相交线与平行线易错点整理

合集下载

专题02 相交线与平行线【易错题型专项训练】解析版

专题02 相交线与平行线【易错题型专项训练】解析版

专题02 相交线与平行线【易错题型专项训练】易错点一:两条直线的位置关系1.若∠α=54°,∠β的两边与∠α两边互相垂直,则∠β=____________.【难度】★★【答案】54︒或126︒.【解析】∠α和∠β是相等或者互补的关系.【总结】考察垂线的意义以及两解问题,注意分类讨论.2.平面上三条直线两两相交,最多有m 个交点,最少有n 个交点,则m n +=____________.【难度】★★【答案】4.【解析】最多有3个交点,最少有1个交点.3m =,1n =,4m n +=.【总结】考察学生的作图分析能力.3.作图:已知线段AB 上一点Q 及线段外一点P .(1) 过点Q 作线段AB 的垂线;(2) 过点P 作线段AB 的垂线.【难度】★★【答案】如右图.【解析】注意标注垂直符号,以及字母的标注.【总结】画图一定要写结论.4.下列说法中正确的是( )A .有公共顶点、公共边且和为180°的两个角是邻补角B .有公共顶点且相等的是对顶角C .对顶角的补角一定相等D .互为邻补角的两个角不可能相等【难度】★【答案】C【解析】有一条公共边,并且另一条边互为反向延长线的两个角互为邻补角,故选项A 错误;有公共顶点且相等的两个角不一定是对顶角,故选项B 错误;C 正确;互为邻补角的两个角可能都为90︒,故选型D 错误.【总结】本题主要考查了对顶角和邻补角的概念.5.下列说法正确的是( )A .如果两个角相等,那么这两个角是对顶角B .经过一点有且只有一条直线与已知直线平行C .如果两条直线被第三条直线所截,那么内错角相等D.联结直线外一点与直线上各点的所有线段中,垂线段最短【难度】★【答案】D【解析】对顶角相等,但相等的角不一定是对顶角,故选项A错误;过直线外一点有且只有一条直线与已知直线平行,故选项B错误;只有两直线平行时,它们的内错角才相等,故选项C错误;联结直线外一点与直线上各点的所有线段中,垂线段最短,故选项D正确.【总结】本题主要考查了对顶角、内错角、平行线、点到直线的距离的概念.易错点二:同位角、内错角、同旁内角1.在直线AB、CD被直线EF所截的八个角中∠1和∠5是一对________角,∠3和∠5是一对________角,∠4和∠5是一对________角.【难度】★【答案】同位角;内错角;同旁内角.【解析】同位角像字母F,内错角像字母Z,同旁内角像字母U.【总结】本题考查同位角、内错角、同旁内角的概念及特征.2.(1)如图∠1和∠2是直线________与________被直线_______所截,所形成的______角;(2)∠3和∠4是直线_____与_______被直线______所截,所形成的_______角;(3)∠C的同旁内角是_________.【难度】★【答案】(1)DC、AB、DB、内错角;(2)AD、CB、DB、内错角;(3)14、、、.∠∠∠∠CBA CDA【解析】两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角,内错角像字母Z,同旁内角像字母U.【总结】本题考查内错角、同旁内角的概念及特征.3.如图,下列说法错误的是()A.∠5和∠3是同位角B.∠1和∠4是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角【难度】★【答案】B【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角,故∠1和∠4不是同位角.【总结】本题考查同位角、内错角、同旁内角的概念及特征.4,如图,与∠C是同旁内角的有()A.5个 B.4个C.3个D.2个【难度】★【答案】B【解析】∠C的同旁内角有:∠CED、∠B、∠EDC、∠ADC共四个.【总结】本题考查同旁内角的概念及特征.5.如图,同旁内角的对数是()A.5对B.4对C.3对D.2对【难度】★★【答案】B【解析】两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同旁内角的概念及特征.6.如图,∠1和∠2是同位角的是( )A .(1)(2)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)(4)(3)(2)(1)21212121【难度】★★【答案】C【解析】(1)(2)(4)中∠1与∠2都在截线的同旁,并且都在被截直线的同侧,是同位角;(3)中∠1与∠2两边不在同一直线上,不是同位角,故选C .【总结】本题考查同位角的概念及特征,注意很多学生会容易误以为(2)中的两个角不是同位角,老师们要注意纠错哦.7.指出下图中:(1)∠C 与∠D 的关系;(2)∠B 与∠GEF 的关系;(3)∠A 与∠D 的关系;(4)∠AGE 与∠BGE 的关系;(5)∠CFD 与∠AFB 的关系.【难度】★★【答案】(1)同旁内角;(2)同位角;(3)内错角;(4)邻补角;(5)对顶角.【解析】 两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角叫做内错角.两个角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角.【总结】本题考查同位角、内错角、同旁内角、邻补角、对顶角的概念及特征.8.找出图中∠1的所有的同位角.【难度】★★【答案】∠GEF 、∠CBM 、∠ADF 、∠BCN .【解析】两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【总结】本题考查同位角的概念及特征.易错点三:平行线的判定与性质1.如果两个角的一边在同一条直线上,另一边互相平行,那么这两个角() A .相等或互补B .互补C .相等D .相等且互余【难度】★★【答案】A【解析】分为同侧相等和异侧互补两种情况,故选A .【总结】本题考查平行线的基本应用,注意分类讨论.2.已若∠A 的两边与∠B 的两边分别平行,且∠A 是∠B 的2倍少30°,求∠A 与∠B 的度数.【难度】★★【答案】3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,.【解析】由题意可知,180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的2倍少30°,所以230A B ∠=∠-︒,即3030B A ∠=︒∠=︒,或70110B A ∠=︒∠=︒,【总结】本题考查平行线的性质及两个角的两边平行时的两种情况的讨论.3.如果两个角的两边分别平行,其中一个角比另一个角的3倍多12°,则这两个角是( ).A .42°和138°B .都是10°C .42°和138°或都是10°D .