所成的锐二面角叫坡角(如图4). 坡度:坡面的铅直高度与水平宽度之比叫做坡度(或坡比)【经典例题】1、(2012天津理)在ABC ∆中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cos C =( )A .725B .725-C .725±D .2425【答案】A 【解析】85,b c =由正弦定理得8sin 5sin B C =,又2C B =,8sin 5sin 2B B ∴=,所以8sin 10sin cos B B B =,易知247sin 0,cos ,cos cos 22cos 1525B BC B B ≠∴===-=. 2、(2009广东文)已知ABC ∆中,C B A ∠∠∠,,的对边分别为,,a b c 若62a c ==75A ∠=,则b =α 北东南西 B目标lh( )A .2B .4+ C .4— D【答案】 A【解析】0sin sin 75sin(3045)sin 30cos 45sin 45cos304A ==+=+=由a c ==可知,075C ∠=,所以030B ∠=,1sin 2B =由正弦定理得1sin 2sin 2ab B A=⋅==,故选A3、(2011浙江)在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B +=( )A .-12 B .12C . -1D . 1 【答案】D【解析】∵B b A a sin cos =,∴B A A 2sin cos sin =,∴1cos sin cos cos sin 222=+=+B B B A A .4、(2012福建文)在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒=则AC =_______.【解析】由正弦定理得sin 45AC AC =⇒=︒5、(2011北京)在ABC 中,若15,,sin 43b B A π=∠==,则a = . 【答案】325 【解析】:由正弦定理得sin sin a b A B =又15,,sin 43b B A π=∠==所以5,13sin 34a a π==6、(2012重庆理)设ABC ∆的内角,,A B C 的对边分别为,,abc ,且35cos ,cos ,3,513A B b ===则c =______ 【答案】145c =【解析】由35412cos ,cos sin ,sin 513513A B A B ==⇒==, 由正弦定理sin sin a b A B=得43sin 13512sin 513b A a B ⨯===, 由余弦定理2222142cos 25905605a cb bc A c c c =+-⇒-+=⇒=7、(2011全国)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.己知sin csin sin sin a A C C b B +=. (I )求B ; (Ⅱ)若075,2,A b ==a c 求,. 【解析】(I)由正弦定理得222a cb +=由余弦定理得2222cos b a c ac B =+-.故cos 2B =,因此45B = (II )sin sin(3045)A =+sin30cos 45cos30sin 45=+4=故sin 1sin A a b B =⨯==+ sin sin 6026sin sin 45C c b B =⨯=⨯=8、(2012江西文)△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC.(1)求cosA;(2)若a=3,△ABC 的面积为求b,c.【解析】(1) 3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=⎧⎪-=-⎪⎪+=-⎨⎪⎪-=-⎪⎩则1cos 3A =. (2)由(1)得sin A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩.9、(2011安徽)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a=3,b=2,12cos()0B C ++=,求边BC 上的高.【解析】:∵A +B +C =180°,所以B +C =A , 又12cos()0B C ++=,∴12cos(180)0A +-=, 即12cos 0A -=,1cos 2A =, 又0°<A<180°,所以A =60°.在△ABC 中,由正弦定理sin sin a b A B=得sin 2sin 602sin 3b A B a ===,又∵b a <,所以B <A ,B =45°,C =75°, ∴BC 边上的高AD =AC·sinC 2752sin(4530)=+2(sin 45cos30cos 45sin 30)=+2321312()2+==10、(2012辽宁理)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列.(I )求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值. 