初二数学《勾股定理的逆定理(一)》
《18.2勾股定理的逆定理》作业设计方案-初中数学沪科版12八年级下册
《勾股定理的逆定理》作业设计方案(第一课时)一、作业目标1. 掌握勾股定理的逆定理的基本内容。
2. 理解勾股定理的逆定理在几何图形中的应用。
3. 培养学生的逻辑推理能力和空间想象能力。
二、作业内容1. 知识点复习:回顾勾股定理的基本内容,明确直角三角形三边关系。
2. 预习新知:学习勾股定理的逆定理,即若三角形三边满足一定关系,则该三角形为直角三角形。
重点掌握“两短边的平方和等于最长边的平方”这一条件。
3. 练习题:- 完成课本上的相关练习题,包括判断题、选择题和证明题。
- 结合生活中的实例,如建筑物的斜边与两直角边关系等,进行讨论与解析。
- 完成一份简单的逆定理应用报告,以小组为单位,收集至少三个生活中运用勾股定理逆定理的实例,并分析其应用过程。
三、作业要求1. 认真复习和预习,做好笔记,标记疑难问题。
2. 练习题要求独立完成,不能抄袭他人答案。
如有不懂的问题,可以请教同学或家长。
3. 应用报告需小组合作完成,每个学生至少要负责一个实例的收集与分析。
报告中要注明每个实例的具体情况、如何运用逆定理以及应用的意义。
4. 作业需按时提交,不迟到、不早退。
四、作业评价1. 练习题完成情况:评价学生是否正确理解和掌握了勾股定理的逆定理,以及其应用方法。
2. 应用报告评价:评价学生小组合作的情况、实例收集的多样性和分析的深度。
3. 课堂表现评价:评价学生在课堂上的参与度、发言情况和思维活跃度。
4. 综合评价:综合以上各项评价,给出学生本次作业的总体评价。
五、作业反馈1. 针对学生在练习题和报告中的错误和不足,进行及时的讲解和指导,帮助学生改正错误,提高其解题能力和应用能力。
2. 对于表现优秀的学生和小组,给予表扬和鼓励,激发学生的学习积极性和团队合作精神。
3. 针对学生在课堂上的表现和作业完成情况,及时与家长进行沟通,共同关注学生的学习进步,为下一步的教学工作做好准备。
以上是“初中数学课程《勾股定理的逆定理》作业设计方案(第一课时)”的部分内容。
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1
人教版数学八年级下册17.2《勾股定理的逆定理》说课稿1一. 教材分析《勾股定理的逆定理》是人教版数学八年级下册第17.2节的内容。
这部分教材主要让学生了解并掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过实例引入,引导学生探究并发现勾股定理的逆定理,进而总结出一般性结论。
这部分内容是初中数学的重要知识点,也是中考的热点,对于学生来说,理解和掌握勾股定理的逆定理对于解决实际问题具有重要意义。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理和直角三角形的性质,对于这些知识点有一定的了解。
但是,学生可能对于如何运用勾股定理的逆定理来判断一个三角形是否为直角三角形还不够清晰。
因此,在教学过程中,我需要引导学生通过探究和发现来理解并掌握勾股定理的逆定理,并能够运用到实际问题中。
三. 说教学目标1.知识与技能目标:让学生理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法目标:通过探究和发现,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:理解和掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.教学难点:如何引导学生通过探究和发现来理解并掌握勾股定理的逆定理。
五. 说教学方法与手段在本节课的教学过程中,我将采用引导发现法、实例教学法和小组合作学习法等教学方法。
通过引导学生观察、思考和交流,激发学生的学习兴趣,培养学生的观察能力、思考能力和解决问题的能力。
同时,我将运用多媒体课件和教具等教学手段,帮助学生更好地理解和掌握知识点。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何判断一个三角形是否为直角三角形。
2.探究:引导学生观察和分析实例,发现勾股定理的逆定理,并总结出一般性结论。
3.讲解:对勾股定理的逆定理进行详细讲解,解释其含义和运用方法。
人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)
人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
勾股定理的逆定理(一)
如果三角形的三边长a,b,c有关系a2+b2=c2, • 命题2:
对在这两个命题中, 题设和结论正好相反,我 们把这样的两个命题叫做互逆命题,如果把其 中一个命题叫做原命题,那么另一个叫做它的逆 命题.
