信息光学cha讲义p二维线性系统

合集下载

光学信息处理全套课件

光学信息处理全套课件

2、已知函数
f x rectx 2 rectx 2 求下列函数,
并作出函数图形。 (1)
f x 1 (2) f xsgnx
3、已知连续函数 f x ,若 x0 b 0 ,利用
函数可筛选出函数在 x x0 b 的值,试写出运算式。
4、利用梳状函数与矩形函数的卷积表示线光栅的透过率。
假定光栅常数为 ,缝宽为 ,缝数为 。
x, y x y
1.1.2 脉冲响应和叠加积分(1)
• 函数作为基元函数的情况。根据 函数的筛选性质(A.7,或
《积分变换》P16中1.12式),任何输入函数都可以表达为
f x1, y f , x , y dd
• 积分就是“相加 ”,筛选性质表明任意函数都可以表示为无穷多的
函数的和,每个 函数的“大小”被输入函数“调制”。
2 2
27
傅里叶级数的三角形式和指数形式之间关系
• 根据欧拉公式,三角形式的傅里叶级数可以写成
g x
1 a0
a
n
e
j
2nf
0
x
n1
e j 2nf0x 2
bn e j2nf0x
e j 2nf0x 2j
•令
1 a0
an n1
jbn 2
e j 2nf0x
an
coskxdx 0 (k 1,2,3,...)
sin kxdx 0 (k 1,2,3,...)
sin kxsin lxdx 0 (k l, k,l 1,2,3,...)
coskxcoslxdx 0 (k l, k,l 1,2,3,...)
22
周期函数展开为傅里叶级数
• 第1章的主要内容是二维线性系统分析 ,抽样定理 • 第2章关于标量衍射理论,由傅里叶分析与综合导出近

信息光学

信息光学

例:
a x 0
rect
x rect rect a
x a
x x rect a a
x
a
2

d a x a 1 a a
2

x

0 x a
rect
2 x x x rect d a x a 1 a a a x a
现,光学系统的成像过程是二次傅里叶变换的过程。
一幅图像,可以看成是一个平面光场分布。用傅里叶分析(变换) 的观点,可以把任何二维平面(图像)上的任何复杂光场分布看成是各种 空间频率的正弦分布光场迭加的结果。 因此,可把光学系统成像过程归结为对不同空间频率正弦光场分布 的成像特性。图像(空域)和它的付里叶变换频谱(频域)有着对应的 关系,只要知道其中的一个信息,就等于知道了另一个。 进一步,根据需要,可以对任一个光场平面从空域和频域两个方 面来分析,以全面理解光的分布性质。
常用的傅里叶变换对
傅里叶变换应用举例:
卷积的定义: 函数f(x)和h(x),其卷积运算用符号f(x)* h(x)表示,定义为如 下积分:
卷积积分操作:将曲线h()绕纵轴翻转180°便得到h(-)曲线,然后对 于一个x值,只要将h(-)沿x轴平移x便得到h(x-)曲线,最后计算不同 的x被积函数f( )*h(x-)所对应的曲线与横坐标所围成的面积。
第一章 线性光学系统
本章主要介绍信息光学的数学基础。 1、常用函数及其性质 2、傅里叶变换 3、卷积和相关 4、线性系统性质
1、常用函数及其性质
2、傅里叶变换
“信息光学”来自于早期的“傅里叶变换光学”,主要是因为人们发

信息光学(傅里叶光学)Chap2-1

信息光学(傅里叶光学)Chap2-1

1
1
其它
其他频率 分量全通
H(f)
-1/4
0 1/4 -1
f
H(f) = 1-2rect(2f)
线性不变系统 例
H(f) = 1-2rect(2f)
脉冲响应: h( x)
-1
x H ( f ) d ( x) sinc 2
h(x)
x -2 0 2
线性不变系统 H(f) = 1-2rnc50 f sinc( f )
只要知道各个脉冲响应函数, 系统的输出即为脉冲响应函数 的线性组合. 问题是如何求对任意点的脉冲d 响应h(x,
y; xh)
§2-1 线性系统简介
脉冲响应函数h(x, y ; x h )的求法:
对一般系统而言, 脉冲响应函数的形式可能是点 点不同的
例如,
{d(x)}= h (x)=1 {d(x-1)}= h (x;1)= exp(-j2px) h (x;1) h (x-1)=1
{d(x-x, y-h)}=h (x-x, y-h) 则此线性系统称为空间不变系统或位移 不变系统.
线性不变系统的脉冲响应:
h (x, y; x, h) = h (x-x, y-h)
观察点 输入脉冲 坐标 坐标 二个坐标的 相对间距
线性不变系统的输入-输出变换关系不随空间位置变化.
§2-2 线性不变系统: 例
•低通滤波器: 允许通过的频率有一上限—截止频率 例2.1中的传递函数的性质:在|频率| < b的区间 内信号能无畸变地通过,此外全部阻塞. 这种系统的作用 是低通滤波器. • 高通滤波器: 允许通过的频率有一下限 • 带通滤波器: 只通过某特定频带内的频率分量 • 其它滤波器: 位相滤波器, 匹配滤波器等等