以上都不对【难度】★★【答案】A 【解析】由题意假设这两个角分别为A 、B ,则有:180A B A B ∠=∠∠+∠=︒或,又因为∠A 是∠B 的3倍多12°,则有:312A B ∠=∠+︒,即180********B B B A ︒-∠=∠+︒∠=︒∠=︒,解得:,.【总结】本题考查两角位置关系的可能性,注意两种情况的讨论.5.已知:如图,E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,试说明:∠B =∠C .【难度】★★【解析】因为121AHB ∠=∠∠=∠(已知),(对顶角相等)所以2AHB ∠=∠(等量代换), 所以//AF ED (同位角相等,两直线平行)所以D AFC ∠=∠(两直线平行,同位角相等)因为A D ∠=∠(已知), 所以A AFC ∠=∠(等量代换) 所以//AB CD (内错角相等,两直线平行)所以B C ∠=∠(两直线平行,内错角相等)【总结】本题主要考察平行线的性质定理和判定定理的综合运用.6.如图,直线GC 截两条直线AB 、CD ,AE 是GAB ∠的平分线,CF 是ACD ∠的平分线,且//AE CF ,那么AB CD ∥吗?为什么?【难度】★★【解析】因为AE 是GAB ∠的平分线,CF 是ACD ∠的平分线(已知)所以GAE EAB ACF FCD ∠=∠∠=∠,(角平分线的性质)因为//AE CF (已知),所以GAE ACF ∠=∠(两直线平行,同位角相等)所以EAB FCD ∠=∠(等量代换)所以//(AB CD 同位角相等,两直线平行)【总结】本题主要考查平行线的判定定理及性质定理的综合运用.7.已知,正方形ABCD 的边长为4cm ,求三角形EBC 的面积.【难度】★★【答案】8平方厘米.【解析】由题意可知:三角形EBC 与正方形同底BC ,且其高即是正方形的边DC ,故三角形面积为正方形面积的一半:24428cm ⨯÷=【总结】本题考查三角形的面积的计算,注意三角形与正方形同底等高.8.如图,AD //BC ,52BC AD =,求三角形ABC 与三角形ACD 的面积之比.【难度】★★★【答案】5:2.【解析】因为//AD BC (已知)所以三角形ABC 与三角形ACD 的高相等(平行线间的距离处处相等)所以::52ABC ACD S S BC AD ∆∆==:(两三角形高相等,面积比等于底之比)【总结】本题考查平行线距离处处相等及三角形的面积比问题.9.如图,a ∥b ,.若△ABC 的面积是5,△ABE 的面积是2,则BEC S △=________;DEC S =__________;DBC S =__________;ADE S =___________.【难度】★★★【答案】3;2;5;43.【解析】因为△ABC的面积是5,△ABE的面积是2,所以△BEC的面积为5-2=3,因为△ABC和△DBC为同底等高的三角形,所以△DBC的面积为5,所以△DEC的面积为5-3=2,因为△ABE和△BEC为等高三角形,所以面积之比为底之比,即AE:EC=2:3,因为△ADE和△DEC为等高三角形,所以底之比为面积之比,所以△ADE的面积为4 232=3÷⨯.【总结】本题主要考查了平行线的性质和三角形面积的求法.10.如图,已知∠1=∠2,AD=2BC,三角形ABC的面积为3,求三角形CAD的面积.【难度】★★【答案】6【解析】因为∠1=∠2(已知)所以AD∥BC(内错角相等,两直线平行),所以AD到BC的距离相等,设为a,所以三角形ABC面积=12a BC⨯ =3,所以三角形ACD面积= 12a AD a BC⨯=⨯=6.【总结】本题主要考查了等高三角形的面积之比为底之比的应用.11.如图△ABC中,∠ABC=∠ACB,AE是△ABC的外角的平分线,F是AE上的一点,试说明△ABC与△FBC的面积相等.【难度】★★【解析】因为AE 是△ABC 的外角的平分线(已知)所以∠DAF =12∠DAC (角平分线的意义)因为180DAC BAC ∠+∠=(邻补角的意义),180BAC ABC ACB ∠+∠+∠=(三角形内角和等于180°)所以∠DAC =∠ABC +∠ACB (等式性质)因为DAC DAF CAF ∠=∠+∠(角的和差),∠ABC=∠ACB (已知)所以∠DAF =∠ABC (等式性质)所以AF//BC (同位角相等,两直线平行),所以点A 到直线BC 的距离等于点F 到直线BC 的距离(夹在平行线间的距离处处相等)所以△ABC 与△FBC 为同底等高三角形,所以△ABC 与△FBC 的面积相等.【总结】本题主要考查了平行线的判定和同底等高三角形面积相等的应用.12.如图,已知AB ∥ED ,试说明:∠B +∠D =∠C .【难度】★★【解析】过点C 作AB 的平行线CF ,因为AB ∥ED (已知)所以////AB CF ED (平行的传递性)所以B BCF D DCF ∠=∠∠=∠,(两直线平行,内错角相等)所以B D BCF DCF BCD ∠+∠=∠+∠=∠(等式性质)【总结】本题考查平行线的性质及辅助线的添加.13.如图所示,已知,++360A B C ︒∠∠∠=,试说明AE ∥CD .【难度】★★【解析】过点B向右作BF//AE,所以180A ABF∠+∠=︒(两直线平行,同旁内角互补)因为++360∠∠∠=(已知)A B C︒所以180∠+∠=︒(等式性质)FBC C所以//BF CD(同旁内角互补,两直线平行)所以//AE CD(平行的传递性)【总结】本题考查平行线的判定及性质的综合运用,注意简单的辅助线的添加方法.14.如图,已知:AB//CD,试说明:∠B+∠D+∠BED=360︒(至少用三种方法).【难度】★★【解析】方法一:连接BD则∠EBD+∠EDB+∠E=180°(三角形内角和等于180°)因为AB//CD(已知),所以∠ABD+∠BDC=180°(两直线平行,同旁内角互补)所以∠ABD+∠EBD+∠EDB+∠BDC+∠E=360°,即∠B+∠D+∠BED=360°方法二:过点E作EF//CD,因为//EF AB(平行的传递性)AB CD(已知),所以//所以∠B+∠BEF=180°,∠D+∠DEF=180°(两直线平行,同旁内角互补)所以∠B+∠BEF+∠D+∠DEF=360°(等式性质)即∠B+∠D+∠BED=360°;方法三:过点E作//EF BA因为//EF AB(平行的传递性)AB CD(已知),所以//所以180180,(两直线平行,同旁内角互补)ABE BEF FED EDC∠+∠=︒∠+∠=︒所以∠B+∠D+∠BED=360︒(等式性质);方法四:过点E作EF⊥CD的延长线与F,EG垂直于AB的延长线于G,则有:∠B=∠BGE+∠GEB,∠D=∠EDF+∠DFE,所以∠B+∠D+∠BED=∠BGE+∠DFE+∠GED=180+180=360°.【总结】本题考查平行线的判定及性质的综合运用,注意多种方法的归纳总结.11。

