高一数学必修一综合试卷
高一数学必修一综合测试题(含答案)
高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。
2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。
4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。
5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。
(word完整版)高一数学必修1综合测试题3套[含解析],文档
范文模范参照高一数学综合检测题〔1〕一、选择题:5 分,共60 分,请将所选答案填在括号内〕〔每题1.会集 M{4,7,8},且 M中至多有一个偶数, 那么这样的会集共有()(A)3个(B) 4个(C) 5个(D) 6个2. S={x|x=2n,n∈ Z}, T={x|x=4k± 1,k ∈ Z}, 那么〔〕(A)S T(B) T S(C)S≠T(D)S=T3.会集 P= y | y x22,x R, Q=y| y x 2,x R ,那么PI Q 等〔〕(A) 〔 0, 2〕,〔 1, 1〕(B){〔 0,2〕,〔 1, 1〕 } (C){1, 2}(D)y | y24.不等式ax2ax40 的解集为,那么a 的取值范围是〔〕R(A)16 a 0(B)a16(C)16 a0(D) a 05. f ( x) =x5( x6),那么 f(3)的值为〔〕f (x4)( x6)(A)2(B)5(C)4( D)36. 函数y x24x3, x[0,3]的值域为〔〕(A)[0,3](B)[-1,0](C)[-1,3](D)[0,2]7.函数 y=(2k+1)x+b 在 (- ∞,+ ∞ ) 上是减函数,那么〔〕(A)k> 1(B)k<1(C)k>1(D).k<1 22228. 假设函数f(x)=x2+2(a-1)x+2在区间 ( ,4]内递减,那么实数 a 的取值范围为〔〕(A)a≤ -3(B)a≥ -3(C)a≤ 5(D)a≥39.函数y(2 a23a 2) a x是指数函数,那么 a 的取值范围是(A) a 0, a1(B) a 1(C)a a 1或 a1212〔〕( D)10.函数 f(x)4 a x 1的图象恒过定点p,那么点 p 的坐标是〔〕〔A〕〔 1 ,5 〕〔B〕〔 1, 4 〕〔C〕〔 0 ,4〕〔 D〕〔 4 ,0〕11.函数 y log 1 (3 x2)的定义域是〔〕2〔A〕 [1,+](B) (32 ,)(C) [32 ,1](D)(32 ,1]12.设a,b,c都是正数,且3a4b6c,那么下列正确的是〔〕(A)111(B)221(C)122(D)212 c a b C a b C a b c a b二、填空题:〔每题 4 分,共 16 分,答案填在横线上〕13.〔 x,y 〕在照射f下的象是(x-y,x+y),那么(3,5)在f下的象是,原象是。
高中数学必修一综合测试二(含答案)
高中数学必修一综合测试二(含答案)高一数学必修1综合测试题(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足CI (A∪B)={2}的A、B共有组数A.5B.7C.9D.112.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则A.AB B.BA C.A=B D.A∩B=3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是A.5B.4C.3D.24.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q (P∩Q)成立的所有实数a的取值范围为A.(1,9)B.[1,9]C.[6,9D.(6,9]5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为A.18B.30C. eq \f(27,2)D.286.函数f(x)= eq \f(3x-1,2-x) (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是A.2B.-2C.-1D.-37.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为A.3x-2B.3x+2C.2x+3D.2x-38.下列各组函数中,表示同一函数的是A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)= eq \f(x2-4,x-2)C.f(x)=|x|,g(x)= eq \b\lc\{(\a\al(x x≥0,-x x<0))D.f(x)=x,g(x)=( eq \r(x) )29. f(x)=eq \b\lc\{(\a\al(x2 x>0,π x=0,0 x<0)) ,则f{f [f(-3)]}等于A.0B.πC.π2 D.910.已知2lg(x-2y)=lgx+lgy,则 eq \f(x,y) 的值为A.1B.4C.1或4D. eq \f(1,4) 或411.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则A.a≥1B.a>1C.0<a≤1D.a<112.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是A.(0, eq \f(1,2) )B.(0,C.( eq \f(1,2) ,+∞)D.(0,+∞)二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.14.函数y= eq \r(x2+x+1) 的定义域是______,值域为__ ____.15.若不等式3>( eq \f(1,3) )x+1对一切实数x恒成立,则实数a的取值范围为___ ___.16. f(x)=,则f(x)值域为_____ _.17.函数y= eq \f(1,2x+1) 的值域是__________.18.方程log2(2-2x)+x+99=0的两个解的和是______.三、解答题19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.参考答案一、选择题二、填空题13. 14. R [ eq \f(\r(3),2),+∞) 15. - eq \f(1,2) < a < eq \f(3,2)16. (-2,-1] 17. (0,1) 18. -99三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).(CUA)∩(CUB)={x|-1<x<1}20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】由题意得f(8)=f(4×2)=f(4)+f(2)=f(2×2)+f(2)=f(2)+f(2)+f(2)=3f(2)又∵f(2)=1 ∴f(8)=3(2)【解】不等式化为f(x)>f(x-2)+3∵f(8)=3 ∴f(x)>f(x-2)+f(8)=f(8x-16)∵f(x)是(0,+∞)上的增函数∴解得2<x< eq \f(16,7)21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】(1)当每辆车月租金为3600元时,未租出的车辆数为eq \f(3600-3000,50) =12,所以这时租出了88辆.(2)设每辆车的月租金定为x元,则公司月收益为f(x)=(100-eq \f(x-3000,50) )(x-150)-eq \f(x-3000,50) ×50整理得:f(x)=-eq \f(x2,50) +162x-2100=-eq \f(1,50) (x-4050)2+307050∴当x=4050时,f(x)最大,最大值为f(4050)=307050 元22.已知函数f(x)=log2x-logx+5,x∈[2,4],求f(x)的最大值及最小值.考查函数最值及对数函数性质.【解】令t=logx ∵x∈[2,4],t=logx在定义域递减有log4<logx<log2,∴t∈[-1,- eq \f(1,2) ]∴f(t)=t2-t+5=(t- eq \f(1,2) )2+ eq \f(19,4) ,t∈[-1,-eq \f(1,2) ]∴当t=- eq \f(1,2) 时,f(x)取最小值 eq \f(23,4)当t=-1时,f(x)取最大值7.23.已知函数f(x)=eq \f(a,a2-2) (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.考查指数函数性质.【解】 f(x)的定义域为R,设x1、x2∈R,且x1<x2则f(x2)-f(x1)= eq \f(a,a2-2) (a-a-a+a)= eq \f(a,a2-2) (a-a)(1+)由于a>0,且a≠1,∴1+>0∵f(x)为增函数,则(a2-2)( a-a)>0于是有,解得a> eq \r(2) 或0<a<1PAGE6。
专题65 高中数学必修第一册全册综合测评(一)(解析版)
专题65 必修第一册全册综合测评(一)考试时间:120分钟 满分:150分一、单选题:本大题共8小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知全集为R ,集合A ={x |2x ≥1},B ={x |x 2-3x +2<0},则A ∩∁R B =( )A .{x |0≤x ≤1}B .{x |0≤x ≤1或x ≥2}C .{x |1<x <2}D .{x |0≤x <1或x >2}[解析]A ={x |2x ≥1}={x |x ≥0},B ={x |x 2-3x +2<0}={x |(x -1)(x -2)<0}={x |1<x <2},则∁R B ={x |x ≥2或x ≤1},则A ∩∁R B ={x |0≤x ≤1或x ≥2}. 2.已知命题p :x 为自然数,命题q :x 为整数,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析]若x 为自然数,则它必为整数,即p ⇒q .但x 为整数不一定是自然数,如x =-2,即q p .故p 是q 的充分不必要条件. 3.若a <b <0,则下列不等式不能成立的是( )A.1a -b >1aB.1a >1b C .|a |>|b | D .a 2>b 2[解析]取a =-2,b =-1,则1a -b >1a 不成立.4.函数f (x )=x 2x 2-1+lg(10-x )的定义域为( )A .RB .[1,10]C .(-∞,-1)∪(1,10)D .(1,10)[解析]要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x 2-1>0,10-x >0,解得x <-1或1<x <10.故选C.5.已知f (x )=x 2-ax 在[0,1]上是单调函数,则实数a 的取值范围是( )A .(-∞,0]B .[1,+∞)C .[2,+∞)D .(-∞,0]∪[2,+∞) [解析]函数f (x )=x 2-ax 图象的对称轴为直线x =a2,根据二次函数的性质可知a 2≤0或a2≥1,解得a ≤0或a ≥2.故选D.6.已知a =log 29-log 23,b =1+log 27,c =12+log 213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >a >bD .c >b >a[解析]a =log 29-log 23=log 233,b =1+log 27=log 227,c =12+log 213=log 226,因为函数y =log 2x 在(0,+∞)上是增函数,且27>33>26,所以b >a >c . 7.若α∈⎝⎛⎭⎫π2,π,且sin α=45,则sin ⎝⎛⎭⎫α+π4-22cos(π-α)等于( ) A.225 B .-25 C.25 D .