【解析】(I )由已知12,,,cos 32B AC A B C B B ππ=+++=∴==(Ⅱ)解法一:2b ac =,由正弦定理得23sin sin sin 4A CB ==, 解法二:2222221,cos 222a c b a c ac b ac B ac ac+-+-====,由此得22a b ac ac +-=,得a c =所以3,sin sin 34A B C A C π====【课堂练习】1、(2012广东文)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC =( )A .B .CD 2、(2011四川)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )A .(0,]6πB .[,)6ππC .(0,]3πD .[,)3ππ3、(2012陕西理)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12 D .12- 4、(2012陕西)在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若2222c b a =+,则C cos 的最小值为( ) A .23B .22 C .21D .21-5、(2011天津)如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===则sin C 的值为( )A .3 B .6 C .3 D .66、(2011辽宁)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=ab( )A .B .CD 7、(2012湖北文)设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶48、(2011上海)在相距2千米的A .B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A C 两点之间的距离是 千米。
专题3.3 解三角形(解析版)
专题3-3解三角形01专题网络·思维脑图(含基础知识梳理、常用结论与技巧)02考情分析·解密高考03高频考点·以考定法(四大命题方向+四道高考预测试题,高考必考·(10-17)分)➢命题点1 正弦余弦定理基本应用➢命题点2 解三角形中三线问题➢命题点3 解三角形中周长面积问题➢命题点4 解三角形中最值范围问题高考猜题04创新好题·分层训练精选8道最新名校模拟试题+8道易错提升)解三角形是新高考中必考点,一般以1+1(一道小题一道解答题)或者是0+1(只出现一道解答)形式出现,往往放在解答题前两题,相对难度比较小。
真题多维细目表命题点1 正弦余弦定理基本应用命题点2 三角形中三线问题【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222b +-⨯⨯0,解得:13b =+,ABD ACD S S =+V V 可得,11对于解三角形中的出现的角平分线问题 ,方法技巧在于用等面积法进行转化,或者是采用角平分线定理(角平分线定理属于二级结论解答题中需要进行证明,小题中可以直接采用),对于求高有关的问题也是采用面积等于底乘以高转化成三角形中面积公式。
对于中线问题,一般思路是向量思想,小题中可以采用激化恒等式去求解。
命题点3 解三角形中周长面积问题所以9b c +=,所以ABC V 的周长为14a b c ++=.[方法二]:建系法令 BD=t ,以D 为原点,OC 为x 轴,建立平面直角坐标系则C (2t,0),A (1,3),B (-t,0转化成基本不等式或者是关于二次函数去求解。
但是对于锐角三角形中,求长度或者是面积范围及问题,应采用边角转化思想,把边长问题转化成角度问题,再利用二次函数或者是辅助角公式去求解。
预计2024年高考会出现正弦余弦定理的基本应用及面积最值范围相关题目(★精选8道最新名校模拟考试题+8道易错提升)故选:D2.(2023上·江苏徐州·高三校考阶段练习)已知Vb=,则ABC2B A C=+,2二、填空题4.(2023上·江苏淮安·高三江苏省清浦中学校联考阶段练习)在为BC 边中点,若22,AD b =+【答案】422254BC AB ⋅⨯⨯所以21cos 22cos 18C C =-=,所以ABC ∠=因为BD 为ABC ∠的平分线,所以DBC ∠=所以()sin sin π2sin 2BDC C C ∠=-=,在BCD △中由正弦定理sin sin BC BDBDC C=∠,5BD 510三、解答题(1)求sin CAB∠;(2)证明:CAB CAD∠=∠.【答案】(1)217(2)证明见解析【详解】,,AC b BM BC λ==,则有AM = 由余弦定理得222cos 2AB AC BC BAC AB AC +-∠=g ()(,0,1BC AM BC a b b λλ⎡⎤∴=-+⎣⎦g g二、填空题三、解答题6.(2023·河南·模拟预测)在ABC V 中,内角A ,B ,C 的对边分别是a ,b ,c ,ABC V 的面积记为S ,已知则()2214AE AC AB =+ ,所以()22217144b c bc c =+-=,解得因为ABC ABD ACD S S S =+V V V ,8.(2023上·河北保定·高三校联考开学考试)在sin sin sin sin a b B C c A B++=-.。
