创新设计高考数学文江苏专用一轮复习练习 第二章 函数概念与基本初等函数I 2 含答案

合集下载

2018版高考数学文江苏专用一轮复习练习 第二章 函数概

2018版高考数学文江苏专用一轮复习练习 第二章 函数概

第9讲函数模型及其应用基础巩固题组(建议用时:40分钟)一、填空题1.给出下列函数模型:①一次函数模型;②幂函数模型;③指数函数模型;④对数函数模型.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是________(填序号).量是均匀的,故为一次函数模型.答案①2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图象正确的是________(填序号).解析前3年年产量的增长速度越来越快,说明呈高速增长,只有①,③图象符合要求,而后3年年产量保持不变,总产量增加,故①正确,③错误.答案①3.某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差________元.解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 104.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.解析 设内接矩形另一边长为y ,则由相似三角形性质可得x 40=40-y 40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40),当x =20时,S max =400.答案 205.(2017·长春模拟)一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为 y =a e -bt (cm 3),经过 8 min 后发现容器内还有一半的沙子,则再经过________min ,容器中的沙子只有开始时的八分之一.解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a ,∴e -8b =12,容器中的沙子只有开始时的八分之一时,即y =a e -bt =18a ,e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.答案 166.A ,B 两只船分别从在东西方向上相距145 km 的甲乙两地开出.A 从甲地自东向西行驶.B 从乙地自北向南行驶,A 的速度是,B 的速度是,经过________h ,AB 间的距离最短.解析 设经过x h ,A ,B 相距为y km ,则y =(145-40x )2+(16x )2=1 856t 2-11 600t +1452(0≤x ≤298),求得函数的最小值时x 的值为258.答案 2587.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业需要更新设备的年数为________.解析 设该企业需要更新设备的年数为x ,设备年平均费用为y ,则x 年后的设备维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用为y =100+0.5x +x (x +1)x =x +100x +1.5,由基本不等式得y =x +100x +1.5≥2 x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号. 答案 108.(2016·四川卷改编)某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是________(参考数据:lg 1.12=0.05,lg 1.3=0.11,lg 2=0.30).解析 设第x 年的研发奖金为200万元,则由题意可得130×(1+12%)x =200, ∴1.12x =2013,∴x =log 1.122013=log 1.1220-log 1.1213=lg 20lg 1.12-lg 13lg 1.12=(lg 2+lg 10)-(lg 1.3+lg 10)lg 1.12=0.3+1-0.11-10.05=3.8. 即3年后不到200万元,第4年超过200万元,即2019年超过200万元. 答案 2019二、解答题9.(2016·江苏卷)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥P -A 1B 1C 1D 1,下部分的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高OO 1是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?解 (1)V =13×62×2+62×2×4=312(m 3).(2)设PO 1=x ,则O 1B 1=62-x 2,B 1C 1=2·62-x 2,∴SA 1B 1C 1D 1=2(62-x 2),又由题意可得下面正四棱柱的高为4x .则仓库容积V =13x ·2(62-x 2)+2(62-x 2)·4x =263x (36-x 2). 由V ′=0得x =23或x =-23(舍去).由实际意义知V 在x =23(m)时取到最大值,故当PO 1=2 3 m 时,仓库容积最大.10.(2017·南通模拟)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解 (1)每吨平均成本为y x (万元).则yx=x5+8 000x-48≥2x5·8 000x-48=32,当且仅当x5=8 000x,即x=200时取等号.∴年产量为200吨时,每吨平均成本最低为32万元.(2)设年获得总利润为R(x)万元.则R(x)=40x-y=40x-x25+48x-8 000=-x25+88x-8 000=-15(x-220)2+1 680(0≤x≤210).∵R(x)在[0,210]上是增函数,∴x=210时,R(x)有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润1 660万元.能力提升题组(建议用时:30分钟)11.(2017·南京调研)某市对城市路网进行改造,拟在原有a个标段(注:一个标段是指一定长度的机动车道)的基础上,新建x个标段和n个道路交叉口,其中n与x满足n=ax+5.已知新建一个标段的造价为m万元,新建一个道路交叉口的造价是新建一个标段的造价的k倍.(1)写出新建道路交叉口的总造价y(万元)与x的函数关系式;(2)设P是新建标段的总造价与新建道路交叉口的总造价之比.若新建的标段数是原有标段数的20%,且k≥3.问:P能否大于120,说明理由.解(1)依题意得y=mkn=mk(ax+5),x∈N*.(2)法一依题意x=0.2a,所以P=mxy=xk(ax+5)=0.2ak(0.2a2+5)=ak(a2+25)≤a3(a2+25)=13⎝⎛⎭⎪⎫a+25a≤13×⎝⎛⎭⎪⎫2a×25a=130<120.P 不可能大于120.法二 依题意x =0.2a ,所以P =mx y =x k (ax +5)=0.2a k (0.2a 2+5)=a k (a 2+25). 假设P >120,则ka 2-20a +25k <0.因为k ≥3,所以Δ=100(4-k 2)<0,不等式ka 2-20a +25k <0无解,假设不成立.P 不可能大于120.12.(2017·苏、锡、常、镇四市调研)某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x (单位:元,x >0)时,销售量q (x )(单位:百台)与x 的关系满足:若x 不超过20,则q (x )=1 260x +1;若x 大于或等于180,则销售量为零;当20≤x ≤180时,q (x )=a -b x (a ,b 为实常数).(1)求函数q (x )的表达式;(2)当x 为多少时,总利润(单位:元)取得最大值,并求出该最大值.解 (1)当20≤x ≤180时,由⎩⎨⎧ a -b ·20=60,a -b ·180=0,得⎩⎨⎧ a =90,b =3 5. 故q (x )=⎩⎪⎨⎪⎧ 1 260x +1,0<x ≤20,90-35x ,20<x <180,0,x ≥180.(2)设总利润f (x )=x ·q (x ),由(1)得f (x )=⎩⎪⎨⎪⎧ 126 000x x +1,0<x ≤20,9 000x -3005·x x ,20<x <180,0,x ≥180,当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1,又f (x )在(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000.当20<x <180时,f (x )=9 000x -3005·x x ,f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80.当20<x <80时,f ′(x )>0,f (x )单调递增,当80<x <180时,f ′(x )<0,f (x )单调递减,所以当x =80时,f (x )有最大值240 000.当x ≥180时,f (x )=0.综上,当x =80元时,总利润取得最大值240 000元.13.(2017·苏北四市调研)如图,某森林公园有一直角梯形区域ABCD ,其四条边均为道路,AD ∥BC ,∠ADC =90°,AB =5 千米,BC =8 千米,CD =3 千米.现甲、乙两管理员同时从A 地出发匀速前往D 地,甲的路线是AD ,速度为6千米/时,乙的路线是ABCD ,速度为v 千米/时.(1)若甲、乙两管理员到达D 的时间相差不超过15分钟,求乙的速度v 的取值范围;(2)已知对讲机有效通话的最大距离是5千米.若乙先到D ,且乙从A 到D 的过程中始终能用对讲机与甲保持有效通话,求乙的速度v 的取值范围.解 (1)由题意得AD =12 千米,⎪⎪⎪⎪⎪⎪126-16v ≤14, 解得649≤v ≤647,故乙的速度v 的取值范围是⎝ ⎛⎭⎪⎫649,647. (2)设经过t 小时,甲、乙之间的距离的平方为f (t ).由于乙先到达D 地,故16v <2,即v >8.①当0<v t ≤5,即0<t ≤5v 时,f (t )=(6t )2+(v t )2-2×6t ×v t ×cos ∠DAB =⎝ ⎛⎭⎪⎫v 2-485v +36t 2. 因为v 2-485v +36>0,所以当t =5v 时,f (t )取最大值 , 所以⎝ ⎛⎭⎪⎫v 2-485v +36×⎝ ⎛⎭⎪⎫5v 2≤25,解得v ≥154. ②当5<v t ≤13,即5v <t ≤13v 时,f (t )=(v t -1-6t )2+9=(v -6)2⎝ ⎛⎭⎪⎫t -1v -62+9. 因为v >8,所以1v -6<5v ,(v -6)2>0,所以当t =13v 时,f (t )取最大值, 所以(v -6)2⎝ ⎛⎭⎪⎫13v -1v -62+9≤25,解得398≤v ≤394. ③当13≤v t ≤16,即13v ≤t ≤16v 时,f (t )=(12-6t )2+(16-v t )2因为12-6t >0,16-v t >0,所以f (t )在⎝ ⎛⎭⎪⎫13,16上单调递减, 所以当t =13v 时,f (t )取最大值,⎝ ⎛⎭⎪⎫12-6×13v 2+⎝ ⎛⎭⎪⎫16-v ×13v 2≤25,解得398≤v ≤394. 因为v >8,所以8<v ≤394.综上所述,v 的取值范围是⎝ ⎛⎦⎥⎤8,394.。

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

2022届高考一轮复习第2章函数的概念及基本初等函数ⅰ第2节函数的单调性与最值课时跟踪检测理含解

第二章 函数的概念及基本初等函数(Ⅰ)第二节 函数的单调性与最值A 级·基础过关 |固根基|1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x解析:选A 函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上是增函数. 2.如果函数f(x)=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-14,+∞B .⎣⎢⎡⎭⎪⎫-14,+∞C .⎣⎢⎡⎭⎪⎫-14,0 D .⎣⎢⎡⎦⎥⎤-14,0 解析:选D 当a =0时,f(x)=2x -3在定义域R 上单调递增,故在(-∞,4)上单调递增; 当a≠0时,二次函数f(x)的对称轴为x =-1a ,因为f(x)在(-∞,4)上单调递增, 所以a<0,且-1a ≥4,解得-14≤a<0.综上,实数a 的取值范围是⎣⎢⎡⎦⎥⎤-14,0.3.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A .⎝ ⎛⎭⎪⎫13,23B .⎣⎢⎡⎭⎪⎫13,23C .⎝ ⎛⎭⎪⎫12,23 D .⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f(x)是定义在区间[0,+∞)上的增函数,满足f(2x -1)<f ⎝ ⎛⎭⎪⎫13, 所以0≤2x-1<13,解得12≤x<23.4.设偶函数f(x)的定义域为R ,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( )A .f (π)>f(-3)>f(-2)B .f (π)>f(-2)>f(-3)C .f (π)<f(-3)<f(-2)D .f (π)<f(-2)<f(-3) 解析:选A 因为f(x)是偶函数, 所以f(-3)=f(3),f(-2)=f(2). 又因为函数f(x)在[0,+∞)上是增函数, 所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).5.函数y =f(x)(x∈R)的图象如图所示,则函数g(x)=f(log a x)(0<a<1)的单调递减区间是( )A .⎣⎢⎡⎦⎥⎤0,12 B .[a ,1] C .(-∞,0)∪⎣⎢⎡⎭⎪⎫12,+∞ D .[a ,a +1 ]解析:选B 由图象,知f(x)在(-∞,0)和⎣⎢⎡⎭⎪⎫12,+∞上单调递减,而在⎣⎢⎡⎦⎥⎤0,12上单调递增.又因为当0<a<1时,y =log a x 为(0,+∞)上的减函数,所以要使g(x)=f(log a x)单调递减,则需log a x ∈⎣⎢⎡⎦⎥⎤0,12,即0≤log a x ≤12,解得x∈[a ,1].6.定义新运算⊕:当a≥b 时,a ⊕b =a ;当a<b 时,a ⊕b =b 2,则函数f(x)=(1⊕x)x -(2⊕x),x∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得,当-2≤x≤1时,f(x)=x -2; 当1<x≤2时,f(x)=x 3-2.因为f(x)=x 3-2,f(x)=x -2在定义域内都为增函数,且f(1)<f(2), 所以f(x)的最大值为f(2)=23-2=6.7.函数f(x)=⎩⎪⎨⎪⎧log 12x ,x≥1,2x ,x<1的值域为________.解析:当x≥1时,log 12x≤0;当x<1时,0<2x<2,故f(x)的值域为(0,2)∪(-∞,0]=(-∞,2).答案:(-∞,2)8.函数f(x)=x +2x -1 的值域为________. 解析:由2x -1≥0,得x≥12,∴函数的定义域为⎣⎢⎡⎭⎪⎫12,+∞. 又函数f(x)=x +2x -1在⎣⎢⎡⎭⎪⎫12,+∞上单调递增,∴当x =12时,函数取最小值f ⎝ ⎛⎭⎪⎫12=12,∴函数f(x)的值域为⎣⎢⎡⎭⎪⎫12,+∞.答案:⎣⎢⎡⎭⎪⎫12,+∞9.已知f(x)=xx -a(x≠a). (1)若a =-2,证明:f(x)在(-∞,-2)内单调递增; (2)若a>0且f(x)在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任取x 1<x 2<-2, 当a =-2时,f(x 1)-f(x 2)= x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), ∴f(x)在(-∞,-2)上单调递增.(2)任取1<x 1<x 2,则f(x 1)-f(x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a>0,x 2-x 1>0,∴要使f(x 1)-f(x 2)>0,只需(x 1-a)(x 2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a 的取值范围是(0,1].10.(2019届福建师大附中模拟)定义在(0,+∞)上的函数f(x)满足下面三个条件: ①对任意正数a ,b ,都有f(a)+f(b)=f(ab); ②当x>1时,f(x)<0; ③f(2)=-1. (1)求f(1)的值;(2)用单调性的定义证明:函数f(x)在(0,+∞)上是减函数; (3)求满足f(3x -1)>2的x 的取值集合.解:(1)由f(a)+f(b)=f(ab),得f(1)+f(1)=f(1),则f(1)=0. (2)证明:任取x 1,x 2∈(0,+∞)且x 1<x 2,则f(x 1)+f ⎝ ⎛⎭⎪⎫x 2x 1=f(x 2),所以f(x 2)-f(x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1. 由x 2x 1>1,得f ⎝ ⎛⎭⎪⎫x 2x 1<0,即f(x 2)<f(x 1),∴f(x)在(0,+∞)上是减函数.(3)∵f(2)=-1,∴f(4)=f(2)+f(2)=-2,又f(4)+f ⎝ ⎛⎭⎪⎫14=f(1)=0,∴f ⎝ ⎛⎭⎪⎫14=2.又f(x)的定义域为(0,+∞),且在其上是减函数, ∴⎩⎪⎨⎪⎧3x -1<14,3x -1>0,解得13<x<512. 故满足要求的x 的取值集合为⎝ ⎛⎭⎪⎫13,512.B 级·素养提升 |练能力|11.设a>0且a≠1,则“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f(x)=a x在R 上为减函数,则有0<a<1;若函数g(x)=(2-a)x 3在R 上为增函数,则有2-a>0,即a<2,所以“函数f(x)=a x在R 上是减函数”是“函数g(x)=(2-a)x 3在R 上是增函数”的充分不必要条件,故选A .12.已知在函数f(x)=lg(a x-b x)+x 中,常数a ,b 满足a>1>b>0,且a =b +1,那么f(x)>1的解集为( )A .(0,1)B .(1,+∞)C .(1,10)D .(10,+∞) 解析:选B 由a x-b x>0,a>1>b>0,得⎝ ⎛⎭⎪⎫a b x>1,解得x>0,所以函数f(x)的定义域为(0,+∞).因为a>1>b>0,所以y =a x单调递增,y =-b x单调递增,所以t =a x-b x单调递增.又y =lg t 单调递增,所以f(x)=lg(a x-b x)+x 为(0,+∞)上的增函数.而f(1)=lg(a -b)+1=lg 1+1=1,所以当x>1时,f(x)>1,故f(x)>1的解集为(1,+∞).故选B .13.如果函数y =f(x)在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y=f(x)是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f(x)=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:选D 因为函数f(x)=12x 2-x +32的对称轴为x =1,所以函数y =f(x)在区间[1,+∞)上是增函数.又当x≥1时,f (x )x =12x +32x -1,令g(x)=12x +32x -1(x≥1),则g′(x)=12-32x 2=x 2-32x 2,由g′(x)≤0,得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].故选D . 14.定义运算:x y =⎩⎪⎨⎪⎧x ,xy≥0,y ,xy<0,例如:34=3,(-2)4=4,则函数f(x)=x2(2x -x 2)的最大值为________.解析:由已知,得f(x)=x2(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x≤2,2x -x 2,x<0或x>2,易知函数f(x)的最大值为4. 答案:4。