-225[解析] sin ⎝⎛⎭⎫α+π4-22cos(π-α)=22sin α+22cos α+22cos α=22sin α+2cos α. ∵sin α=45,α∈⎝⎛⎭⎫π2,π,∴cos α=-35.∴22sin α+2cos α=22×45-2×35=-25.[答案] B 8.将函数f (x )=23cos 2x -2sin x cos x -3的图象向左平移t (t >0)个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A.2π3B.π3C.π2D.π6[解析]将函数f (x )=23cos 2x -2sin x cos x -3=3cos2x -sin2x =2cos ⎝⎛⎭⎫2x +π6的图象向左平移t (t >0)个单位,可得y =2cos ⎝⎛⎭⎫2x +2t +π6的图象.由于所得图象对应的函数为奇函数,则2t +π6=k π+π2,k ∈Z , 则t 的最小值为π6.故选D.二、多选题:本大题共4小题,每个小题5分,共20分.在每小题给出的选项中,只有一项或者多项是符合题目要求的.9.下列函数是偶函数且值域为[0,+∞)的是( )A .y =|x |;B .y =x 3;C .y =2|x |;D .y =x 2+|x |.[解析]对于A ,y =|x |是偶函数,且值域为[0,+∞);对于B ,y =x 3是奇函数;对于C ,y =2|x |是偶函数,但值域为[1,+∞);对于D ,y =x 2+|x |是偶函数,且值域为[0,+∞),所以符合题意的有A C ,故选AC. 10.若幂函数f (x )=x m 在区间(0,+∞)上单调递减,则实数m 的值可能为( )A .-2B .12C .-1D .2[解析] ∵幂函数f (x )=x m 在区间(0,+∞)上单调递减,∴m <0,由选项可知,选AC 11.已知函数①y =sin x +cos x ,②y =22sin x cos x ,则下列结论不正确的是( ) A .两个函数的图象均关于点⎝⎛⎭⎫-π4,0成中心对称图形 B .两个函数的图象均关于直线x =-π4成轴对称图形C .两个函数在区间⎝⎛⎭⎫-π4,π4上都是单调递增函数 D .两个函数的最小正周期相同[解析]①y =2sin ⎝⎛⎭⎫x +π4,图象的对称中心为⎝⎛⎭⎫-π4+k π,0,k ∈Z ,对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-3π4+2k π,π4+2k π,k ∈Z ,最小正周期为2π;②y =2sin 2x 图象的对称中心为⎝⎛⎭⎫12k π,0,k ∈Z ,对称轴为x =π4+12k π,k ∈Z ,单调递增区间为⎣⎡⎦⎤-π4+k π,π4+k π,k ∈Z ,最小正周期为π.故选ABD. 12.关于函数f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6,给出下列命题: A .f (x )的最大值为2; B .f (x )的最小正周期是2π;C .f (x )在区间⎣⎡⎦⎤π24,13π24上是减函数;D .将函数y =2cos2x 的图象向右平移π24个单位长度后,与函数y =f (x )的图象重合.其中正确命题是( )[解析] f (x )=cos ⎝⎛⎭⎫2x -π3+cos ⎝⎛⎭⎫2x +π6=cos ⎝⎛⎭⎫2x -π3+sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x +π6 =cos ⎝⎛⎭⎫2x -π3-sin ⎝⎛⎭⎫2x -π3=2⎣⎡⎦⎤22cos ⎝⎛⎭⎫2x -π3-22sin ⎝⎛⎭⎫2x -π3=2cos ⎝⎛⎭⎫2x -π3+π4=2cos ⎝⎛⎭⎫2x -π12, ∴函数f (x )的最大值为2,最小正周期为π,又当x ∈⎣⎡⎦⎤π24,13π24时,2x -π12∈[0,π],∴函数f (x )在⎣⎡⎦⎤π24,13π24上是减函数,故C 正确; 由D 得y =2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π24=2cos ⎝⎛⎭⎫2x -π12,故D 正确. [答案] ACD三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.已知关于实数x 的不等式2x 2-bx +c <0的解集为⎝⎛⎭⎫-1,32,则b +c 的值为________. [解析]∵一元二次不等式2x 2-bx +c <0的解集是⎝⎛⎭⎫-1,32,∴-1,32是方程2x 2-bx +c =0的两根, 由根与系数关系得⎩⎨⎧-1+32=b2,-1×32=c2,即b =1,c =-3.∴b +c =-2.14.计算:1-cos 210°cos 800°1-cos 20°=________.[解析]1-cos 210°cos 800°1-cos 20°=sin 210°cos (720°+80°)·2sin 210°=sin 210°cos 80°·2sin 10°=sin 210°sin10°·2sin10°=22.15.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则经过5小时,1个病毒能繁殖为________个. [解析]当t =0.5时,y =2,所以2=e k2,所以k =2ln 2,所以y =e 2t ln 2,当t =5时,y =e 10ln 2=210=1 024.16.已知函数f (x )=⎩⎪⎨⎪⎧kx +3,x ≥0,⎝⎛⎭⎫12x ,x <0,若方程f (f (x ))-2=0恰有三个实数根,则实数k 的取值范围是_____.[解析]∵f (f (x ))-2=0,∴f (f (x ))=2,∴f (x )=-1或f (x )=-1k(k ≠0).① ② ③(1)当k =0时,作出函数f (x )的图象如图①所示,由图象可知f (x )=-1无解,∴k =0不符合题意; (2)当k >0时,作出函数f (x )的图象如图②所示,由图象可知f (x )=-1无解且f (x )=-1k 无解,即f (f (x ))-2=0无解,不符合题意;(3)当k <0时,作出函数f (x )的图象如图③所示,由图象可知f (x )=-1有1个实根, ∵f ((x ))-2=0有3个实根,∴f (x )=-1k 有2个实根,∴1<-1k ≤3,解得-1<k ≤-13.综上,k 的取值范围是⎝⎛⎦⎤-1,-13. 四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17.已知集合A ={x |x 2-7x +6<0},B ={x |4-t <x <t },R 为实数集.(1)当t =4时,求A ∪B 及A ∩∁R B ; (2)若A ∪B =A ,求实数t 的取值范围.[解析] (1)解二次不等式x 2-7x +6<0,得1<x <6,即A ={x |1<x <6}. 当t =4时,B ={x |0<x <4},∁R B ={x |x ≤0或x ≥4}, 所以A ∪B ={x |0<x <6},A ∩∁R B ={4≤x <6}. (2)由A ∪B =A ,得B ⊆A ,①当4-t ≥t ,即t ≤2时,B =∅,满足题意, ②B ≠∅时,由B ⊆A ,得⎩⎪⎨⎪⎧4-t <t ,4-t ≥1,t ≤6,解得2<t ≤3,综合①②得,实数t 的取值范围为(-∞,3].18.已知A (cos α,sin α),B (cos β,sin β),其中α,β为锐角,且|AB |=105. (1)求cos(α-β)的值; (2)若cos α=35,求cos β的值.[解析] (1)由|AB |=105,得(cos α-cos β)2+(sin α-sin β)2=105, ∴2-2(cos αcos β+sin αsin β)=25,∴cos(α-β)=45.(2)∵cos α=35,cos(α-β)=45,α,β为锐角,∴sin α=45,sin(α-β)=±35.当sin(α-β)=35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=2425.当sin(α-β)=-35时,cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=0.∵β为锐角,∴cos β=2425.19.已知f (x )=4cos x sin ⎝⎛⎭⎫x +π3- 3. (1)求f ⎝⎛⎭⎫π6的值;(2)求f (x )的最小正周期及单调增区间.[解析] (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π3-3=4cos x ⎝⎛⎭⎫12sin x +32cos x - 3 =2sin x cos x +23cos 2x -3=sin 2x +3cos 2x =2sin ⎝⎛⎭⎫2x +π3, 所以f ⎝⎛⎭⎫π6=2sin 2π3= 3. (2)因为f (x )=2sin ⎝⎛⎭⎫2x +π3,所以函数的最小正周期为T =2π2=π. 由-π2+2k π≤2x +π3≤2k π+π2(k ∈Z ),得-5π12+k π≤x ≤k π+π12(k ∈Z ),所以函数f (x )的单调增区间为⎣⎡⎦⎤-5π12+k π,k π+π12(k ∈Z ). 20.已知函数f (x )=ax 2+2x +c (a ∈N *,c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求函数f (x )的解析式;(2)若对任意x ∈[1,2],都有f (x )≥2mx +1成立,求实数m 的取值范围. [解析] (1)∵f (1)=5,∴5=a +c +2,∴c =3-a . 又6<f (2)<11,∴6<4a +c +4<11,∴-13<a <43.又a ∈N *,∴a =1,c =2,∴f (x )=x 2+2x +2.(2)设g (x )=f (x )-2mx -1=x 2-2(m -1)x +1,x ∈[1,2],则由已知得 当m -1≤1,即m ≤2时,g (x )min =g (1)=4-2m ≥0,此时m ≤2.当1<m -1<2,即2<m <3时,g (x )min =g (m -1)=1-(m -1)2≥0,此时无解. 当m -1≥2,即m ≥3时,g (x )min =g (2)=9-4m ≥0,此时无解. 综上所述,实数m 的取值范围是(-∞,2].21.某村电费收取有以下两种方案供用户选择:方案一:每户每月收管理费2元,月用电不超过30度时,每度0.5元,超过30度时,超过部分按每度0.6元收取.方案二:不收管理费,每度0.58元.(1)求方案一收费L (x )(单位:元)与用电量x (单位:度)间的函数关系; (2)老王家九月份按方案一交费35元,问老王家该月用电多少度? (3)老王家月用电量在什么范围时,选择方案一比选择方案二更好?[解析] (1)当0≤x ≤30时,L (x )=2+0.5x ;当x >30时,L (x )=2+30×0.5+(x -30)×0.6=0.6x -1,∴L (x )=⎩⎪⎨⎪⎧2+0.5x ,0≤x ≤30,0.6x -1,x >30.(注:x 也可不取0)(2)当0≤x ≤30时,令L (x )=2+0.5x =35得x =66,舍去;当x >30时,由L (x )=0.6x -1=35得x =60,∴老王家该月用电60度. (3)设按方案二收费为F (x )元,则F (x )=0.58x .当0≤x ≤30时,由L (x )<F (x ),得2+0.5x <0.58x ,解得x >25,∴25<x ≤30; 当x >30时,由L (x )<F (x ),得0.6x -1<0.58x ,解得x <50,∴30<x <50. 综上,25<x <50.故老王家月用电量在25度到50度范围内(不含25度、50度)时,选择方案一比方案二更好. 22.已知f (x )=log 4(4x +1)+kx (k ∈R)为偶函数.(1)求k 的值;(2)若方程f (x )=log 4(a ·2x -a )有且只有一个根,求实数a 的取值范围. [解析] (1)∵f (x )是偶函数,∴f (-x )=f (x ),即log 4(4-x +1)-kx =log 4(4x +1)+kx ,化简得log 44-x +14x +1=2kx ,log 44-x =-x =2kx ,则有(2k +1)x =0.对任意的x ∈R 恒成立,于是有2k +1=0,k =-12.(2)∵f (x )=log 4(4x +1)-12x ,f (x )=log 4(a ·2x -a )有且只有一个根,∴log 4(4x +1)-12x =log 4(a ·2x -a ),即(1-a )(2x )2+a ·2x +1=0有唯一实根.令t =2x ,则关于t 的方程(1-a )t 2+at +1=0有唯一的正根.①当1-a =0即a =1时,方程(1-a )t 2+at +1=0,则t +1=0,即t =-1,不符合题意. ②当1-a ≠0即a ≠1时,Δ=a 2-4(1-a )=a 2+4a -4=(a +2)2-8. 若Δ=0,则a =-2±22,此时,t =a2(a -1).当a =-2+22时,则有t =a2(a -1)<0,方程(1-a )t 2+at +1=0无正根,不符合题意;当a =-2-22时,则有t =a 2(a -1)>0,且a ·2x -a =a (t -1)=a ·⎣⎡⎦⎤a 2(a -1)-1=a (2-a )2(a -1)>0, 方程(1-a )t 2+at +1=0有两个相等的正根,符合题意.若Δ>0,则方程(1-a )t 2+at +1=0有两个不相等的实根,则只需其中有一正根即可满足题意. 于是有⎩⎪⎨⎪⎧Δ>0,11-a <0,由此解得a >1.综上所述,a >1或a =-2-2 2.。