第03讲二维线性不变系统

第03讲二维线性不变系统

f f H f rect rect 4 2
计算计算方法,首先求出输入函数的频谱,再用图解找出输出函数 的频谱,最后用反变换计算出系统的输出。
不变线性系统图解法(2)
输入函数的频谱为
1 x x F g x F com b rect * x 2 2 50 1 x x F com b rect F x 2 50 2 1 x x 2 F com b * F rect sinc f 2 50 2 2 f * 50 sinc50 f sinc2 f com b 2 f n * 50 sinc50 f sinc2 f n 25 f * sinc50 f sinc2 f 2
F f x , f y f x, y exp j f x x f y y d xdy



同时输出函数和脉冲响应函数的傅里叶变换分别为
G f x , f y g x, y exp j f x x f y y d xdy
空间频率的两种意义
空间频率类似于时域函数的时间频率,时间倒数称作频率,长度倒数 称作空间频率,即在单位长度内周期函数变化的周数(单位为:周 /mm,线对/mm,L/mm,等 ) 信息光学中有两种空间频率,一种是对二维图象进行频谱分析得到的 图象频谱对应的空间频率,这是一种空间强度分布,单位为:周/mm, 线对/mm,L/mm,等,其大小是没有限制的,可以是无穷大 另一种是对电磁波场进行频谱分析得到的平面波对应的空间频率,因 为电磁波在均匀介质中波长是常数,在其传播方向上空间频率是不变 的。因而其对应在三维空间坐标上的每个方向的空间频率(单位为: 光波数/mm )表示出的意义实际上是电磁波的传播方向,或其传播方 向与坐标轴的夹角,而且大小受到光波长的限制,最大是波长的倒数。 下章再详细讲这两者区别

《光学信息处理》习题解答

《光学信息处理》习题解答

H ( f x , f y ) 的滤波器,即 F ( f x , f y ) ⋅ H ( f x , f y ) = F ( f x , f y ) 。
故 f (x, y) ∗ h(x, y) = f (x, y) ,即 1 sinc( x )sinc( y ) * f (x, y) = f (x, y) 。 ab a b
)]
*
Λ(
x)
对下述传递函数用图解方法确定系统的输出。
(1)
H 1 ( f ) = rect(
f) 2
(2)
H 2 ( f ) = rect(
f ) − rect( 4
f) 2
解:
由已知条件,在空域内系统输出应为输入函数 gi ( x) 与滤波器 h( x) 的卷积(线性不变系统)。
将 gi ( x) 展开可得
(2)
如果
a
>
1, L
b
>
1 W
,因
f
( x,
y) 是限带函数,在频域内, F (
fx,
f y ) 在长、宽分别为 L 、W
的矩
形内不为零, a > 1 、 b > 1 即 1 < L 、1 < W ,也就是说滤波器通带宽度比输入函数波形宽度窄,
L
Wa
b
势必有一部分信号不能通过滤波器,在频域内,这时 F ( f x , f y ) ⋅ H ( f x , f y ) ≠ F ( f x , f y ) ,在空域内即 1 sinc( x )sinc( y ) * f (x, y) ≠ f (x, y) ab a b
∑ G' ( f ) =
+∞
δ(f