练:说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等.
逆命题: 内错角相等,两条直线平行. 成立 成立
(2)最大边为15
解:(1)最大边为17
∵152+82=225+64 =289
172 =289
∵132+142=169+196=365
152 =225
∴152+82 =172
∴以15, 8, 17为边长的
三角形是直角三角形
∴132+ 142 ≠ 152 ∴以13, 15, 14为边长的
三角形不是直角三角形
∴ △ABC是直角三角形(直角三角形意义).
A
b (2)
A′
梳理知识
你能用语言来叙述一下刚才证明的定理吗?
勾股定理的逆定理
如果三角形两边的平方和等于
B a C c
第三边平方, 那么这个三角形是 直角三角形.
b (1)
A
∵在△ABC中,AC2+BC2=AB2(已知),
∴△ABC是直角三角形(如果三角形两边的平方和 等于第三边平方, 那么这个三角形是直角三角形). 这是判定直角三角形的根据之一.
1 BC+ = AB· 2
1 1 = ×3×4+ ×5×12. 2 2
=6+30=36
1 AC· CD 2
办 温顾而知新
b,斜边长c,那么a2+b2=c2 那么这个三角形是直角三角形. 观察上面两个命题,它们的题设与结论之间有怎样 的关系?与同伴交流.
《勾股定理的逆定理》PPT课件(第1课时)
理的逆定理,∴这个三角形不是直角三角形.
总结:根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长的平方.
巩固练习
D
在Rt△CEF中,得EF2=CE2+CF2=a2+4a2=5a2.
在Rt△ADF中,得AF2=AD2+DF2=16a2+4a2=20a2.
在△AEF中,AE2=EF2+AF2,∴△AEF为直角三角形,且AE为
斜边.∴∠AFE=90°,即AF⊥EF.
课堂小结
勾股定理 的逆定理
内容 作用 注意
如果三角形的三边长a 、b 、c满
下列各组线段中,能够组成直角三角形的一组是( D )
A. 1,2,3
B. 2,3,4
C. 4,5,6
D. 1, 2, 3 C
满足下列条件的三角形中,不是直角三角形的是( C )
A.三个内角比为1:2:1
C.三边之比为 3 : 2 : 5
B. 三边之比为1:2: 5 D. 三个内角比为1:2:3
探究新知 考 点 2 勾股定理的逆定理和乘法公式判断三角形
b
根据勾股定理,则有 A1B1 2=B1C1 2+C1A1 2=a2+b2. B
B
∵a2+b2=c2, ∴A1B1 =c, ∴AB=A1B1.
A1
在△ABC和△A1B1C 1中,
aC
BC=B1C1,
b
CA=C1A1, AB=A1B1.
B1 a C1
∴∆ABC ≌ ∆A1B1C1. ∠C=∠ C1 =90°.
18.2 勾股定理的逆定理(一)38
班级:组别:姓名:钢屯中学八年级导学案(2011-2012学年度第二学期)学科:数学编号:38个性天地课题18.2 勾股定理的逆定理(一)课型自学课总课时38 主创人刘国利教研组长签字王廷臣领导签字个性天地学习目标:1.探究勾股定理的逆定理的证明方法.2.给出三边能判断是否为直角三角形.3.理解原命题、逆命题、逆定理的概念及关系。
学习重点:掌握勾股定理的逆定理及简单应用。
学习难点:勾股定理的逆定理的证明。
学法指导:1、学生独立阅读课本P73—P75,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
导学流程:一、旧知回顾勾股定理的文字叙述;勾股定理的符号语言及变形。
二、基础知识探究1.用尺规画△ABC,使(1)a=6,b=8,c=10 (2) a=5,b=12,c=13测量出∠C的值。
观察以上结果,你有什么发现?2、猜想:如果三角形的三边长a,b,c满足______,那么这个三角形就是直角三角形。
3. 证明猜想:阅读课本74页例1以上的部分内容.能结合图形说出勾股定理逆定理的证明思路.4.此定理与勾股定理之间有怎样的关系?(1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 ____,但任何一个定理未必都有 __.6.说出下列命题的逆命题。
这些命题的逆命题成立吗?(1)两直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等;(3)全等三角形的对应角相等;(4)角的内部到角的两边距离相等的点在角的平分线上。
三、综合应用探究1.判断由线段a,b,c组成的三角形是不是直角三角形:⑴a=15,b=8,c=17; ⑵a=13,b=14,c=15.分析:(1)用两个短边的平方和与长边的平方进行比较.(2)解题过程要规范?解:2.思考:什么是勾股数?我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?比一比看谁能说出的勾股数多?四、达标反馈1、在△ABC中,满足下列条件但不是直角三角形的是()A.∠A=∠B-∠C;B.∠A:∠B:∠C=1:3:4;C.a:b:c=1:2:3;D.a2+b2=c2。