人教A版高中高一数学必修一综合测试卷(含答案)
人教A版高中高一数学必修一综合测试卷姓名:班级:学号:时间:120分钟满分:150分一、单选题(每小题5分,共60分)1.(5分)已知集合A={y|y=﹣1},B={x|2x≤4},则A∩B=()A.[0,2]B.[﹣1,2]C.[﹣1,+∞)D.(﹣∞,2] 2.(5分)下列函数为奇函数的是()A.y=sin|x|B.y=|sin x|C.y=cos x D.y=e x﹣e﹣x 3.(5分)已知集合A={x|x2﹣x﹣2=0},B={x|x2=1},则A∩B=()A.{﹣1}B.{﹣1,1}C.{﹣1,2}D.{2}4.(5分)已知集合A={x|x﹣1<0},B={x|x2﹣5x﹣6<0},则A∪B=()A.(﹣∞,1)B.(﹣6,1)C.(﹣1,1)D.(﹣∞,6)5.(5分)若0<a<b<1,则a b,b a,log b a,的大小关系为()A.B.C.D.6.(5分)函数f(x)=sinωx+cosωx﹣1(ω>0)的最小正周期是π,则函数f(x)在区间[0,100]上的零点个数为()A.31B.32C.63D.647.(5分)已知偶函数f(x)满足f(4+x)=f(4﹣x),且当x∈(0,4]时,f(x)=,关于x的不等式f2(x)﹣af(x)>0在[﹣40,40]上有且只有60个整数解,则实数a的取值范围是()A.[,ln2)B.(,ln2)C.[,)D.(,)8.(5分)已知函数f(x)=,若函数g(x)=f(f(x))恰有8个零点,则a的值不可能为()A.8B.9C.10D.129.(5分)已知函数若函数y=f(x)﹣a至多有2个零点,则a的取值范围是()A.B.C.(﹣1,1﹣)D.[1,1+e]10.(5分)已知函数f(x)=x+(其中0<a≤1),g(x)=x﹣lnx,若对任意x1,x2∈[l,e],f(x1)≥g(x2)恒成立,则实数a的取值范围为()A.(0,1)B.(1﹣,1]C.(0,e﹣2]D.[e﹣2,1] 11.(5分)已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=1﹣|x|,又,则函数F(x)=g(x)﹣f(x)在区间[﹣2017,2017]上零点的个数为()A.2015B.2016C.2017D.201812.(5分)对任意x∈R,不等式2|sin x|+|sin x﹣a|≥a2恒成立,则实数a的取值范围是()A.0≤a≤1B.﹣1≤a≤1C.﹣1≤a≤2D.﹣2≤a≤2二、填空题(每小题5分,共20分)13.(5分)已知定义在R上的函数f(x)满足f(1+x)=﹣f(3﹣x),且f(x)的图象与g (x)=lg的图象有四个交点,则这四个交点的横纵坐标之和等于.14.(5分)2020年年初,新冠肺炎疫情袭击全国.口罩成为重要的抗疫物资,为了确保口罩供应,某工厂口罩生产线高速运转,工人加班加点生产,设该工厂连续5天生产的口罩数依次为x1,x2,x3,x4,x5(单位:十万只),若这组数据x1,x2,x3,x4,x5的方差为1.44,且x12,x22,x32,x42,x52的平均数为4,则该工厂这5天平均每天生产口罩十万只.15.(5分)已知正实数x,y,z,则A=max的最小值为;B =max{x,}+max{y,}+max{z,}的最小值为.16.(5分)已知函数,且对于任意的x1,,x1≠x2,|f(x1)﹣f(x2)|<λ|x1﹣x2|恒成立,则λ的取值范围是.三、解答题(每小题14分,共70分)17.(14分)已知函数f(x)是定义在R上的奇函数,当x>0时,.(1)求函数f(x)在R上的解析式;(2)用单调性定义证明函数f(x)在区间上是增函数.18.(14分)已知函数f(x)=|2x﹣1|+|x+1|.(1)解不等式f(x)≥2;(2)记函数f(x)的最小值为m,若a,b为正实数,且3a+2b=2m,求的最小值.19.(14分)已知函数f(x)=+lg.(1)判断并证明函数f(x)的单调性;(2)解关于x的不等式f(x(3﹣x))﹣1﹣lg3>0.20.(14分)已知函数f(x)=3x﹣a•3﹣x,其中a为实常数;(1)若f(0)=7,解关于x的方程f(x)=5;(2)判断函数f(x)的奇偶性,并说明理由.21.(14分)已知函数f(x)=﹣x2+2|x﹣a|.(1)若a=,求函数y=f(x)的单调增区间;(2)当a>0时,解不等式f(x)>﹣ax;(3)当a>0时,若对任意的x∈[0,+∞),不等式f(x﹣1)≥2f(x)恒成立,求实数a 的取值范围.参考答案一、单选题1.B2.D3.A4.D5.B6.C7.C8.A9.B 10.D 11.C 12.B二、填空题13.814.1.6.15.(2,+∞).三、解答题17.解:(1)设x<0,则﹣x>0,由x>0时,可知,,又f(x)为奇函数,故,∴函数f(x)在R上的解析式为;(2)证明:设,则=,∵,∴,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴函数f(x)在区间上是增函数,得证.18.解:(1),∴f(x)≥2等价于或或,∴x≤﹣1或﹣1<x≤0或,∴不等式的解集为;(2)由可知,∴3a+2b=3,∵a>0,b>0,∴,∴当且仅当时取得最小值为8.19.解:(1)f(x)的定义域为(0,4),f(x)在(0,4)上单调递减,证明如下:设0<x1<x2<4,则:=,∵0<x1<x2<4,∴x2﹣x1>0,x1x2>0,4﹣x1>4﹣x2>0,,∴,,,∴f(x1)>f(x2),∴f(x)在(0,4)上单调递减;(2)∵f(1)=1+lg3,由得,,∵f(x)在(0,4)上单调递减,∴,解得0<x<1或2<x<3,∴原不等式的解集为(0,1)∪(2,3).20.解:(1)由f(0)=7,即1﹣a=7,可得a=﹣6,那么3x+6•3﹣x=5,∴(3x﹣2)(3x﹣3)=0,解得x=1或x=log32.(2)由f(﹣x)=﹣a•3x+3﹣x,当a=﹣1时,可得f(﹣x)=f(x)此时f(x)是偶函数,当a=1时,f(﹣x)=﹣f(x)此时f(x)是奇函数,当a≠±1时,f(x)是非奇非偶函数.21.解:(1)若a=,则f(x)=﹣x2+2|x﹣|=,当x<时,y=﹣(x+1)2+2,可得增区间为(﹣∞,﹣1);当x≥时,y=﹣(x﹣1)2,可得增区间为(,1),综上可得,函数f(x)的增区间为(﹣∞,﹣1)和(,1);(2)不等式f(x)>﹣ax即为2|x﹣a|>x2﹣ax(a>0),可得2x﹣2a>x2﹣ax或2x﹣2a<ax﹣x2,即为(x﹣2)(x﹣a)<0或(x+2)(x﹣a)<0,当a>2时,﹣2<x<a;当0<a<2时,﹣2<x<a或a<x<2;当a=2时,﹣2<x<2,综上可得,当a≥2时,不等式的解集为(﹣2,a];当0<a<2时,不等式的解集为(﹣2,a)∪(a,2);(3)f(x﹣1)≥2f(x)⇒﹣(x﹣1)2+2|x﹣1﹣a|≥﹣2x2+4|x﹣a|⇒4|x﹣a|﹣2|x﹣(a+1)|≤x2+2x﹣1对x≥0恒成立,由a>0,可分如下几种情况讨论:①0≤x≤a时,﹣4(x﹣a)+2[x﹣(a+1)]≤x2+2x﹣1即x2+4x+1﹣2a≥0对x∈[0,a]恒成立,由g(x)=x2+4x+1﹣2a在[0,a]上递增,则g(0)取得最小值,所以只需g(0)≥0,可得a≤,又a>0,则0<a≤;②a<x≤a+1时,4(x﹣a)+2[x﹣(a+1]≤x2+2x﹣1,可得x2﹣4x+1+6a≥0对x∈[a,a+1]恒成立,由①可得h(x)=x2﹣4x=1+6a在[a,a+1]递减,所以只需h(a+1)≥0即a2+4a﹣2≥0,可得a≥﹣2或a≤﹣2﹣,由﹣2<,由①可得﹣2≤a≤;③x>a+1时,4(x﹣a)﹣2[x﹣(a+1)]≤x2+2x﹣1即x2+2a﹣3≥0对x∈(a+1,+∞)恒成立,由函数k(x)=x2+2a﹣3在(a+1,+∞)递增,所以只需k(a+1)≥0,即a2+4a﹣2≥0,解得a≥﹣2+或a≤﹣2﹣,由②可得﹣2≤a≤;综上可得,a的范围是[﹣2,].。
高一数学必修一必修二综合测试卷(有答案)
高一数学试题四(考试时间:120分钟 试卷满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列说法正确的是( )A . 经过三点确定一个平面B . 经过一条直线和一个点确定一个平面C . 四边形确定一个平面D . 两两相交且不共点的三条直线确定一个平面2. 下列哪个函数的定义域与函数()15xf x ⎛⎫= ⎪⎝⎭的值域相同( )A . 2y x x =+B . ln 2y x x =-C . 1y x =D . 1y x x=+3. 已知集合12|log 1A x x ⎧⎫=>-⎨⎬⎩⎭,{}|22xB x =>,则A B =( )A . 1,22⎛⎫ ⎪⎝⎭B . 1,2⎛⎫+∞⎪⎝⎭C . ()0,+∞D . ()0,24. 已知圆锥的侧面展开图是一个半圆,则其母线与底面半径之比为( ) A . 1B .2C .3D . 25. 已知函数()2f x x x a =++在区间()0,1上有零点,则实数a 的取值范围是( ) A . 1,4⎛⎤-∞ ⎥⎝⎦B . 1,4⎛⎫-∞ ⎪⎝⎭C . ()2,0-D . []2,0-6. 函数()()10,1x f x a a a -=>≠的图象恒过点A ,则下列函数中图象不经过点A 的是( )A . 1y x =-B . 2y x =-C . 21xy =-D . ()2log 2y x =7. 正四面体ABCD 中,E ,F 分别为棱AD ,BC 的中点,则异面直线EF 与CD 所成的角为( ) A .6π B .4π C . 3π D . 2π8. 已知函数()212log 3y x ax a =-+在[)2,+∞上为减函数,则实数a 的取值范围是( )A . 4a ≤B . 4a ≥C . 4a <-或4a ≥D . 44a -<≤9. 某几何体的三视图如图所示,该几何体表面上的点P 与点Q 在正视图与侧视图上的对应点分别为A ,B ,则在该几何体表面上,从点P 到点Q 的路径中,最短路径的长度为( ) A .5B .6 C . 22D .1010. 已知函数()ln 1f x x =-,()223g x x x =-++,用{}min ,m n 表示m ,n 中最小值,设()()(){}min ,h x f x g x =,则函数()h x 的零点个数为( )A . 1B . 2C . 3D . 411. 已知()g x 为偶函数,()h x 为奇函数,且满足()()2x g x h x -=.若存在[]1,1x ∈-,使得不等式()()0m g x h x ⋅+≤有解,则实数m 的最大值为( )A .315-B . 