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测(十二)函数与方程

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测(十二)函数与方程

(江苏专版)高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测(十二)函数与方程课时达标检测(十二) 函数与方程[练基础小题——强化运算能力]1.已知函数f (x )=6x-log 2x ,在下列区间中,包含 f (x )零点的区间是________.(填序号)①(0,1);②(1,2);③(2,4);④(4,+∞).解析:因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).答案:③2.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为________.解析:令F (x )=⎝ ⎛⎭⎪⎫12x,G (x )=cos x ,它们在同一坐标系下在区间[0,2π]上的图象如图,由两函数的交点知f (x )在区间[0,2π]上的零点个数为3.答案:33.已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.解析:作出f (x )的图象如图所示.当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2,∴要使方程f (x )=b 有三个不同的根,则4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.答案:(3,+∞)4.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.解析:因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3.答案:(0,3)5.(2018·天津六校联考)已知函数y =f (x )的图象是连续的曲线,且对应值如表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有________个.解析:依题意知f(2)>0,f(3)<0,f(4)>0,f(5)<0,根据零点存在性定理可知,f(x)在区间(2,3),(3,4),(4,5)内均至少含有一个零点,故函数y=f(x)在区间[1,6]上的零点至少有3个.答案:3[练常考题点——检验高考能力]一、填空题1.设a是方程2ln x-3=-x的解,则a在的区间是________.(填序号)①(0,1);②(3,4);③(2,3);④(1,2).解析:令f(x)=2ln x-3+x,则函数f(x)的零点即原方程的解,显然函数f(x)在(0,+∞)上递增,且f(1)=-2<0,f(2)=2ln 2-1=ln 4-1>0,所以函数f(x)在(1,2)上有零点,即a在区间(1,2)内.答案:④2.(2017·南京二模)已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2 018x+log2 018x,则函数f(x)的零点个数是________.解析:作出函数y=2 018x和y=-log2 018x的图象如图所示,可知函数f(x)=2 018x+log2 018x在x∈(0,+∞)上存在一个零点,又f(x)是定义在R上的奇函数,∴f(x)在x∈(-∞,0)上有且仅有一个零点,又f(0)=0,∴函数f(x)的零点个数是3.答案:33.若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点有________个.解析:因为偶函数f(x)满足f(x+2)=f(x),故函数的周期为2.当x∈[0,1]时,f(x)=x,故当x∈[-1,0]时,f(x)=-x.在同一个坐标系中画出函数y=f(x)的图象与函数y=log3|x|的图象,如图所示.显然函数y=f(x)的图象与函数y=log3|x|的图象有4个交点,则函数y=f(x)-log3|x|的零点有4个.答案:44.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -22,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为________.解析:由已知条件得g (x )=3-f (2-x )=⎩⎪⎨⎪⎧|x -2|+1,x ≥0,3-x 2,x <0,分别画出函数y =f (x ),y =g (x )的草图,观察发现有2个交点,则函数y =f (x )-g (x )有2个零点.答案:25.(2018·如皋四校联考)函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +1,x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为________.解析:函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +1,x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得当函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即当方程f (x )=-x +a 有且只有两个不相等的实数根时,有a <1.答案:(-∞,1)6.(2018·湖南衡阳模拟)函数f (x )的定义域为[-1,1],图象如图1所示,函数g (x )的定义域为[-2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =________.解析:由题图可知,若f (g (x ))=0,则g (x )=-1或g (x )=0或g (x )=1.由题图2知,g (x )=-1时,x =-1或x =1;g (x )=0时,x 的值有3个;g (x )=1时,x =2或x =-2,故m =7.若g (f (x ))=0,则f (x )=-32或f (x )=32或f (x )=0.由题图1知,使f (x )=32与f (x )=-32的x 取值各有2个;f (x )=0时,x =-1或x =1或x =0,故n =7.由此可得m +n =14.答案:147.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:要求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根,∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1.∴g (x )的零点为1+2,1.答案:1+2,18.(2018·河北衡水二中检测)已知函数f (x )=⎩⎪⎨⎪⎧0,x ≤0,2x,x >0,则使函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是________.解析:函数g (x )=f (x )+x -m 的零点就是方程f (x )+x =m 的根,作出h (x )=⎩⎪⎨⎪⎧x ,x ≤0,2x+x ,x >0的图象,如图所示,观察它与直线y =m 的交点,得知当m ≤0或m >1时有交点,即函数g (x )=f (x )+x -m 有零点的实数m 的取值范围是(-∞,0]∪(1,+∞).答案:(-∞,0]∪(1,+∞)9.(2018·湖北优质高中联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:题设可转化为两个函数y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 在[-4,6]上的交点的横坐标的和,因为两个函数均关于x =1对称,所以两个函数在x =1两侧的交点对称,则每对对称点的横坐标的和为2,分别画出两个函数的图象易知两个函数在x =1两侧分别有5个交点,所以f (x )的所有零点之和为5×2=10.答案:1010.(2017·南通、泰州、扬州三模)已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≥a ,x 3-3x ,x <a .若函数g (x )=2f (x )-ax 恰有2个不同的零点,则实数a 的取值范围是________.解析:由题知g (x )=⎩⎪⎨⎪⎧2-a x ,x ≥a ,2x 3-6+a x ,x <a ,显然,当a =2时,g (x )有无穷多个零点,不符合题意; 当x ≥a 时,令g (x )=0,得x =0,当x <a 时,令g (x )=0,得x =0或x 2=6+a 2,①若a >0且a ≠2,则g (x )在[a ,+∞)上无零点,在(-∞,a )上存在零点x =0和x =-6+a2, 所以6+a2≥a ,解得0<a <2; ②若a =0,则g (x )在[0,+∞)上存在零点x =0,在(-∞,0)上存在零点x =-62,符合题意;③若a <0,则g (x )在[a ,+∞)上存在零点x =0,所以g (x )在(-∞,a )上只有1个零点,因为0∈ /(-∞,a ),所以g (x )在(-∞,a )上的零点为x =-6+a2, 所以-6+a 2<a ,解得-32<a <0. 综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫-32,2.答案:⎝ ⎛⎭⎪⎫-32,2 二、解答题11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解:设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,∴f (2)≤0. 又∵f (2)=22+(m -1)×2+1,∴m ≤-32.而当m =-32时,f (x )=0在[0,2]上有两解12和2,∴m <-32.②若f (x )=0在区间[0,2]上有两解,则⎩⎪⎨⎪⎧ Δ>0,0<-m -12<2,f 2≥0,∴⎩⎪⎨⎪⎧m -12-4≥0,-3<m <1,4+m -1×2+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知实数m 的取值范围是(-∞,-1].12.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式.(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解:(1)设x <0,则-x >0,∴f (-x )=x 2+2x . 又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1, 故a 的取值范围为(-1,1).。

江苏专用版高考数学一轮复习第二章函数概念与基本初等函数I2.2函数单调性与最值文含答案.docx

江苏专用版高考数学一轮复习第二章函数概念与基本初等函数I2.2函数单调性与最值文含答案.docx

设-1<
1<2<1,
x
x

f
(1)-
(
x
ax1
ax2
2)=2
-2
x
f
x1-1x2-1
2
2
+ax
a x-x
x x+1
ax x-ax-ax
x
2
1
1
2
1
2
1
2
1
2

x12-1
x22-1

x12-1
x22-1

∵-1<x1<x2<1,
22
∴x2-x1>0,x1x2+1>0,(x1-1)(x2-1)>0.
又∵a>0,∴f(x1)-f(x2)>0,
1
(1)当a=2时,求函数f(x)的最小值;
(2)
若对任意x∈[1,+∞),f
(x)>0
恒成立,试求实数
a的取值范围.

1
时,f(x)=x+
1
在[1,+∞)上为增函数,f(x)
7
(1)当a=2
2x+2
min
=f(1)=2.
5
a
(2)f(x)=x+x+2,x∈[1,+∞).
①当 ≤0时,
f
(
x
)在[1,+∞)内为增函数.
a]上是减函数,
在[
a,+∞)上是增函数.
证明
方法一
任意取
x
1>
2>0,则
x
aa
f(x1)-f(x2)=x1+x1-x2+x2
1
2
)+
a