相交线与平行线易错题汇编及答案解析

相交线与平行线易错题汇编及答案解析
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
【详解】
A.由∠D=∠DCE,根据内错角相等,两直线平行可得BD//AE,故不符合题意;
B.由∠D+∠ACD=180°,根据同旁内角互补,两直线平行可得BD//AE,故不符合题意;
C.由∠1=∠2可判定AB//CD,不能得到BD//AE,故符合题意;
D.由∠3=∠4,根据内错角相等,两直线平行可得BD//AE,故不符合题意,
∴∠2=64°.
故选:A.
【点睛】
本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.
7.如图所示,点E在AC的延长线上,下列条件中不能判断BD∥AE的是()
A.∠D=∠DCEB.∠D+∠ACD=180°C.∠1=∠2D.∠3=∠4
【答案】C
【解析】
【分析】
根据平行线的判定方法逐项进行分析即可得.
C、∠4=∠5正确,同位角相等两直线平行;
D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.
故选:D.
【点睛】
此题考查同位角、内错角、同旁内角,解题关键在于掌握各性质定义.
5.如图,下列能判定 的条件有( )个.
(1) ; (2) ;
(3) ; (4) .
A.1B.2C.3D.4
A.40°B.60°C.50°D.70°
【答案】B

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析

(易错题精选)初中数学相交线与平行线知识点总复习有答案解析一、选择题1.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D【点睛】本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.5.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【答案】D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC ,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.6.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.7.如图,直线a ∥b ,直角三角开的直角顶点在直线b 上,一条直角边与直线a 所形成的∠1=55°,则另外一条直角边与直线b 所形成的∠2的度数为( )A .25°B .30°C .35°D .40°【答案】C【解析】如图所示:∵直线a ∥b ,∴∠3=∠1=55°,∵∠4=90°,∠2+∠3+∠4=180°,∴∠2=180°-55°-90°=35°.故选C .8.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A 是72°,第二次拐弯处的角是∠B ,第三次拐弯处的∠C 是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B 等于( )A .81°B .99°C .108°D .120°【答案】B【解析】 试题解析:过B 作BD ∥AE ,∵AE ∥CF ,∴BD ∥CF ,∴72,180A ABD DBC C ∠=∠=∠+∠=o o,∵153C ∠=o ,∴27DBC ∠=o ,则99.ABC ABD DBC ∠=∠+∠=o 故选B.9.下面四个图形中,∠1与∠2是对顶角的是( )A .B .C .D .【答案】D【解析】【分析】 根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()A .30°B .45︒C .60︒D .75︒【答案】B【解析】【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.【详解】解:∵//AB CD ,∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,故答案为B.【点睛】本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;11.如图,已知AB CD ∥,ABE ∠和CDE ∠的平分线相交于F ,100BED ∠=︒,则BFD ∠的度数为( )A .100°B .130°C .140°D .160°【答案】B【解析】【分析】 连接BD ,因为AB ∥CD ,所以∠ABD +∠CDB =180°;又由三角形内角和为180°,所以∠ABE +∠E +∠CDE =180°+180°=360°,所以∠ABE +∠CDE =360°−100°=260°;又因为BF 、DF 平分∠ABE 和∠CDE ,所以∠FBE +∠FDE =130°,又因为四边形的内角和为360°,进而可得答案.【详解】连接BD ,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∴∠ABE +∠E +∠CDE =180°+180°=360°,∴∠ABE +∠CDE =360°−100°=260°,又∵BF 、DF 平分∠ABE 和∠CDE ,∴∠FBE +∠FDE =130°,∴∠BFD =360°−100°−130°=130°,故选B .【点睛】此题考查了平行线的性质:两直线平行,同旁内角互补.还考查了三角形内角和定理与四边形的内角和定理.解题的关键是作出BD 这条辅助线.12.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.13.如图,在矩形ABCD 中,6AB =,8BC =,若P 是BD 上的一个动点,则PB PC PD ++的最小值是( )A .16B .15.2C .15D .14.8【答案】D【解析】【分析】 根据题意,当PC ⊥BD 时,PB PC PD ++有最小值,由勾股定理求出BD 的长度,由三角形的面积公式求出PC 的长度,即可求出最小值.【详解】解:如图,当PC ⊥BD 时,PB PC PD BD PC ++=+有最小值,在矩形ABCD 中,∠A=∠BCD=90°,AB=CD=6,AD=BC=8,由勾股定理,得226810BD +=,∴=10PB PD BD +=,在△BCD 中,由三角形的面积公式,得11=22BD PC BC CD ••, 即1110=8622PC ⨯⨯⨯⨯, 解得: 4.8PC =, ∴PB PC PD ++的最小值是:10 4.814.8PB PC PD BD PC ++=+=+=; 故选:D.【点睛】本题考查了勾股定理解直角三角形,最短路径问题,垂线段最短,以及三角形的面积公式,解题的关键是熟练掌握勾股定理,正确确定点P 的位置,得到PC 最短.14.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95°B.∠β﹣∠α=95°C.∠α+∠β=85°D.∠β﹣∠α=85°【答案】D【解析】【分析】过点C作CF∥AB,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C作CF∥AB∵AB∥DE,CF∥AB∴AB∥DE∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD=∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.16.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A .①B .②C .③D .④【答案】B【解析】【分析】 依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .17.如图,直线//,175a b ︒∠=,则2∠的大小是( )A .75︒B .85︒C .95︒D .105︒【答案】D【解析】【分析】 把2∠的对顶角标记为3∠,根据对顶角的性质得到2∠与3∠得关系,再根据直线平行的性质得到1∠与3∠得关系,最后由等量替换得到2∠得度数.【详解】解:如图,把2∠的对顶角标记为3∠,∵2∠与3∠互为对顶角,∴23∠∠=,又∵//a b ,175︒∠=,∴13180∠+∠=︒(两直线平行,同旁内角互补),∴12180∠+∠=︒(等量替换),∴2180118075105∠=︒-∠=︒-︒=︒故D 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的性质(两直线平行,同旁内角互补),学会运用等量替换原则是解题的关键.18.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.19.如图,DE ∥BC ,BE 平分∠ABC ,若∠1=70°,则∠CBE 的度数为( )A .20°B .35°C .55°D .70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE ∥BC ,∴∠1=∠ABC=70°,∵BE 平分∠ABC , ∴1352CBE ABC ∠=∠=︒, 故选:B .【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.20.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.。

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析一、选择题1.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )A .∠α+∠β+∠γ=180°B .∠α+∠β﹣∠γ=360°C .∠α﹣∠β+∠γ=180°D .∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF ∥AB ,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.7.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.8.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°,图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.13.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角14.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。

相交线与平行线易错题汇编附答案

相交线与平行线易错题汇编附答案

相交线与平行线易错题汇编附答案一、选择题1.下列结论中:①若a=b,则a=b;②在同一平面内,若a⊥b,b//c,则a⊥c;③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A.1个B.2个C.3个D.4个【答案】B【解析】【分析】【详解】,则a=b解:①若a=b0②在同一平面内,若a⊥b,b//c,则a⊥c,正确③直线外一点到直线的垂线段的长度叫点到直线的距离④|3-2|=2-3,正确正确的个数有②④两个故选B2.如图所示,有下列五种说法:①∠1和∠4是同位角;②∠3和∠5是内错角;③∠2和∠6旁内角;④∠5和∠2是同位角;⑤<1和∠3是同旁内角;其中正确的是()A.①②③④B.①②③④C.①②③④⑤D.①②④⑤【答案】D【解析】如图,①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;⑤∠1和∠3是直线BC和直线AB被直线AC截得的同旁内角,所以⑤正确.故答案选D.点睛:(1)准确识别同位角、内错角、同旁内角的关键,是弄清两角是由哪两条直线被哪条直线截得,这其中的关键是辨别出截线,在截线的两旁的是内错角,在截线的同旁的为同位角或同旁内角;(2)辨别截线方法:先找出两角的边所在直线,公共直线即是截线.3.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()A.50°B.70°C.80°D.110°【答案】C【解析】【分析】根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.【详解】因为a∥b,所以∠1=∠BAD=50°,因为AD是∠BAC的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.4.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A .80°B .50°C .30°D .20°【答案】D【解析】【分析】【详解】 试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D .考点:平行线的性质;三角形的外角的性质.5.如图,点,D E 分别在BAC ∠的边,AB AC 上,点F 在BAC ∠的内部,若1,250F ︒∠=∠∠=,则A ∠的度数是( )A .50︒B .40︒C .45︒D .130︒【答案】A【解析】【分析】 利用平行线定理即可解答.【详解】解:根据∠1=∠F ,可得AB//EF ,故∠2=∠A=50°.故选A.【点睛】本题考查平行线定理:内错角相等,两直线平行.6.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA 的度数是( )A .28°B .30°C .38°D .36°【答案】D【解析】【分析】根据两直线平行,内错角相等,得到∠DFA=∠CDB ,根据三角形的内角和求出∠CDB 的度数从而得到∠DFA 的度数.【详解】 解:∠C=(52)1801085︒-⨯=,且CD=CB , ∴∠CDB=∠CBD ∵由三角形的内角和∠C+∠CDB+∠CBD=180°∴∠CDB+∠CBD=180°-∠C =180°-108°=72°∴∠CDB==∠CBD=72362︒︒= 又∵AF ∥CD∴∠DFA=∠CDB=36°(两直线平行,内错角相等)故选D【点睛】本题主要考查多边形的基本概念和三角形的基本概念,正n 边形的内角读数为(2)180n n-⨯.7.如图,点D 在AC 上,点F 、G 分别在AC 、BC 的延长线上,CE 平分∠ACB 交BD 于点O ,且∠EOD+∠OBF =180°,∠F =∠G ,则图中与∠ECB 相等的角有( )A .6个B .5个C .4个D .3个【答案】B【解析】【分析】 由对顶角关系可得∠EOD=∠COB ,则由∠COB+∠OBF=180°可知EC ∥BF ,再结合CE 是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC ∥BF ,结合CE 是角平分线可得∠ECB=∠ACE=∠CBF ,再由EC ∥BF 可得∠ACE=∠F=∠G ,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC ,共有5个与∠ECB 相等的角, 故选择B.【点睛】本题综合考查了平行线的判定及性质.8.已知△ABC 中,BC=6,AC=3,CP ⊥AB ,垂足为P ,则CP 的长可能是( )A .2B .4C .5D .7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC <3,∴CP 的长可能是2,故选A .考点:垂线段最短.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A.10B.22C.3D.25【答案】B【解析】【分析】延长BE和CA交于点F,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC,即可证得AE∥BC,得出2142EF AF AEFB FC BC====,即可求出BE.【详解】延长BE和CA交于点F∵ABC∆绕点A逆时针旋转90︒得到△AED ∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE∥BC∴2142 EF AF AEFB FC BC====∴AF=AC=2,FC=4∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB 的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.11.如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案.【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.12.如图,ABCD为一长方形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为( )A.75°B.72°C.70°D.65°【答案】B【解析】【分析】如图,由折叠的性质可知∠3=∠4,已知AB∥CD,根据两直线平行,内错角相等可得∠3=∠1,再由∠1=2∠2,∠3+∠4+∠2=180°,可得5∠2=180°,即可求得∠2=36°,所以∠AEF=∠3=∠1=72°【详解】如图,由折叠的性质可知∠3=∠4,∴∠3=∠1,∵∠1=2∠2,∠3+∠4+∠2=180°,∴5∠2=180°,即∠2=36°,∴∠AEF=∠3=∠1=72°故选B .【点睛】本题考查的是图形翻折变换的性质及平行线的性质,熟知折叠的性质及平行线的性质是解决问题的关键.13.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD ,D G ∴∠=∠,//BF DE ,G ABF ∴∠=∠,D ABF ∴∠=∠, BF 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.14.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。