湘教版数学八年级下册1.2《勾股定理的逆定理》教学设计
湘教版数学八年级下册1.2《勾股定理的逆定理》教学设计一. 教材分析《勾股定理的逆定理》是湘教版数学八年级下册第1章第2节的内容。
这部分内容是在学生已经掌握了勾股定理的基础上进行教学的,主要是让学生了解并证明勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
教材通过引入生活中的实例,激发学生的学习兴趣,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了勾股定理,对直角三角形的性质有一定的了解。
但部分学生对证明过程的理解可能还不够深入,对勾股定理的逆定理的应用还需要进一步巩固。
此外,学生的学习兴趣和动机对学习效果有很大影响,因此,教师在教学过程中需要注重启发学生思考,激发学生的学习兴趣。
三. 教学目标1.知识与技能:让学生掌握勾股定理的逆定理,能够运用逆定理判断一个三角形是否为直角三角形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生解决实际问题的能力,培养学生的团队合作精神。
四. 教学重难点1.重点:勾股定理的逆定理的内容和证明过程。
2.难点:如何判断一个三角形是否为直角三角形,以及如何运用逆定理解决实际问题。
五. 教学方法1.引导法:教师通过提问、引导,让学生主动思考,发现问题,解决问题。
2.互动法:教师与学生进行互动,让学生在交流中学习,提高学生的表达能力。
3.实践法:让学生通过实际操作,加深对知识的理解和记忆。
六. 教学准备1.教材、教案、课件等教学资料。
2.三角板、直尺等学习工具。
3.相关的生活实例图片或视频。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如建筑物、家具等,引导学生观察其中的直角三角形,让学生感受到直角三角形在生活中的重要性。
然后提出问题:“如何判断一个三角形是否为直角三角形?”引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师介绍勾股定理的逆定理的内容,并通过几何画板或实物模型展示逆定理的证明过程,让学生理解并掌握逆定理。
初中数学_勾股定理的逆定理(1)教学设计学情分析教材分析课后反思
勾股定理的逆定理(1)教学设计教学设计思路本节从古埃及人画直角的方法谈起,然后让学生画一些三角形(已知三边,并且两边的平方和等于第三边的平方).从而发现画出的三角形是直角三角形.猜想如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,即教科书中的命题2,把命题2的条件、结论与上节命题1的条件、结论作比较,引出逆命题的概念。
然后学习勾股定理逆定理的证明,经历证明勾股定理逆定理的过程,得出命题2是正确的,引出勾股定理的逆定理的概念,最后是利用勾股定理的逆定理解决实际问题的例子,可以进一步理解勾股定理的逆定理,体会数学与现实世界的联系。
教学目标1.知识与技能:(1)理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
(2)掌握勾股定理的逆定理,并能应用勾股定理的逆定理判定一个三角形是不是直角三角形。
2.过程与方法(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成过程。
(2)通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
(3)通过对勾股定理的逆定理的证明,体会数形结合方法在问题解决中的作用,并能应用勾股定理的逆定理来解决相关问题。
3.情感态度(1)通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐与辨证统一的关系(2)在探索勾股定理的逆定理的活动中,通过一系列的富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
教学方法启发引导、分组讨论,合作探究教学媒体多媒体课件演示。
教学过程设计(一)创设问题情境,引入新课大家思考一下有没有其他的方法来说明一个三角形是直角三角形呢?前面我们学习了勾股定理,可不可以用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?(二)讲授新课活动1问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。
人教版八年级数学下册_2021春《第1课时_勾股定理的逆定理》教学设计