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程 文

(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.8 函数与方程 文

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I 2.8 函数与方程文1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使函数y=f(x)的值为0的实数x叫做函数y=f(x)(x∈D)的零点.(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)上有零点,即存在c∈(a,b),使得f(c)=0,这个__c__也就是方程f(x)=0的根.2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.( ×)(2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( ×)(3)只要函数有零点,我们就可以用二分法求出零点的近似值.( ×)(4)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ )(5)若函数f (x )在(a ,b )上单调且f (a )·f (b )<0,则函数f (x )在[a ,b ]上有且只有一个零点.( √ )1.(教材改编)函数f (x )=e x+3x 的零点个数是________. 答案 1解析 ∵f (-1)=1e -3<0,f (0)=1>0,∴f (x )在(-1,0)内有零点,又f (x )为增函数,∴函数f (x )有且只有一个零点.2.若x 1,x 2是方程2x=(12)11x -+的两个实根,则x 1+x 2=________.答案 -1解析 ∵2x=(12)11x -+,∴2x=211x -,∴x =1x-1即x 2+x -1=0,∴x 1+x 2=-1.3.函数f (x )=2x|log 0.5 x |-1的零点个数为________. 答案 2解析 由f (x )=0得|log 0.5x |=⎝ ⎛⎭⎪⎫12x,作出函数y =|log 0.5x |和y =⎝ ⎛⎭⎪⎫12x的图象,由图象知两函数图象有2个交点, 故函数f (x )有2个零点.4.(2015·天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y=f (x )-g (x )的零点个数为________. 答案 2解析 当x >2时,g (x )=x -1,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=3-x ,f (x )=2-x ; 当x <0时,g (x )=3-x 2,f (x )=2+x .由于函数y =f (x )-g (x )的零点个数就是方程f (x )-g (x )=0的根的个数.x >2时,方程f (x )-g (x )=0可化为x 2-5x +5=0,其根为x =5+52或x =5-52(舍去); 当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =3-x ,无解;当x <0时,方程f (x )-g (x )=0可化为x 2+x -1=0,其根为x =-1-52或x =-1+52(舍去).所以函数y =f (x )-g (x )的零点个数为2.5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)·(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.题型一 函数零点的确定 命题点1 函数零点所在的区间例1 (2015·长沙四月调研)已知函数f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2的零点为x 0,则x 0所在的区间是(k ,k +1) (k ∈Z ),则k =________. 答案 2解析 ∵f (x )=ln x -⎝ ⎛⎭⎪⎫12x -2在(0,+∞)是增函数,又f (1)=ln 1-⎝ ⎛⎭⎪⎫12-1=ln 1-2<0,f (2)=ln 2-⎝ ⎛⎭⎪⎫120<0,f (3)=ln 3-⎝ ⎛⎭⎪⎫121>0,∴x 0∈(2,3).命题点2 函数零点个数的判断例2 (1)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是________. 答案 (1)2 (2)4解析 (1)当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点.当x >0时,f ′(x )=2+1x>0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如图:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 命题点3 求函数的零点例3 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为______________. 答案 {-2-7,1,3}解析 当x ≥0时,f (x )=x 2-3x ,令g (x )=x 2-3x -x +3=0,得x 1=3,x 2=1. 当x <0时,-x >0,∴f (-x )=(-x )2-3(-x ), ∴-f (x )=x 2+3x ,∴f (x )=-x 2-3x . 令g (x )=-x 2-3x -x +3=0, 得x 3=-2-7,x 4=-2+7>0(舍),∴函数g (x )=f (x )-x +3的零点的集合是{-2-7,1,3}.思维升华 (1)确定函数零点所在区间,可利用零点存在性定理或数形结合法.(2)判断函数零点个数的方法:①解方程法;②零点存在性定理、结合函数的性质;③数形结合法:转化为两个函数图象的交点个数.(1)已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是________.①(0,1) ②(1,2) ③(2,4)④(4,+∞)(2)函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.答案 (1)③ (2)1解析 (1)因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).(2)方法一 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y =⎝ ⎛⎭⎪⎫12x的图象,可得交点只有一个,所以零点只有一个. 方法二 ∵f (0)=-1,f (1)=12,∴f (0)f (1)<0,故函数f (x )在(0,1)至少存在一个零点, 又f (x )显然为增函数,∴f (x )零点个数为1. 题型二 函数零点的应用例4 若关于x 的方程22x+2xa +a +1=0有实根,求实数a 的取值范围. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-a +,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根不合题意,舍去),则f (0)=a +1<0,解得a <-1;③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-2 2 ]. 方法二 (分离变量法)由方程,解得a =-22x+12x +1,设t =2x(t >0),则a =-t 2+1t +1=-⎝ ⎛⎭⎪⎫t +2t +1-1=2-⎣⎢⎡⎦⎥⎤t ++2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2. 思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决,解的个数可化为函数y =f (x )的图象和直线y =a 交点的个数.(1)函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧|2x-1|,x <2,3x -1,x ≥2,若方程f (x )-a =0有三个不同的实数根,则实数a 的取值范围是__________.答案 (1)(0,3) (2)(0,1)解析 (1)因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则有f (1)·f (2)<0,所以(-a )(4-1-a )<0,即a (a -3)<0.所以0<a <3.(2)画出函数f (x )的图象如图所示,观察图象可知,若方程f (x )-a =0有三个不同的实数根,则函数y =f (x )的图象与直线y =a 有3个不同的交点,此时需满足0<a <1. 题型三 二次函数的零点问题例5 已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a 的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0,∴x 1x 2-(x 1+x 2)+1<0,由根与系数的关系,得(a -2)+(a 2-1)+1<0,即a 2+a -2<0,∴-2<a <1. 方法二 函数图象大致如图, 则有f (1)<0,即1+(a 2-1)+a -2<0, ∴-2<a <1.故实数a 的取值范围是(-2,1).思维升华解决与二次函数有关的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.若关于x的方程x2+ax-4=0在区间[2,4]上有实数根,则实数a的取值范围是________.答案[-3,0]解析如果方程有实数根,注意到两个根之积为-4<0,可知两根必定一正一负,因此在[2,4]上有且只有一个实数根,设f(x)=x2+ax-4,则必有f(2)f(4)≤0,所以2a(12+4a)≤0,即a∈[-3,0].3.忽视定义域导致零点个数错误典例定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 016x+log2 016x,则在R上函数f(x)的零点个数为_____________________________.易错分析得出当x>0时的零点个数后,容易忽略条件:定义在R上的奇函数,导致漏掉x<0时和x=0时的情况.x.作出函数y 解析当x>0时,由f(x)=2 016x+log2 016x=0得2 016x=-log2 016x=log12016x的图象,可知它们只有一个交点,所以当x>0时函数只有一个=2 016x与函数y=log12016零点.由于函数为奇函数,所以当x<0时,也有一个零点.又当x=0时y=0,所以共有三个零点.答案 3温馨提醒(1)讨论x>0时函数的零点个数也可利用零点存在性定理结合函数单调性确定.(2)函数的定义域是讨论函数其他性质的基础,要给予充分重视.[方法与技巧]1.函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合:函数y=f(x)-g(x)的零点,就是函数y=f(x)和y=g(x)图象交点的横坐标.(3)解方程.2.二次函数的零点可利用求根公式、判别式、根与系数的关系或结合函数图象列不等式(组).3.利用函数零点求参数范围的常用方法:直接法、分离参数法、数形结合法.[失误与防范]1.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.2.判断零点个数要注意函数的定义域,不要漏解;画图时要尽量准确.A 组 专项基础训练 (时间:40分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0,若函数y =f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1)解析 画出函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,-x 2-2x ,x <0的图象,由图象可知,若函数y =f (x )-m 有3个零点,则0<m <1,因此m 的取值范围是(0,1).2.已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N *),则k 的值为___________________________________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln 3-1>0,f (4)=ln 4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.3.已知函数f (x )=⎩⎪⎨⎪⎧2x-1, x ≤1,1+log 2x , x >1,则函数f (x )的零点为________.答案 0解析 当x ≤1时,由f (x )=2x-1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0.4.方程|x 2-2x |=a 2+1(a >0)的解的个数是________. 答案 2解析 (数形结合法)∵a >0,∴a 2+1>1.而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.5.已知函数f (x )=⎩⎪⎨⎪⎧e x+a ,x ≤0,2x -1,x >0(a ∈R ),若函数f (x )在R 上有两个零点,则a 的取值范围是__________. 答案 [-1,0)解析 当x >0时,f (x )=2x -1.令f (x )=0,解得x =12;当x ≤0时,f (x )=e x+a ,此时函数f (x )=e x +a 在(-∞,0]上有且仅有一个零点,等价转化为方程e x=-a 在(-∞,0]上有且仅有一个实根,而函数y =e x在(-∞,0]上的值域为(0,1],所以0<-a ≤1,解得-1≤a <0.6.已知函数f (x )=x 2+x +a (a <0)在区间(0,1)上有零点,则a 的取值范围为________. 答案 (-2,0)解析 ∵-a =x 2+x 在(0,1)上有解, 又y =x 2+x =(x +12)2-14,∴函数y =x 2+x ,x ∈(0,1)的值域为(0,2), ∴0<-a <2,∴-2<a <0.7.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________________. 答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6,∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0, 解集为{x |-32<x <1}.8.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________. 答案 (0,1) 解析 画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点, 结合图象得:0<m <1,即m ∈(0,1).9.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ,1],1-1x ,x,+,故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 10.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 方法一 设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,则应有f (2)<0, 又∵f (2)=22+(m -1)×2+1, ∴m <-32.②若f (x )=0在区间[0,2]上有两解,则 ⎩⎪⎨⎪⎧Δ≥0,0<-m -12<2,f ,∴⎩⎪⎨⎪⎧ m -2-4≥0,-3<m <1,4+m -+1≥0. ∴⎩⎪⎨⎪⎧ m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1. 由①②可知m 的取值范围是(-∞,-1].方法二 显然x =0不是方程x 2+(m -1)x +1=0的解,0<x ≤2时,方程可变形为1-m =x +1x, 又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增, ∴y =x +1x在(0,2]的取值范围是[2,+∞), ∴1-m ≥2,∴m ≤-1,故m 的取值范围是(-∞,-1].B 组 专项能力提升(时间:15分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧ 1,x ≤0,1x,x >0,则使方程x +f (x )=m 有解的实数m 的取值范围是____________.答案 (-∞,1]∪[2,+∞)解析 当x ≤0时,x +f (x )=m ,即x +1=m ,解得m ≤1;当x >0时,x +f (x )=m ,即x +1x=m ,解得m ≥2.即实数m 的取值范围是(-∞,1]∪[2,+∞).12.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 答案 2解析 由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.13.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧ a x , x ≥0,kx +1, x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.答案 (0,1)解析 函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y=f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.14.(2015·湖南)若函数f (x )=|2x-2|-b 有两个零点,则实数b 的取值范围是________. 答案 (0,2)解析 由f (x )=|2x -2|-b =0,得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点.15.已知x ∈R ,符号[x ]表示不超过x 的最大整数,若函数f (x )=[x ]x-a (x ≠0)有且仅有3个零点,则a 的取值范围是________.答案 ⎝ ⎛⎦⎥⎤34,45 解析 当0<x <1时,f (x )=[x ]x-a =-a , 当1≤x <2时,f (x )=[x ]x-a =1x -a , 当2≤x <3时,f (x )=[x ]x -a =2x -a ,….f (x )=[x ]x -a 的图象是把y =[x ]x 的图象进行纵向平移而得到的,画出y =[x ]x的图象,通过数形结合可知a ∈(34,45].。

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数的概念及其表示法课时作业理

创新设计江苏专用2018版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数的概念及其表示法课时作业理

第二章 函数概念与基本初等函数Ⅰ 第1讲 函数的概念及其表示法基础巩固题组(建议用时:25分钟)解析 使函数f (x )有意义需满足x 2+2x -3>0,解得x >1或x <-3,所以f (x )的定义域为(-∞,-3)∪(1,+∞). 答案 (-∞,-3)∪(1,+∞)映射f 的对应法则解析 由映射g 的对应法则,可知g (1)=4, 由映射f 的对应法则,知f (4)=1,故f [g (1)]=1. 答案 13.(2016·江苏卷)函数y =3-2x -x 2的定义域是________.解析 要使函数有意义,则3-2x -x 2≥0, ∴x 2+2x -3≤0,解之得-3≤x ≤1. 答案 [-3,1]4.已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π4=________.解析 ∵f ⎝ ⎛⎭⎪⎫π4=-tan π4=-1.∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫π4=f (-1)=2×(-1)3=-2. 答案 -25.已知f (x )是一次函数,且f [f (x )]=x +2,则f (x )=________.解析 设f (x )=kx +b (k ≠0),又f [f (x )]=x +2, 得k (kx +b )+b =x +2,即k 2x +kb +b =x +2.∴k 2=1,且kb +b =2,解得k =b =1. 答案 x +1解析 ∵f ⎝ ⎛⎭⎪⎫19=log 319=-2, ∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9. 答案 97.(2016·全国Ⅱ卷改编)在函数①y =x ;②y =lg x ;③y =2x;④y =1x中,其定义域和值域分别与函数y =10lg x的定义域和值域相同的有________(填序号).解析 函数y =10lg x的定义域、值域均为(0,+∞),而y =x ,y =2x的定义域均为R ;y =lg x 的值域为R ,y =1x的定义域和值域为(0,+∞).答案 ④①y =⎣⎢⎡⎦⎥⎤x 10;②y =⎣⎢⎡⎦⎥⎤x +310;③y =⎣⎢⎡⎦⎥⎤x +410;④y =⎣⎢⎡⎦⎥⎤x +510. 解析 设x =10m +α(0≤α≤9,m ,α∈N ), 当0≤α≤6时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m =⎣⎢⎡⎦⎥⎤x 10,当6<α≤9时,⎣⎢⎡⎦⎥⎤x +310=⎣⎢⎡⎦⎥⎤m +α+310=m +1=⎣⎢⎡⎦⎥⎤x 10+1. 答案 ②9.(2016·江苏卷)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R .若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析 由题意f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-12=-12+a , f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110,∴-12+a =110,则a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.答案 -2510.(2017·南师大附中一模)设P (x 0,y 0)是函数f (x )图象上任意一点,且y 20≥x 20,则f (x )的解析式可以是________(填序号).①f (x )=x -1x ;②f (x )=e x-1; ③f (x )=x +4x;④f (x )=tan x .解析 对于①,当x =1,f (1)=0,此时02≥12不成立.对于②,取x =-1,f (-1)=1e -1,此时⎝ ⎛⎭⎪⎫1e -12≥(-1)2不成立.在④中,f ⎝ ⎛⎭⎪⎫54π=tan 54π=1,此时12≥⎝ ⎛⎭⎪⎫54π2不成立.∴①②④均不正确.事实上,在③中,对∀x 0∈R ,y 20=⎝⎛⎭⎪⎫x 0+4x 02有y 20-x 20=16x 20+8>0,有y 20≥x 20成立.答案 ③11.已知函数f (x )满足f ⎝⎛⎭⎪⎫2x +|x |=log 2x |x |,则f (x )的解析式是________.解析 根据题意知x >0,所以f ⎝ ⎛⎭⎪⎫1x =log 2x ,则f (x )=log 21x=-log 2x .答案 f (x )=-log 2 x12.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为________.解析 由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x=212或x =2-12,故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22. 答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 能力提升题组 (建议用时:10分钟)13.函数f (x )=ln ⎝⎛⎭⎪⎫1+1x +1-x 2的定义域为________.解析 要使函数f (x )有意义,则⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1⇒0<x ≤1.∴f (x )的定义域为(0,1]. 答案 (0,1]14.(2015·湖北卷改编)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.给出下列四个结论:①|x |=x |sgn x |;②|x |=x sgn|x |;③|x |=|x |sgn x ;④|x |=x sgn x . 其中正确的结论是________(填序号).解析 当x >0时,|x |=x ,sgn x =1,则|x |=x sgn x ; 当x <0时,|x |=-x ,sgn x =-1,则|x |=x sgn x ; 当x =0时,|x |=x =0,sgn x =0,则|x |=x sgn x . 答案 ④15.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析 由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1. 综上,a ≥23.答案 ⎣⎢⎡⎭⎪⎫23,+∞ 16.(2015·浙江卷)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3. 答案 0 22-3。

创新设计高考数学文江苏专用一轮复习练习 第二章 函数概念与基本初等函数I 24 含答案

创新设计高考数学文江苏专用一轮复习练习 第二章 函数概念与基本初等函数I 24 含答案

第4讲 幂函数与二次函数基础巩固题组(建议用时:40分钟)一、填空题1.(2017·苏州期末)已知α∈{-1,1,2,3},则使函数y =x α的值域为R ,且为奇函数的所有α的值为________.解析 因为函数y =x α为奇函数,故α的可能值为-1,1,3.又y =x -1的值域为{y |y ≠0},函数y =x ,y =x 3的值域都为R .所以符合要求的α的值为1,3. 答案 1,32.已知P =,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________. 解析 P ==⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数,且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q . 答案 P >R >Q3.已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则下列结论: ①a >0,4a +b =0;②a <0,4a +b =0;③a >0,2a +b =0;④a <0,2a +b =0其中正确的是________(填序号).解析 因为f (0)=f (4)>f (1),所以函数图象应开口向上,即a >0,且其对称轴为x =2,即-b 2a =2,所以4a +b =0.答案 ①4.在同一坐标系内,函数y =x a (a ≠0)和y =ax +1a 的图象可能是________(填序号).解析 若a <0,由y =x a 的图象知排除③,④,由y =ax +1a 的图象知应为②;若a >0,由y =x a 的图象知排除①,②,但y =ax +1a 的图象均不适合,综上应为②.答案 ②5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a =________.解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线,∴函数的最大值在区间的端点取得,∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 答案 16.若关于x 的不等式x 2-4x -2-a >0在区间(1,4)内有解,则实数a 的取值范围是________.解析 不等式x 2-4x -2-a >0在区间(1,4)内有解等价于a <(x 2-4x -2)max , 令f (x )=x 2-4x -2,x ∈(1,4),所以f (x )<f (4)=-2,所以a <-2.答案 (-∞,-2)7.若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是________. 解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数, ∴由g (x )=a x +1在[1,2]上是减函数可得a >0, 故0<a ≤1.答案 (0,1]8.已知函数y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为________.解析 当x <0时,-x >0,f (x )=f (-x )=(x +1)2,∵x ∈⎣⎢⎡⎦⎥⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1,∴m ≥1,n ≤0,m -n ≥1.∴m -n 的最小值是1.答案 1二、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解 幂函数f (x )的图象经过点(2,2),∴2=2(m 2+m )-1,即2=2(m 2+m )-1.∴m 2+m =2.解得m =1或m =-2.又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞),并且在定义域上为增函数.由f (2-a )>f (a -1)得⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32. 10.已知函数f (x )=x 2+(2a -1)x -3.(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值.解 (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3],对称轴x =-32∈[-2,3],∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15,∴值域为⎣⎢⎡⎦⎥⎤-214,15. (2)对称轴为x =-2a -12. ①当-2a -12≤1,即a ≥-12时,f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意.综上可知,a =-13或-1. 能力提升题组(建议用时:20分钟)11.(2016·浙江卷改编)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的________条件(从“充分不必要”“必要不充分”“充要”“既不充分也不必要”中选填一个).解析 ∵f (x )=x 2+bx =⎝ ⎛⎭⎪⎫x +b 22-b 24,当x =-b 2时,f (x )min =-b 24. 又f (f (x ))=(f (x ))2+bf (x )=⎝ ⎛⎭⎪⎫f (x )+b 22-b 24,当f (x )=-b 2时,f (f (x ))min =-b 24,当-b 2≥-b 24时,f (f (x ))可以取到最小值-b 24,即b 2-2b ≥0,解得b ≤0或b ≥2,故“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的充分不必要条件.答案 充分不必要12.(2017·常州期末测试)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a +b >0,则f (a )+f (b )的值:①恒大于0;②恒小于0;③等于0;④无法判断.上述结论正确的是________(填序号).解析 依题意,幂函数f (x )在(0,+∞)上是增函数,∴⎩⎪⎨⎪⎧m 2-m -1=1,4m 9-m 5-1>0,解得m =2,则f (x )=x 2 015. ∴函数f (x )=x 2 015在R 上是奇函数,且为增函数.由a +b >0,得a >-b ,∴f (a )>f (-b ),则f (a )+f (b )>0.答案 ①13.已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2,若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是______.解析作出函数y =f (x )的图象如图.则当0<k <1时,关于x 的方程f (x )=k 有两个不同的实根.答案 (0,1)14.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧ f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值; (2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围.解 (1)由已知c =1,a -b +c =0,且-b 2a =-1,解得a =1,b =2,∴f (x )=(x +1)2.∴F (x )=⎩⎨⎧ (x +1)2,x >0,-(x +1)2,x <0. ∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2.∴-2≤b ≤0.故b 的取值范围是[-2,0].。