解三角形(总结+题+解析)
解三角形一.正弦定理:A a sin =B b sin =C csin =2R ,其中R 是三角形外接圆半径.正弦定理的如下变形常在解题中用到1.(1) a=2RsinA(2) b=2RsinB(3) c=2RsinC2.(1) sinA=a/2R(2) sinB=b/2R(3) sinC=c/2R3.a :b :c=sinA :sinB:sinC适用类型(1)AAS(2)SSA二.余弦定理:1. a^2 = b^2 + c^2 - 2·b ·c ·cosA2. b^2 = a^2 + c^2 - 2·a ·c ·cosB3. c^2 = a^2 + b^2 - 2·a ·b ·cosC余弦定理的如下变形常在解题中用到1. cosC = (a^2 + b^2 - c^2) / (2·a ·b)2. cosB = (a^2 + c^2 - b^2) / (2·a ·c)3. cosA = (c^2 + b^2 - a^2) / (2·b ·c )适用类型1.SSA2.SAS3.SSS三.余弦定理和正弦定理的面积公式S △ABC =21absinC=21bcsinA=21acsinB(常用类型:已知三角形两边及其夹角)判断解的个数判断三角形的形状有两种途径:(1)将已知的条件统一化成边的关系,用代数求和法求解(2)将已知的条件统一化成角的关系,用三角函数法求解三.解三角形的实际应用测量中相关的名称术语仰角:视线在水平线以上时,在视线所在的垂直平面内,视线与水平线所成的角叫做仰角。
俯角:视线在水平线以下时,在视线所在的垂直平面内,视线与水平线所成的角叫俯角方向角:从指定方向线到目标方向的水平角测距离的应用测高的应用(一)已知两角及一边解三角形例1已知在△ABC中,c=10,A=45°,C=30°,求a、b和B.∠B=180°-30°-45°=105°a=10sin45°/sin30°=10√2sin105°=sin(60+45)=√2/2(√3/2+1/2)=(√6+√2)/41/sin105=√6-√2b=10sin45°/sin105°=5√2(√6-√2)=10(√3-1)(二)已知两边和其中一边对角解三角形例2在△ABC中,已知角A,B,C所对的边分别为a,b,C,若a=2√3,b =√6,A=45°,求边长C由余弦定理,得b²+c²-2bccosA-a²=06+c²-2√3c-12=0c²-2√3c-6=0根据求根公式,得c=√3±3又c>0所以c=3+√3(三)已知两边及夹角,解三角形例3△ABC中,已知b=3,c=33,B=30°,求角A,角C和边a.解:由余弦定理得∴a2-9a+18=0,得a=3或6当a=3时,A=30°,∴C=120°当a=6时,由正弦定理∴A=90°∴C=60°。
解三角形知识点总结及典型例题
两角和与差的正弦、余弦、正切公式 1两角和与差的正弦公式,sin( a + B )=sin a cos B +cos a sin B,sin( -a )=sin a cco $ a sin B ・2两角和与差的余弦公式,cos( a + B )=cos a -^os B sin B cos(诩)=cos a cos+sin a sin B3两角和、差的正切公式⑶ tan22ta n 1 tan 2默写上述公式,检查上次的作业 课本上的 !解三角形知识点总结及典型例题一、知识点复习1、正弦定理及其变形(1 a 2RsinA,b 2Rsin B,c 2RsinC (边化角公式)(2) si nA —,si nB — ,si nC —(角化边公式)2R2R2R/、a sin A a sin Ab sin B(3) a:b: c sinA:sinB:sin C (4) — ---- ,一 ---- ,- ---课前复习⑴ sin22sin cos .1 si n22 2sincos 2 sin cos(sincos )22⑵ cos2 cos.2sin 22cos1 1 2si n 2升幕公式1 cosc 22cos —,1 cos2sin 2—2 2cos 2 1 . 2 1 cos2降幕公式cos 2sin2 2简单的三角恒等变换二倍角的正弦、余弦和正切公式: tan tantan( a +=B1 tan tan(tan ta n tan 1 tan tan );tan( -B )=tan tan. ( tan1 tan tantan tan tan tan ).a b c sin A sin B sin C2R (R 为三角形外接圆半径)b sin Bc sin C c sin C2、正弦定理适用情况: (1) 已知两角及任一边(2) 已知两边和一边的对角(需要判断三角形解的情况) 已知a , b 和A ,求B 时的解的情况: 如果si nA si nB ,则B 有唯一解;如果si nA si nB 1,贝U B 有两解; 如果sin B 1,贝U B 有唯一解;如果si nB 1,则B 无解. 3、余弦定理及其推论4、 余弦定理适用情况:(1)已知两边及夹角;(2)已知三边.5、 常用的三角形面积公式6、三角形中常用结论二、典型例题 题型1边角互化2 ,2 2贝 U cosC = a---- —2ab因为0 C ,所以C(b 2 c 2 a 2)x c 2,则函数f(x)的图象与x 轴()2ab 22 c b 2 2 a 2a 2c2 c b 22bccosA2accosB2abcosC ■ 2 2 2A b c a cosA ------ 2bc s ^^\ c 2 b 2 co --_____z2ac … a b c cosC---------------- 2ab(1)S ABC (2 ) S ABC1 1底高 21 —absi nC 21 1bcsi nA easin B (两边夹一角) 2(1) a b c, ba,a b(即两边之和大于第三边,两边之差小于第三边) (2) 在 ABC 中, (3) 在厶 ABC 中,.A B Csin -------- cos , cos2 2BB CA B 2 b si nA si n B(即大边对大角,大角对大边),所以 sin (A B) si nC ; cos( A B) cosC ; tan(A B) tanC . .C sin —.2[例1 ]在ABC 中,若 【解析】由正弦定理可得sin A: sin B: sinC 3:5:7, a: b :c 3:5:7,,令 a 、b 、 则角C 的度数为c 依次为3、5、7,32 52 7 = 1 2 3 5 2 ABC 的三边,f(x) b 2x 2A 、有两个交点B 、有一个交点C 、没有交点D 、至少有一个交点【解析】由余弦定理得 b 2c 2a 22bccosA ,所以f(x) b 2x 2 2bccos Agx c 2 = (bx ccos A)2 c 2 c 2 cos 2 A ,因为 cos 2 A 1,所以 c 2 c 2 cos 2 A 0,因止匕 f(x) 0恒成立,所以其图像与 x 轴没有交点。
《解三角形》全章知识复习与巩固
《解三角形》全章知识复习与巩固【学习目标】1.正弦定理和余弦定理 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题2.应用 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题【知识网络】【要点梳理】要点一:正弦定理 在一个三角形中,各边和它所对角的正弦比相等,即:sin sin sin a b c A B C == 要点诠释:(1)正弦定理适合于任何三角形,且2sin sin sin a b c R A B C===(R 为ABC ∆的外接圆半径); (2)应用正弦定理解决的题型:①已知两角和一边,求其它②已知两边和一边的对角,求其它.(3)在已知两边和一边的对角,求其它的类型中,可能出现无解、一解或两解,应结合“三角形中大边对大角”定理及几何作图来帮助理解.要点二:余弦定理在△ABC 中,A bc c b a cos 2222-+=,B ac c a b cos 2222-+=,C ab b a c cos 2222-+=变形为:bc a c b A 2cos 222-+=,ac b c a B 2cos 222-+=,abc b a C 2cos 222-+=要点诠释:(1)应用余弦定理解决的题型:①已知三边,求各角②已知两边和一边的对角,求其它③已知两边和夹角,求其它;(2)正、余弦定理的实质是一样的,从而正弦定理能解的问题余弦定理也一定能解,反之亦然;只是方便程度有别;(3)正、余弦定理可以结合使用.要点三:三角形的面积公式 (1) 111222a b c S ah bh ch ===,其中,,a b c h h h 为,,a b c 边上的高 (2)B ac A bc C ab S sin 21sin 21sin 21===(3)S =2a b c p ++= 要点四:三角形形状的判定方法设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C ,解斜三角形的主要依据是:(1)角与角关系:由于A +B +C = π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC ;2sin 2cos ,2cos 2sin C B A C B A =+=+; (2)边与边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a < b ;(3)边与角关系:正弦定理、余弦定理常用两种途径:(1)由正余弦定理将边转化为角;(2)由正余弦定理将角转化为边.要点诠释:①化简中将三角形内角和、三角同角基本关系式、诱导公式、两角和与差的三角公式等综合结合起来.②在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.要点五:解三角形应用的分类(1)距离问题:一点可到达另一点不可到达;两点都不可到达;(2)高度问题(最后都转化为解直角三角形);(3)角度问题;(4)面积问题.【典型例题】类型一:正、余弦定理的基本应用例1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,A+C =2B .(1)求cos B 的值;(2)若b 2=ac ,求sin A sin C 的值.