35-C . 1D . -1 12. 无论x ,y ,z 同为三条不同的直线还是同为三个不同的平面,给出下列说法:①若//x y ,//x z ,则//y z ;②若x y ⊥,x z ⊥,则y z ⊥;③若x y ⊥,//y z ,则x z ⊥;④若x 与y 无公共点,y 与z 无公共点,则x 与z 无公共点; ⑤若x ,y ,z 两两相交,则交点可以有一个,三个或无数个.其中说法正确的序号为( ) A . ①③B . ①③⑤C . ①③④⑤D . ①④⑤二、填空题(本大题共4小题,每小题5分,共20分) 13. 设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.14. 一个正四棱锥的侧棱长与底面边长相等,体积为423,则它的侧面积为______. 15. 已知函数()f x 为定义在[]2,3a -上的偶函数,在[]0,3上单调递减,并且()22522a f m m f m ⎛⎫-- ⎪⎝⎭>-+-,则m 的取值范围是______.16. 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为______.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17. 如图所示,在正方体1111ABCD A B C D -中,E 、F 分别是AB 和1AA 的中点.求证:CE ,1D F ,DA 交于一点.18. 已知函数()21x ax b f x x +=++是定义域为R 的奇函数. (1)求实数a 和b 的值,判断并证明函数()f x 在()1,+∞上的单调性;(2)已知0k <,且不等式()()22310f t t f k -++-<对任意的t R ∈恒成立,求实数k 的取值范围.19. 食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足8042P a =+,11204Q a =+.设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为()f x (单位:万元). (1)求()50f 的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益()f x 最大?20. 已知幂函数()()3*p N x x f p -=∈的图象关于y 轴对称,且在()0,+∞上为增函数. (1)求不等式()()22132pp x x +<-的解集;(2)设()()()log 0,1a f x ax g x a a =->≠⎡⎤⎣⎦,是否存在实数a ,使()g x 在区间[]2,3上的最大值为2,若存在,求出a 的值,若不存在,请说明理由.21. 已知函数()11439x xm f x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭.(1)当2m =-时,求函数()f x 在(),0-∞上的值域;(2)若对任意[)0,x ∈+∞,总有()6f x ≤成立,求实数m 的取值范围.22. 在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-5:DBCDC6-10:ABDCC11-12:AB1.【解析】A 选项考查公理2,即三点必须不在同一条直线上,才能确定一个平面;B 选项如果点在直线上,则该直线和这个点不能确定一个平面;C 选项中的四边形有可能是空间四边形,故选D .2.【解析】函数()15xf x ⎛⎫= ⎪⎝⎭的值域为()0,+∞,函数2y x x =+的定义域为R ,函数ln 2y x x =-的定义域为()0,+∞;函数1y x x=+的定义域为()(),00,-∞+∞,函数1y x=的定义域为()(),00,-∞+∞,故选B .3.【解析】由{}12|log 1|02A x x x x ⎧⎫=>-=<<⎨⎬⎩⎭,{}1|22|2xx x x B =⎧⎫>=>⎨⎬⎩⎭,则()0,A B =+∞,故选C .4.【解析】由已知可得2r l ππ=,所以2l r =,故2lr=.故选D . 5.【解析】函数()2f x x x a =++的图象的对称轴为12x =-,故函数在区间()0,1上单调递增,再根据函数()f x 在()0,1上有零点,可得()()00120f a f a =<⎧⎪⎨=+>⎪⎩,解20a -<<,故选C .6.【解析】函数()()10,1x f y ax a a -=>≠=的图象恒过点A ,即10x -=,可得1x =,那么1y =.∴恒过点()1,1A .把1x =,1y =带入各选项,只有A 没有经过A 点.故选A . 7.【解析】略8.【解析】()23g x x ax a =-+,则()230x a a g x x =-+>在[)2,+∞恒成立,且()23g x x ax a =-+在[)2,+∞上为增函数,所以22a≤且()240g a =+>,所以44a -<≤.故选D .9.【解析】由题,几何体如图所示(1)前面和右面组成一面此时222222PQ =+=.(2)前面和上面在一个平面此时223110PQ =+=,2210<,故选C . 10.【解析】作出函数()f x 和()g x 的图象如图,两个图象的下面部分图象,由()2230g x x x =-++=,得1x =-,或3x =,由()ln 10f x x =-=,得x e =或1x e=,∵()0g e >,∴当0x >时,函数()h x 的零点个数为3个,故选C .11.【解析】由()()2xg x h x -=,及()g x 为偶函数,()h x 为奇函数,得()222x xg x -+=,()222x x h x --=.由()()0m g x h x ⋅+≤得224121224141x x x x x x x m ----≤==-+++,∵2141x y =-+为增函数,∴max 231415x ⎛⎫+= ⎪+⎝⎭,故选A . 12.【解析】由平行于同一直线的两直线平行,平行于同一平面的两平面平行,可得①正确;由垂直于同一直线的两直线平行、相交或异面;垂直于同一平面的两平面相交或平行,可得②错误;由垂直于两平行直线中的一条,也垂直于另一条;垂直于两平行平面中的一个,也垂直于另一个,可得③正确;若一条直线与另两条直线无公共点,可得另两条直线可以相交;若一个平面与另两个平面无公共点,可得另两个平面无公共点;可得④错误.若三条直线两两相交,则交点可以有一个或三个,若三个平面两两相交,则交点有无数个.故选B . 二、填空题(本大题共4小题,每小题5分,共20分)13. -1 14. 43 15. 1122m -≤< 16. 4π13.【解析】若函数()x x f x e ae -=+为奇函数,则()()f x f x -=-,即()x x x x ae ae e e --+=-+,即()()10x x e a e -++=对任意的x 恒成立,则10a +=,得1a =-. 14.【解析】设正四棱锥的侧棱长与底面边长相等为2a ,则24ABCD S a =,2222422h PB BO a a a =-=-=,则31442233V a =⨯=,则1a =,则 22142242BC PF a a a S ⎛⎫=⨯⨯⨯=⨯⨯- ⎪⎝⎭侧24343a ==.15.【解析】由题设可得230a -+=,即5a =,故()()22122f m f m m -->-+-可化()()22122f m f m m +>-+,又2113m ≤+≤,21223m m ≤-+≤,故2211222m m m m +<-+⇒<,且12m ≥-.故应填答案1122m -≤<.16.【解析】将四面体ABCD 放置于正方体中,如图所示可得正方体的外接球就是四面体ABCD 的外接球,∵正四面体ABCD 的棱长为4,∴正方体的棱长为22, 可得外接球半径R 满足()22322R =⨯,解得6R =.E 为棱BC 的中点,过E 作其外接球的截面,当截面到球心O 的距离最大时,截面圆的面积达最小值,此时球心O 到截面的距离等于正方体棱长的一半,可得截面圆的半径为222r R =-=,得到截面圆的面积最小值为24S r ππ==.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.【解析】证明:如图所示,连接1CD 、EF 、1A B ,因为E 、F 分别是AB 和1AA 的中点, 所以1//EF A B 且112EF A B =.即:1//EF CD ,且112EF CD =, 所以四边形1CD FE 是梯形,所以CE 与1D F 必相交,设交点为P ,则P CE ∈,且1P D F ∈,又CE ⊂平面ABCD , 且1D F ⊂平面11A ADD ,所以P ∈平面ABCD ,且P ∈平面11A ADD , 又平面ABCD平面11A ADD AD =,所以P AD ∈,所以CE 、1D F 、DA 三线交于一点.18.【解析】(1)因为()()f x f x -=-,所以2211x a x ax bx x bx -+--=-+++, ∴0a b ==,()21xf x x =+, 任取()12,1,x x ∈+∞,且12x x <,()()1212221211x xf x f x x x -=-++()()()()21122212111x x x x x x --=++, ∵210x x ->,1210x x ->,()()2212110x x ++>,∴()f x 在()1,+∞单调递减.(2)()()2231f t t f k -+<--,()()2231f t t f k -+<-, ∵2232t t -+≥,11k ->,∴2231t t k -+>-, 即()211k t >---, ∵t R ∈≤,∴()1,0k ∈-. 19.【解析】(1)由题可知:甲大棚投入50万元,则乙大棚投入150万元, 所以()1804250150120277.5450f =+⨯+⨯+=. (2)依题意得202018020020x x x ≥⎧⇒≤≤⎨-≥⎩.故()()142250201804x x f x x =-++≤≤. 令25,65t x ⎡⎤=∈⎣⎦,则()()2211422508228244f x t t t =-++=--+,当82t =,即128x =时,()max 282f x =,所以投入甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元. 20.【解析】(1)由已知得30p ->且*p N ∈,所以1p =或2p =, 当2p =时,()3p f x x -=为奇函数,不合题意, 当1p =时,()2f x x =.所以不等式()()22132pp x x +<-变为()()1122132x x +<-, 则0132x x ≤+<-,解得213x -≤<. 所以不等式()()22132p p x x +<-的解集为21,3⎡⎫-⎪⎢⎣⎭.(2)()()2log a a g x x x =-,令()2h x x ax =-,由()0h x >得()(),0,x a ∈-∞+∞,因为()g x 在[]2,3上有定义,所以02a <<且1a ≠, 所以()2h x x ax =-在[]2,3上为增函数,当12a <<时,()()()max 3log 932a g x g a ==-=, 即2390a a +-=,∴3352a -±=,又12a <<, ∴3352a -+=. 当01a <<时,()()()max 2log 422a g x g a ==-=,即2240a a +-=,∴15a =-±,此时解不成立.综上:3352a -+=. 21.【解析】(1)当2m =-时,设13xt ⎛⎫= ⎪⎝⎭,∵(),0x ∈-∞,∴()1,t ∈+∞,∴()()222413t t t y g t -+=-=+=,对称轴1t =,图像开口向上,∴()g t 在()1,t ∈+∞为增函数, ∴()3g t >,∴()f x 的值域为()3,+∞.(2)由题意知,()6f x ≤在[)0,+∞上恒成立,即11239xxm ⎛⎫⎛⎫⋅≤- ⎪ ⎪⎝⎭⎝⎭,∴1233xx m ≤⋅-在[)0,x ∈+∞恒成立,则只需当[)0,x ∈+∞时,min 1233x x m ⎛⎫≤⋅- ⎪⎝⎭,设3xt =,()12h t t t=-,由[)0,x ∈+∞得1t ≥,设121t t ≤<,则()()()()12121212210t t t t h t h t t t -+-=<,所以()h t 在[)1,+∞上递增,()h t 在[)1,+∞上的最小值为()11h =,所以实数m 的取值范围为(],1-∞. 22.【解析】(1)取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, ∴//PR EF ,//QR BD ,又∵//EF AC ,∴//PR 平面ABCD ,//QR 平面ABCD ,又∵PR QR R =,∴平面//PQR 平面ABCD ,又∵PQ ⊂平面PQR , ∴//PQ 平面ABCD .(2)连接AC ,设AC ,BD 交于点O , ∴BD AC ⊥,又∵平面AFEC ⊥平面ABCD , 平面AFEC平面ABCD AC =,∴BD ⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -, 菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,23BD =,12ACEF ==, 设梯形EFAC 的面积为()133244EFAC BD EF AC S =+⋅=, 1332ABCDFE EFAC V S BD =⋅⋅=.。