(江苏专用)版高考数学一轮复习第二章函数概念与基本初等函数I2.7函数的图象文【含答案】

(江苏专用)版高考数学一轮复习第二章函数概念与基本初等函数I2.7函数的图象文【含答案】

【步步高】(江苏专用)2017版高考数学一轮复习 第二章 函数概念与基本初等函数I 2.7 函数的图象 文1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象. 2.图象变换 (1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x ); ②y =f (x )――――――→关于y 轴对称y =f (-x ); ③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x(a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1). ⑤y =f (x )――――――――――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|. ⑥y =f (x )―――――――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |). (3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.( × ) (2)函数y =af (x )与y =f (ax )(a >0且a ≠1)的图象相同.( × ) (3)函数y =f (x )与y =-f (x )的图象关于原点对称.( × )(4)若函数y =f (x )满足f (1+x )=f (1-x ),则函数f (x )的图象关于直线x =1对称.( √ ) (5)将函数y =f (-x )的图象向右平移1个单位得到函数y =f (-x -1)的图象.( × )1.函数f (x )=2x -4sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的图象大致是________.(填序号)答案 ④解析 因为函数f (x )是奇函数,所以排除①、②.f ′(x )=2-4cos x ⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π2,π2,令f ′(x )=2-4cos x =0⎝⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤-π2,π2,得x =±π3,所以④正确.2.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )的解析式为__________________________. 答案 f (x )=e-x -1解析 与y =e x图象关于y 轴对称的函数为y =e -x.依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x-1.3.为了得到函数y =4×(12)x 的图象,可以把函数y =(12)x的图象向________平移________个单位长度. 答案 右 24.若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案 (0,+∞)解析 由题意a =|x |+x ,令y =|x |+x =⎩⎪⎨⎪⎧2x ,x ≥0,0,x <0,图象如图所示,故要使a =|x |+x 只有一解则a >0.5.已知函数f (x )=⎩⎪⎨⎪⎧log 2xx >,2xx,且关于x 的方程f (x )-a =0有两个实根,则实数a的范围是________. 答案 (0,1] 解析当x ≤0时,0<2x≤1,所以由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,所以由图象可知0<a ≤1.题型一 作函数的图象 例1 作出下列函数的图象: (1)y =|lg x |; (2)y =x +2x -1; (3)y =x 2-2|x |-1.解 (1)y =|lg x |=⎩⎪⎨⎪⎧lg x ,x ≥1,-lg x ,0<x <1,作出图象如图1.(2)因y =1+3x -1,先作出y =3x的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图2.(3)y =⎩⎪⎨⎪⎧x 2-2x -1 x ,x 2+2x -1x图象如图3.引申探究作函数y =|x 2-2x -1|的图象.解 y =⎩⎨⎧x 2-2x -1 x ≥1+2或x ≤1-2,-x 2+2x +1 -2<x <1+2,如下图思维升华 (1)常见的几种函数图象如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +mx(m >0)的函数是图象变换的基础;(2)掌握平移变换、伸缩变换、对称变换规律,可以帮助我们简化作图过程.作出下列函数的图象.(1)y =|x -2|·(x +1); (2)y =x +2x +3. 解 (1)当x ≥2,即x -2≥0时,y =(x -2)(x +1)=x 2-x -2=(x -12)2-94;当x <2,即x -2<0时,y =-(x -2)(x +1)=-x 2+x +2=-(x -12)2+94.∴y =⎩⎪⎨⎪⎧x -122-94,x ≥2,-x -122+94,x <2.这是分段函数,每段函数的图象可根据二次函数图象作出(如图).(2)y =x +2x +3=1-1x +3,该函数图象可由函数y =-1x向左平移3个单位,再向上平移1个单位得到,如下图所示.题型二 识图与辨图例2 (1)(2015·课标全国Ⅱ改编)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为________(填序号).(2)已知定义在区间[0,2]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为________(填序号).答案 (1)② (2)②解析 (1)当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt△POB 中,PB =OB tan∠POB =tan x ,在Rt△PAB 中,PA =AB 2+PB 2=4+tan 2x ,则f (x )=PA +PB =4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除①和③;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△PAO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=PA +PB =2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除④.综上,故②正确. (2)方法一 由y =f (x )的图象知,f (x )=⎩⎪⎨⎪⎧x x ,x当x ∈[0,2]时,2-x ∈[0,2],所以f (2-x )=⎩⎪⎨⎪⎧x ,2-x x,故y =-f (2-x )=⎩⎪⎨⎪⎧-x ,x -x图象应为②.方法二 当x =0时,-f (2-x )=-f (2)=-1; 当x =1时,-f (2-x )=-f (1)=-1. 观察各图,可知②正确.思维升华 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.(1)(2015·浙江 改编)函数f (x )=⎝⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为______.(填序号)(2)现有四个函数:①y =x sin x ;②y =x cos x ;③y =x |cos x |;④y =x ·2x的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号正确的排列应为________.答案 (1)④ (2)①④②③解析 (1)∵f (x )=(x -1x)cos x ,∴f (-x )=-f (x ),∴f (x )为奇函数,排除①,②;当x =π时,f (x )=1π-π<0,排除③.故④正确. (2)由于函数y =x sin x 是偶函数,由图象知,函数①对应第一个图象;函数y =x cos x 是奇函数,且当x =π时,y =-π<0,故函数②对应第三个图象;函数y =x |cos x |为奇函数,故函数③与第四个图象对应;函数y =x ·2x为非奇非偶函数,与第二个图象对应.综上可知,正确排序为①④②③. 题型三 函数图象的应用例3 (1)(2015·安徽)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧sin πx ,0≤x ≤1,log 2 015x ,x >1.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是____________. 答案 (1)-12(2)(2,2 016)解析 (1)∵|x -a |≥0恒成立,∴要使y =2a 与y =|x -a |-1只有一个交点,必有2a =-1,解得a =-12.(2)作出函数的图象,直线y =m 交函数图象如图,不妨设a <b <c ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 015x =1,解得x =2 015.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 015,因此可得2<a +b +c <2 016,即a +b +c ∈(2,2 016).思维升华 (1)利用函数的图象研究函数的性质对于已知或易画出其在给定区间上图象的函数,其性质(单调性、奇偶性、周期性、最值(值域)、零点)常借助于图象研究,但一定要注意性质与图象特征的对应法则.(2)利用函数的图象可解决某些方程和不等式的求解问题,方程f (x )=g (x )的根就是函数f (x )与g (x )图象交点的横坐标;不等式f (x )<g (x )的解集是函数f (x )的图象位于g (x )图象下方的点的横坐标的集合,体现了数形结合思想.(1)设定义在[-1,7]上的函数y =f (x )的图象如图所示,则关于函数y =1f x的单调区间表述正确的是________.①在[-1,1]上单调递增;②在(0,1]上单调递减,在[1,3)上单调递增; ③在[5,7]上单调递增; ④在[3,5]上单调递增.(2)若关于x 的不等式2-x 2>|x -a |至少有一个负数解,则实数a 的取值范围是________.答案 (1)② (2)⎝ ⎛⎭⎪⎫-94,2解析 (1)由题图可知,f (0)=f (3)=f (6)=0,所以函数y =1f x在x =0,x =3,x =6处无定义,故排除①、③、④,故②正确.(2)在同一坐标系中画出函数f (x )=2-x 2,g (x )=|x -a |的图象,如图所示.若a ≤0,则其临界情况为折线g (x )=|x -a |与抛物线f (x )=2-x 2相切.由2-x 2=x -a 可得x 2+x -a -2=0,由Δ=1+4·(a +2)=0,解得a =-94;若a >0,则其临界情况为两函数图象的交点为(0,2),此时a =2.结合图象可知,实数a 的取值范围是⎝ ⎛⎭⎪⎫-94,2.3.高考中的函数图象及应用问题一、已知函数解析式确定函数图象典例 函数f (x )=2x +sin x 的部分图象可能是________.思维点拨 根据函数的定义域、值域、单调性、奇偶性和特征点确定函数图象. 解析 方法一 ∵f (-x )=-2x -sin x =-f (x ), ∴f (x )为奇函数,排除②、③,又0<x <π2时,f (x )>0,排除④,故①正确.方法二 ∵f ′(x )=2+cos x >0, ∴f (x )为增函数,故①正确. 答案 ①温馨提醒 (1)确定函数的图象,要从函数的性质出发,利用数形结合的思想. (2)对于给出图象的选择性题目,可以结合函数的某一性质或特殊点进行排除. 二、函数图象的变换问题典例 若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为________.(填序号)思维点拨 从y =f (x )的图象可先得到y =-f (x )的图象,再得y =-f (x +1)的图象. 解析 要想由y =f (x )的图象得到y =-f (x +1)的图象,需要先将y =f (x )的图象关于x 轴对称得到y =-f (x )的图象,然后再向左平移一个单位得到y =-f (x +1)的图象,根据上述步骤可知③正确. 答案 ③温馨提醒 (1)对图象的变换问题,从f (x )到f (ax +b ),可以先进行平移变换,也可以先进行伸缩变换,要注意变换过程中两者的区别. (2)图象变换也可利用特征点的变换进行确定. 三、函数图象的应用典例 (1)已知函数f (x )=x |x |-2x ,则下列有关f (x )的性质正确的是________. ①f (x )是偶函数,递增区间是(0,+∞); ②f (x )是偶函数,递减区间是(-∞,1); ③f (x )是奇函数,递减区间是(-1,1); ④f (x )是奇函数,递增区间是(-∞,0).(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.思维点拨 (1)画出函数f (x )的图象观察.(2)利用函数f (x ),g (x )图象的位置确定a 的范围. 解析 (1)将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察得到,f (x )为奇函数,递减区间是(-1,1).(2)如图,作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞). 答案 (1)③ (2)[-1,+∞)温馨提醒 (1)本题求解利用了数形结合的思想,数形结合的思想包括“以形助数”或“以数辅形”两个方面,本题属于“以形助数”,是指把某些抽象的问题直观化、生动化,能够变抽象思维为形象思维,解释数学问题的本质.(2)利用函数图象也可以确定不等式解的情况,解题时可对方程或不等式适当变形,选择合适的函数进行作图.[方法与技巧]1.列表描点法是作函数图象的辅助手段,要作函数图象首先要明确函数图象的位置和形状:(1)可通过研究函数的性质如定义域、值域、奇偶性、周期性、单调性等;(2)可通过函数图象的变换如平移变换、对称变换、伸缩变换等. 2.合理处理识图题与用图题 (1)识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系. (2)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.常用函数图象研究含参数的方程或不等式解集的情况. [失误与防范]1.函数图象平移的方向和大小:函数图象的每次变换都针对自变量“x ”而言,如从f (-2x )的图象到f (-2x +1)的图象是向右平移12个单位.2.当图形不能准确地说明问题时,可借助“数”的精确,注重数形结合思想的运用.A 组 专项基础训练 (时间:40分钟)1.函数y =⎩⎪⎨⎪⎧x 2,x <0,2x-1,x ≥0的图象大致是________.答案 ②解析 当x <0时,函数的图象是抛物线;当x ≥0时,只需把y =2x的图象在y 轴右侧的部分向下平移1个单位即可.故②正确. 2.为了得到函数y =2x -3-1的图象,只需把函数y =2x的图象上所有的点向______平移______个单位长度,再向______平移______个单位长度. 答案 右 3 下 1解析 y =2x ――――――→向右平移3个单位长度y =2x -3――――――――――→向下平移1个单位长度y =2x -3-1.3.已知f (x )=⎩⎨⎧-2x -1≤x ,xx ,则下列函数的图象正确的为________.(填序号)答案 ①②③解析 先在坐标平面内画出函数y =f (x )的图象,再将函数y =f (x )的图象向右平移1个单位长度即可得到y =f (x -1)的图象,因此①正确;作函数y =f (x )的图象关于y 轴的对称图形,即可得到y =f (-x )的图象,因此②正确;y =f (x )的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,③正确; y =f (|x |)的定义域是[-1,1],且是一个偶函数,当0<x ≤1时,y =f (|x |)=x ,相应这部分图象不是一条线段,因此④不正确. 综上所述,①②③正确.4.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是__________.答案 (12,1)解析 先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的范围为(12,1).5.(2015·北京改编)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是__________.答案 {x |-1<x ≤1}解析 令g (x )=y =log 2(x +1),作出函数g (x )的图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2x +,得⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 6.已知函数f (x )的图象如图所示,则函数g (x )=log2f (x )的定义域是________.答案 (2,8] 解析 当f (x )>0时, 函数g (x )=log2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8].7.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为__________________________________. 答案 6解析 f (x )=min{2x,x +2,10-x }(x ≥0)的图象如图.令x +2=10-x ,得x =4.当x =4时,f (x )取最大值,f (4)=6.8.设f (x )=|lg(x -1)|,若0<a <b ,且f (a )=f (b ),则ab 的取值范围是________. 答案 (4,+∞)解析 由于函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ),所以ab >4. 9.已知函数f (x )=x1+x. (1)画出f (x )的草图; (2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x的图象向左平移1个单位后,再向上平移1个单位得到的,图象如图所示. (2)由图象可以看出,函数f (x )有两个单调递增区间: (-∞,-1),(-1,+∞). 10.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 f (x )=⎩⎪⎨⎪⎧x -2-1,x -∞,1]∪[3,+,-x -2+1,x ,,作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1, ∴M ={m |0<m <1}.B 组 专项能力提升 (时间:15分钟)11.函数y =f (x )的图象如图所示,则函数y =log 12f (x )的图象大致是________.答案 ③解析 由函数y =f (x )的图象知,当x ∈(0,2)时,f (x )≥1,所以log 12f (x )≤0.又函数f (x )在(0,1)上是减函数,在(1,2)上是增函数,所以y =log 12f (x )在(0,1)上是增函数,在(1,2)上是减函数.结合各图象知,③正确.12.(2015·安徽改编)函数f (x )=ax +bx +c 2的图象如图所示,则下列结论成立的是________. ①a >0,b >0,c <0; ②a <0,b >0,c >0; ③a <0,b >0,c <0; ④a <0,b <0,c <0. 答案 ③解析 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0. 令x =0,得f (0)=b c2,又由图象知f (0)>0,∴b >0. 令f (x )=0,得x =-b a ,结合图象知-b a>0,∴a <0.13.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为____________________. 答案 (-∞,0]∪(1,2]解析 y =f (x +1)向右平移1个单位得到y =f (x )的图象,由已知可得f (x )的图象的对称轴为x =1,过定点(2,0),且函数在(-∞,1)上递减,在(1,+∞)上递增,则f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f x 或⎩⎪⎨⎪⎧x <1,f x 由图可知符合条件的解集为(-∞,0]∪(1,2].14.已知函数f (x )=⎩⎪⎨⎪⎧2x, x ≥2,x -3, x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________. 答案 (0,1)解析 画出分段函数f (x )的图象如图所示,结合图象可以看出,若f (x )=k 有两个不同的实根,也即函数y =f (x )的图象与y =k 有两个不同的交点,故k 的取值范围为(0,1).15.给出下列命题:①在区间(0,+∞)上,函数y =x -1,y =x 12,y=(x -1)2,y =x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x -1)的图象关于点(1,0)对称;④若函数f (x )=3x-2x -3,则方程f (x )=0有两个实数根,其中正确的命题是________. 答案 ②③④解析 对于①,在区间(0,+∞)上,只有y =x 12,y =x 3是增函数,所以①错误.对于②,由log m 3<log n 3<0,可得1log 3m <1log 3n <0,即log 3n <log 3m <0,所以0<n <m <1,所以②正确.易知③正确.对于④,方程f (x )=0即为3x-2x -3=0,变形得3x=2x +3,令y 1=3x,y 2=2x +3,在同一坐标系中作出这两个函数的图象,如图.由图象可知,两个函数图象有两个交点,所以④正确.。