人教版八下17.2.1勾股定理的逆定理(第1课时)教学设计教学内容解析教学流程图地位与作用在证明一个三角形是直角三角形时,之前都是从角的角度进行证明,三角形勾股定理的逆定理则是从边的数量关系的角度进行证明.通过对勾股定理及其逆定理的学习,加深对性质和判定之间关系的认识.几何中有许多互逆的命题、互逆的定理,它们从正反两个方面揭示了图形的特征性质,互逆命题和互逆定理是几何中的重要概念.概念解析勾股定理的逆定理是通过三角形边的数量关系判定一个三角形是直角三角形,是直角三角形的判定定理.思想方法从特殊到一般的探索勾股定理的逆定理,在寻找证明思路的过程中蕴含着逻辑推理及转化思想.知识类型勾股定理的逆定理是原理与规则类知识,通过探索去发现图形的性质,提出一般的猜想,证明勾股定理逆定理.教学重点探索勾股定理的逆定理.教学目标解析教学目标1.探索勾股定理的逆定理,运用勾股定理的逆定理解决简单的问题.2.结合具体实例,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.目标解析目标1达成的标志是能通过画图探究或从逆命题的角度,猜想勾股定理逆定理,并用文字语言、符号语言、图形语言叙述勾股定理逆定理.能证明勾股定理逆定理.记住一些简单的勾股数,并能根据勾股定理的逆定理判断一个三角形是否是直角三角形.目标2达成的标志是会举例说明逆命题和逆定理的概念,以及性质定理和判定定理的关系.能举例说明原命题和逆命题不一定同时成立.能写出一个命题的逆命题,并判断这个逆命题是否成立.教学问题诊断分析具备的基础学生能运用勾股定理进行简单的计算,经历了探究勾股定理的过程,学习过其他图形的性质和判定,能体会性质与判定的关系.与本课目标的差距分析学生对利用计算证明几何结论比较陌生.存在的问题学生难以想到勾股定理逆定理的证明方法,对于没有写成“如果…那么…”形式的命题,在叙述它的逆命题时有时会感到困难.应对策略勾股定理的逆定理的证明关键是构建全等的直角三角形,教学中采取了从特殊到一般、从动手操作到推理证明的顺序,以问题串的形式,使学生在动手操作的基础上和合作交流的良好氛围中.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的,更有利于突破难点.教学难点证明勾股定理的逆定理.教学支持条件分析准备直角边长为3cm,4cm的直角三角形,用来和画出来的三边长为3cm、4cm、5cm的三角形进行比较,看是否能够重合,从而验证勾股定理的逆定理.利用《几何画板》或图形计算器画已知边长的三角形,度量最大角,发现勾股定理的逆定理.教学过程设计课前检测1.在直角三角形中,有两边分别为3和4,则第三边是()A. 1B. 5C.D. 5或2.如图,用三角尺可按下面方法画角平分线:在已知的∠AOB的两边上分别取点M、N,使OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP.可证得△POM≌△PON,OP平分∠AOB.以上作法中能证明△POM≌△PON根据的是()A. SSSB. SASC. AASD. HL3.写出命题“两条直线相交,只有一个交点”的题设部分和结论部分,判断它是真命题还是假命题,并说明理由.设计意图:复习勾股定理的内容为本节课勾股定理逆定理做准备,全等的证明过程为证明勾股定理逆定理做准备,命题的相关概念为学习互逆命题、互逆定理做准备.新课学习1.探究新知,得到猜想方案一:基于测评,学生对于命题的相关概念遗忘较严重.问题1:我们知道,对于一个直角三角形,已知两条边的长度利用勾股定理可以求出直角三角形的第三边,那么当一个三角形满足什么条件时它是直角三角形?师生互动设计:教师给学生一定的时间思考问题,然后视学生情况以下列问题引导学生进行思考.学生大部分回答①有一个内角是90°;②一个三角形有两个角的和是90°,那么这个三角形是直角三角形.教师总结我们知道,在三角形中,如果有一个角是90°,或两个锐角和为90°,那么这个三角形就为直角三角形,这是从角度的方面判定直角三角形,本节课,我们将学习如何从边的角度判定一个三角形是直角三角形.设计意图:先提出目标性问题,引发学生思考,再逐步探究解决.问题2:实际上,刚才老师提的那个问题,在很久之前的古埃及人已经有了答案,看看他们是怎么做的.在古代,没有直角尺、圆规、量角器等作图工具,人们是怎样得到一个直角的呢?方法:把一根长绳打上13个等距的结,把一根绳子分成等长的12段,然后以3个结间距,4个结间距,5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.按照这种方法真的能得到一个直角吗?设计意图:介绍前人经验,引发思考,让学生感受数学来源于生活,激发学生学习兴趣.合作探究1:接下来我们也按照古人的方法画一画,请同学们组内合作完成合作探究部分,要求组内每位同学完成一幅作图.师生互动设计:学生合作活动1:(小组内合作完成).1.画图:画出边长分别是下列各组数的三角形(单位:厘米)A:3、4、5 ;B:2.5、6、6.5 ;C:3、4、6 ;D:6、8、102.