信息光学讲义目录02

信息光学讲义目录02

目录第一章信息光学的数学基础1.1 光学中常用的非初等函数 (1)1.1.1 矩形函数 (1)1.1.2 阶跃函数 (5)1.1.3 符号函数 (8)1.1.4 三角形函数 (10)1.1.5 斜坡函数 (13)1.1.6 圆域函数 (14)1.1.7 非初等函数的运算和复合 (15)1.2 光学中常用的初等函数 (17)1.2.1 sinc 函数 (17)1.2.2 高斯函数 (19)1.2.3 贝塞尔函数 (24)1.2.4 宽边帽函数 (27)1.3 函数的变换 (28)1.3.1 一维函数的变换 (28)1.3.2 可分离变量的二维函数的特性 (31)1.3.3 几何变换 (33)1.4 δ函数和梳状函数 (38)1.4.1 广义函数的含义 (38)1.4.2 δ函数的定义 (40)1.4.3 δ函数的性质 (49)1.4.4 δ函数的导数 (54)1.4.5 复合δ函数 (56)1.4.6 用δ函数描述光学过程的一个例子 (57)1.4.7 梳状函数 (59)1.5 周期函数 (64)1.5.1 周期函数的含义 (64)1.5.2 正弦函数 (66)1.5.3 周期脉冲序列 (67)1.6 离散函数 (70)1.6.1 单位脉冲序列 (70)1.6.2 单位阶跃序列 (72)1.6.3 矩形序列 (73)1.6.4 正弦型序列 (74)1.6.5 斜变序列 (75)1.6.6 实指数序列 (76)1.6.7 复指数序列 (76)1.6.8 随机序列 (77)1.7 复值函数 (77)1.7.1 复数 (77)1.7.2 复值函数 (79)1.7.3 几个常数的关系式和恒等式 (82)习题 1 (83)第二章傅里叶变换和系统的频域分析2.1 一维函数的傅里叶变换 (86)2.1.1 傅里叶级数 (86)2.1.2 傅里叶积分定理 (96)2.1.3 傅里叶变换 (97)2.1.4 极限情况下的傅里叶变换 (104)2.1.5 δ函数的傅里叶变换 (105)2.1.6 常用一维函数傅里叶变换对 (114)2.2 二维函数的傅里叶变换 (116)2.2.1 二维函数傅里叶变换的定义 (116)2.2.2 极坐标系中的二维傅里叶变换 (118)2.2.3 常用二维函数傅里叶变换对 (121)2.3 傅里叶变换的性质 (121)2.3.1 傅里叶变换的基本性质 (121)2.3.2 虚、实、奇和偶函数的傅里叶变换 (124)2.4 傅里叶变换的MATLAB 实现 (126)2.4.1 符号傅里叶变换 (126)2.4.2 离散傅立叶变换 (127)2.4.3 快速傅里叶变换 (130)2.5 卷积和卷积定理 (137)2.5.1 卷积的定义 (137)2.5.2 卷积的计算 (138)2.5.3 函数f (x, y)与δ函数的卷积 (148)2.5.4 卷积的效应 (150)2.5.5 卷积运算的基本性质 (152)2.5.6 卷积的MATLAB 实现 (154)2.6 相关和相关定理 (157)2.6.1 互相关 (157)2.6.2 自相关 (159)2.6.3 归一化互相关函数和自相关函数 (161)2.6.4 有限功率函数的相关 (162)2.6.5 相关的计算方法 (162)2.6.6 相关的MATLAB 实现 (167)2.7 傅里叶变换的基本定理 (170)2.7.1 卷积定理 (170)2.7.2 互相关定理 (171)2.7.3 互相关定理 (173)2.7.4 自相关定理 (174)2.7.5 巴塞伐定理 (174)2.7.6 广义巴塞伐定理 (175)2.7.7 导数定理或微分变换定理 (differential transform theorem) 1752.7.8 积分变换定理 (176)2.7.9 转动定理 (176)2.7.10 矩定理 (176)习题2 (178)第三章线性系统和光场的傅里叶分析3.1 线性系统的概念 (180)3.1.1 信号和信息 (180)3.1.2 系统的概念 (180)3.1.3 线性系统 (182)3.1.4 线性平移不变系统 (183)3.2 线性系统的分析方法 (184)3.2.1 正交函数系 (184)3.2.2 基元函数的响应 (188)3.2.3 线性平移不变系统的传递函数 (193)3.2.4 线性平移不变系统的传递函数 (195)3.3 光场解析信号表示 (199)3.3.1 单色光场的数学形式和复数表示 (199)3.3.2 准单色光场的复数表示 (201)3.3.3 多色光场的复数表示 (203)3.4 光场的复振幅空间描述 (206)3.4.1 球面波的复振幅 (206)3.4.2 