2018-2019学年高中新创新一轮复习文数江苏专版:第二

2018-2019学年高中新创新一轮复习文数江苏专版:第二

第二章函数的概念与基本初等函数Ⅰ(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R . (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠k π+π2,k ∈Z . [例1] (1)(2018·苏北四市联考)y = x -12x-log 2(4-x 2)的定义域是________________.(2)(2018·连云港检测)函数y =sin x +tan x +π4的定义域是____________________.[解析](1)要使函数有意义,必须⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2).即函数的定义域是(-2,0)∪[1,2). (2)由题意得⎩⎪⎨⎪⎧sin x ≥0,x +π4≠k π+π2,k ∈Z , 即⎩⎪⎨⎪⎧2k π≤x ≤2k π+π,k ∈Z ,x ≠k π+π4,k ∈Z ,借助数轴可得2k π≤x <2k π+π4或2k π+π4<x ≤2k π+π,k ∈Z ,即函数的定义域为⎣⎡⎭⎫2k π,2k π+π4∪2k π+π4,2k π+π,k ∈Z.[答案] (1)(-2,0)∪[1,2) (2)⎣⎡⎭⎫2k π,2k π+π4∪⎝⎛⎦⎤2k π+π4,2k π+π,k ∈Z [易错提醒](1)不要对解析式进行化简变形,以免定义域发生变化.(2)当一个函数由有限个基本初等函数的和、差、积、商的形式构成时,定义域一般是各个基本初等函数定义域的交集.(3)定义域是一个集合,要用集合或区间表示,若用区间表示,不能用“或”连结,而应该用并集符号“∪”连结.求抽象函数的定义域(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [例2] (1)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为____________.(2)(2018·苏州中学月考)函数f (2x -1)的定义域为(-1,5],则函数y =f (|x -1|)的定义域是____________.[解析] (1)由题意得,⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,解得0≤x <1,即g (x )的定义域是[0,1).(2)由题意得x ∈(1,5],则2x -1∈(1,9]即外函数y =f (t )的定义域为(1,9]. 即1<|x -1|≤9,解得-8≤x <0或2<x ≤10, 所以函数y =f (|x -1|)的定义域是[-8,0)∪(2,10]. [答案] (1)[0,1) (2)[-8,0)∪(2,10] [易错提醒]函数f [g (x )]的定义域指的是x 的取值范围,而不是g (x )的取值范围.已知函数定义域求参数[例3] (2018·苏州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________.[解析] 由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4. 综上可得:0≤m ≤4. [答案] [0,4][方法技巧] 解决已知定义域求参数问题的思路方法能力练通抓应用体验的“得”与“失”1.[考点一](2017·山东高考改编)设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =________.解析:由题意可知A ={x |-2≤x ≤2},B ={x |x <1},故A ∩B ={x |-2≤x <1}. 答案:[-2,1)2.[考点一](2018·江苏南京师范大学附中模拟)函数f (x )=log 12(2x -3)的定义域是________.解析:由题意得log 12(2x -3)≥0,即0<2x -3≤1,解得32<x ≤2,则定义域是⎝⎛⎦⎤32,2. 答案:⎝⎛⎦⎤32,2 3.[考点一]函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由题意得⎩⎪⎨⎪⎧ 1-|x -1|≥0,a x -1≠0,解得⎩⎪⎨⎪⎧0≤x ≤2,x ≠0,即0<x ≤2,故所求函数的定义域为(0,2].答案:(0,2]4.[考点二]若函数y =f (x )的定义域是[1,2 018],则函数g (x )=f (x +1)x -1的定义域是________.解析:令t =x +1,则由已知函数的定义域为[1,2 018],可知1≤t ≤2 018.要使函数f (x +1)有意义,则有1≤x +1≤2 018,解得0≤x ≤2 017,故函数f (x +1)的定义域为[0,2017].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 017,x -1≠0,解得0≤x <1或1<x ≤2 017.故函数g (x )的定义域为[0,1)∪(1,2 017].答案:[0,1)∪(1,2 017]5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________. 解析:函数f (x )的定义域是不等式ax 2+abx +b ≥0的解集.不等式ax 2+abx +b ≥0的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a <0,1+2=-b ,1×2=b a,解得⎩⎪⎨⎪⎧a =-32,b =-3,所以a +b =-32-3=-92.答案:-92突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为列表法、解析法和图象法.同一个函数可以用不同的方法表示.2.应用三种方法表示函数的注意事项(1)列表法:选取的自变量要有代表性,应能反映定义域的特征;(2)解析法:一般情况下,必须注明函数的定义域;(3)图象法:注意定义域对图象的影响.与x轴垂直的直线与其最多有一个公共点.3.函数的三种表示方法的优缺点[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连结(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为_________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=____________________.(3)(2018·南通模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )的解析式为____________________.[解析] (1)设该函数解析式为f (x )=ax 3+bx 2+cx +d ,则f ′(x )=3ax 2+2bx +c , 由题意知⎩⎪⎨⎪⎧f (0)=d =0,f (2)=8a +4b +2c +d =0,f ′(0)=c =-1,f ′(2)=12a +4b +c =3,解得⎩⎪⎨⎪⎧a =12,b =-12,c =-1,d =0,∴f (x )=12x 3-12x 2-x .(2)∵-1≤x ≤0,∴0≤x +1≤1,∴f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).(3)用1x 代替3f (x )+5f ⎝⎛⎭⎫1x =3x +1中的x ,得3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ∴⎩⎨⎧3f (x )+5f ⎝⎛⎭⎫1x =3x +1, ①3f ⎝⎛⎭⎫1x +5f (x )=3x +1, ②①×3-②×5得f (x )=1516x -916x +18(x ≠0).[答案] (1)y =12x 3-12x 2-x (2)-12x (x +1) (3)f (x )=1516x -916x +18(x ≠0)[易错提醒]在求解析式时,一定要注意自变量的范围,也就是定义域.如已知f (x )=x +1,求函数f (x )的解析式,通过换元的方法可得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).能力练通抓应用体验的“得”与“失”1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x x -1,则f (x )=____________________.解析:在f (x )=2f ⎝⎛⎭⎫1x x -1中,用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x -1,将f ⎝⎛⎭⎫1x =2f (x )1x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中,求得f (x )=23x +13(x >0). 答案:23x +13(x >0) 2.(2018·南通中学月考)函数f (x )满足2f (x )+f (2-x )=2x ,则f (x )=____________________.解析:由题意知⎩⎪⎨⎪⎧2f (x )+f (2-x )=2x ,2f (2-x )+f (x )=2(2-x ),解得f (x )=2x -43.答案:2x -433.(2018·如皋中学月考)已知f (sin x +cos x )=cos 2x -π4,则f (x )的解析式为____________________.解析:设t =sin x +cos x ,则t =2sin ⎝⎛⎭⎫x +π4∈[-2,2],t 2=1+2sin x cos x , cos 2⎝⎛⎭⎫x -π4=cos ⎝⎛⎭⎫2x -π2=cos ⎝⎛⎭⎫π2-2x =sin 2x =2sin x cos x =t 2-1, 所以f (t )=t 2-1(-2≤t ≤2),即f (x )=x 2-1(-2≤x ≤2). 答案:f (x )=x 2-1(-2≤x ≤2)4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式. 解:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .5.已知f ⎝⎛⎭⎫x +1x =x 2+1x2,求f (x )的解析式.解:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.突破点(三) 分段函数1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的解析表达式,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.[例1] (1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.(2)(2018·启东中学检测)设函数f (x )满足f (x +2)=2f (x )+x ,且当0≤x <2时,f (x )=[x ],[x ]表示不超过x 的最大整数,则f (5.5)=________.(3)(2018·南通高三月考)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x ,x ≥4,f (x +1),x <4,则f (1+log 25)的值为________.[解析] (1)∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6. ∴f (-2)+f (log 212)=3+6=9.(2)由题意当0≤x <2时,f (x )=⎩⎪⎨⎪⎧0,0≤x <1,1,1≤x <2,由f (x +2)=2f (x )+x ,得f (5.5)=2f (3.5)+3.5=2(2f (1.5)+1.5)+3.5=4f (1.5)+6.5=4×1+6.5=10.5.(3)因为2<log 25<3,所以3<1+log 25<4,则4<2+log 25<5,则f (1+log 25)=f (1+log 25+1)=f (2+log 25)=⎝⎛⎭⎫122+log 25=14×⎝⎛⎭⎫12log 25=14×15=120.[答案] (1)9 (2)10.5 (3)120[方法技巧]分段函数求值的解题思路求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.求参数或自变量的值或范围[例2] (1)(2018·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(3)(2018·阜宁中学高三月考)设函数f (x )=⎩⎪⎨⎪⎧x ,x ∈(-∞,a ),x 2,x ∈[a ,+∞).若f (2)=4,则a 的取值范围为________.[解析] (1)f (4)=log 24=2,因而2f (a )=2,即f (a )=1,当a >0时,f (a )=log 2a =1,因而a =2,当a ≤0时,f (a )=a 2=1,因而a =-1.(2)当x <1时,由e x -1≤2得x ≤1+ln 2,∴x <1;当x ≥1时,由x 13≤2得x ≤8,∴1≤x ≤8.综上,符合题意的x 的取值范围是x ≤8.(3)因为f (2)=4,若2∈(-∞,a ),则f (2)=2,矛盾,所以2∈[a ,+∞),f (2)=4成立所以a ≤2,则a 的取值范围为(-∞,2].[答案] (1)-1或2 (2)(-∞,8] (3)(-∞,2] [方法技巧]求分段函数自变量的值或范围的方法求某条件下自变量的值或范围,先假设所求的值或范围在分段函数定义区间的各段上,然后求出相应自变量的值或范围,切记代入检验,看所求的自变量的值或范围是否满足相应各段自变量的取值范围.能力练通抓应用体验的“得”与“失”1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2,x ≤0,x 2,x >0,则f (f (-1))=________.解析:由题意得f (-1)=1-2-1=12,则f (f (-1))=f ⎝⎛⎭⎫12=⎝⎛⎭⎫122=14.答案:142.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f (x -1)+1,x >0,则f ⎝⎛⎭⎫23的值为________. 解析:f ⎝⎛⎭⎫23=f ⎝⎛⎭⎫-13+1=3sin ⎝⎛⎭⎫-π3+1=-12. 答案:-123.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2,解得b =1.f (-1)=a -1+b =a -1+1=3,解得a=12.则f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x+1,x ≤0,故f (-3)=⎝⎛⎭⎫12-3+1=9,从而f (f (-3))=f (9)=log 39=2.答案:24.[考点二]已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)5.[考点一、二](2018·无锡月考)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2,若f (2-a )=1,则f (a )=________.解析:当2-a ≥2,即a ≤0时,f (2-a )=22-a -2-1=1,解得a =-1,则f (a )=f (-1)=-log 2[3-(-1)]=-2;当2-a <2,即a >0时,f (2-a )=-log 2[3-(2-a )]=1,解得a =-12,舍去.∴f (a )=-2. 答案:-26.[考点二]已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的序号是________.解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③2.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义,应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.即函数f (x )的定义域为[-3,6). 答案:[-3,6)3.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________.解析:f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1. 答案:x +1 4.若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x ,x ≥1.若f ⎝⎛⎭⎫f ⎝⎛⎭⎫56=4,则b =________. 解析:f ⎝⎛⎭⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝⎛⎭⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、填空题1.函数f (x )=10+9x -x 2lg (x -1)的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].答案:(1,2)∪(2,10]2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于________. 解析:f ⎝⎛⎭⎫43=-cos 4π3=cos π3=12;f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=-cos 2π3+2=12+2=52.故f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3.答案:33.已知函数f (x )=x |x |,若f (x 0)=4,则x 0=________. 解析:当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解.所以x 0=2. 答案:24.(2018·盐城检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么a =________,c =________.解析:因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c 4=c2=30.②联立①②解得c =60,a =16. 答案:16 605.(2018·南京模拟)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1,log 2(1-x ),x <1,则f (f (4))=________;若f (a )<-1,则a 的取值范围为________________.解析:f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 2(1+31)=5.当a ≥1时,由-2a 2+1<-1得a 2>1,解得a >1;当a <1时,由log 2(1-a )<-1,得log 2(1-a )<log 212,∴0<1-a <12,∴12<a <1.即a 的取值范围为⎝⎛⎭⎫12,1∪(1,+∞). 答案:5 ⎝⎛⎭⎫12,1∪(1,+∞)6.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x -x =-f (x ),满足“倒负”变换;对于②,f ⎝⎛⎭⎫1x =1x+x =f (x ),不满足“倒负”变换;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x=1,-x ,1x>1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.答案:①③ 7.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-348.若函数f (x )=ax 2+2bx +3的定义域为[-1,3],则函数g (x )=ln(3+2ax -bx 2)的定义域为________.解析:因为函数f (x )的定义域为[-1,3],所以ax 2+2bx +3≥0的解集为[-1,3],所以⎩⎪⎨⎪⎧a <0,-1+3=-2b a ,-1×3=3a ,解得⎩⎪⎨⎪⎧a =-1,b =1,所以g (x )=ln(3-2x -x 2).由3-2x -x 2>0得-3<x <1,即函数g (x )=ln(3+2ax -bx 2)的定义域为(-3,1). 答案:(-3,1)9.(2018·连云港中学模拟)已知函数f (x )满足对任意的x ∈R 都有f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2成立,则f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=________. 