测量:用你的量角器分别测量一下上述各三角形的最大角的度数,并记录下来.3.判断:请判断一下上述你所画的三角形的形状.4.找规律:每组给出的三边之间具有怎么样的数量关系?5.你能得到什么猜想?你的猜想是__________________________.学生分小组回答问题.追问1:C组作图当两边的平方和小于第三边时,这个三角形是钝角三角形,若两边的平方和大于第三边时,这个三角形又是什么三角形呢?追问2:教师适当动画展示,通过老师的动画演示,和同学们的猜想一致,如果给出任意一个三角形,三边长为a、b、c,这三边之间满足什么关系,就构成了直角三角形?结合图形,你能说出这个猜想命题吗?猜想:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.设计意图:教学中让学生画三角形,测量边长,然后计算边长的平方,并分析最长边的平方和其它两边平方和之间的关系,最后引导得出结论.让学生充分经历测量——计算——归纳——猜想等几何定理的探索过程.方案二:基于测评,学生对于命题的相关概念掌握情况良好.问题1:怎样判定一个三角形是直角三角形呢?师生互动设计:学生可能无从回答这个问题.或者从角的关系入手回答.追问1:回忆一下我们学习等腰三角形的过程,学习完了等腰三角形我们学习了什么?是如何进行学习的?学生回答“学习等腰三角形的判定”,通过把等腰三角形的性质中的题设和结论互换,得到等腰三角形判定的猜想.追问2:你还学习过哪些将题设和结论互换得到的定理呢?师生互动设计:学生思考后回答平行线的性质和判定也是将题设和结论互换得到的.追问3:你能从性质和判定的关系出发思考一下怎样判定一个三角形是直角三角形吗?师生互动设计:学生猜想将勾股定理的题设和结论互换得到直角三角形的判定.猜想:如果三角形的三边长a、b、c满足a2+b2=c2 , 那么这个三角形是直角三角形.设计意图:引导学生从研究一个图形的性质和判定的角度入手进行思考,感受性质和判定的关系,体会互逆命题的关系,从而得到猜想.2.证明猜想,得到定理问题3:我们看到这个猜想和勾股定理的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做逆命题.我们得到的这个猜想是不是正确的呢?我们要进行证明.如何证明这个命题呢?师生互动设计:学生先独立思考,然后教师视学生情况直接让学生分析或以下列问题引导.追问1:对于这个猜想我们需要证明的是什么?通过什么证明?师生互动设计:学生回答一个三角形是直角三角形.通过三边的关系进行证明.设计意图:检测学生是否真的明确证明对象.追问2:那么满足什么条件的三角形是直角三角新呢?师生互动设计:学生回答一个内角是90°.设计意图:将证明对象聚焦到三角形的构成元素.追问3:如何证明一个角是90°?师生互动设计:学生感觉到困难.追问4:如果已经有一个三角形是直角三角形呢?师生互动设计:学生回答只需要运用全等进行证明即可.设计意图:帮助学生理清证明对象渗透证明方法.合作探究2:作图:1.三边长度为3cm,4cm,5cm的三角形ABC;2.以3cm,4cm为直角边的直角三角形A'B'C',并剪下△A'B'C',放在△ABC上,两个三角形是否重合?师:如果老师把边长是3、4、5的三角形换成边长分别为a、b、c,且满足a2+b2=c2,你会证明这个三角形是直角三角形么?几何推理论证:已知:在△ABC中,AB=c,BC=a,CA=b,并且a2+b2=c2求证:∠C=90°.(探究的关键是构建一个直角边是a、b的Rt△A’B’C’,然后和△ABC比较!于是画一个Rt△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a)证明 : 作△A’B’C’,使∠C’=90°,A’C’=b,B’C’=a,如图,那么A’B’2=a2+b2(勾股定理)又∵a2+b2=c2(已知)∴A’B’2= c2,即A’B’=c (A’B’>0)∴△ABC≌△A’B’C’(SSS)∴∠C=∠C’=90°,∴△ABC是直角三角形.当我们证明了命题2是正确的,那么命题就成为一个定理.并且这个命题的题设和结论和勾股定理的题设和结论相反,我们就称之为勾股定理逆定理,利用这个定理可以判定一个三角形是否为直角三角形.一般地原命题成立时,它的逆命题可能成立也可能不成立.像勾股定理和它的逆定理这样的两个互逆命题都是成立的,我们称之为互逆定理.设计意图:引导学生分组画三边长度为3cm,4cm,5cm的三角形和3cm,4cm 为直角边的直角三角形.让学生自然联想到三角形全等这一工具,为构造直角三角形,证明当前三角形与一个直角三角形全等做好铺垫,从而证明当前三角形是直角三角形,让学生体会这种证明思路的合理性,经历从特殊到一般的探究过程,从而突破本节课的教学难点.实际应用归纳总结3.