球面波的近轴近似 (207)3.4.3 平面波的复振幅 (212)3.5 二维光场的傅里叶分析 (216)3.5.1 平面波的空间频率 (216)3.5.2 球面波的空间频率 (222)3.5.3 复振幅分布的空间频谱和角谱 (222)3.5.4 局域空间频率 (224)3.5.5 复杂光波的分解 (225)3.6 函数抽样与函数复原 (228)3.6.1 一维抽样定理 (228)3.6.3 空间-带宽积 (239)3.6.4 线性光学系统的分辨率 (242)习题3 (242)第四章标量衍射理论 (248)4.1 从矢量电场到标量电场 (251)4.1.1 波动方程 (251)4.1.2 亥姆霍兹方程 (253)4.2 基尔霍夫衍射理论 (254)4.2.1 惠更斯-菲涅耳原理 (254)4.2.2 格林定理 (256)4.2.3 基尔霍夫积分定理 (257)4.2.4 基尔霍夫衍射公式 (260)4.2.5 菲涅耳-基尔霍夫衍射公式 (263)4.2.6 球面波的衍射理论 (265)4.3 衍射在空间频域的描述 (268)4.3.1 从空间域到空间频域 (268)4.3.2 谱频的传播效应 (269)4.3.3 角谱的传播 (272)4.3.4 孔径对角谱的效应 (273)4.3.5 传播现象作为一种线性空间滤波器 (276)4.4 衍射的菲涅耳近似和夫琅禾费近似 (277)4.4.1 菲涅耳近似 (277)4.4.2 夫琅禾费近似 (280)4.4.3 夫琅禾费衍射与菲涅耳衍射的关系 (280)4.4.4 衍射屏被会聚球面波照射时的菲涅耳衍射 (281)4.4.5 衍射的巴俾涅原理 (283)4.5 菲涅耳衍射的计算 (285)4.5.1 周期性物体的菲涅耳衍射 (285)4.5.2 矩形孔的菲涅耳衍射 (291)4.5.3 特殊矩形孔的菲涅耳衍射 (300)4.5.4 圆孔的菲涅耳衍射 (303)4.6 夫琅禾费衍射的计算 (306)4.6.1 矩形孔和狭缝 (307)4.6.3 衍射光栅 (313)4.6.4 圆形孔径 (324)习题 4 (329)第五章光学成像系统的空域描述及傅里叶分析 (336)5.1 成像系统和透镜的结构及变换作用 (336)5.1.2 透镜的结构及变换作用 (337)5.2 透镜作为相位变换器 (341)5.2.1 薄透镜的厚度函数 (341)5.2.2 薄透镜的相位变换及其物理意义 (343)5.3 透镜的傅里叶变换性质 (345)5.3.1 透镜的一般变换特性 (345)5.3.2 物在透镜之前 (349)5.3.3 物在透镜后方 (353)5.4 透镜的空间滤波特性 (355)5.4.1 透镜的截止频率、空间带宽积和视场 (356)5.4.2 透镜孔径引起的渐晕效应 (359)5.5 光学系统的一般模型 (363)5.5.1 光阑 (363)5.5.2 入射光瞳和出射光瞳 (366)5.5.3 黑箱模型 (368)5.6 衍射受限光学系统成像的空域分析 (370)5.6.1 衍射受限系统的点扩散函数及成像 (370)5.6.2 正薄透镜的点扩散函数 (374)5.6.3 相干照射下衍射受限系统的成像规律 (375)5.6.4 成像系统的线性特性 (377)习题 5 (378)第六章光学成像系统的频谱分析和传递函数 (384)6.1 光成像系统像质评价概述 (384)6.1.1 星点检验法 (385)6.1.2 图像分辨率板法 (388)6.2 光学传递函数的基本概念 (394)6.2.1 以点扩散函数为基础的定义 (397)6.2.2 以正弦光栅成像为基础的定义 (401)6.2.3 以光瞳函数表示的光学传递函数 (404)6.2.4 组合成像系统的光学传递函数 (405)6.3 衍射受限相干成像系统的相干传递函数 (406)6.3.1 相干传递函数 (406)6.3.2 相干传递函数的角谱解释 (415)6.4 衍射受限系统非相干成像的频域分析—非相干传递函数 (416)6.4.1 非相干成像系统的光学传递函数(OTF) (417)6.4.2 OTF 和CTF 的关系 (421)6.4.3 衍射受限的OTF (421)6.4.4 有像差系统的传递函数 (426)6.5 线扩散函数和刃边扩散函数 (429)6.5.1 线扩散函数和刃边扩散函数的概念 (429)6.5.2 相干线扩散函数和相干刃边扩散函数 (431)6.5.3 非相干线扩散函数和刃边扩散函数 (433)6.6 相干与非相干成像系统的比较 (434)6.7 光学传递函数的测量 (436)6.7.1 光学传递函数测量装置 (436)6.7.2 光学传递函数测量步骤 (439)6.7.3 