高一数学必修一综合试卷及答案
高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期。
对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网-高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54.设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f( 7.5)等于(B)A.0.5yB.?0.5yC.1.5D.?1.55.下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10.a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的(.?A.充分非必要条件?B.必要非充分条件??C.充要条件?D.既非充分也非必要条件?二、填空题:(本大题共有5小题,每小题4分,满分20分)。
高中数学必修一试卷
高中数学必修一试卷一、选择题(每题5分,共60分)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∪ B = A,则实数a的值为()A. 2B. 3C. 2或3D. 1或2或32. 函数y=√(x^2)-1的定义域为()A. (-∞,-1]∪[1,+∞)B. [-1,1]C. (-∞,-1)∪(1,+∞)D. (-1,1)3. 已知函数f(x)=log_a(x + 1)(a>0且a≠1)在区间[1,7]上的最大值比最小值大(1)/(2),则a的值为()A. (1)/(2)或(7)/(2)B. (2)/(3)或(3)/(2)C. (1)/(2)或(3)/(2)D. (2)/(3)或(7)/(2)4. 若函数y = f(x)是函数y = a^x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=()A. log_2xB. (1)/(2^x)C. log_(1)/(2)xD. 2^x - 25. 函数y = x^2+2x - 3在区间[-3,0]上的值域为()A. [-4, - 3]B. [-4,0]C. [-3,0]D. [0,1]6. 下列函数中,在(0,+∞)上为增函数的是()A. y=<=ft((1)/(2))^xB. y = x^-2C. y=log_(1)/(2)xD. y=ln x7. 设a = log_32,b=log_52,c=log_23,则()A. a>c>bB. b>c>aC. c>b>aD. c>a>b8. 已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x^2-2x,则f(x)在R上的表达式为()A. f(x)=x(x - 2)B. f(x)=<=ft{begin{array}{ll}x(x - 2),x>0 0,x = 0 -x(x + 2),x<0end{array}right.C. f(x)=<=ft{begin{array}{ll}x(x - 2),x≥slant0 -x(x + 2),x<0end{array}right.D. f(x)=x(x2)9. 若函数f(x)=a^x-x - a(a>0且a≠1)有两个零点,则实数a的取值范围是()A. (0,1)B. (1,+∞)C. (0,+∞)D. (0,1)∪(1,+∞)10. 已知y = f(x)是偶函数,当x>0时,f(x)=x+(4)/(x),且当x∈[-3,-1]时,n≤slant f(x)≤slant m恒成立,则m - n的最小值是()A. (1)/(3)B. (2)/(3)C. 1D. (4)/(3)11. 函数y = f(x)的图象与函数y = log_3x(x>0)的图象关于直线y = x对称,则f(x)=()A. 3^x(x∈ R)B. 3^x(x>0)C. <=ft((1)/(3))^x(x∈ R)D. <=ft((1)/(3))^x(x>0)12. 设函数f(x)=<=ft{begin{array}{ll}2^x,x≤slant0 log_2x,x>0end{array}right.,若f(a)=(1)/(2),则a=()A. -1或√(2)B. -1或(1)/(2)C. -1D. (1)/(2)二、填空题(每题5分,共20分)13. 计算:log_2√(2)+log_927=_ 。
高一数学必修一必修二综合测试题(有答案)
高一数学《必修1》《必修2》综合测试题一、选择题(共12小题;每小题5分,共60分)1. 已知全集R U =,集合}32{≤≤-=x x A ,}41{>-<=x x x B 或,则()B C A U ⋃( )A.{}42≤≤-x xB.}43{≥≤x x x 或C.}12{-<≤-x xD.}31{≤≤-x x2. 过点(1,0)且与直线x -2y -2=0垂直的直线方程是( )A .x -2y -1=0B .x -2y +1=0C .2x +y -2=0D .x +2y -1=03. 圆台的一个底面圆周长是另一个底面圆周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面圆的半径为( )A .3B .5C .6D .74. 已知圆C :x 2:y 2:4y :0,直线l 过点P (0,1),则 ( )A. l 与C 相交B. l 与C 相切C. l 与C 相离D. 以上三个选项均有可能5. 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为( )3mA.π2B.38πC.π3D. 310π6. 已知,则函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 若直线2x y -=被圆22()4x a y -+=所截得的弦长为22,则实数a 的值为( ) A. 0或4 B. 1或3 C. 2-或6 D. 1-或3 8. 在三棱柱ABCA 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 9. 若幂函数)(x f y =是经过点)33,3(,则此函数在定义域上是 ( ) A .偶函数 B .奇函数 C .增函数 D .减函数 10. 一个多面体的三视图如图所示,则该多面体的表面积为 A.321+ B.318+ C.18 D.21 11.若定义在R 上的偶函数()x f 满足)()2(x f x f =+,且当[]1,0∈x 时,x x f y x x f 3log )(,)(-==则函数的零点个数是( ) A .6个 B .4个 C .3个 D .2个 12. 已知A(3,1),B(-1,2),若:ACB 的平分线方程为y =x +1,则AC 所在的直线方程为( ) A .y =2x +4 B .y =12x -3 C .x -2y -1=0 D .3x +y +1=001,1a b <<<-x y a b =+二、填空题(共4小题,每小题5分,共20分)13. 若直线1x y +=与圆222(0)x y r r +=>相切,则实数r 的值等于________.14. 在平面直角坐标系中,正三角形ABC 的边BC 所在直线的斜率是0,则AC ,AB 所在直线的斜率之和为________.15. 函数ax x y 22--=()10≤≤x 的最大值是2a ,则实数a 的取值范围是________ .16.若圆C :x 2+y 2−2ax +b =0上存在两个不同的点A ,B 关于直线x −3y −2=0对称,其中b ∈N ,则圆C 的面积最大时,b = .三、解答题(共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. (10分)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1)求f (3)+f (-1);(2)求f (x )的解析式.18. (12分)如图,在三棱锥P ABC 中,PC ⊥底面ABC ,AB ⊥BC ,D ,E 分别是AB ,PB 的中点.(1)求证:DE ∥平面PAC ;(2)求证:AB ⊥PB .19.(12分)直线l 1过点A (0,1),l 2过点B (5,0),如果l 1∥l 2且l 1与l 2的距离为5,求l 1,l 2的方程. 20.(12分)已知圆22:2240C x y mx ny ++++=,直线:10l x my -+=相交于A :B 两点. :1)若交点为(1,2)A ,求m 及n 的值. :2)若直线l 过点(2,3):60ACB ∠=︒,求22m n +的值. 21.(12分)已知直线:(1)(23)60m a x a y a -++-+=,:230n x y -+=. (1)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程; (2)若坐标原点O 到直线m 的距离为5,判断m 与n 的位置关系. 22.(12分)(1)圆C 与直线2x +y -5=0切于点(2,1),且与直线2x +y +15=0也相切,求圆C 的方程. (2)已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.高一数学答案一、选择题(共12小题;每小题5分,共60分). 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A C D A B A A C D A B C二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上13.22 14.0 15.[-1,0] 16.0三、解答题(本大题共6小题,共70分)17.解:(1)∵f (x )是奇函数,∴f (3)+f (-1)=f (3)-f (1)=23-1-2+1=6. .................4分(2)设x <0,则-x >0,∴f (-x )=2-x -1,∵f (x )为奇函数,∴f (x )=-f (-x )=-2-x +1,.................8分∴f (x )=⎩⎪⎨⎪⎧ 2x -1,x ≥0,-2-x +1,x <0. ........................10分18. 解 (1)证明:因为D ,E 分别是AB ,PB 的中点,所以DE ∥PA.又因为PA ⊂平面PAC ,DE ⊄平面PAC ,所以DE ∥平面PAC. .................6分(2)证明:因为PC ⊥底面ABC ,AB ⊂底面ABC ,所以PC ⊥AB.