解析:由f ⎝⎛⎭⎫12+x +f ⎝⎛⎭⎫12-x =2,得f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫78=2,f ⎝⎛⎭⎫28+f ⎝⎛⎭⎫68=2,f ⎝⎛⎭⎫38+f ⎝⎛⎭⎫58=2,又f ⎝⎛⎭⎫48=12⎣⎡⎦⎤f ⎝⎛⎭⎫48+f ⎝⎛⎭⎫48=12×2=1,∴f ⎝⎛⎭⎫18+f ⎝⎛⎭⎫28+…+f ⎝⎛⎭⎫78=2×3+1=7. 答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是____________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 二、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.1.单调函数的定义如果函数y =f (x )在区间I 上是单调增函数或单调减函数,那么就说函数y =f (x )在区间I 上具有单调性,区间I 叫做函数y =f (x )的单调区间.1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数,更进一步,有增+增→增,增-减→增,减+减→减,减-增→减;(2)若k >0,则kf (x )与f (x )单调性相同,若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反; (4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的序号是________.①f (x )=3-x ;②f (x )=x 2-3x ; ③f (x )=-1x +1;④f (x )=-|x |. (2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________. [解析] (1)当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)③ (2)[3,+∞) [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连结,也不能用“或”连结.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) [例2] (1)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为____________. (2)(2017·天津高考改编)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.[解析] (1)由f (x )的图象关于直线x =1对称,可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c .(2)由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0. 又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 3=log 28>log 25.1>log 24=2>20.8, 所以c >a >b .[答案] (1)b >a >c (2)c >a >b 应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.[答案] (8,9] [方法技巧]含“f ”号不等式的解法原不等式――→函数的性质f (g (x ))>f (h (x ))――→函数的单调性去“f ”号,转化为“g (x )>h (x )”型具体的不等式――→解不等式求得原不等式的解集[提醒] 上述g (x )与h (x )的值域应在外层函数f (x )的定义域内.应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.[答案] (1)⎣⎡⎦⎤-14,0 (2)(-∞,1]∪[4,+∞) [易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通抓应用体验的“得”与“失”1.(2018·宜春模拟)函数f (x )=log 3(3-4x +x )的单调递减区间为________. 解析:由3-4x +x 2>0得x <1或x >3.易知函数y =3-4x +x 2的单调递减区间为(-∞,2),函数y =log 3x 在其定义域上单调递增,由复合函数的单调性知,函数f (x )的单调递减区间为(-∞,1).答案:(-∞,1)2.[考点二·应用(一)]已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则f (a ),f (b ),f (c )的大小关系为________________.解析:由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b )3.[考点二·应用(二)]已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.解析:由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.答案:(-1,0)∪(0,1)4.[考点二·应用(三)]设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是________.解析:f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,因为函数f (x )在区间(-2,+∞)上是增函数.所以⎩⎪⎨⎪⎧ 2a 2-1>0,-2a ≤-2⇒⎩⎪⎨⎪⎧2a 2-1>0,a ≥1⇒a ≥1.答案:[1,+∞)5.[考点一]用定义法讨论函数f (x )=x +ax (a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)(x 1x 2-a )x 1·x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 令x 1=x 2=x 0,1-ax 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性. 若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a , 所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+a x 1-x 2-ax 2=(x 1-x 2)(x 1x 2-a )x 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减.同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值(1)设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意x ∈A ,都有f (x )≤f (x 0),那么称f (x 0)为y =f (x )的最大值,记为y max =f (x 0).(2)设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意x ∈A ,都有f (x )≥f (x 0),那么称f (x 0)为y =f (x )的最小值,记为y min =f (x 0).2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.1.(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值. 2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. [解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0.配方得y =⎝⎛⎭⎫t +122+34,又∵t ≥0,∴y ≥14+34=1. 故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎫x -122+34. ∵⎝⎛⎭⎫x -122+34≥34,∴2<2+1⎝⎛⎭⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎤2,103. (3)当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象.①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max , 所以a <-1.[答案] (1)1 (2)⎝⎛⎦⎤2,103 (3)①2 ②(-∞,-1) [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )=2 0182 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =________.解析:由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a+1-22 018-a +1=4 034.答案:4 0342.(2018·宜兴月考)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.答案:63.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝⎛⎭⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2018·常州模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝⎛⎭⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,785.(2017·浙江高考改编)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则关于M -m 的结果中,叙述正确的序号是________.①与a 有关,且与b 有关;②与a 有关,但与b 无关; ③与a 无关,且与b 无关;④与a 无关,但与b 有关. 解析:f (x )=⎝⎛⎭⎫x +a 22-a24+b , 当0≤-a 2≤1时,f (x )min =m =f ⎝⎛⎭⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a24,1+a +a 24与a 有关,与b 无关;当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关. 答案:②1.下列函数中,在区间(0,+∞)上为增函数的序号是________. ①y =ln(x +2);②y =-x +1; ③y =⎝⎛⎭⎫12x ;④y =x +1x .解析:函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数;y =-x +1与y =⎝⎛⎭⎫12x 在(0,+∞)上是减函数;y =x +1x 在(0,1)上为减函数,在(1,+∞)上为增函数.答案:①2.(2017·浙江高考)已知a ∈R ,函数f (x )=⎪⎪⎪⎪x +4x -a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.解析:∵x ∈[1,4],∴x +4x ∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,解得a =92(矛盾),故a 的取值范围是⎝⎛⎦⎤-∞,92. 答案:⎝⎛⎦⎤-∞,92 3.函数y =|x |(1-x )的单调增区间为________.解析:y =|x |(1-x )=⎩⎪⎨⎪⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-⎝⎛⎭⎫x -122+14,x ≥0,⎝⎛⎭⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎡⎦⎤0,12上单调递增.答案:⎣⎡⎦⎤0,12 4.(2018·扬州中学单元检测)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x>2时,h (x )=3-x 是减函数,且log 22=1=-2+3,则h (x )max =h (2)=1.答案:15.已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12 [练常考题点——检验高考能力]一、填空题1.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数的序号是________.解析:①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x+1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.答案:②③2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是________.解析:依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).答案:f (-1)<f (3)3.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为________.解析:令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18.因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎤-∞,34. 答案:⎝⎛⎦⎤-∞,34 4.(2018·宜兴第一中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2是R 上的单调递减函数,则实数a 的取值范围是________.解析:因为函数f (x )为R 上的单调递减函数, 所以⎩⎪⎨⎪⎧a -2<0,2(a -2)≤⎝⎛⎭⎫122-1,解得a ≤138. 答案:⎝⎛⎦⎤-∞,138 5.(2018·淮安模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.解析:∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.答案:(-2,1)6.(2018·连云港海州中学模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析:∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=ax +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.答案:(0,1]7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log ax ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析:当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2]. 答案:(1,2]9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2018·苏州模拟)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 二、解答题 11.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立, ∴a ≤1.综上所述知a 的取值范围是(0,1].12.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a, 当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数, ∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1.1.函数的奇偶性(1)如果函数f (x )是奇函数,且在x =0上有意义,则f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇→奇,偶±偶→偶,奇×奇→偶,偶×偶→偶,奇×偶→奇.[例1] (1)f (x )=x lg(x +x 2+1); (2)f (x )=(1-x )1+x1-x; (3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(4)f (x )=4-x 2|x +3|-3.[解] (1)∵x 2+1>|x |≥0,∴函数f (x )的定义域为R ,关于原点对称, 又f (-x )=(-x )lg(-x +(-x )2+1) =-x lg(x 2+1-x )=x lg(x 2+1+x )=f (x ), 即f (-x )=f (x ),∴f (x )是偶函数.(2)当且仅当1+x1-x ≥0时函数有意义,∴-1≤x <1,由于定义域关于原点不对称,∴函数f (x )是非奇非偶函数. (3)函数的定义域为{x |x ≠0},关于原点对称,当x >0时,-x <0,f (-x )=x 2-2x -1=-f (x ), 当x <0时,-x >0,f (-x )=-x 2-2x +1=-f (x ), ∴f (-x )=-f (x ),即函数f (x )是奇函数.(4)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得-2≤x ≤2且x ≠0,∴函数的定义域关于原点对称, ∴f (x )=4-x 2x +3-3=4-x 2x .又f (-x )=4-(-x )2-x =-4-x 2x ,∴f (-x )=-f (x ),即函数f (x )是奇函数. [方法技巧]判断函数奇偶性的两种方法(1)定义法(2)图象法函数是奇(偶)函数⇔函数图象关于原点(y 轴)对称.函数奇偶性的应用[例2] (1)a )的值为________.(2)(2018·姜堰中学月考)已知函数f (x )=⎩⎪⎨⎪⎧m log 2 017x +3sin x ,x >0log 2 017(-x )+n sin x ,x <0为偶函数,则m -n =________.(3)(2018·盐城高三第一次检测)设f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x +3x +b ,则f (-1)=________.[解析] (1)设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-F (a )=-1,从而f (-a )=0.(2)因为f (x )为偶函数,所以f (-x )=⎩⎪⎨⎪⎧m log 2 017(-x )-3sin x ,x <0log 2 017x -n sin x ,x >0=f (x ),所以m =1,n =-3,∴m -n =4.(3)因为f (x )是定义在R 上的奇函数,所以f (0)=0,f (-1)=-f (1),而f (0)=1+b =0,解得b =-1.所以f (-1)=-f (1)=-(21+3-1)=-4.[答案](1)0(2)4(3)-4[方法技巧]利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.能力练通抓应用体验的“得”与“失”1.下列函数中为偶函数的序号是________.①f(x)=x-1;②f(x)=x2+|x|;③f(x)=2x-2-x;④f(x)=x2+cos x.答案:②④2.[考点一]下列函数中,既不是奇函数,也不是偶函数的序号是________.①f(x)=1+x2;②f(x)=x+1 x;③f(x)=2x+12x;④f(x)=x+ex.解析:①的定义域为R,由于f(-x)=1+(-x)2=1+x2=f(x),所以是偶函数.②的定义域为{x|x≠0},由于f(-x)=-x-1x=-f(x),所以是奇函数.③的定义域为R,由于f(-x)=2-x+12-x=12x+2x=f(x),所以是偶函数.④的定义域为R,由于f(-x)=-x+e-x=1e x-x,所以是非奇非偶函数.答案:④3.[考点二]设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(-2)=________.解析:因为函数f(x)是偶函数,所以f(-2)=f(2)=log22=1 2.答案:1 24.[考点二]设函数f(x)=(x+1)(x+a)x为奇函数,则a=________.解析:∵f(x)=(x+1)(x+a)x为奇函数,∴f(1)+f(-1)=0,。