相交线与平行线易错题汇编及答案

相交线与平行线易错题汇编及答案
【详解】
A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;
B选项:强调了在平面内,正确;
C选项:不符合对顶角的定义,错误;
D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.
故选:B.
【点睛】
对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.
A.①②③④B.①②③④C.①②③④⑤D.①②④⑤
【答案】D
【解析】
如图,
①∠1和∠4是直线AC和直线BC被直线AB截得的同位角,所以①正确;
②∠3和∠5是直线BC和直线AB被直线AC截得的内错角,所以②正确;
③∠2和∠6是直线AB和直线AC被直线CB截得的内错角,所以③错误;
④∠5和∠2是直线AC和直线BC被直线AB截得的同位角,所以④正确;
12.给出下列说法,其中正确的是( )
A.两条直线被第三条直线所截,同位角相等;
B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;
C.相等的两个角是对顶角;
D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.
【答案】B
【解析】
【分析】
正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.
故选C.
7.如图, 平分 , .若 , 到 的距离是2.4,则 的面积等于()
A.3.6B.4.8C.1.8D.7.2
【答案】A
【解析】
【分析】
由角平分线的定义可得出∠BOC=∠DOC,由CD∥OB,得出∠BOC=∠DCO,进而可证出OD=CD=3.再由角平分线的性质可知 到 的距离是2.4,然后根据三角形的面积公式可求 的面积.

相交线与平行线单元复习(知识点+易错题+常见模型+分层作业)

相交线与平行线单元复习(知识点+易错题+常见模型+分层作业)

相交线与平行线单元复习(知识点+易错题+常见模型+分层作业)一、基本知识点1.两条直线相交:a.对顶角:定义的两个条件:1.一个公共顶点;2.两边互为延长线(缺一不可)性质:对顶角相等 数量:2对 基本图形: b.邻补角:定义的两个条件:1. 有一条公共边;2.另一边互为反向延长线(缺一不可)性质:和为180度,互补数量:4对 基本图形:拓展:n 条直线相交与一点,有_________对对顶角,有________对邻补角解题思路:方法一:找规律——2条相交对顶角2对,邻补角4对,3条相交对顶角6对,邻补角12对4条相交对顶角12对,邻补角24对,5条相交?n 条直线相交对顶角________对,邻补角______对。

方法二:每两条直线相交有2对对顶角,4对邻补角,n 条直线,两两组合有n-1+n-2+……+1=n(n-1)/2组,所以,对顶角的数量为n(n-1)对,邻补角为2n(n-1)对。

c.补角和余角推论:同角或等角的补角(余角)相等。

d.垂线:两直线相交,有一个角是直角。

交点角垂足。

垂线的性质1:平面内,过一点有一条直线与已知直线垂直.2:连接直线外一点与直线上各点的线段中,垂线段最短.2.多条直线相交:a.三类角: 同位角:形状呈“F ”字形 内错角:形状呈“Z ”字形 同旁内角:形状呈“Cb.平行线的判定:五种判定方法:1.定义:同一平面内永不相交。

2.平行公理:平行于同一直线的两条直线互相平行。

3.同位角相等,两直线平行4.内错角相等,两直线平行5.同旁内角互补,两直线平行 c.平行线的性质:1.两直线平行,同位角相等;2.两直线平行,内错角相等;3.两直线平行,同旁内角互补。

3.平移和命题二、易错题1。

判断(关于对顶角)1.如果两个角相等,那么这两个角是对顶角. ( )121 22. 有公共顶点的角是对顶角( )3. 不是对顶角的角不相等( )4. 对顶角必相等( ) 2.判断(关于领补角)1. 有一条公共边的两个角是邻补角.2.条公共边和公共顶点,且互为补角的两个角是邻补角.( ) 3互补且有一条公共边的两个角是邻补角( )3.判断(关于垂线)1. 两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( )2.直线外一点到这条直线的垂线段,叫做点到直线的距离.( )三.常见模型:1. 如图:若∠BOD=∠AOC,则∠AOB=∠DOC;反过来,若∠AOB=∠DOC,则∠BOD=∠AOC2.一对邻补角的角平分线互相垂直。

“相交线与平行线”易错题

“相交线与平行线”易错题

第五单元《相交线和平行线》易错题5.1相交线1.判断题: 同一平面内三条直线a 、b 、c ,若a ∥b,b ∥c,则a ∥c ;同理,若a ⊥b,b ⊥c,则a⊥c 。

( )【错解】正确【错题剖析】这句话的前半部分是成立的(如图1),但由此推出的后半部分不成立。

平行具有传递性,但垂直不具有传递性(如图2)如果a ⊥b,b ⊥c ,则a ∥c 。

【正确解答】错误【应对攻略】画图是解决问题的最简单也是最直接的办法,往往有意想不到的效果.【练习巩固】1.判断题:1)不相交的两条直线叫做平行线。

( ) 2)过一点有且只有一条直线与已知直线平行。

( ) 3)两直线平行,同旁内角相等。

( ) 4)两条直线被第三条直线所截,同位角相等。

( )2.判断题:只有过直线外一点才能画已知直线的垂线 ( )【错解】正确【错题剖析】此句错误的原因是受“经过直线外一点有且只有一条直线和已知直线平行”这一事实的影响。

但画垂线可以过直线上一点,也可以过直线外一点来画。

正确说法是:经过直线上或直线外一点可以画已知直线的垂线。

【正确解答】错误【应对攻略】考虑问题要全面,全方面的多角度的分析,不能片面看问题.【练习巩固】判断(1)对顶角的余角相等.( )(2)邻补角的角平分线互相垂直.( )(3)平面内画已知直线的垂线,只能画一条.() (4)在同一个平面内不相交的两条直线叫做平行线.( )(5)如果一条直线垂直于两条平行线中的一条直线,那么这条直线垂直于平行线中的另一条直线.( )(6)两条直线被第三条直线所截,两对同旁内角的和等于一个周角.( ) (7)点到直线的距离是这点到这条直线的垂线的长.( )(8)“过直线外一点,有且只有一条直线平行于已知直线”是公理.( )a bc 图1 图23. 如下图,直线AB 、CD 、EF 和射线OG 都经过O 点,则图中对顶角有( )对A 、 6B 、 7C 、 5D 、 8【错解】A.【错题剖析】这种题目很容易“重复”解,也很容易“遗漏”解.本题很容易把 ∠AOG 也数进去. 【正确解答】C.【应对攻略】观察图形需要仔细,要有两个防止:既要防止“重复”又要防止“遗漏”并且应按一定的顺序进行.【练习巩固】如图,BE 平分ABC ,BC DE //,图中相等的角共有( )A 、 3对B 、 4对C 、 5对D 、6对3.观察下列各图,寻找对顶角(不含平角):⑴ 如图a ,图中共有 对对顶角;C EA OB G F DE DCB AA BCD Oa b c A A B B CCD DO OEFGH图a图b图c⑵ 如图b ,图中共有 对对顶角; ⑶ 如图c ,图中共有 对对顶角;⑷ 研究⑴~⑶小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成 对对顶角;⑸ 若有2008条直线相交于一点,则可形成 对对顶角。

2023初三年级数学易错知识点

2023初三年级数学易错知识点

2023初三年级数学易错知识点初三年级数学易错知识点相交线与平行线1.平行线的性质性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

2.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角内错角同旁内角:3.同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

命题:判断一件事情的语句叫命题。

4.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

初三年级数学基础知识点轴对称知识点1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线底边上的高底边上的中线互相重合,简称为三线合一。