定理运用,加深理解【例题1】判断以下线段组成的三角形是不是直角三角形:(1)a=15,b=17,c=8;(2)a=13,b=14,c=15;师生互动设计:学生计算并判断三角形是否为直角三角形,教师进行适当点拨.关注学生能否进一步理解勾股定理的逆定理的用处,以及能否运用几何语言规范书写过程.介绍勾股数,像15、8、17这样,能够成为直角三角形三条边长度的三个正整数,称为勾股数.设计意图:通过练习帮助学生把陈述性的定理转化为认知操作,让学生学会用勾股定理的逆定理判断一个三角形是直角三角形.【例题2】说出下列命题的逆命题.这些命题的逆命题是真命题吗?(1)两条直线平行,内错角相等.(2)对顶角相等.(3)线段垂直平分线上的点到线段两端点的距离相等.师生互动设计:学生独立思考并完成回答,教师关注学生如何写出命题的逆定理,对互逆命题关系及真假性的理解,体会原命题成立但是逆命题不一定成立.归纳总结4.课堂小结,有效提升教师引导学生对以下问题进行反思,回顾本节课内容:1.勾股定理的逆定理的内容是什么?它有什么作用?2.原命题、逆命题之间有什么关系?什么是互逆定理?3.我们证明勾股定理的逆定理的思路是什么?设计意图:引导学生回顾和理解勾股定理的逆定理,明确其基本应用.体会互逆命题的有关知识.引导学生回顾和体会证明勾股定理逆定理的基本思路.人教版八下17.2.1勾股定理逆定理(第1课时)目标检测一、选择题1.已知三角形三条边分别是1,,2,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形2.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是()A.a=8,b=15,c=17B.a=3,b=5,c=4C.a=4,b=8,c=9D.a=9,b=40,c=41二、填空题3.下列命题:①对顶角相等;②等腰三角形的两个底角相等;③两直线平行,同位角相等.其中逆命题为真命题的有:_________________(请填上所有符合题意的序号).4.已知∆ABC中,BC=41,AC=40,AB=9,则此三角形为____________三角形,____________是最大角.三、解答题5.在△ABC中,AB=c,BC=a,CA=b,判断由下列a,b,c组成的三角形是不是直角三角形;如果是,请指出哪个角是直角:(1)a=15,b=8,c=17;(2)a=13,b=15,c=14.。
勾股定理逆定理(1)
勾股定理的逆定理(一)【目标导航】1.用三角形三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想. 2.探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的相关概念及关系.【预习引领】1.在△ABC 中,∠C =90°,(1)已知 a =2.4,b =3.2,则c = ;(2)已知c =17,b =15,则△ABC 面积等于 ; (3)已知∠A =45°,c =18,则a = .2.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为 . 3.已知一个直角三角形的两边长分别为3和4,则第三边长是 .【新授讲解】一、创设情境,导入新授实验方法:用一根钉上13个等距离结的细绳子,让同学操作,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用角尺量出最大角的度数.(90°),能够发现这个三角形是直角三角形. 命题:如果三角形的三边长a ,b ,c 满足222c b a =+,那么这个三角形是直角三角形. 此命题是真命题吗?若是,请证明你的猜想.【归纳1】勾股定理的逆定理: . 二、使用新知,应用举例例1 判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)a =15,b =8,c =17; (2)a =13,b =14,c =15.练习1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是 ( )A .7,24,25B .213,214,215 C .3,4,5 D .4,217,218 2.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 .3.若一个三角形的三边之比为5∶12∶13,且周长为60cm ,则它的面积为 . 4. 顶角为45°,腰为20cm 的等腰三角形的面积等于______________.5. 若△ABC 三边满足c b a c b a 262410338222++=+++, 试判断△ABC 的形状.例2 下列命题都成立,写出它们的逆命题.这些逆命题成立吗?(1)同旁内角互补,两直线平行;(2)如果两个角是直角,那么它们相等;(3)全等三角形的对应边相等;(4)如果两个实数相等,那么它们的平方相等.【归纳2】1.真命题也称定理. 2.定理都有逆命题,但不一定有逆定理. 