(江苏专用)版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数及其表示文【含答案】

(江苏专用)版高考数学一轮复习第二章函数概念与基本初等函数I2.1函数及其表示文【含答案】

【步步高】(江苏专用)2017版高考数学一轮复习第二章函数概念与基本初等函数I 2.1 函数及其表示文1.函数与映射(1)函数的定义域、值域在函数y=f(x),x∈A中,其中所有x组成的集合A称为函数y=f(x)的定义域;将所有y 组成的集合叫做函数y=f(x)的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有列表法、解析法和图象法.3.分段函数在定义域内不同部分上,有不同的解析表达式,这样的函数,通常叫做分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.4.常见函数定义域的求法2nf x,n∈N*1f x与[f (x )]0判断下面结论是否正确(请在括号中打“√”或“×”) (1)对于函数f :A →B ,其值域是集合B .( × )(2)若两个函数的定义域与值域相同,则这两个函数是相等函数.( × ) (3)映射是特殊的函数.( × )(4)若A =R ,B ={x |x >0},f :x →y =|x |,其对应是从A 到B 的映射.( × ) (5)分段函数是由两个或几个函数组成的.( × )(6)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( × )1.已知f (x )=⎩⎪⎨⎪⎧1+x ,x ∈R +x ,x ∉R ,其中i 是虚数单位,则f (f (1-i))=________.答案 3解析 f (1-i)=(1+i)(1-i)=2,f (f (1-i))=f (2)=1+2=3.2.函数f (x )=12x2-1的定义域为______________.答案 ⎝⎛⎭⎪⎫0,12∪(2,+∞)解析 要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x >0,2x2-1>0,解得x >2或0<x <12.故f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞).3.(2015·陕西)设f (x )=⎩⎨⎧1-x ,x ≥0,2x,x <0,则f (f (-2))=________.答案 12解析 ∵f (-2)=2-2=14>0,则f (f (-2))=f ⎝ ⎛⎭⎪⎫14=1-14=1-12=12. 4.(教材改编)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是________(填序号).答案 ②解析 ①中函数定义域不是[-2,2],③中图象不表示函数,④中函数值域不是[0,2],故填②.5.给出下列四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________. 答案 ①②解析 对于①,函数是映射,但映射不一定是函数;对于②,f (x )是定义域为{2},值域为{0}的函数;对于③,函数y =2x (x ∈N )的图象不是一条直线;对于④,函数的定义域和值域不一定是无限集合.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x -x表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 x -x的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应法则均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应法则唯一确定;当且仅当定义域和对应法则都相同的函数才是同一函数.值得注意的是,函数的对应法则是就结果而言的(判断两个函数的对应法则是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应法则算出的函数值是否相同).(1)下列四组函数中,表示同一函数的是________.①y =x -1与y =x -2;②y =x -1与y =x -1x -1; ③y =4lg x 与y =2lg x 2; ④y =lg x -2与y =lg x100.(2)下列所给图象是函数图象的个数为________.答案 (1)④ (2)2解析 (1)①中两函数对应法则不同;②、③中的函数定义域不同,④表示同一函数. (2)①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象,②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.题型二 函数的定义域命题点1 求给定函数解析式的定义域 例2 (1)函数f (x )=1-2x+1x +3的定义域为__________.(2)函数f (x )=x +x -1的定义域是______________.答案 (1)(-3,0] (2)(-1,1)∪(1,+∞)解析 (1)由题意知⎩⎪⎨⎪⎧1-2x≥0,x +3>0,解得-3<x ≤0,所以函数f (x )的定义域为(-3,0].(2)要使函数f (x )=x +x -1有意义,需满足x +1>0且x -1≠0,得x >-1,且x ≠1.命题点2 求抽象函数的定义域例 3 (1)若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f x +x -1的定义域是____________.(2)若函数f (x )的定义域为(0,1],则函数f ⎝⎛⎭⎪⎫lg x 2+x 2的定义域为________________________________________________________________________. 答案 (1)[0,1)∪(1,2 015] (2)[-5,-2)或(1,4]解析 (1)令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]. (2)∵函数f (x )的定义域为(0,1],∴0<lg x 2+x2≤1,即1<x 2+x2≤10,则1<x ≤4或-5≤x <-2.命题点3 已知定义域求参数范围例4 若函数f (x )的定义域为R ,则a 的取值范围为________. 答案 [-1,0]解析 因为函数f (x )的定义域为R ,所以22210+--x ax a≥对x ∈R 恒成立,即22022+-,x ax a≥x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. 思维升华 简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:①无论是已知定义域还是求定义域,均是指其中的自变量x 的取值集合; ②对应f 下的范围一致.(3)已知定义域求参数范围,可将问题转化,列出含参数的不等式(组),进而求范围.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________. (2)函数y =x +-x 2-3x +4的定义域为_____________________________________. 答案 (1)[12,32] (2)(-1,1)解析 (1)因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足⎩⎪⎨⎪⎧0≤x +12≤2,0≤x -12≤2,解得:12≤x ≤32,所以函数g (x )的定义域是[12,32].(2)由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x <1.题型三 求函数解析式例5 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x-1,将f (1x)=2f x x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,则f (x )=________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),则f (x )=__________________.答案 (1)x 2-1(x ≥1) (2)-12x (x +1)(3)23lg(x +1)+13lg(1-x ) (-1<x <1) 解析 (1)设x +1=t (t ≥1),则x =t -1. 代入f (x +1)=x +2x , 得f (t )=t 2-1(t ≥1), ∴f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).(3)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代替x 得,2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x )得,f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).2.分类讨论思想在函数中的应用典例 (1)(2014·课标全国Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,13,x x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(2)(2015·山东改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是____________. 解析 (1)当x <1时,e x -1≤2,解得x ≤1+ln 2,∴x <1.当x ≥1时,x 13≤2,解得x ≤8,∴1≤x ≤8. 综上可知x ∈(-∞,8]. (2)由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案 (1)(-∞,8] (2)⎣⎢⎡⎭⎪⎫23,+∞ 温馨提醒 (1)求分段函数的函数值,首先要确定自变量的范围,然后选定相应关系式代入求解.(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.(3)当自变量含参数或范围不确定时,要根据定义域分成的不同子集进行分类讨论.[方法与技巧]1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应法则是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解. [失误与防范]1.复合函数f [g (x )]的定义域也是解析式中x 的范围,不要和f (x )的定义域相混. 2.分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要分类讨论.A 组 专项基础训练(时间:40分钟)1.下列各组函数中,表示同一函数的是________. ①f (x )=x ,g (x )=(x )2; ②f (x )=x 2,g (x )=(x +1)2; ③f (x )=x 2,g (x )=|x |; ④f (x )=0,g (x )=x -1+1-x . 答案 ③解析 在①中,定义域不同,在②中,解析式不同,在④中,定义域不同. 2.已知函数f (x )=11-x2的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∪(∁R N )=______________. 答案 (-∞,1)解析 M =(-1,1),N =(-1,+∞),故M ∪(∁R N )=(-∞,1).3.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))的值为________. 答案 -2解析 ∵-2≤0,∴f (-2)=10-2, ∴f (f (-2))=f (10-2)=lg 10-2=-2.4.已知f (x )=⎩⎪⎨⎪⎧x ,x ≥0-x ,x <0,则不等式x +x ·f (x )≤2的解集是__________.答案 {x |x ≤1} 解析 原不等式可化为⎩⎪⎨⎪⎧x ≥0,x +x 2≤2或⎩⎪⎨⎪⎧x <0,x -x 2≤2.解得0≤x ≤1或x <0.∴x ≤1. 5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是______________. 答案 f (x )=-log 2x解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .6.已知函数f (x )=log 21x +1,f (a )=3,则a =________. 答案 -78解析 由题意可得log 21a +1=3,所以1a +1=23, 解得a =-78.7.设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则使f (x )=12的x 的集合为__________.答案 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22 解析 由题意知,若x ≤0,则2x=12,解得x =-1;若x >0,则|log 2x |=12,解得x =212或x=212-.故x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,2,22.8.(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (f (-3))=________,f (x )的最小值是________.答案 0 22-3解析 ∵f (-3)=lg[(-3)2+1]=lg 10=1, ∴f (f (-3))=f (1)=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时,取等号,此时f (x )min =22-3<0;当x <1时,f (x )=lg(x 2+1)≥lg 1=0,当且仅当x =0时,取等号,此时f (x )min =0.∴f (x )的最小值为22-3.9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1, ∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎪⎨⎪⎧ a =12,b =12.∴f (x )=12x 2+12x .10.根据如图所示的函数y =f (x )的图象,写出函数的解析式.解 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -72; 当-1≤x <1时,同理可设f (x )=cx +d (c ≠0),将点(-1,-2),(1,1)代入,可得f (x )=32x -12; 当1≤x <2时,f (x )=1.所以f (x )=⎩⎪⎨⎪⎧ -32x -72,-3≤x <-1,32x -12,-1≤x <1,1,1≤x <2.B 组 专项能力提升(时间:20分钟)11.若函数y =ax +1ax 2+2ax +3的定义域为R ,则实数a 的取值范围是________. 答案 [0,3)解析 因为函数y =ax +1ax 2+2ax +3的定义域为R , 所以ax 2+2ax +3=0无实数解,即函数y =ax 2+2ax +3的图象与x 轴无交点.当a =0时,函数y =13的图象与x 轴无交点; 当a ≠0时,则Δ=(2a )2-4·3a <0,解得0<a <3.综上所述,a 的取值范围是[0,3).12.已知函数f (x )=4x -12x -1,则f ⎝ ⎛⎭⎪⎫12 015+⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0132 015+f ⎝ ⎛⎭⎪⎫2 0142 015=________. 答案 4 028解析 ∵f (x )=4x -12x -1=x -+12x -1=2+12x -1, f (1-x )=2+1-x -1=2-12x -1, ∴f (x )+f (1-x )=4.f ⎝ ⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫2 0142 015=4,…,f ⎝ ⎛⎭⎪⎫1 0072 015+f ⎝ ⎛⎭⎪⎫1 0082 015=4, ∴f ⎝⎛⎭⎪⎫12 015+f ⎝ ⎛⎭⎪⎫22 015+…+f ⎝ ⎛⎭⎪⎫2 0132 015+f ⎝ ⎛⎭⎪⎫2 0142 015 =4×1 007=4 028.13.已知函数f (x )=4|x |+2-1的定义域是[a ,b ],(a ,b ∈Z ),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.答案 5解析 由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足条件的整数数对有(-2,0),(-2,1),(-2,2),(0,2),(-1,2),共5个.14.已知x ∈R ,定义:A (x )表示不小于x 的最小整数.如A (3)=2,A (-0.4)=0,A (-1.1)=-1.若A (2x +1)=3,则实数x 的取值范围是__________.答案 ⎝ ⎛⎦⎥⎤12,1 解析 由题中定义可知A (2x +1)=3等价于2<2x +1≤3,解得12<x ≤1. 15.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么?(4)图1、图2、图3中的票价分别是多少元?解(1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.(3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.。