光学传递函数测量准确度 (440)6.7.4 光学传递函数的测量环境 (445)6.7.5 光学传递函数的测量数据的修正和表示 (447)6.7.6 光学传递函数的测量方法 (448)6.7.7 光学传递测量装置的检定 (450)6.7.8 光学传递标准装置 (450)6.7.9 离散采样系统光学传递测量 (451)习题 6 (452)第七章部分相干理论 (457)7.1 光的干涉理论 (457)7.1.1 叠加原理 (458)7.1.2 光波的干涉 (458)7.1.3 相干和非相干叠加 (460)7.1.4 干涉条纹的可见度 (462)7.2 互相干函数和相干度 (463)7.2.1 互相干函数的定义 (464)7.2.2 杨氏干涉条纹的几何结构 (468)7.2.3 互相干函数的谱表示 (470)7.3 时间相干性和相干时间 (471)7.3.1 时间相干性 (471)7.3.2 相干时间的定义 (476)7.3.3 傅里叶变换光谱技术 (477)7.4 空间相干性 (479)7.5 准单色条件下的干涉和互强度 (480)7.6 范西泰特-策尼克定理 (483)7.6.1 范西泰特-策尼克定理 (484)7.6.2 相干面积 (486)7.6.3 均匀圆形光源 (486)7.7 互相干函数的传播和广义惠更斯原理 (488)习题 7 (491)第八章光学全息 (496)8.1 光学全息概述 (496)8.1.1 全息术的发展简史 (496)8.1.2 全息照相的基本特点 (498)8.1.3 全息图的类型 (500)8.2 全息照相的基本原理 (501)8.2.1 全息照相的基本过程 (501)8.2.2 波前记录 (502)8.2.3 记录过程的线性条件 (503)8.2.4 波前再现 (504)8.3 同轴全息图和离轴全息图 (507)8.3.1 同轴全息图 (507)8.3.2 离轴全息图 (510)8.4 基元全息图 (514)8.4.1 基元全息图 (514)8.4.2 基元光栅 (515)8.5 菲涅耳全息图 (517)8.5.1 点源全息图和基元波带片 (517)8.5.2 几种特殊情况的讨论 (521)8.6 像全息图 (524)8.6.1 再现光源宽度的影响 (524)8.6.2 再现光源光谱宽度的影响 (525)8.6.3 色模糊 (527)8.6.4 像全息图的制作 (528)8.7 傅里叶变换全息图 (529)8.7.1 傅里叶变换全息图的原理 (530)8.7.2 准傅里叶变换全息图 (532)8.7.3 无透镜傅里叶变换全息图 (533)8.8 彩虹全息 (535)8.8.1 二步彩虹全息 (535)8.8.2 一步彩虹全息 (536)8.8.3 彩虹全息的色模糊 (537)8.9 相位全息图 (540)8.10 模压全息图 (541)8.10.1 模压全息图的制作 (542)8.10.2 全息烫印箔 (542)8.10.3 动态点阵全息图 (543)8.11 体积全息 (543)8.11.1 透射体积全息图 (544)8.11.2 反射全息图 (546)8.12 平面全息图的衍射效率 (546)8.12.1 振幅全息图的衍射效率 (547)8.12.2 相位全息图的衍射效率 (548)8.13 全息记录介质 (549)8.13.1 基本术语 (549)8.13.2 E-D曲线和特性曲线 (551)V8.13.3 全息记录介质的分类 (554)习题 8 (558)第九章光学信息处理技术 (562)9.1 引言 (562)9.2 早期研究成果 (563)9.2.1 阿贝成像理论 (563)9.2.2 阿贝-波特(Abbe-Porter)实验 (564)9.2.3 泽尼克相衬显微镜 (568)9.2.4 改善的照片质量 (570)9.3 空间频率滤波系统 (571)9.3.1 空间滤波系统 (571)9.3.2 空间滤波的傅里叶分析 (572)9.3.3 滤波器的种类及应用举例 (576)9.4 相干光学信息处理 (580)9.4.1 相干光学信息处理系统 (580)9.4.2 多重像的产生 (581)9.4.3 图像的相加和相减 (581)9.4.4 光学微分—像边缘增强 (584)9.4.5 综合孔径雷达 (586)9.5 非相干光学信息处理 (588)9.5.1 相干光与非相干光处理的比较 (588)9.5.2 非相干空间滤波 (589)9.5.3 基于几何光学的非相干处理 (593)9.6 白光信息处理 (594)9.7 光计算 (595)9.7.1 光学矩阵运算 (596)9.7.2 光学互连 (597)9.7.3 光学神经网络 (598)习题 9 (598)。