教学相交线和平行线时需要注意的易错点

教学相交线和平行线时需要注意的易错点

教学相交线和平行线时需要注意的易错点相交线和平行线是几何学中的两个基本概念,是学生学习和掌握初中数学知识的重要环节。

但是,在教学过程中,由于知识点本身的难度和学生对知识点的疏忽,很容易出现一些易错点,影响学生的学习效果。

教师在教学相交线和平行线时需要注意哪些易错点呢?本文将从以下几个方面进行讨论。

一、易错点一:对相交线和平行线的基本概念理解不清相交线和平行线是初中数学中的两个最基本的几何概念,学生需要掌握相交线和平行线分别指哪些线段。

相交线是指彼此交叉的两条线段,交点为它们的交点;平行线是指在同一平面内两条不相交的直线,它们永远不会相交。

其中,教师需要特别注意对相交线和平行线的定义清晰化,让学生通过举例、画图等方式更好地理解这两个概念。

二、易错点二:对相交线的夹角概念理解不准确当我们掌握了相交线的定义之后,就需要了解其中的一个重要概念——夹角。

夹角是指两条相交线段之间的角度,它可以是锐角、直角、或者是钝角。

在教学过程中,教师需要引导学生正确理解夹角的概念,做到“看得懂”“说得清”,同时要教会学生利用角度计算器对夹角进行度数测量、角度转化等操作,从而巩固学生对夹角的认识。

三、易错点三:对相交线的性质理解不充分相交线是数学中的一种基本图形,除了了解它的定义和夹角的概念之外,学生还需要掌握相交线的一些重要性质。

例如,相交线夹角对应角相等;相邻角互补;垂直的两条直线互相垂直等。

在教学过程中,教师需要通过大量例题来让学生掌握这些性质,激发学生对相交线的兴趣,培养他们的观察力和思维能力。

四、易错点四:对平行线的性质理解不全面平行线是数学中的另一个基本图形,它是两条不相交的直线,它们在同一个平面上永远保持相同的间距。

在教学过程中,教师需要引导学生理解平行线的基本概念,同时也要重点强调平行线的三个重要性质——同位角相等、内错角补角相等和交叉线段成比例,让学生对平行线有更全面的认识。

五、易错点五:对平行线的证明方法掌握不熟练在初中数学中,我们需要学会如何证明平行线的性质。

相交线与平行线易错点剖析

相交线与平行线易错点剖析

相交线与平行线易错点剖析Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】相交线与平行线错解示例一、对对顶角概念理解不透彻例1如图,三条直线交于一点,任意找出图中的四对对顶角.错解:如图,对顶角为:(1)∠AOC与∠BOD ;(2)∠AOF与∠BOD ;(3)∠COF与∠DOE ;(4)∠AOC与∠BOE .错解分析:错解中把有公共顶点的角误认为是对顶角,导致(2)和(4)错误.如果对对顶角的概念没有真正理解和掌握,在比较复杂的图形识别中会产生错误.对顶角就是:一个角的两边分别是另一个角的两边的反向延长线.正解:(1)∠AOC与∠BOD ;(2)∠BOE与∠AOF;(3)∠COF与∠DOE;(4)∠COE与∠DOF.(答案不唯一:∠ AOE 与∠BOF,∠BOC与∠AOD也是对顶角)二、对“三线八角”理解有误例2 如图,按图中角的位置,判断正确的是()A. ∠ 1 与∠ 2 是同旁内角B. ∠ 1 与∠ 4 是内错角C. ∠ 5 与∠ 7 是同旁内角D. ∠ 4 与∠ 8 是同位角错解:选A、B、D.错解分析:本题考查的是:当两条直线被第三条直线所截时,如何准确地找到同位角、内错角、同旁内角.要想准确地解决这类问题,首先要明确三种角的位置特点:在被截直线的内部,截线两旁的角叫做内错角;在被截直线的内部,截线同旁的角叫做同旁内角;在被截直线的上方(或下方),截线同旁的角叫做同位角.其次要搞清楚被哪条直线所截.正解:选 C .三、对平行线概念理解不透彻例3同一平面内,不相交的两条线是平行线.错解:对.错解分析:平行线是同一平面内两条直线的位置关系,不相交的两条线,说的不明确.若是射线或线段有可能不相交.所以说法是错误的.正解:同一平面内,不相交的两条直线是平行线.四、混淆了平行线的判定定理例4 同旁内角相等,两直线平行.错解:正确.错解分析:错解混淆了两直线的判定条件.正解:同旁内角互补,两直线平行.五、对平行线传递性错误的扩展例5 平面上有三条直线a,b,c,如果a⊥b,b⊥c,则a⊥c.错解:正确.错解分析:此题错认为垂直也有传递性,平行有传递性,而垂直是没有传递性的.正解:a与c的关系是a∥c(这也是平行线判定的一种方法).六、对平行线的判定应用不熟练例6 如图,已知直线AB,CD被直线EF,GH所截,∠1+∠2=180°,则.错解:因为∠1+∠2=180°,根据同旁内角互补,两直线平行,可知EF∥GH.错解分析:虽然“同旁内角互补,两直线平行”,但∠1与∠2是对直线AB,CD而言的,不能判定EF,GH的关系.正解:AB∥CD.七、不能很好地识别几何图形例7如图,在Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD= 50°,则∠A= ,∠B= .错解:两条平行线ABBC所截,同位角相等,得∠B=∠ACD=50°,∠A=∠BCE=90°—∠B=40°.错解分析: 对几何图形观察认识不清楚而出错,简单观察三条直线中,AB,CD被第三条直线AC所截时,∠A与∠ACD是内错角,AB,CD被第三条直线BC 所截时,∠B与∠BCE是内错角,∠B与∠ACD不是内错角.正解:由两直线平行,内错角相等得∠A=∠ACD=50°,∠B=90°—∠A=40°.答案:50° 40°例8 如图,直线AB,CD分别和直线MN相交于点E,F,EG平分∠BEN,FH平分∠DFN.若AB∥CD,你能说明EG和FH也平行吗错解:因为EG平分∠BEN,所以∠BEG =12∠BEN.同理,因为FH平分∠DFN,所以∠DFH =12∠DFN.又因为AB∥CD,所以∠BEN =∠DFN;从而∠BEG =∠DFH.所以EG∥FH.错解分析:在复杂的图形中正确地找出同位角、内错角或同旁内角,是运用平行线的判定或性质的前提.认清一对同位角、内错角或同旁内角的关键是弄清截线和被截线,截线就是它们的公共边,其余两条边就是被截线.而∠BEG和∠DFH不是直线EG,FH被某条直线所截得的同位角,所以由∠BEG=∠DFH不能判定EG∥FH.∠BEN,正解:因为EG平分∠BEN,所以∠BEG =∠GEN =12同理,因为FH平分∠DFN,所以∠DFH =∠HFN =1∠DFN,2又因为AB∥CD,所以∠BEN =∠DFN,从而∠GEN =∠HFN.而∠GEN,∠HFN是直线EG,FH被直线MN所截得的同位角,所以EG∥FH.例9如图,△ABC中,已知∠1+∠2=180°,∠3=∠B,试判断DE与BC的位置关系,并说明理由.错解:因为∠1+∠2=180°,所以EF∥AB.所以∠3+∠BDE =180°.因为∠3=∠B,所以∠B+∠BDE =180°.所以DE∥BC.错解分析:由∠1+∠2=180°,不能得到EF∥AB.虽然∠1和∠2是由直线EF和AB被直线DC所截得的角,但由于它们不是同旁内角, 所以尽管∠1+∠2=180°, 也不能得到EF∥AB.正解:因为∠1=∠4,∠1+∠2=180°,所以∠2+∠4=180°.所以EF∥DB(同旁内角互补,两直线平行).所以∠3+∠BDE=180°(两直线平行, 同旁内角互补).因为∠3=∠B,所以∠B+∠BDE=180°.所以DE∥BC( 同旁内角互补,两直线平行).。

相交线与平行线易错题汇编含答案解析

相交线与平行线易错题汇编含答案解析
故选C.
【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()
A.65°B.115°C.125°D.130°
【答案】B
【解析】
试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.
③直线外一点到直线的垂线段的长度叫点到直线的距离
④| -2|=2- ,正确
正确的个数有②④两个
故选B
8.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是( )
A.y=x+zB.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°
【答案】B
【解析】
【分析】
过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.
18.如图, , ,则下列结论正确的个数有()
① ;② ;③ ;④
A.4个B.3个C.2个D.1个
【答案】A
【解析】
∵∠ABC=30°,∠BAC=90°,
∴∠ACB=60°,
∵直线m∥n,
∴CD∥直线m∥直线n,
∴∠1=∠ACD,∠2=∠BCD,
∵∠1=38°,
∴∠ACD=38°,
∴∠2=∠BCD=60°﹣38°=22°,
故选:B.
【点睛】
本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.