练习1.写出下列命题的逆命题,这些逆命题都成立吗?如果不成立,请说出理由或举反例. (1)两直线平行,同位角相等;(2)内错角相等,两直线平行;(3)对顶角相等;(4)等角的余角相等;(5)若a =b , 则22b a =;(6)若m ,n 是两个偶数,那么m +n 也是偶数.2.判断(1)每个命题都有逆命题.( ) (2)每个定理都有逆定理.( )【课堂练习】1.命题一般由两部分组成,分别是__________和________________.2.两个命题的题设和结论正好相反,这样的命题叫做 ______________,如果把其中一个叫做原命题,则另一个叫做它的________命题.3.一般地,如果一个定理的逆命题经过证明是准确的,它也是一个定理,则称这两个定理互为______________________. 4.若三角形三边长为44n m +,44n m -,222n m (m >n >0).求证该三角形是直角三角形.5.如下图中分别以△ABC 三边a ,b ,c 为边向外作正方形、正三角形,为直径作半圆, 若S 1+S 2=S 3成立,则△ABC 是直角三角形吗?A B C a b c S 1 S 2 S 3A C a b c S 1S 2 S 3 B C a b c S 1 S 2 S 3 A【课后作业】1.两个命题的题设和结论正好相反,这样的命题叫做 ______________,如果把其中一个叫做原命题,则另一个叫做它的____________命题.2.一般地,如果一个定理的逆命题经过证明是准确的,它也是一个定理,则称这两个定理互为______________________.3.勾股定理:__________________________________________________________________; 勾股定理的逆定理:_________________________________________________________. 4.下列各命题的逆命题不成立的是 ( ) A .两直线平行,同旁内角互补 B .若两个数的绝对值相等,则这两个数也相等 C .对顶角相等 D .如果a 2=b 2,那么a =b 5.分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17; (4)4,5,6.其中能构成直角三角形的有 ( ) A .4组 B .3组 C .2组 D .1组6. 三角形的三边长分别为22b a +、2ab 、22b a -(a 、b 都是正整数),则这个三角形是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定7.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( ) A .1倍 B .2倍 C .3倍 D .4倍8.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中准确的是 ( )715242520715202425157252024257202415(A)(B)(C)(D)A .B .C .D . 9.在△ABC 中,若三边关系为a 2-b 2= c 2,则△ABC 中____________是直角.10.在△ABC 中,若a =8,b =15,c =17,则△ABC 的面积为________.11.如图所示的一块地,已知AD =4m ,CD =3m ,AD ⊥DC ,AB =13m ,BC =12m ,求这块地的面积.12.如图,已知等腰△ABC 的底边BC =20cm ,D 是腰AB 上一点,CD =16cm ,BD =12cm ,求△ABC 的周长.13.如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是等腰三角形时,求点P 的坐标.(备用图)【提升题】1.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内的一点,且PB =1,PC =2,P A =3, 求∠BPC 的度数.勾股定理的逆定理(二)【目标导航】1.灵活应用勾股定理及其逆定理解决实际问题.2.构造勾股数,利用勾股定理的逆定理证明三角形是直角三角形,再利用勾股定理实行计算. 3.研究四边形的问题,通常添加辅助线把它转化为研究三角形的问题.【例题探究】例1 某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一 固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个 方向航行吗?练习:如图在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?例2一根30米长的细绳被折成3段,围成一个三角形,其中一条边的长度比较短边长7米, 比较长边短1米,请你试判断这个三角形的形状.