又因为AB ⊥BC ,PC ∩BC =C ,所以AB ⊥平面PBC ,又因为PB ⊂平面PBC ,所以AB ⊥PB. .................6分19.解: 若直线l 1,l 2的斜率都不存在,则l 1的方程为x =0,l 2的方程为x =5,此时l 1,l 2之间距离为5,符合题意;.................3分若l 1,l 2的斜率均存在,设直线的斜率为k ,由斜截式方程得直线l 1的方程为y =kx +1,即kx -y +1=0,.................6分由点斜式可得直线l 2的方程为y =k (x -5),即kx -y -5k =0,在直线l 1上取点A (0,1),则点A 到直线l 2的距离d =|1+5k |1+k2=5,∴25k 2+10k +1=25k 2+25,∴k =125. ∴l 1的方程为12x -5y +5=0,l 2的方程为12x -5y -60=0. .................10分 综上知,满足条件的直线方程为l 1:x =0,l 2:x =5或l 1:12x -5y +5=0,l 2:12x -5y -60=0. .......12分20.【解析】试题分析:(1)将点()1,2A 代入直线和圆方程,可解得1m =,114n =-. (2)将点()2,3代入直线方程得1m =.又由已知可判断ACB V 是等边三角形.所以有圆心到直线10x y -+=的距离233322d r n ==-,代入解得29n =,从而2210m n +=. 试题解析::1)将点()1,2A 代入直线10x my -+=:∴1210m -+=,解出1m =:再将()1,2A 代入圆2221240x y x ny ++⨯++=: ∴22122440n ++++=,解得114n =-: ∴1m =:114n =-: :2)将点()2,3代入直线10x my -+=:∴2310m -+=,解出1m =:又∵在ACB V 中,CA CB =且60ACB ∠=︒:∴ACB V 是等边三角形.∵圆()()222221230x x y ny nn ++++++-=: 即()()22213x y n n +++=-:圆心()1,n --,半径23r n =-:其中圆心到直线10x y -+=的距离222113332211n d r n -++===-+: 代入解出29n =:∴2210m n +=:21.(12分)【详解】试题分析:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得m 与n 的交点为(-21,-9),当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-,解得所求直线方程(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-,分情况根据斜率关系判断两直线的位置关系;试题解析:解:(1)联立360230.x y x y -++=⎧⎨-+=⎩,解得21,9,x y =-⎧⎨=-⎩即m 与n 的交点为(-21,-9). 当直线l 过原点时,直线l 的方程为370x y -=;当直线l 不过原点时,设l 的方程为1x y b b+=-,将(-21,-9)代入得12b =-, 所以直线l 的方程为120x y -+=,故满足条件的直线l 方程为370x y -=或120x y -+=.(2)设原点O 到直线m 的距离为d ,则()()2265123a d a a -+==-++,解得:14a =-或73a =-, 当14a =-时,直线m 的方程为250x y --=,此时//m n ; 当73a =-时,直线m 的方程为250x y +-=,此时m n ⊥.22.解: (1)设圆C 的方程为(x -a )2+(y -b )2=r 2.∵两切线2x +y -5=0与2x +y +15=0平行,∴2r =|15-(-5)|22+12=45,∴r =25, ∴|2a +b +15|22+1=r =25,即|2a +b +15|=10①|2a +b -5|22+1=r =25,即|2a +b -5|=10② 又∵过圆心和切点的直线与过切点的切线垂直,∴b -1a -2=12③ 由①②③解得⎩⎨⎧ a =-2,b =-1.∴所求圆C 的方程为(x +2)2+(y +1)2=20.(2)设圆心坐标为(3m ,m ).∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y =x 的距离为|2m |2=2|m |.由半径、弦心距、半弦长的关系得9m 2=7+2m 2,∴m =±1,∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.。
(完整版)高一数学必修1试题附答案详解
高一数学必修1试题附答案详解、选择题、选择题((本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有项是符合题目要求的)1. 已知全集1 = (0 , 1, 2},且满足C I (AU B)= {2}的A 、B 共有组数A.5 B.7C.92.如果集合A = (x|x= 2k 兀+ 兀,k€ Z} , B = (x|x= 4k 兀+ 兀,k€ Z},则A .A M BB E AC .A =B3. 设A=(x£A=(x£ Z||x|< 2} , B=(y|y = x 2 + 1, x€ A},贝,贝U B 的元素个数是的元素个数是A.5 B.4 C.34若集合P= (x|3<x< 22},非空集合Q= (x|2a+1 < x<3a-5},则能使Q 有实数a 的取值范围为A.(1 , 9)B. [1 , 9]C. [6, 9)5.已知集合 A = B = R, x€ A, y€ B, f:x^y= ax + b,若4和10的原象分别对应是6和9,则19在f 作用下的象为一…3x — 1................... ................. ................. .—.. 6.函数f(x)= -一(x€ R 且对2)的值域为集合N ,则集合(2, 一2,— 1, — 3}中不属于N 的兀2— x 素是A.18B.3027 C. 7D.28D.11D.An B= D.2(PA Q)成立的所D.(6 , 9]A.2B. - 2C. - 1D. — 3 7. 已知f(x)是一次函数,且2f ⑵一3f(1) = 5, A.3x-2B.3x+ 28. 下列各组函数中,表示同一函数的是A. f(x) = 1, g(x) = x2f(0) — f(- 1) = 1,则f(x)的解析式为C.2x+ 3D.2x- 3c -c -、、,c ,、 x 2—4B.f(x)= x + 2, g(x)=—— x—2x x>0C.f(x)= |x|, g(x)= 一x xV 0 x 2 x> 09. f(x)= 兀x= 0 ,则f(f [f(— 3): }等于等于0 xv 0 A.0B.兀一,…x ,10. 已知2lg(x — 2y)= lgx+lgy,则y 的值为A.1B.411. 设x€ R,若a<lg(|x- 3| + |x+ 7|)恒成立,则A. a> 1 B.a>1 12. 若定义在区间定义在区间((一D.f(x)= x, g(x)=(山)2D.9D. 1或44D.a<1C.1 或4C.0<av 11, 0)内的函数f(x) = log 2a (x+ 1)满足f(x)>0,则a 的取值范围是1B.(0,-二、填空题二、填空题((本大题共6小题,每小题小题,每小题 13. 若不等式x 2 + ax+ a- 2>0的解集为的解集为的解集为 4分,共24分.把答案填在题中横线上把答案填在题中横线上 R,则a 可取值的集合为可取值的集合为_^^^.,值域为_^^^的定义域是 ,值域为14. 函数y=《X +x+ 1的定义域是15. ________________________________________________________________________ 若不等式3X2 2ax>(1 )x+1对一切实数x恒成立,则实数a的取值范围为的取值范围为 ___________________________33X 12x( 1 ,,16. f(x) = 33 (,,则,则 f(x)值域为值域为 _.3 2 x 1,一,, 1 …-一,,刁的值域是 ...............17. 函数y= 2^刁的值域是18. 方程log2(2 —2x) + x+ 99= 0的两个解的和是的两个解的和是 .、选择题、选择题题号题号1 23456789101112答案答案二、二、 填空题填空题 13 14 15 16 1718三、三、解答题(本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤 )19.全集全集 U = R, A = (x||x|> 1}, B= (x|x2-2x — 3 > 0},求(QjA)n (C U B).20. 已知f(x)是定义在(0, +8)上的增函数,且满足上的增函数,且满足f(xy)= f(x) + f(y), f(2) = 1. (1)求证:f(8) = 3(2)求不等式f(x)- f(x- 2)>3的解集.21. 某租赁公司拥有汽车司拥有汽车 100辆,当每辆车的月租金为辆,当每辆车的月租金为 3000元时,可全部租出,当每辆车的元时,可全部租出,当每辆车的 月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费元时,未租出的车将会增加一辆,租出的车每辆每月需维护费 150元, 未租出的车每辆每月需要维护费未租出的车每辆每月需要维护费50元.(1) 当每辆车的月租金定为当每辆车的月租金定为3600元时,能租出多少辆车?元时,能租出多少辆车? (2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?的最大值及最小值22. 已知函数f(x)= log i 2x- log 1 x+5, x£[2, 4],求f(x)的最大值及最小值4 4..一一..一一..一一................ . ... 一一… a 、,.一…、, .的取值范围23. 已知函数f(x)= a^2 (a x—a x)(a>0且a乒1)是R上的增函数,求上的增函数,求 a的取值范围高一数学综合训练高一数学综合训练((一)答案答案-、选择题、选择题 题号题号 1 2 3 4 5 6 7 8 9 10 11 12 答案答案CBCD BDAC CBDA 、填空题_ 31 313.14. R : * +°°) 15. 一 § < a < 2 16. ( — 2, - 1]17. (0, 1)18. — 99三、解答题三、解答题((本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤)19. 全集全集 U = R, A = (x||x|> 1}, B= (x|x 2-2x- 3 > 0},求(C u A)n (C U B). (C u A)n (C uB)= {x|— 1v xv 1} 20. 已知f(x)是定义在(0, +8)上的增函数,且满足上的增函数,且满足 f(xy)= f(x) + f(y), f(2) = 1.(1)求证:f(8) = 3(2)求不等式f(x)- f(x- 2)>3的解集.考查函数对应法则及单调性的应用考查函数对应法则及单调性的应用 .(1)【证明】【证明】 由题意得由题意得 f(8) = f(4 X 2)= f(4) + f(2) = f(2X 2) + f(2) = f(2) + f(2) + f(2)= 3f(2) 又.• f(2) = 1••• f(8) = 3(2)【解】不等式化为f(x)>f(x- 2)+3 . • f(8) = 3••• f(x)>f(x - 2) + f(8) = f(8x- 16)f(x)是(0, +勺上的增函数勺上的增函数8(x 2) 0“曰 c 16 •- 8( 2)解得解得 2<x<^ 21. 