相交线与平行线知识点归纳

相交线与平行线知识点归纳

相交线与平行线知识点小结一、相交线1.相交线:两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)2.对顶角----特点:(1)有一个公共定点(2)两边互为反向延长线 -----性质:对顶角相等3.邻补角:两条直线相交,产生邻补角和对顶角的概念。

要注意区分互为邻补角与互为补角的异同。

----特点:(1)有一个公共定点(2)有一条公共边(3另一边互为反向延长线-----性质:邻补角互补(和为180°)4.垂线:同一平面内,两条直线相交,所成的夹角均为90°时,称这两条直线互相垂直。

垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

---性质:(1)过直线外一点有且只有一条直线与已知直线垂直(2)垂线段最短----点到直线的距离:就是点到直线的垂线段的长度。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

二、平行线1.平行线:在同一平面内,不相交的两条直线。

-----特点:没有交点,平行线永不相交。

2.平行公理:过直线外一点有且只有一条直线与已知直线平行。

推论----如果有一条直线与其它两条直线平行,那么另外两条直线也平行。

3.三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角形成方式-------两条直线被第三条直线所截(这两条直线不一定平行,)特别注意:①三角形的三个内角均互为同旁内角;②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。

名称-----同位角(4对)内错角(2对)同旁内角(2对)(成对出现)4.平行线的判定方法----(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)如果两条直线分别与第三条直线平行,那么这两条直线也互相平行。

相交线与平行线易错题汇编及解析

相交线与平行线易错题汇编及解析
【详解】
解:如图,延长CE交AB于点F,
∵AB∥CD,
∴∠AFE=∠C=60°,
在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.
故选:C.
【点睛】
本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.
故选:C.
【点睛】
此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.
11.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34°B.56°C.66°D.54°
【答案】B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
【解析】
【分析】
利用平行线定理即可解答.
【详解】
解:根据∠1=∠F,
可得AB//EF,
故∠2=∠A=50°.
故选A.
【点睛】
本题考查平行线定理:内错角相等,两直线平行.
5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
故选:D.
【点睛】
本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.
13.若∠A与∠B是对顶角且互补,则它们两边所在的直线( )
A.互相垂直B.互相平行
C.既不垂直也不平行D.不能确定
【答案】A
【解析】
∵∠A与∠B是对顶角,

七年级数学相交线与平行线必须掌握的知识点易错点拔

七年级数学相交线与平行线必须掌握的知识点易错点拔

七年级数学相交线与平行线必须掌握的知识点易错点拔单选题1、如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .32 答案:A解析:分析:由S △ABC =9、S △A ′EF =4且AD 为BC 边的中线知S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知(A′D AD )2=S △A′DES △ABD ,据此求解可得.详解:如图,∵S △ABC =9、S △A ′EF =4,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =2,S △ABD =12S △ABC =92,∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则(A′DAD )2=S△A′DES△ABD,即(A′DA′D+1)2=292,解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.2、如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°答案:C解析:试题解析:∵AB∥CD,∴∠BOE=∠EFD=70°,∵OG平分∠EOB,∴∠BOG=12∠BOE=35°.故选C.3、下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是():BECA.⊙代表∠FECB.□代表同位角C.▲代表∠EFCD.※代表AB答案:C解析:延长BE交CD于点F,利用三角形外角的性质可得出∠BEC=∠EFC+∠C,结合∠BEC=∠B+∠C可得出∠B=∠EFC,利用“内错角相等,两直线平行”可证出AB∥CD,找出各符号代表的含义,再对照四个选项即可得出结论.证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C.又∵∠BEC=∠B+∠C,∴∠B=∠EFC,∴AB∥CD(内错角相等,两直线平行).∴※代表CD,⊙代表∠EFC,▲代表∠EFC,□代表内错角.故选:C.小提示:本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B=∠EFC是解题的关键.4、将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°),使点E落在AC边上,且ED//BC,则∠AEF的度数为( )A.145°B.155°C.165°D.170°答案:C解析:根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等求出∠2,然后根据∠CEF=∠DEF -∠2计算出∠CEF,即可求出∠AEF.解:∵∠A=60°,∠F=45°,∴∠1=90°-60°=30°,∠DEF=90°-45°=45°,∵ED∥BC,∴∠2=∠1=30°,∠CEF=∠DEF-∠2=45°-30°=15°,∴∠AEF=180°-15°=165°.故选C.小提示:本题考查了平行线的性质,直角三角形两锐角互余的性质是基础题,熟记性质是解题的关键.5、下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.答案:D解析:根据点到直线的距离定义逐项判断即可.解:A中的AD不垂直BC,所以线段AD的长不是点A到直线BC距离,故此选项错误;B中的AD不垂直BC,所以线段AD的长不是点A到直线BC距离,故此选项错误;C中的AD不垂直BC,所以线段AD的长不是点A到直线BC距离,故此选项错误;D中的AD⊥BC,所以线段AD的长是点A到直线BC距离,故此选项正确,故选:D.小提示:本题考查点到直线的距离定义,熟知点到直线的距离定义是解答的关键.6、如图所示,过点P画直线a的平行线b的作法的依据是()A.两直线平行,同位角相等B.同位角相等,两直线平行C.两直线平行,内错角相等D.内错角相等,两直线平行答案:D解析:解:如图所示,根据图中直线a、b被c所截形成的内错角相等,可得依据为内错角相等,两直线平行. 故选D.7、a、b、c是平面上的任意三条直线,它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确答案:B解析:根据两直线的位置关系即可判断.a、b、c是平面上的任意三条直线,①它们可以相交于1点,②a∥b,b,c相交于一点,故它们的交点为2点,③a、b、c两两相交于不同点,交点为3个,④a∥b∥c,它们有0个交点,故选B.小提示:此题主要考查两直线的位置关系,解题的关键是分不同情况进行分别讨论.8、一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°答案:B解析:直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.小提示:本题考查的是平行线的性质,解题的关键是熟练掌握平行线的性质.填空题9、如图①是一长方形纸带,∠DEF等于α,将纸带沿EF折叠成图②,再沿GF折叠成图③,则图③中的∠CFE的度数是_______.(用含α的式子表示)答案:180°-3α解析:根据两条直线平行,内错角相等,则∠BFE=∠DEF=α,根据平角定义,则∠EFC=180°-α,进一步求得∠BFC=180°-2α,进而求得∠CFE=180°-3α.解:∵AD∥BC,∠DEF=α,∴∠BFE=∠DEF=α,∴∠EFC=180°-α,∴∠BFC=180°-2α,∴∠CFE=180°-3α,故答案为180°-3α.小提示:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,解题关键是根据轴对称的性质,折叠前后图形的形状和大小不变.10、如图,AB∥CD,∠ABD的平分线与∠BDC的平分线交于点E,则∠1+∠2=_____.答案:90°解析:根据平行线的性质可得∠ABD+∠CDB=180∘,再根据角平分线的定义即可得出答案.解:∵AB∥CD,∴∠ABD+∠CDB=180∘,∵BE是∠ABD的平分线,∴∠1=1∠ABD,2∵DE是∠BDC的平分线,∴∠2=1∠CDB,2∴∠1+∠2=90∘,故答案为90∘.小提示:此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.11、在同一平面内,直线AB与直线CD相交于点O,∠AOC=40°,射线OE⊥CD,则∠BOE的度数为________°.答案:50°或130°解析:先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB的度数,再根据角的和差求出∠BOE的度数.解:如图1:∵OE⊥CD,∴∠DOE=90°,∵∠AOC=40°,∴∠DOB=∠AOC=40°°,∴∠BOE=90°-40°=50°,如图2:∵OE⊥CD,∴∠DOE =90°,∵∠AOC=40°,∴∠DOB=∠AOC=40°°,∴∠BOE=90°+40°=130°,所以答案是:50°或130°.小提示:本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.12、把命题“对顶角相等”改写成“如果⋯那么⋯”的形式,正确的改写应为______.答案:如果两个角是对顶角,那么这两个角相等解析:解:把命题“对顶角相等”改写成“如果⋯那么⋯”的形式为:如果两个角是对顶角,那么这两个角相等.所以答案是:如果两个角是对顶角,那么这两个角相等.小提示:本题考查了把一个命题写成“如果⋯那么⋯”的形式,如果部分是题设,那么部分是结论,准确找出题设部分和结论部分是解决本题的关键.13、如图,直角ΔABC中,AC=5,BC=12,AB=13,则内部五个小直角三角形的周长为_____.答案:30解析:试题解析:Rt△ABC中,AC=5,BC=12,AB=√AC2+BC2=13.由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=30.故答案为30.解答题14、如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.答案:∠AFE=69°.解析:由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.解:∵∠AEC=42°,∴∠AED=180°-∠AEC=138°.∵EF平分∠AED,∴∠DEF=1∠AED=69°.2∵AB∥CD,∴∠AFE=∠DEF=69°.15、如图,∠1=∠2,∠3=∠4,∠5=∠6,求证:CE//BF.答案:见解析.解析:根据平行线的判定和性质定理即可得到结论.证明:∵∠3=∠4,∴DF//BC,∴∠5=∠BAF,∵∠5=∠6,∴∠6=∠BAF,∴AB//CD,∴∠2=∠AGE,∵∠1=∠2,∴∠1=∠AGE,∴CE//BF.小提示:本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键.。