【思路点拨】由题设“A+C =2B ”易知B =60°,又由边之间的关系“b 2=ac ”,如何求“sin A sin C ”的值?正、余弦定理的运用都可以求出值.【解析】(1)由已知2B =A+C ,A+B+C =180°,解得B =60°,所以1cos 2B =. (2)解法一:由已知2b ac =,及1cos 2B =, 根据正弦定理得2sin sin sin B A C =, 所以23sin sin 1cos 4A C B =-=. 解法二:由已知2b ac =,及1cos 2b =,根据余弦定理得22cos 2a c ac B ac+-=, 解得a =c ,所以A =C =B =60°,故3sin sin 4A C =. 【总结升华】利用正弦定理和余弦定理求解三角形中的边、角等基本量是考试的重点,注意灵活利用三角形中的内角和定理,实现角的互化,灵活利用正、余弦定理的变形.举一反三:【变式1】在△ABC 中,a =1,b =2,41C cos =,则c = ;sinA = . 【答案】∵在△ABC 中,a =1,b =2,41C cos =, ∴由余弦定理得:c 2=a 2+b 2-2abcosC =1+4-1=4,即c =2; ∵41C cos =,C 为三角形内角, ∴415C cos 1C sin 2=-= ∴由正弦定理Asin C sin a c =得:81524151C sin A sin =⨯==c a . 故答案为:2;815【变式2】在△ABC 中,若2a =,7b c +=,1cos 4B =-,则b =___________. 【答案】在ABC ∆中,得用余弦定理 22214()()47()cos 2444a c b c b c b c b B ac c c+-++-+-=⇒-==,化简得8740c b -+=,与题目条件7b c +=联立,可解得2,4,3a b c ===. 故答案为4.类型二:正、余弦定理的综合应用例2. 在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知→→BC BA ·=2,cosB =31,b =3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos(B -C)的值.【答案】(Ⅰ) a =3,c =2,(Ⅱ)2723. 【思路点拨】(1)由平面向量的数量积,易求出ac=6,然后利用余弦定理求出即可;(2)画出简易图,将已知条件在图上标出来,运用正弦定理求得角C 的正弦值.【解析】(Ⅰ)∵→→BC BA ·=2,cosB =31, ∴c •acosB =2,即ac =6①,∵b =3,∴由余弦定理得:b 2=a 2+c 2-2accosB ,即9=a 2+c 2-4,∴a 2+c 2=13②,联立①②得:a =3,c =2;(Ⅱ)在△ABC 中,sinB =322)31(1cos 122=-=-B , 由正弦定理C c B b sin sin =得:sinC =b c sinB =92432232=⨯, ∵a =b >c ,∴C 为锐角,∴cosC =97)924(1sin 122=-=-C , 则cos(B -C)=cosBcosC +sinBsinC =31×97+2723924322=⨯. 【总结升华】解答该类题目要注意以下几个方面:(1)借助图形标注已知和所求;(2)利用三角形的性质把相关条件化归到同一个三角形中;(3)注意灵活利用正、余弦定理,实施边、角互化.举一反三:【变式1】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若三边的长为连续的三个正整数,且A >B >C ,3b=20acosA ,则sinA :sinB :sinC 为( )A .4:3:2 B. 5:6:7 C. 5:4:3 D. 6:5:4【答案】由于a ,b ,c 三边的长为连续的三个正整数,且A >B >C ,可设三边长分别为 a 、a-1、a-2.由余弦定理可得 222222(1)(2)5cos 22(1)(2)2(2)b c a a a a a A bc a a a +--+---===--- 又3b=20acosA ,可得33(1)5cos 20202(2)b a a A a a a --===- 解得6a =,故三边是6,5,4.由正弦定理可得sinA :sinB :sinC=6:5:4【变式2】已知△ABC 中cos cos a A b B =,试判断△ABC 的形状.【答案】方法一:用余弦定理化角为边的关系 由cos cos a A b B =得22222222b c a a c b a b bc ac+-+-⋅=⋅, 整理得22222222()()a b c a b a c b +-=+-,即22222()()0a b a b c -+-=,当220a b -=时,ABC ∆为等腰三角形;当2220a b c +-=即222a b c +=时,则ABC ∆为直角三角形;综上:ABC ∆为等腰或直角三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
寒假专题复习——解三角形
时间:60分钟
一错误!未找到引用源。
错误!未找到引用源。
已知A B C △中,AC =2B C =,6
A π
=,则AB 边长是( )
A ..