某租赁公司拥有汽车赁公司拥有汽车 100辆,当每辆车的月租金为辆,当每辆车的月租金为 3000元时,可全部租出,当每辆车的元时,可全部租出,当每辆车的 月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费元时,未租出的车将会增加一辆,租出的车每辆每月需维护费 150元,未租出的车每辆每月需要维护费未租出的车每辆每月需要维护费50元. (1) 当每辆车的月租金定为当每辆车的月租金定为 3600元时,能租出多少辆车?元时,能租出多少辆车?(2) 当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 考查函数的应用及分析解决实际问题能力考查函数的应用及分析解决实际问题能力 .【解】【解】 (1)当每辆车月租金为当每辆车月租金为 3600元时,未租出的车辆数为元时,未租出的车辆数为 以这时租出了以这时租出了 88辆.(2)设每辆车的月租金定为设每辆车的月租金定为 x 元,则公司月收益为元,则公司月收益为x — 3000 x- 3000 f(x)= (100 — 50 )(x — 150)— 50 X 50 整理得:f(x) = 一去 + 162x — 2100=— 1(x-4050)2 + 307050 50 5050 .••当.••当 x= 4050 时,时,f(x)最大,最大值为最大,最大值为 f(4050) = 307050元 22. 已知函数知函数 f(x)= log 1 2 4考查函数最值及对数函数性质函数性质 . .【解】【解】 令t= log 1 x x€ [2, 4], t = log 1x 在定义域递减有在定义域递减有443600—3000- 50=12,所x —log ^x+5, x£ [2, 4],求f(x)的最大值及最小值. 4log 1 4<log 1 x<log 1 2,444• •f(t)=t2 —1+ 5= (t —2)2+149,任[—1,—2 : 1 23••当t=— 2时,f (x )取取小值—取取小值—当t=— 1时,f(x)取最大值7..一…一… a v -v .. 一 .............................. . ....一一....一一 一 23. 已知函数f(x)= a^2 (a a x )(a>0且a 乒1)是R 上的增函数,求上的增函数,求 a 的取值范围考查指数函数性质考查指数函数性质. . 【解】f(x )的定义域为的定义域为则 f(x 2)- f(x 1) = 0^,2为 O x 2 口 *x 1 \(a — a— a +a )1由于由于 a>0,且,且 a 乒 1, . . 1 + —~— >0 •.•f(x)为增函数,贝U (a 2-2)( a x-a x 1)>0…a 22 0 〜于是有或a x2 ax 1解得a> 2或0<a<11X I一 x 2是膏一5七\1•.•te [— 1-2 :R,设 x 1、x 2 € R,且 x 1<x 2a 22 0 a x2a x1x 2_X1。
高一数学人教版必修一第一章《集合与函数概念》综合测试题(含答案)
第一章集合与函数概念综合测试题、选择题1函数讨二2x -1的定义域是()2•已知集合 A 到B 的映射f:x T y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A • 2B • 6C • 5D • 83•设集合 A 二{x|1 ::: x ::: 2}, B 二{x|x ::: a}.若 A B,则 a 的范围是()A • a_2B • a < 1C • a - 1D . a 乞 24•函数y =(k • 2)x • 1在实数集上是减函数,则 k 的范围是()A • k l :—2B • k z ;—2C • k ^ -2D • k-25•全集 U ={ 0,1,3,5,6,8},集合 A = { 1 , 5, 8 }, B ={2},则(6 A ) B =()A (2,;)B.[];)2 2—1 C.(「2) -1D.( =,2]B • { 0,3,6} {2,1,5,8} D • {0,2,3,6}F列各组函数中,表示同一函数的是(0 x y =x ,y =A •xB y = .x -1 . x 1, y = . x2 -1—2Dy=|x|,y = (、x)F列函数是奇函数的是(1A • y =x2B • y =2x2 3 (一“)若奇函数f x在1,3】上为增函数,且有最小值0,则它在1-3,-1】上A •是减函数,有最小值C •是减函数,有最大值设集合M = X - 2乞x -2 :f,B •是增函数,D •是增函数,N 二:y0 -有最小值有最大值y乞2:,给出下列四个图形,其中能表示集合M为定义域,N为值域的函数关系的是()x2 x 010. 已知f (x) X=0,则 f [ f (-3)]等于( )0 x cO2A . 0 B. n C. n D. 9二. 填空题r X +5(XA 1) nt211. 已知f(x—1)=x2,贝y f(x)= .14.已知f (x) = 2 ,则2x +1(x 兰1)f[f(1)> _______________________ .212. 函数y = x -6x的减区间是_____________ .13•设偶函数f (x)的定义域为R,当x・[0, •::)时f(x)是增函数,则f (2), f (二),f (-3)的大小关系是_________________________三、解答题14.设U =R, A x _1[ B J x 0 :: x :: 5?,求C u 切B 和A C U B .15. 求下列函数的定义域(4)f(X)x —22(2) f(x)|x| -216.集合A = 'xx2• 4x = 0; B -汉x2• 2 a T x • a2-1 = 0若A B = B求a 的取值范围。
人教A版(2019)必修一 数学第一章+第二章综合测试卷(含答案)
必修一数学一-二章一、单选题1.设全集U={1,2,3,4,5,6,7},A={1,3,6},B={2,3,5,7},则A∩(∁U B )等于( )A .{3,4}B .{1,6}C .{2,5,7}D .{1,3,4,6}2.已知集合 A ={x∣x 2⩽14} ,集合 B ={y∣y =1―x 2} ,则 A ∩B = ( )A .[―12,12]B .[―1,1]C .[0,1]D .[0,12]3.已知正数a ,b 满足a 2+2ab =3,则2a +b 的最小值是( )A .1B .3C .6D .124.已知集合M={x|﹣2<x <2},N={x|x 2﹣2x ﹣3<0},则集合M∩N=( )A .{x|x <﹣2}B .{x|x >3}C .{x|﹣1<x <2}D .{x|2<x <3}5.已知 x >0 , y >0 , 2x ―1x=8y ―y ,则 2x +y 的最小值为( )A .2B .22C .32D .46.若两个正实数 x ,y 满足 1x +4y =1 ,且不等式 x +y 4<m 2―3m 有解,则实数 m 的取值范围是( )A .{m |―1<m <4}B .{m |m <―1 或 m >4}C .{m |―4<m <1}D .{m |m <0 或 m >3}7.若关于 x 的不等式 ax +6+|x 2―ax ―6|≥4 恒成立,则实数 a 的取值范围是( )A .(―∞,1]B .[―1,1]C .[―1,+∞)D .(―∞,―1]∪[1,+∞)8.定义:若集合A ,B 满足A ∩B ≠∅,存在a ∈A 且a ∉B ,且存在b ∈B 且b ∉A ,则称集合A ,B 为嵌套集合.已知集合A ={x |2x ―x 2≤0且x ∈R +},B ={x |x 2―(3a +1)x +2a 2+2a <0},若集合A ,B 为嵌套集合,则实数a 的取值范围为( )A .(2,3)B .(―∞,1)C .(1,3)D .(1,2)二、多选题9.设集合M ={1,3},N ={x |ax +3=0,a ∈R }且M ∩N =N ,则实数a 可以是( )A .―1B .1C .―3D .010.已知关于x 的不等式a x 2+bx +c ≤0的解集为{x |x ≤―4或x ≥3},则( )A .a >0B.a+b+c>0C.不等式bx+c>0的解集为{x|x<12}D.不等式c x2―bx+a<0的解集为{x|―14<x<13}11.设正实数m,n满足m+n=2,则( )A.1m +2n的最小值为22B.m+n的最小值为2C.mn的最大值为1D.m2+n2的最小值为2 12.已知x>0,y>0,且x+y―xy+3=0,则下列说法正确的是( )A.3<xy≤12B.x+y≥6C.x2+y2≥18D.0<1x +1y≤13三、填空题13.已知集合A={1,2},B={2a,a2+3}.若A∩B={1},则实数a的值为 .14.已知﹣1<a+b<3且2<a﹣b<4,求2a+3b的取值范围 .15.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 .16.对于给定的非空数集,其最大元素最小元素的和称为该集合的“特征值”,A1,A2,A3,A4,A5都含有20个元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},则这A1,A2,A3,A4,A5的“特征值”之和的最小值为 .四、解答题17.已知p:x2―8x―20>0, q:x2―2x+1―a2>0(a>0),若p是q的充分而不必要条件,求实数a 的取值范围.18.集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.(1)求A∪B;(2)求(∁R A)∩B;(3)若B⊆C,求实数m的取值范围.19.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.已知a>0,b>0,满足a2+4b2=6ab+λ(1)当λ=―1时,求a+2b的最小值(2)若λ>0,求ba的取值范围21.已知a,b,c>0,4abc=1a +1b+1c,判断(1a+1b)(1a+1c)是否存在最大值和最小值,若存在,请求解出最大值和最小值。
高一数学必修一试卷与答案
高一数学必修一试卷与答案高一数学必修一试卷与答案第一部分:选择题(共20小题,每小题4分,共80分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其对应的字母填入题前括号内。
1.若sin A = 3/5,求cos A的值。
(A) -5/3 (B) 4/5 (C) -4/5 (D) 5/3答案:(C)2.已知直线l的斜率为2,且经过点(1,3),则直线l的方程为:(A) y = 2x (B) y = 2x + 1 (C) y = 2x - 1 (D) y = 2x + 3答案:(B)3.已知函数f(x) = -2x + 5,g(x) = x^2 - 3x,则f(g(2))的值为:(A) -3 (B) -7 (C) -13 (D) -19答案:(C)4.在等差数列an中,已知a1 = 3,d = 2,an = 11,则n的值为:(A) 3 (B) 4 (C) 5 (D) 6答案:(B)5.已知函数f(x) = 2x - 1,g(x) = x^2,则f(g(-1))的值为:(A) -3 (B) -1 (C) 1 (D) 36.已知三角形ABC中,AB = 5,AC = 12,BC = 13,则该三角形为:(A) 直角三角形 (B) 等腰三角形 (C) 锐角三角形 (D) 钝角三角形答案:(A)7.已知三角形ABC中,AB = 4,BC = 6,角B = 60°,则三角形ABC的面积为:(A) 8 (B) 8√3 (C) 12 (D) 12√3答案:(B)8.已知log2x = log4(3x - 1),则x的值为:(A) 0 (B) 1/2 (C) 1 (D) 2答案:(C)9.已知函数f(x) = 2x + 1,g(x) = x^2 + 2,则f(g(-1))的值为:(A) -1 (B) 1 (C) 3 (D) 5答案:(D)10.已知等腰三角形ABC中,AB = AC = 5,角B = 60°,则三角形ABC的周长为:(A) 10 (B) 15 (C) 20 (D) 25答案:(B)11.将2√2写成带有根号的最简形式是:(A) √2 (B) √8 (C) √16 (D) √32答案:(B)12.已知三角形ABC中,角A = 40°,角B = 80°,则角C的度数为:(A) 20° (B) 50° (C) 100° (D) 140°13.已知函数f(x) = 3x + 2,g(x) = x^2 - 1,则f(g(0))的值为:(A) 1 (B) 2 (C) 3 (D) 4答案:(A)14.在等比数列an中,已知a1 = 2,q = 3,an = 486,则n的值为:(A) 3 (B) 4 (C) 5 (D) 6答案:(D)15.已知直线l的斜率为-1/2,且经过点(3,5),则直线l 的方程为:(A) y = -2x (B) y = -2x + 1 (C) y = -2x - 1 (D) y = -2x + 3答案:(C)16.已知sin A = 3/5,求tan A的值。