人教版初中数学相交线与平行线易错题汇编及解析

人教版初中数学相交线与平行线易错题汇编及解析

人教版初中数学相交线与平行线易错题汇编及解析一、选择题1.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。

其中正确的结论有( )个A .1B .2C .3D .4【答案】B【解析】【分析】 根据平行四边形的性质、三角形的面积公式、平行线的性质、等腰三角形的性质、直线之间的距离逐个判断即可得.【详解】Q 四边形ABCD 是平行四边形//,//,,AB CD AD BC AB CD OB OD ∴==,则①正确AOB ∆Q 边OB 上的高与AOD ∆边OD 上的高是同一条高,且OB OD =AOB AOD S S ∆∆∴=,则②正确//AD BC QADB CBD ∴∠=∠若ABD CBD ∠=∠,则ABD ADB ∠=∠AD AB ∴=,这与已知条件AD AB >矛盾,则③错误如图,过点A 作AE CD ⊥于点E//AB CD Q∴对边,AB CD 之间的距离相等,且等于AE 的长BC Q 不一定垂直于CDBC ∴不一定等于AE ,则④错误综上,结论正确的个数为2个故选:B .【点睛】本题考查了平行四边形的性质、平行线的性质、等腰三角形的性质等知识点,熟练掌握并灵活运用各性质是解题关键.2.如图,若AB∥CD,则∠α、∠β、∠γ之间关系是()A.∠α+∠β+∠γ=180°B.∠α+∠β﹣∠γ=360°C.∠α﹣∠β+∠γ=180°D.∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF∥AB,∵AB∥CD,∴EF∥CD,∵EF∥AB,∴∠α+∠AEF=180°,∵EF∥CD,∴∠γ=∠DEF,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D.3.如图,点D在AC上,点F、G分别在AC、BC的延长线上,CE平分∠ACB交BD于点O,且∠EOD+∠OBF=180°,∠F=∠G,则图中与∠ECB相等的角有( )A.6个B.5个C.4个D.3个【答案】B【解析】【分析】由对顶角关系可得∠EOD=∠COB,则由∠COB+∠OBF=180°可知EC∥BF,再结合CE是角平分线即可判断.【详解】解:由∠EOD+∠OBF=∠COB+∠OBF=180°可知EC∥BF,结合CE是角平分线可得∠ECB=∠ACE=∠CBF,再由EC∥BF可得∠ACE=∠F=∠G,则由三角形内角和定理可得∠GDC=∠CBF.综上所得,∠ECB=∠ACE=∠CBF=∠F=∠G=∠GDC,共有5个与∠ECB相等的角,故选择B.【点睛】本题综合考查了平行线的判定及性质.4.已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2 B.4 C.5 D.7【答案】A【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.5.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.6.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.7.如图,在平面内,两条直线l1,l2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线l1,l2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有()个.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】到l1距离为2的直线有2条,到l2距离为1的直线有2条,这4条直线有4个交点,这4个交点就是“距离坐标”是(2,1)的点.【详解】因为两条直线相交有四个角,因此每一个角内就有一个到直线l1,l2的距离分别是2,1的点,即距离坐标是(2,1)的点,因而共有4个.故选:D.【点睛】本题主要考查了点到直线的距离,解题时注意:到一条已知直线距离为定值的直线有两条.8.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )A .3.6B .4.8C .1.8D .7.2【答案】A【解析】【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可求ODC ∆的面积.【详解】证明:∵OC 平分∠AOB ,∴∠BOC=∠DOC .∵CD ∥OB ,∴∠BOC=∠DCO ,∴∠DOC=∠DCO ,∴OD=CD=3.∵C 到OB 的距离是2.4,∴C 到OA 的距离是2.4,∴ODC ∆的面积=13 2.4=3.62⨯⨯. 故选A .【点睛】本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.9.如图,下列条件中能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AEF ACD ∠=∠C .34∠=∠D .12∠=∠【答案】C【解析】【分析】对于A,∠EDC=∠EFC不是两直线被第三条直线所截得到的,据此进行判断;对于B、D,∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,据此进行判断;对于C,∠3=∠4这两个角是AC与DE被EC所截得到的内错角,据此进行判断.【详解】∠EDC=∠EFC不是两直线被第三条直线所截得到的,因而不能判定两直线平行;∠AFE=∠ACD,∠1=∠2是EF和BC被AC所截得到的同位角和内错角,因而可以判定EF∥BC,但不能判定DE∥AC;∠3=∠4这两个角是AC与DE被EC所截得到的内错角,可以判定DE∥AC.故选C.【点睛】本题考查平行线的判定,掌握相关判定定理是解题的关键.10.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.11.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°【答案】B【解析】试题分析:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B.考点:平行线的性质.12.给出下列说法,其中正确的是( )A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.13.如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余D.不能确定【答案】C【解析】【分析】根据垂线定义可得∠1+∠3=90°,再根据等量代换可得∠2+∠3=90°.【详解】∵OB⊥CD,∴∠1+∠3=90°,∵∠1=∠2,∴∠2+∠3=90°,∴∠2与∠3互余,故选:C.【点睛】本题考查了垂线和余角,关键是掌握垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.14.下列说法中,正确的是()A.不相交的两条直线是平行线B.过一点有且只有一条直线与已知直线平行C.从直线外一点作这条直线的垂线段叫做点到这条直线的距离D.在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.【答案】D【解析】【分析】运用平行线,垂线的定义,点到直线的距离及平行公理及推论判定即可.【详解】A、不相交的两条直线是平行线,要在同一平面内的前提条件下,故A选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故B选项错误;C、从直线外一点作这条直线的垂线段叫做点到这条直线的距离,应为垂线段的长度,故C 选项错误;D、在同一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直,故D选项正确.故选:D.【点睛】本题主要考查了平行线,垂线的定义,点到直线的距离及平行公理及推论,解题的关键是熟记定义与性质.15.如图所示,下列条件中,能判定直线a ∥b 的是( )A .∠1=∠4B .∠4=∠5C .∠3+∠5=180°D .∠2=∠4【答案】B【解析】【分析】 在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A 、∠1=∠4,错误,因为∠1、∠4不是直线a 、b 被其它直线所截形成的同旁内角或内错角;B 、∵∠4=∠5,∴a ∥b (同位角相等,两直线平行).C 、∠3+∠5=180°,错误,因为∠3与∠5不是直线a 、b 被其它直线所截形成的同旁内角;D 、∠2=∠4,错误,因为∠2、∠4不是直线a 、b 被其它直线所截形成的同位角. 