江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示学案理含解析050649.doc

江苏专版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示学案理含解析050649.doc

第一节 函数及其表示1.函数的概念 (1)定义:设A ,B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数,记为y =f (x ),x ∈A .(2)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(5)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 2.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1.(2019·无锡一中期中测试)函数f (x )=ln(x 2-x )的定义域为________. 解析:由题意知,x 2-x >0,即x <0或x >1. 则函数的定义域为(-∞,0)∪(1,+∞). 答案:(-∞,0)∪(1,+∞)2.已知f (x )=x -1,则f (2)=________. 解析:令x =2,则x =4,所以f (2)=3. 答案:33.(2019·海头高级中学高三期中)若函数f (x )=⎩⎪⎨⎪⎧2+log 3x ,x >0,3-log 2-x ,x <0,则f (3)+f (-2)=________.答案:54.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,-x ,x >1.若f (x )=2,则x =________.解析:依题意得当x ≤1时,3x=2,所以x =log 32; 当x >1时,-x =2,x =-2(舍去).故x =log 32. 答案:log 321.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.[小题纠偏]1.(2019·常州一中检测)若函数f (x )=⎩⎪⎨⎪⎧2x-2,x ≤1,log 2x -,x >1,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫52=________.解析:因为52>1,所以f ⎝ ⎛⎭⎪⎫52=log 232, 又因为log 232<1,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫52=223log 2-2=-12.答案:-122.(2018·苏州中学测试)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x+1,则函数f (x )的解析式为________.解析:用1x代替3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x+1中的x ,得3f ⎝ ⎛⎭⎪⎫1x+5f (x )=3x +1, 所以⎩⎪⎨⎪⎧3f x +5f ⎝ ⎛⎭⎪⎫1x =3x +1, ①3f ⎝ ⎛⎭⎪⎫1x +5f x =3x +1, ②②×5-①×3得f (x )=1516x -916x +18(x ≠0).答案:f (x )=1516x -916x +18(x ≠0)考点一 函数的定义域基础送分型考点——自主练透[题组练透]1.(2018·常州期末)函数y =1-x +lg(x +2)的定义域为________.解析:由题意可得⎩⎪⎨⎪⎧1-x ≥0,x +2>0,解得-2<x ≤1,故所求函数的定义域为(-2,1].答案:(-2,1]2.(2018·南通中学高三测试)函数y =1-x22x 2-3x -2的定义域为________________.解析:由函数y =1-x22x 2-3x -2得⎩⎪⎨⎪⎧1-x 2≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧-1≤x ≤1,x ≠2且x ≠-12,即-1≤x ≤1且x ≠-12,所以所求函数的定义域为⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,1. 答案:⎣⎢⎡⎭⎪⎫-1,-12∪⎝ ⎛⎦⎥⎤-12,13.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +x -1的定义域是________.解析:令t =x +1,由已知函数的定义域为[1,2 019],可知1≤t ≤2 019.要使函数f (x +1)有意义,则有1≤x +1≤2 019,解得0≤x ≤2 018,故函数f (x +1)的定义域为[0,2018].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 018,x -1≠0,解得0≤x <1或1<x ≤2 018.故函数g (x )的定义域为[0,1)∪(1,2 018].答案:[0,1)∪(1,2 018]4.(2018·南京师范大学附中模拟)函数f (x )=log 12x -的定义域是________.解析:由题意得log 12(2x -3)≥0⇒0<2x -3≤1⇒32<x ≤2,即函数f (x )的定义域是⎝ ⎛⎦⎥⎤32,2. 答案:⎝ ⎛⎦⎥⎤32,2[谨记通法]函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.考点二 求函数的解析式重点保分型考点——师生共研[典例引领](1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x );(2)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(3)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(4)已知函数f (x )满足f (-x )+2f (x )=2x,求f (x )的解析式;(5)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.解:(1)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(2)(配凑法)由于f ⎝⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(3)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1,x >1. (4)(解方程组法)由f (-x )+2f (x )=2x,① 得f (x )+2f (-x )=2-x,② ①×2-②,得,3f (x )=2x +1-2-x.即f (x )=2x +1-2-x3. 所以f (x )的解析式是f (x )=2x +1-2-x3. (5)(赋值法)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y , 所以f (y )=y 2+y +1,即f (x )=x 2+x +1.[由题悟法]求函数解析式的5种方法1.(2019·如皋测试)已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________. 解析:设f (x )=kx +b ,由f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2, 所以k 2=1,kb +b =2,解得k =1,b =1,即f (x )=x +1. 答案:x +12.已知f (x +1)=x +2x ,求f (x )的解析式.解:法一:(换元法)设t =x +1,则x =(t -1)2,t ≥1,代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1,x ≥1.法二:(配凑法)因为x +2x =(x )2+2x +1-1=(x +1)2-1, 所以f (x +1)=(x +1)2-1,x +1≥1,即f (x )=x 2-1,x ≥1. 考点三 分段函数 题点多变型考点——多角探明[锁定考向]分段函数作为考查函数知识的最佳载体,一直是高考命题的热点,解题过程中常渗透着分类讨论的数学思想,高考对分段函数的常见的命题角度有:(1)分段函数的求值问题; (2)求参数或自变量的值与范围; (3)分段函数与不等式问题.[题点全练]角度一:分段函数的求值问题1.设函数f (x )=⎩⎪⎨⎪⎧|log 3x +,-1<x ≤0,tan π2x ,0<x <1,则f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫33-1=________. 解析:因为-1<33-1≤0,所以f ⎝ ⎛⎭⎪⎫33-1=⎪⎪⎪⎪⎪⎪log 333=12, 则f ⎝ ⎛⎭⎪⎫f ⎝⎛⎭⎪⎫33-1=f ⎝ ⎛⎭⎪⎫12=tan π4=1.答案:1角度二:求参数或自变量的值与范围2.已知f (x )=⎩⎨⎧x 12,x ∈[0,+,|sin x |,x ∈⎝ ⎛⎭⎪⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 12=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝ ⎛⎭⎪⎫-π2,0, 解得a =-π6.综上可知,a =14或-π6.答案:14或-π6角度三:分段函数与不等式问题3.(2018·如东期末)设函数f (x )=⎩⎪⎨⎪⎧x 2e x,x ≥0,x2ex ,x <0,则使得f (2x +1)>f (x -1)成立的x 的取值范围是________.解析:当x >0时,f (-x )=x 2e x=f (x ),且为增函数,同理当x <0时,f (-x )=x 2ex =f (x ),且为减函数,所以f (x )关于y 轴对称,且左减右增.要使f (2x +1)>f (x -1),则需|2x +1|>|x -1|,两边平方化简得x 2+2x >0,解得x <-2或x >0,故所求x 的取值范围是(-∞, -2)∪(0,+∞).答案:(-∞,-2)∪(0,+∞)[通法在握]1.分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.2.分段函数与不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.[演练冲关]1.(2019·姜堰中学测试)已知函数f (x )的定义域为实数集R ,∀x ∈R ,f (x -90)=⎩⎪⎨⎪⎧lg x ,x >0,-x ,x ≤0,则f (10)-f (-100)的值为________.解析:因为f (10)=f (100-90)=lg 100=2,f (-100)=f (-10-90)=-(-10)=10, 所以f (10)-f (-100)=2-10=-8. 答案:-82.(2018·无锡高三第一学期期末)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1x 2,x ≤-12,log 121+x 2,x >-12,g (x )=-x 2-2x -2.若存在a ∈R ,使得f (a )+g (b )=0,则实数b 的取值范围是________.解析:当x ≤-12时,f (x )=1+2x -1x2<1,此时f (x )=1+2x -1x 2=1+2x -1x 2在⎝⎛⎦⎥⎤-∞,-12上单调递减,易求得f (x )∈[-7,1);当x >-12时,f (x )=log 121+x2,此时f (x )在⎝ ⎛⎭⎪⎫-12,+∞上单调递减,易求得f (x )∈(-∞,2), ∴f (x )的值域为(-∞,2).故存在a ∈R ,使得f (a )+g (b )=0⇒-g (b )=f (a )∈(-∞,2)⇒b 2+2b +2<2⇒b ∈(-2,0).答案:(-2,0)3.(2018·南通期末)已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0,则不等式f (x 2-2)+f (x )<0的解集为__________.解析:函数f (x )=⎩⎪⎨⎪⎧2x +1,x >0,0,x =0,2x -1,x <0的图象如图所示,所以f (x )是定义域为R 的奇函数也是增函数,所以不等式f (x 2-2)+f (x )<0⇔ f (x 2-2)<f (-x )⇔x 2-2<-x ,解得-2<x <1,所以原不等式的解集为(-2,1). 答案:(-2,1)一抓基础,多练小题做到眼疾手快 1.(2019·淮安调研)函数f (x )=-x2的定义域是________.解析:由lg(5-x 2)≥0,得5-x 2≥1, 即x 2≤4,解得-2≤x ≤2. ∴函数f (x )=-x2的定义域是[-2,2].答案:[-2,2]2.(2018·苏州高三期中调研)函数y =1x -的定义域为________.解析:由⎩⎪⎨⎪⎧x >1,x -,解得x >1,且x ≠2,所以函数的定义域为(1,2)∪(2,+∞).答案:(1,2)∪(2,+∞)3.已知f ⎝ ⎛⎭⎪⎫12x -1=2x -5,且f (a )=6,则a =________. 解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a=74. 答案:744.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________. 解析:设f (x )=ax +b (a ≠0), 则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎪⎨⎪⎧3a =6,3a +3b =4,∴⎩⎪⎨⎪⎧a =2,b =-23,则f (x )=2x -23.答案:2x -235.(2019·盐城模考)已知函数f (x )=⎩⎪⎨⎪⎧a x +1-2,x ≤1,2x -1,x >1,若f (0)=3,则f (a )=________.解析:因为f (0)=3,所以a -2=3,即a =5,所以f (a )=f (5)=9. 答案:96.设函数f (x )=⎩⎪⎨⎪⎧1x, x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:因为f (2)=12,所以f (f (2))=f ⎝ ⎛⎭⎪⎫12=-52. 当x >1时,f (x )∈(0,1),当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)二保高考,全练题型做到高考达标1.(2019·如东高级中学高三学情调研)设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.解析:因为f (-2)=1+log 24=3,f (log 212)=2log 212-1=6,所以f (-2)+f (log 212)=9.答案:92.(2018·苏州期末)函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0,-x 2+1,x >0的值域为________.解析:画出f (x )的图象如图所示,可看出函数的值域为(-∞,1]. 答案:(-∞,1]3.(2018·南京名校联考)f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫13x ,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=________.解析:因为f ⎝ ⎛⎭⎪⎫19=log 319=-2,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫19=f (-2)=⎝ ⎛⎭⎪⎫13-2=9.答案:94.(2019·南通调研)函数f (x )=11-x+lg(x +1)的定义域是________. 解析:由题意得⎩⎪⎨⎪⎧1-x ≠0,x +1>0⇒x >-1且x ≠1,所以函数f (x )的定义域是(-1,1)∪(1,+∞).答案:(-1,1)∪(1,+∞)5.(2018·启东中学检测)已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3,3],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2]6.已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数的序号是________.解析:对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x ),不满足;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③. 答案:①③7.(2019·扬州一模)若函数f (x )=⎩⎪⎨⎪⎧2-x-2,x <0,g x ,x >0为奇函数,则f (g (2))=________.解析:因为函数f (x )=⎩⎪⎨⎪⎧2-x-2,x <0,g x ,x >0为奇函数,所以当x >0时,-x <0,则f (-x )=2x -2=-f (x ),所以f (x )=-2x +2,即g (x )=-2x +2.所以g (2)=-22+2=-2,f (g (2))=f (-2)=22-2=2.答案:28.已知函数f (x )=⎩⎪⎨⎪⎧a -x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝ ⎛⎭⎪⎫122=14.答案:149.(2019·泰州一调)设函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥2,x 2-3x -2,x <2,若f (x )>2,则x 的取值范围是________.解析:不等式f (x )>2可化为⎩⎪⎨⎪⎧x ≥2,2x -3>2或⎩⎪⎨⎪⎧x <2,x 2-3x -2>2,解得x >52或x <-1.答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫52,+∞10.(2019·无锡一中月考) 已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析:要使函数g (x )有意义,需f (x )>0,由f (x )的图象可知,当x ∈(2,8]时,f (x )>0.答案:(2,8]11.(2019·南京金陵中学月考)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解:(1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x+1)+1-(ax 2+bx +1)=2ax +a +b ,由题意得⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减,所以g (x )min =g (1)=-1,故m <-1,即实数m 的取值范围为(-∞,-1).12.(2018·南京期末)已知二次函数f (x )满足f (1)=1,f (-1)=5,且图象过原点. (1)求二次函数f (x )的解析式; (2)已知集合U =[1,4],B =⎩⎨⎧y ⎪⎪⎪⎭⎬⎫y =f xx 2,x ∈U ,求∁U B .解:(1)设f (x )=ax 2+bx +c (a ≠0), 因为f (1)=1,f (-1)=5,且图象过原点,所以⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得a =3,b =-2,所以f (x )=3x 2-2x . (2)y =f x x 2=3-2x, 当x ∈[1,4]时,函数y =3-2x是增函数,当x =1时,y 取得最小值1;当x =4时,y 取得最大值52,所以B =⎣⎢⎡⎦⎥⎤1,52,又集合U =[1,4],故∁U B =⎝ ⎛⎦⎥⎤52,4.三上台阶,自主选做志在冲刺名校1.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-342.定义在R 上的函数f (x )满足f (x +2)=2f (x ),若当0≤x ≤2时,f (x )=x (2-x ),则当 -4≤x ≤-2时,f (x )=________.解析:由题意知f (x +4)=2f (x +2)=4f (x ),当-4≤x ≤-2时,0≤x +4≤2,所以f (x )=14f (x +4)=14(x +4)[2-(x +4)]=-14(x +4)(x +2),所以当-4≤x ≤-2时,f (x )=-14(x +4)(x +2).答案:-14(x +4)(x +2)3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2, 得-72≤x ≤70.因为x ≥0,所以0≤x ≤70. 故行驶的最大速度是70千米/时.精美句子1、善思则能“从无字句处读书”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第7讲函数的图象
基础巩固题组
(建议用时:40分钟)
一、填空题
1.(2017·扬州一检)把函数y=(x-2)2+2的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数解析式是________.
解析把函数y=f(x)的图象向左平移1个单位,即把其中x换成x+1,于是得y=[(x+1)-2]2+2=(x-1)2+2,再向上平移1个单位,即得到y=(x-1)2+2+1=(x-1)2+3.
答案y=(x-1)2+3
2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是________(填序号).
解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除
①.因交通堵塞停留了一段时间,与学校的距离不变,排除④.后来为了赶时间
加快速度行驶,排除②.故填③.
答案③
3.已知函数f (x )的图象如图所示,则函数g (x )=log 2 f (x )的定义域是________.
解析 当f (x )>0时, 函数g (x )=log 2 f (x )有意义,由函数
f (x )的图象知满足f (x )>0的x ∈(2,8].
答案 (2,8]
4.(2015·浙江卷改编)函数f (x )=⎝ ⎛⎭
⎪⎫
x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为
________(填序号).
解析 (1)因为f (-x )=⎝ ⎛⎭⎪⎫-x +1x cos(-x )=-⎝ ⎛⎭⎪⎫
x -1x cos x =-f (x ),-π≤x ≤π
且x ≠0,所以函数f (x )为奇函数,排除①,②.当x =π时,f (x )=⎝ ⎛
⎭⎪⎫π-1πcos π<0,
排除③,故填④. 答案 ④
5.(2017·桂林一调改编)函数y =(x 3-x )2|x |的图象大致是________(填序号).
解析 由于函数y =(x 3-x )2|x |为奇函数,故它的图象关于原点对称.当0<x <1时,y <0;当x >1时,y >0. 排除①③④,故填②. 答案 ②
6.(2017·南师附中调研)使log 2(-x )<x +1成立的x 的取值范围是________.
解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).
答案 (-1,0)
7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组
成,则f (x )的解析式为________.
解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0). 则⎩⎪⎨⎪⎧ -k +b =0,b =1,得⎩⎪⎨⎪⎧
k =1,
b =1,∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1(a ≠0).
∵图象过点(4,0),∴0=a (4-2)2-1,得a =1
4. 答案 f (x )=⎩⎪⎨⎪

x +1,-1≤x ≤014
(x -2)2
-1,x >0
8.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,
则实数a 的取值范围是________. 解析
如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).
答案 [-1,+∞) 二、解答题
9.已知函数f (x )=⎩⎨⎧
3-x 2,x ∈[-1,2],
x -3,x ∈(2,5].
(1)在如图所示给定的直角坐标系内画出f (x )的图象;
(2)写出f (x )的单调递增区间;
(3)由图象指出当x 取什么值时f (x )有最值. 解
(1)函数f (x )的图象如图所示. (2)由图象可知,
函数f (x )的单调递增区间为[-1,0],[2,5]. (3)由图象知当x =2时,f (x )min =f (2)=-1, 当x =0时,f (x )max =f (0)=3. 10.已知f (x )=|x 2-4x +3|.
(1)作出函数f (x )的图象;
(2)求函数f (x )的单调区间,并指出其单调性;
(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. 解
(1)当x 2-4x +3≥0时,x ≤1或x ≥3, ∴f (x )=⎩⎨⎧
x 2-4x +3,x ≤1或x ≥3,
-x 2+4x -3,1<x <3,
∴f (x )的图象为:
(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.
(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.
能力提升题组
(建议用时:20分钟)
11.(2017·平顶山二模改编)函数y=a+sin bx(b>0且b≠1)的图象如图所示,那么函数y=log b(x-a)的图象可能是________(填序号).
解析由题图可得a>1,且最小正周期T=2π
b<π,所以b>2,则y=log b(x-a)
是增函数,排除①和②;当x=2时,y=log b(2-a)<0,排除④,故填③. 答案③
12.(2015·安徽卷改编)函数f(x)=ax+b
(x+c)2
的图象如图所示,则下列结论:
①a>0,b>0,c<0;
②a<0,b>0,c>0;
③a<0,b>0,c<0;
④a<0,b<0,c<0.
其中正确的是________(填序号).
解析 函数定义域为{x |x ≠-c },结合图象知-c >0, ∴c <0.
令x =0,得f (0)=b
c 2,又由图象知f (0)>0,∴b >0. 令f (x )=0,得x =-b a ,结合图象知-b
a >0,∴a <0. 答案 ③
13.(2017·常州监测)已知函数f (x )=⎩⎪⎨⎪

-x 2+x ,x ≤1,log 1
3
x ,x >1,若对任意的x ∈R ,都有
f (x )≤|k -1|成立,则实数k 的取值范围为________.
解析 对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|.
因为f (x )的草图如图所示,
观察f (x )=⎩⎨⎧
-x 2+x ,x ≤1,
log 1
3x ,x >1
的图象可知,当x =12时,函数f (x )max =1
4, 所以|k -1|≥14,解得k ≤34或k ≥5
4. 答案 ⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭
⎪⎫
54,+∞
14.已知函数f (x )的图象与函数h (x )=x +1
x +2的图象关于点A (0,1)对称.
(1)求函数f (x )的解析式;
(2)若g(x)=f(x)+a
x,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
解(1)设f(x)图象上任一点坐标为(x,y),
∵点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上,
∴2-y=-x+
1
-x
+2,
∴y=x+1
x,即f(x)=x+
1
x.
(2)由题意g(x)=x+a+1 x,
且g(x)=x+a+1
x≥6,x∈(0,2].
∵x∈(0,2],∴a+1≥x(6-x),即a≥-x2+6x-1. 令q(x)=-x2+6x-1,x∈(0,2],
q(x)=-x2+6x-1=-(x-3)2+8,
∴当x∈(0,2]时,q(x)是增函数,q(x)max=q(2)=7. 故实数a的取值范围是[7,+∞).。

相关文档
最新文档