信息光学05-二维线性系统分析1-傅里叶变换

信息光学05-二维线性系统分析1-傅里叶变换

H(fx,fy),
空域中两个函数的卷积, 其F.T.是各自F.T.的乘积.
0
G( ) 2 rg (r ) J 0 (2r )dr g (r ) 2 G( ) J 0 (2r )d
0
圆对称函数的F.T. 仍是圆对称函数, 称为F-B (傅-贝)变 换,记为
-1{G()}
G() =
{g(r)}, g(r) =
贝塞尔函数
(1)m x J n ( x) m!(n m)! 2 m0
-1{F(f
x,fy)}. 显然
-1
{f(x,y)}= f(x,y)
综合可写:
f(x,y)
F.T. F.T.-1
F(fx,fy)
f(x,y)和F(fx,fy)称为傅里叶变换对 x (y) 和 fx (fy )称为一对共轭变量, 它们在不同 的范畴(时空域或频域) 描述同一个物理对象.
§1-2 二维傅里叶变换 2-D Fourier Transform
交换积分顺序,先对x求积分:






G( f )G * ( f ' )dfdf ' exp[ j 2 ( f f ' ) x]dx


利用复指函数的F.T.


G( f )G * ( f ' )d ( f f ' )dfdf '
利用d 函数的筛选性质
四、 F.T.定理 -- Parseval定理的证明



g ( x) dx g ( x) g * ( x)dx
2

G ( f ) exp( j 2fx)df G * ( f ' ) exp( j 2f ' x)df ' dx

《傅里叶光学》,《信息光学》第二章 二维线性系统分析

《傅里叶光学》,《信息光学》第二章 二维线性系统分析

g x, y L f x, y L F f x , f y exp j 2 f x x f y y df x df y 同理,根据线性叠加性质,有
g x, y
根据傅里叶变换有



f , h x , y d d
f x, y h x, y
2、线性不变系统
3)线性不变系统的传递函数
g x, y f x, y h x, y
卷积定理
G fx , f y H fx , f y F fx , f y
g nX , mY sin c 2B x nX sin c 2B y mY
x y

若取最大允许的抽样间隔,则
g x, y n m g , 2B 2B n m y x

n m sin c 2 B x sin c 2 B y x y 2 Bx 2 By
F f , f L exp j 2 f x f y df df
x y x y x
y

g x, y G f x , f y exp j 2 f x x f y y df x df y


2、线性不变系统
G f x , f y = F g x, y
H f x , f y = F h x, y
F fx , f y
F f x, y
输出频谱 从空间域入手计算系统的输出
传递函数
输入频谱

第二章 二维线性系统

第二章 二维线性系统


ℒ h( x, y; ,) ( x , y )
g ( x, y )

系统的脉冲响应



f ( , )h( x, y; , )d d
对空间的一个点(函数),经过线性系统后变
为 h( x, y; ,) ,它不再是一个点,称为“晕”。
i 1
n
即系统对线性叠加的作用等于对每个分函数作用的 线性叠加,称这种系统为线性系统。
如果输入函数f(x,y)是非常复杂的函数,可以将 f(x,y)分
解成某些“基元”函数(基本函数)的线性组合,则f(x,y) 通过线性系统后,输出函数可以是系统对“基元”函数作 用后的线性组合。常用的“基元”函数有函数、余弦函数、 复指数函数。 二、线性系统的脉冲响应 根据函数的筛选性,f(x,y)可以写为
f ( x, y; f a , f b ) 称为线性不变系统的本征函数,H(fa,fb)是本征值。
四、线性不变系统的滤波特性
空间域 频率域
g ( x, y) f ( x, y) h( x, y)
G( f x , f y ) F ( f x , f y ) H ( f x , f y )
从频率域可以看出,通过系统后,F(fx,fy) 被改变了,改变了多少由 H(fx,fy)决定。即不同 fx、fy 值的H值不同,该频率的输入函数经过系 统后变化不同,即某些频率分量被滤除、衰减或发生相移等。所以 系统就好象一个滤波器,滤波特性决定于 H(fx,fy)。
§2—2 线性不变系统
一、线性不变系统定义 当 有
ℒ f ( x, y ) g ( x, y) ℒ f ( x x0 , y y0 ) g ( x x0 , y y 0 )

信息光学课件-第2章线性系统

信息光学课件-第2章线性系统

L t h t ,
一个空间脉冲在输入平面位移,线性系统的响应函数形
式不变,只是产生了相应位移,这样的系统称为线性空
间不变系统或线性位移不变系统。
L x , y h x, y; , h x , y
仅仅位置不同,函数形 式是统一的;当然也有 一定的前提条件,P48
系统输出:
g x, y

上式描述了线性系统输入和输出的关系,称其为“叠加积分”;

f , h x, y; , d d
只要知道系统对位于输入平面上所有可能点的脉冲响应, 就可以通过叠加积 分完全确定系统的输出; (然而,事实上基本不可能实现,因此必须简化模型才有 意义)
下面来考察传递函数的物理意义—对基元函数的响应特征 问题:请利用线性系统理论回答,当激励信号是复指 数函数时,系统的响应是什么样的?
f(x) * h(x) = g(x); ej 2 f0x * h(x) = g(x);
原系统成像 当激励变成脉冲函数时成像
(fx - f0 )H(fx ) = G(fx );
是振幅、相位发生改变,其改变就是由传递函数决定的。
(注意:基元函数并不限定于复指数函数一种)
2. 不同频率的基元函数(比如sin(fx))实际代表了不同 频率的信号,因此,传递函数是频率的函数,它描述了系 统的对不同频率的信号的响应特征,又称为频率响应函数。 3. 按照傅立叶变换理论,任何一个复杂信号都可以展开为 基元函数的叠加,因此复杂信号的响应也是由传递函数决 定的。
对于任意复数常数a1和a2,均有如下关系成立:
L a1 f1 x, y a2 f2 x, y L a1 f1 x, y L a2 f2 x, y