故选:B .【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角16.如图,等边ABC V 边长为a ,点O 是ABC V 的内心,120FOG ∠=︒,绕点O 旋转FOG ∠,分别交线段AB 、BC 于D 、E 两点,连接DE ,给出下列四个结论:①ODE V 形状不变;②ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一;③四边形ODBE 的面积始终不变;④BDE V 周长的最小值为1.5a .上述结论中正确的个数是( )A .4B .3C .2D .1【答案】A【解析】【分析】连接OB 、OC ,利用SAS 证出△ODB ≌△OEC ,从而得出△ODE 是顶角为120°的等腰三角形,即可判断①;过点O 作OH ⊥DE ,则DH=EH ,利用锐角三角函数可得OH=12OE 和OE ,然后三角形的面积公式可得S △ODE=4OE 2,从而得出OE 最小时,S △ODE 最小,根据垂线段最短即可求出S △ODE 的最小值,然后证出S 四边形ODBE =S △OBC=212即可判断②和③;求出BDE V 的周长=a +DE ,求出DE 的最小值即可判断④.【详解】解:连接OB 、OC∵ABC V 是等边三角形,点O 是ABC V 的内心,∴∠ABC=∠ACB=60°,BO=CO ,BO 、CO 平分∠ABC 和∠ACB∴∠OBA=∠OBC=12∠ABC=30°,∠OCA=∠OCB=12∠ACB=30°∴∠OBA=∠OCB ,∠BOC=180°-∠OBC -∠OCB=120°∵120FOG ∠=︒∴∠=FOG ∠BOC∴∠FOG -∠BOE=∠BOC -∠BOE∴∠BOD=∠COE在△ODB 和△OEC 中BOD COEBO COOBD OCE∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ODB ≌△OEC∴OD=OE∴△ODE 是顶角为120°的等腰三角形,∴ODE V 形状不变,故①正确;过点O 作OH ⊥DE ,则DH=EH∵△ODE 是顶角为120°的等腰三角形∴∠ODE=∠OED=12(180°-120°)=30°∴OH=OE·sin ∠OED=12OE ,EH= OE·cos ∠OED=2OE∴∴S △ODE =12DE·2∴OE 最小时,S △ODE 最小,过点O 作OE′⊥BC 于E′,根据垂线段最短,OE′即为OE 的最小值∴BE ′=12BC=12a 在Rt △OBE ′中 OE′=BE′·tan ∠OBE ′=12a ×33=36a ∴S △ODE 3223 ∵△ODB ≌△OEC∴S 四边形ODBE =S △ODB +S △OBE = S △OEC +S △OBE =S △OBC =12BC·OE′=231223=14×2312a ∴S △ODE ≤14S 四边形ODBE 即ODE V 的面积最小不会小于四边形ODBE 的面积的四分之一,故②正确; ∵S 四边形ODBE 23 ∴四边形ODBE 的面积始终不变,故③正确;∵△ODB ≌△OEC∴DB=EC∴BDE V 的周长=DB +BE +DE= EC +BE +DE=BC +DE=a +DE∴DE 最小时BDE V 的周长最小∵3OE∴OE 最小时,DE 最小而OE 的最小值为3 ∴DE 33=12a ∴BDE V 的周长的最小值为a +12a =1.5a ,故④正确;综上:4个结论都正确,故选A .【点睛】此题考查的是等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短的应用,掌握等边三角形的性质、全等三角形的判定及性质、锐角三角函数、三角形的面积公式和垂线段最短是解决此题的关键.17.如图,∠BCD =95°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=95°B .∠β﹣∠α=95°C .∠α+∠β=85°D .∠β﹣∠α=85°【答案】D【解析】【分析】 过点C 作CF ∥AB ,然后利用两直线平行,内错角相等;两直线平行,同旁内角互补进行推理证明即可.【详解】解:过点C 作CF ∥AB∵AB ∥DE ,CF ∥AB∴AB ∥DE ∥CF∴∠BCF=∠α∠DCF+∠β=180°∴∠BCD =∠BCF +∠DCF∴∠α+180°-∠β=95°∴∠β﹣∠α=85°故选:D【点睛】本题考查平行线的性质,熟练掌握平行线的性质进行推理证明是本题的解题关键.18.如图,下列判断:①若12A C ∠=∠∠=∠,,则B D ∠=∠;②若12B D ∠=∠∠=∠,,则A C ∠=∠:③若,A C B D ∠=∠∠=∠,则12∠=∠.其中,正确的个数是( ).A .0B .1C .2D .3【答案】D【解析】【分析】 ①根据12A C ∠=∠∠=∠,证明四边形DEBF 是平行四边形即可判断;②根据12B D ∠=∠∠=∠,证明DC ∥AB 即可判断;③根据,A C B D ∠=∠∠=∠证明DC ∥AB 即可判断.【详解】解:如图,标出∠3,①∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴四边形DEBF 是平行四边形(两组对边分别平行),∴B D ∠=∠,故①正确;②∵2,3∠∠是对顶角,∴23∠∠=,∴13∠=∠(等量替换),∴DE ∥FB (同位角相等,两直线平行),∴∠B+∠DEB=180°,又∵B D ∠=∠,∴∠D+∠DEB=180°,∴DC ∥AB (同旁内角互补,两直线平行),∴A C ∠=∠(两直线平行,内错角相等);故②正确;③∵A C ∠=∠,∴DC ∥AB (内错角相等,两直线平行),∴B CFB ∠=∠(两直线平行,内错角相等),又∵B D ∠=∠,∴D CFB ∠=∠,∴DE ∥FB (同位角相等,两直线平行),∴13∠=∠(两直线平行,同位角相等),∵2,3∠∠是对顶角,∴23∠∠=,∴12∠=∠(等量替换),故③正确.故D 为答案.【点睛】本题主要考查了直线平行的判定(同位角相等、内错角相等、同旁内角互补,两直线平行)、直线平行的性质、等量替换的相关知识点,掌握直线平行的判定和性质是解题的关键.19.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.20.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°【答案】B【解析】【分析】 过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
相交线与平行线易错点 易错点一:对几何语言描述不清楚而出错
例1 判断题. (1)不相交的两条直线叫作平行线.( )
(2)过一点有且只有一条直线与已知直线平行.( ) (3)两直线平行,同旁内角相等.(


4)两条直线被第三条直线所截,同位角相等.( )
(5)-个角的两边分别平行(或垂直)于另一个角的两边,这两个角相等.( )
(6)连结直线外一点和直线上任一点的线段长是点到直线的距离( )
易错点二:填空(重要知识点的应用)
1:如果两条直线都与第三条直线平行,
那么这两条直线也互相平行.(平行公理的推论,也叫平行的传递性)
例题回顾:
若AB//CD ,AB//EF ,则( )// ( ),理由是( )
2:.如果两条直线都与第三条直线垂直,
那么这两条直线也互相平行.(平行线的判定公理的推论)
例题回顾:
若a ⊥b ,,c ⊥b ,则( )//( ),理由是( )
3:经过直线外一点有且仅有一条直线与已知直线平行。

例题回顾:
直线L 同侧有A ,B ,C 三点,如果A ,B 两点确定的直线与B ,C 两点确定的直线与B,C 两点确定的直线都与L 平行,则A,B,C 三点的 位置关系是( )
其理论依据是( )
4:经过直线外(上)一点有且仅有一条直线与已知直线垂直
例题回顾:
小亮在纸上画了如下图形,并标注了12∠
=∠=90°.他画的是( )(填正确与错误),其理由是( )
易错点三:相关结论的灵活运用
1:如图:
两条直线相交于一点形成 _____ ____ 对对顶角,
三条直线相交于一点形成 _____ ____ 对对顶角,
四条直线相交于一点形成 ________ _ 对对顶角,
请你写出n 条直线相交于一点可形成 ___ ______ 对对顶角.
易错点四:折叠问题
易错点五:作图题
易错点六:(拓展)能力提高
2。

相关文档
最新文档