B .
+
C . D
错误!未找到引用源。
在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,且sin 2 A-sin 2 C=(sinA-sinB ) sinB,则角C 等于( )
A .
π6
B .
π3
C .5π6
D .
2π3
错误!未找到引用源。
已知△ABC 中,cotA=12
5
-,则cosA=( )
(A )
1213
(B )
513
(C )513
-
(D)1213
-
错误!未找到引用源。
飞机从甲地以北偏西15°的方向飞行1400km 到达乙地,再从乙地以南偏东75°的方向飞行1400km 到达丙地,那么丙地距甲地距离为( )
A .700km
B .1400km
C .
D .km
5. 设A B C ∆的三个内角,,A B C ,向量,sin )A B =m ,(cos ,)B A =n ,若)cos(1B A n m ++=∙,则C =( )
A .
6
π
B .
3
π
C .
23
π D .
56
π错误!未找到引用源。
在△ABC 中,a AB =,b AC =,0a b ⋅< ,15
4
A B C S ∆=
,3,5a b == ,则B A C ∠=( )
A.. 30
B .150-
C .0
150 D . 30
或0
150
错误!未找到引用源。
若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC (A )一定是锐角三角形. (B )一定是直角三角形.
(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形. 错误!未找到引用源。
在A B C ∆中,3
π=∠B ,三边长c b a ,,成等差数列,且6=ac ,则b 的值是( )
A .2
B .3
C .5
D .6
错误!未找到引用源。
四个A B C ∆分别满足下列条件,则其中是锐角三角形有 ( ) (1)0AB BC ⋅>
;
(2)tan tan 1A B ⋅>; (3)5cos 13
A =
,3sin 5
B =;
(4)sin cos 1A A +<
A .1个
B .2个
C .3个
D .4个
错误!未找到引用源。
在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若∠C=120°,且a+b=2,则c 的最小值为( )
A .3
B .2
C .1
D .3
二错误!未找到引用源。
错误!未找到引用源。
定义:
a b ad bc c
d
=-.已知a 、b 、c 为△ABC 的三个内角A 、B 、
C 的对边,若
2cos 120cos 1
cos C C C
-=+,且10a b +=,则c 的最小值为 .
12.设ABC ∆的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若ABC ∆的面积22)(b a c S --=,则2
tan
C 的值为 .
错误!未找到引用源。
如图,一船在海上由西向东航行,在A
处测得某岛M 的方位角为北偏东α角,前进m (km )后在B 处测得该岛的方位角为北偏东β角,已知该岛周围n (km )范围内(包
括边界)有暗礁,现该船继续东行,当α与β满足条件 时,该船没有触礁危险。
错误!未找到引用源。
锐角△ABC 中,角C B A ,,所对的边分别为c b a ,,,若B A 2=,则
b
a 的取值范围是 .
三错误!未找到引用源。
错误!未找到引用源。
在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,向量
(
,c o s 1)A =+m ,(sin ,1)
A =-n ,且⊥m n .
(Ⅰ)求角A 的大小; (Ⅱ)若2a =,cos 3
B =,求b 的值.
16.(2011山东理)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c.已知cos A -2cos C
2c-a =cos B
b
.
(1)求
sin sin C A
的值;
(2)若cosB=14
,2b =,求A B C ∆的面积.
错误!未找到引用源。
已知A B C ∆的三个内角A 、B 、C 所对的边分别为a b c 、、,向量
(4,1),m =-
2(cos ,cos 2)2A
n A = ,且7
2
m n ⋅= .
(Ⅰ)求角A 的大小;
(Ⅱ)若a =bc=3,试判断A B C ∆形状.
错误!未找到引用源。
在ABC ∆中,角A 、B 、C 的对边分别为c b a ,,,已知7,5==+c b a ,
且.2
72cos 2
sin 42
=
-+C B A (1)求角C 的大小; (2)求∆ABC 的面积。