信息光学线性系统分析

信息光学线性系统分析

3. 极坐标系内的二维傅里叶变换 定义 xy面的极坐标r,θ;频谱面η、ξ上极坐标为ρ、ϕ。有以下关 系 x = r cos θ , y = r sin θ ξ = ρ cos ϕ ,η = ρ sin ϕ 代入直角坐标下的定义式得
F (ρ cos ϕ, ρ sin ϕ) = ∫
∞ 0
证明:设 t ' = at , 则有 t =
t' 1 , dt = dt ', a a
当 a > 0 时,利用检验函数f(t) ,
1 t' dt ' ∫−∞ δ ( at ) φ ( t ) dt = ∫−∞ a δ ( t ') φ a ∞ 1 1 1 ∞ = = φ ( 0) δ ( t ) φ= ( t ) dt ∫−∞ [ δ ( t )] φ ( t ) dt ∫ −∞ a a a ∴ δ (at ) = 1 δ (t ) |a|
Gaus ( x ) = e
性质
−π x 2
用于表示激光光束光强分布, 高斯函数非常光滑, 可以无穷次求导。
1.2 δ函数 1.2.1 δ函数定义 1. 类似普通函数形式的定义 一维坐标
x≠0 x=0 时 时
δ( x ) = 0 δ( x ) = ∞


−∞
δ ( x )dx = 1
二维坐标
δ( x , y ) =
G( ρ = ,ϕ )

0
rg (r )
{∫

0
exp[− j 2πρ r cos(θ − ϕ )]dθ dr
}
利用贝塞尔函数关系


0
exp[ − ja cos(θ − ϕ )]dθ = 2πJ 0 (a )

信息光学chap2二维线性系统

信息光学chap2二维线性系统

2.2 线性不变系统
一、线性不变系统的定义 设系统在 t = 0时刻对脉冲的响应为 h(t), 即:
{(t)}=h (t)
若输入脉冲延迟时间 t ,其响应只有相应的时 间延迟t, 而函数形式不变, 即
{ (t - t )}=h (t - t )
则此线性系统称为时不变系统。系统的性质不随所考察 的时间而变, 是稳定的系统。 时间轴平移了, 响应也随之 平移同样的时间,即具有平移不变性。
{(x-, y-)}=h (x-, y-)
这样的系统称为二维线性不变系统。
线性空间不变系 统的脉冲响应:
h (x, y; , ) = h (x-, y-)
观察点 输入脉冲 坐标 坐标 二个坐标的 相对间距
线性不变系统的输入-输出变换关系不随空间位置变化.
系统的输出:
g ( x, y )
意义: 空间函数f (x, y)可以分解成具有不同空间频率, 的基元 函数exp [j 2p( x+ y)]的线性组合。而F (,)d d为对应基元 函数的权重。 F(,)为频谱函数或频谱密度或谱密度。这种分 解方法称为傅里叶分解。
以f (x, y) 为输入函数, g (x, y)为输出函数。系统的作用可 表示为
g ( x2 , y2 ) { f ( x1, y1 )}
从而,当我们研究一个系统的性质时,不必过多关心 系统内部的结构或工作情况,只需要知道输入端和输出端 的性质就行了,即通过输入-输出关系就可了解系统的性 质。
输入 f(x1,y1)
系统 £{ }
输出 g(x2,y2)
系统的算符表示
线性 系统
f ( x, y) h( x, y)
三、线性平移不变系统的传递函数

信息光学复习提纲(华南师范大学)

信息光学复习提纲(华南师范大学)

信息光学复习提纲 (自编)第一章 二维线性系统1.空间频率的定义是什么?如何理解空间频率的标量性和矢量性? 2.空间频率分量的定义及表达式?3.平面波的表达式和球面波的表达式?对于单色光波。

时间量 空间量 22v T πωπ== 22K f ππλ== 时间角频率 空间角频率其中:v ----时间频率 其中:f ---空间频率T----时间周期 λ-----空间周期物理意义: ① 当090,,<γβα时0,,>z y x f f f , 表示k ϖ沿正方向传播; 当090,,>γβα时0,,<z y x f f f , 表示k ϖ沿负方向传播。