高一数学必修一 第一章《集合与函数概念》综合测试题(含答案)
第一章 集合与函数概念综合测试题一、选择题 1.函数y =)1111. (,) . [,) . (,) . (,]2222A B C D +∞+∞-∞-∞2.已知集合A 到B 的映射f :x→y=2x+1,那么集合A 中元素2在B 中对应的元素是( )A .2B .6C .5D .8 3.设集合{|12},{|}.A x x B x x a =<<=<若,A B ⊆则a 的范围是( )A .2a ≥B .1a ≤C .1a ≥D .2a ≤ 4.函数1)2(++=x k y 在实数集上是减函数,则k 的范围是( )A .2-≥kB .2-≤kC .2->kD .2-<k5.全集U ={0,1,3,5,6,8},集合A ={ 1,5, 8 }, B ={2},则U (C )A B =( )A .∅B .{ 0,3,6}C . {2,1,5,8}D .{0,2,3,6} 6.下列各组函数中,表示同一函数的是( )A .,xy x y x ==B .1,112-=+⨯-=x y x x yC.,y x y ==D .2)(|,|x y x y ==7.下列函数是奇函数的是( )A .21x y = B .322+=x y C .x y = D .)1,1(,2-∈=x x y 8.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值09.设集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )10.已知f (x )=20x π⎧⎪⎨⎪⎩000x x x >=<,则f [ f (-3)]等于 ( )A .0B .πC .π2D .9二.填空题11. 已知2(1)f x x-=,则()f x = .14. 已知25(1)()21(1)x x f x x x +>⎧=⎨+≤⎩,则[(1)]f f = .12. 函数26y x x =-的减区间是 .13.设偶函数f (x )的定义域为R ,当[0,)x ∈+∞时f (x )是增函数,则(2),(),(3)f f f π-的大小关系是三、解答题14.设{}{}(),1,05,U U R A x x B x x C A B ==≥=<<求和()U AC B .15.求下列函数的定义域 (1)21)(--=x x x f (2)221)(-++=x x x f16.{}(){}a B B A a x a x x B x x x A 求若集合==-+++==+= 0112,04222的取值范围。
人教版高一数学必修一综合练习题(含答案)
必修一综合习题课1、已知函数的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,则实数m 的取值范围为答案:11m -≤≤2、已知函数222()1x ax b f x x ++=+的值域为[1,3],则22a b +=答案:83、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f x g x x +=-,则()f x 的解析式为 ,()g x 的解析式为 答案:21()1f x x =- 2()1x g x x =-4、若函数()f x =3442++-mx mx x 的定义域为R ,则实数m 的取值范围是答案: [0,43)5、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是答案:(﹣∞,0)∪(2,+∞)6、定义在R 上的函数()f x 满足:()(4)f x f x =-且(2)(2)0f x f x -+-=,则4ln 2()f e的值是 答案:∵(2)(2)0f x f x -+-=,令x=2得f (0)+f (0)=0,所以f (0)=0由题意可得f (x+4)=f (x-4),所以函数以8为周期,所以4ln 2()f e=4ln24()=(2)=f 16f e f () =f (0)=07、已知函数()f x 满足()12f =,()()()111f x f x f x ++=-,则(1)(2)(3)....(2012)f f f f ⋅⋅⋅⋅的值为 答案:18、已知18log 9,185,b a ==则36log 45可以用,a b 表示为:答案:2b a a +-9、已知210mx x m ++-=有且只有一根在区间(0,1)内,则m 的取值范围为答案:由题意可知f (0)×f (1)=1×(m+2)<0,求得m <-210、已知关于x 的不等式250ax x a-<-的解集为M ,若3M ∈且5M ∉,则实数a 的取值范围为: 答案:()259351,, ⎪⎭⎫⎢⎣⎡11、已知定义在R 上的函数()f x ,满足1()2()f x f x x-=成立,则|()|f x 的最小值为:答案:312、对任意,x y ,均满足22()()2[()]f x y f x f y +=+且(1)0f ≠,则(2012)f =答案:100613、如果()()()f x y f x f y +=,且(1)2f =,则(2)(4)(6)(2012)...(1)(3)(5)(2011)f f f f f f f f ++++= 答案:4022,原式=2×2011=402214、设01a <<,x 和y 满足log 3log log 3a x x x a y +-=,如果y 有最大值42,则这时a = ;x = .答案:a=41,x=8115、设111(020,)()241(2040,)t t t N f t t t t N ⎧+≤<∈⎪=⎨⎪-+≤≤∈⎩,*143()(040,)33g t t t t N =-+≤≤∈,则()()S f t g t =的最大值为答案:17616、将长度为1的铁丝分成两段,分别围成一个正方形和一个圆形.要使正方形与圆的面积之和最小,正方形的周长应为_________答案:4π4+17、若函数2()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值 答案:⎪⎩⎪⎨⎧≥+≤+=)()<<()()(1t 22t -t 1t 010t 1t t g 22,当∈t [-3,-2]时,g (t )min =g (-2)=5;g (t )max =g (-3)=1018、已知a R ∈,讨论关于x 的方程2680x x a -+-=的根的情况答案:2y=68y=x x a -+函数与的图象的交点个数即为所求方程根的个数,所以a<-1时,无解当-1<a<8时,原方程有4个解当a >8或a=-1时,原方程有2个解19、已知113a ≤≤,若2()21f x ax x =-+在区间[1,3]上的最大值为()M a ,最小值为()N a ,令()()()g a M a N a =-。
高一数学必修1综合能力测评卷及答案详解
必修一模块综合能力测评卷说明:本试题分第 I 卷和第II 卷两部分,满分 150分,时间120 分钟一、选择题:本大题共12小题,每题 5 分合计 60 分。
1.以下五个写法:①{ 0}{1,2,3} ;②{0} ;③{0,1,2}{1,2,0} ;④0;⑤ 0,此中错误写法的个数为()..A.1B.2 C .3 D. 42 已知 M ={ x|y=x 2-1} , N={y|y=x2-1}, M N 等于()A. NB. MC.RD.3.设a22.5, b 2.50 , c( 1) 2.5,则a,b,c大小关系()2A. a>c>bB. c>a>bC. a>b>cD.b>a>c4.以下图像表示的函数能用二分法求零点的是()y y y y 1o x o x o x o xA B C D5.已知f ( x6)log 2 x ,则f (8)()4B. 8C. 181A . D .326.已知f (x)是定义在(0,) 上的单一增函数,若 f ( x) f (2x) ,则x的范围是()A x>1 B. x<1 C.0<x<2 D. 1<x<27.若函数f ( x)x 2bx c 对随意实数都有 f (2x) f (2x) ,则()A f ( 2) f (1) f (4) B. f (1) f (2) f (4) C. f (2) f (4) f (1) D. f (4) f (2) f (1)8.给出函数 f (x), g( x) 以下表,则f〔 g( x)〕的值域为()x1234x1234g(x)1133f(x)4321A.{4,2}B.{1,3}C.{1,2,3,4}D. 以上状况都有可能9.设函数f ( x)log a| x |, (a 0且 a 1)在(上单一递加,则 f (a1)与 f (2)的大小关系为(),0)A f (a 1) f (2)B f (a 1) f (2) C. f (a 1) f (2) D.不确立10.函数f(x)=x 2-4x+5 在区间 [0,m]上的最大值为 5,最小值为1,则 m 的取值范围是()A. [2,) B .[2,4] C .(,2] D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)若A∩C ,求a的取值范围.
19.已知函数
(1)求函数 的零点;
(2)当 时,求函数 的值域
20.已知二次函数 满足
(1)求函数 的解析式
(2)在区间 上, 图象恒在 图象上方,求实数 的取值范围
21.已知函数 为定义在 上的偶函数,且当 时, .
(1)求当 时, 解析式;
(2)在网格中绘制 的图像;
高一数学周测卷
一、选择题
1.设全集 ,集合 , ,则 ( )
A. B. C. D.
2.设函数f(x)= 则f(f(3))=( )
A. B.3C. D.
3. 函数 的定义域为( )
A. B. C. D.
4.下列函数中在区间 上是增函数的是( )
A. B. C. D.
5.已知幂函数 的图象过点 ,则 的值为
A. B. C. D.
11.已知函数 为定义在 上的奇函数, ,且 在 上单调递增,则 的解Leabharlann 为( )A. B. C. D.
12.若 是偶函数,且对任意 ∈ 且 ,都有 ,则下列关系式中成立的是( )
A. B.
C. D.
二、填空题:每题5分,共25分,请将答案填写在答题卡相应位置.
13. 若指数函数 在区间 上的最大值和最小值之和为 ,则 的值为____________.
14. 已知函数 ( 且 )恒过定点____________.
15.已知 且函数 的图象过点 ,则 的值为____________.
16.已知函数 ,若 在 上是增函数,则实数a的取值范围是____________.
三、解答题:每题10分,共5题,要求写出必要的解题过程.
17.计算:
(1)
(2)
.
18.已知集合A={x|2≤x<7},B={x|3<x<10},C={x| }.
(3)若方程 有四个根,求 的取值范围.
22.已知函数
(1)若 的零点为2,求 ;
(2)若 在 上单调递减,求 最小值;
(3)若对于任意的 都有 ,求 的取值范围.
A. B.2C.4D.
6. 已知 是定义在 上的奇函数,当 时, ,则 ( )
A. B. C. D.
7. 定义在 上的偶函数 满足 ,若 则 ( )
8.函数y= 的单调增区间是( )
A. B. C. D.
9. 已知函数 ,则函数 零点所在的区间为( )
A. B. C. D.
10. 已知 , , ,则 , , 的大小关系正确的是( )