② 标量性, 当α↗时,αcos ↘→x f ↘→x d ↗; 当α↘时,αcos ↗→x f ↗→x d ↘。

③标量性与矢量性的联系 x x f d 1= λαcos =x f条纹密x d ↘→x f ↗→α↘→θ↗条纹疏x d ↗→x f ↘→α↗→θ↘ 可见 :条纹越密(x d 小),衍射角越大 条纹越疏(x d 大),衍射角越小2.空间频率概念光波的表示式为:(,,)0(,,,)(,,)j t j x y z x y z t x y z e e ωϕμμ-=⋅ 0(,,)jK r j t x y z e e ωμ-=⋅ (1.10.2)显然,光波是时间和空间的函数,具有时间周期性与空间周期性。

3.平面波的表达式 ① 单色平面波的公式 ()()()00,,,cos ,,j t jk r j tU x y z t t k r e e U x y z e ωωμωμ-⋅-=-⋅=⋅=v vv v 式中复振幅为:()0,,jk r U x y z e μ⋅=v v()[]γβαμcos cos cos ex p 0z y x jk ++=令 c z y x =++γβαcos cos cos 可见:等相面是一些平行平面 ②任一平面上的平面波表示式()()()101,,exp cos exp cos cos U x y z jkz jk x y μγαβ=+⎡⎤⎣⎦(()exp exp cos cos 0jkz jk x y μαβ⎡⎤=+⎣⎦ ()[]βαcos cos ex p 0y x jk U +=(1.10.36)令 c y x =+βαcos cos 可见,等位线是一些平行线 ③用空间频率表示的平面波公式 λαcos 1==x x T f Θ,1cos y y f T βλ==,1cos z z f T γλ== ()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j z y x U λγλβλαπμcos cos cos 2exp ,,0 ()()[]z f y f x f j z y x U z y x ++=πμ2ex p ,,0 (1.10.25)4、球面波的表达式 ⑴ 单色球面波的复振幅 发散波:(k ϖ与γv 一致) ()()0,,,,,jkr j t j t a U x y z t e e U x y z e r ωω--==式中: ()0,,jkr a U x y z e r = (1.10.5) 会聚波:(k ϖ与γϖ反向)()()0,,,,,jk r j t j t aU x y z t e e U x y z e r ωω-⋅--==式中: ()0,,jkr a U x y z e r-= (1.10.6)r ⑵ 球面波光场中任一平面上的复振幅分布 设球面波中心与坐标原点重合,则y x ,平面上的复振幅为 ()01,,jkr aU x y z e r=220121exp 12a x y jkz r z ⎡⎤⎛⎫+=+⎢⎥ ⎪⎝⎭⎣⎦ ()⎪⎪⎭⎫ ⎝⎛+⋅≈1221102exp exp z y x jk jkz z a ⎪⎫ ⎛+22y x4.相干照明下物函数复振幅的表示式及物理意义?5.非相干照明下物光强分布的表示式及物理意义?1、 相干照明设()y x f ,为一物函数的复振幅,其傅氏变换对为 ()()(),exp 2x y x y F f f f x y j f x f y dxdyπ∞-∞⎡⎤=-+⎣⎦⎰⎰ ()()(),,exp 2xyxyxyf x y F f f j f x f y d f dfπ∞-∞⎡⎤=+⎣⎦⎰⎰可见:物函数()y x f ,可以看作由无数振幅不同方向不同的平面波相干迭加而成。

第1章二维线性系统及其傅里叶分析2

第1章二维线性系统及其傅里叶分析2

F.T.
G(f) 1 -1 1 0
频域扩展
f
F.T.
1 G( fx ) aa
1/2
-2 0 2
f
3. 位移定理 SHIFTING
设 g(x,y) F.T. G(fx,fy),
空间位移:原函数在空域中的平移,相应的频谱函数 振幅分布不变,但位相随频率线性改变.
{g(x-a, y-b)}= G(fx, fy) exp[-j2(fxa+fyb)]
4. {Gaus(x)} = Gaus(f ) 高斯函数的F.T.仍为高斯函数
5. {d (x-a)}=exp(-j2fxa)
{exp(j2fax)}= d (fx-fa)
6.
{c os(2f0 x)
1 [d
2
(
fx
f0) d (
fx
f0 )]
{sin(2f 0 x)
1 [d (
2j
fx
f0) d (
• F.T.的积分定理 • F.T.的卷积定理
1.9 常用傅里叶变换对
1. {1}=d (fx,fy);
{d (fx,fy)}=1
1 与d 函数互为F.T.
22.
{comb(x) comb(f )
梳状函数的F.T.仍为梳状函数
1
t
comb( x
t
)
c
omb(tf
)
3. {rect(x)}=sinc(f); {sinc(x)}= rect(f) rect与sinc 函数互为F.T.
频率位移:原函数在空间域的相移,导致频谱的位移.
{g(x,y) exp[j2(fax+fby)]}= G(fx- fa, fy- fb) 推论: 由 {1}= d (fx,fy)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档