练习:一根24米绳子,折成三边为三个连续偶数的三角形,求三边长并判断此三角形的形状.例3满足222c b a =+的三个正整数称为勾股数,如3、4、5;5、12、13;7、24、25等等,请你举出三组勾股数.练习1.若a 、b 、c 是一组勾股数,则ak 、bk 、ck (k 是正整数)也是一组勾股数吗?2.古希腊的哲学家柏拉图曾指出,如果表示m 大于1的整数,a =2m ,b =m 2-1,c =m 2+1,那么a 、b 、c 为勾股数,你认为对吗?如果对,你能利用这个结论得出一些勾股数吗?例4已知:如图四边形ABCD ,AD ∥BC ,AB =4,BC =6,CD =5,AD =3.求四边形ABCD 的面积.练习:如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB =4米,BC =3米,CD =13米,DA =12米,又已知∠B =90°.DC BA例5已知:如图△ABC 中,CD 是AB 边上的高,CD 2=AD ·BD .求证:△ABC 是直角三角形.练习:一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?(AB 垂直于两条相交直线即AB 垂直于它们所在的平面)【课后作业】1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是 ( )B CD C BAA .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形.2.若a ,b ,c 是△ABC 的三边长,且满足a 2c 2+b 2c 2=a 4 -b 4,则△ABC 是 . 3.若△ABC 的三边a 、b 、c ,满足a :b :c =1︰1︰2,试判断△ABC 的形状.4.已知:如图,四边形ABCD ,AB =1,BC =43,CD =413,AD =3,且AB ⊥BC . 求:四边形ABCD 的面积.5.已知:在△ABC 中,CD ⊥AB 于D ,且AC 2=AD ·AB .求证:△ABC 是直角三角形.6.已知△ABC 的三边为a 、b 、c ,且a +b =4,ab =1,c =14,试判定△ABC 的形状.7.如图,E 、F 分别是正方形ABCD 中BC 和CD 边上的点,且AB =4,CE =41BC ,F 为CD 的中点,连接AF 、AE ,问△AEF 是什么三角形?请说明理由.8.将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC •边上F 点处,若CE =3cm ,AB =8cm ,则图中阴影部分面积为多少?9.如图,圆柱形无盖玻璃容器,高18cm ,底面周长为60cm ,在外测距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm 的F •处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度.10.如图,南北方向PQ 以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知正在PQ 上B 处巡逻的103号艇注意其动向,经检测AC =10海里,AB =6海里,BC =8海里,若该船只的速度为12.8海里/小时,则可疑船只最早何时进入我领海?【提高题】图①所示的正方体木块棱长为6cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A 爬行到顶点B 的最短距离是多少?D CA B F EDC BA。
初中数学 如何使用勾股定理的逆定理计算一个直角三角形的未知边长
初中数学如何使用勾股定理的逆定理计算一个直角三角形的未知边长要使用勾股定理的逆定理计算一个直角三角形的未知边长,我们可以按照以下步骤进行:步骤一:了解勾股定理的逆定理勾股定理的逆定理指出,如果一个三角形是直角三角形,那么最长边的平方等于其他两边的平方之和。
即,在一个直角三角形中,边c为最长边,边a和边b为其他两边,满足c² = a² + b²。
步骤二:确定已知信息在计算直角三角形的未知边长之前,我们需要确定已知的信息。
通常,我们已知一个直角三角形的两个边长,然后需要计算第三边长。
假设我们已知直角三角形的边a和边b的长度,而边c的长度是未知的。
步骤三:应用勾股定理的逆定理根据勾股定理的逆定理,我们可以将已知的边长代入公式c² = a² + b²,然后解方程求解未知边长c。
具体步骤如下:1. 将已知边长的平方代入公式:c² = a² + b²。
2. 将已知的a²和b²的值相加,得到c²的值。
3. 对c²进行平方根运算,得到边c的长度。
通过以上步骤,我们可以计算出直角三角形的未知边长c。
步骤四:检查计算结果在进行计算后,我们应该检查计算结果是否合理。
检查的方法是将计算得到的边长代入勾股定理的逆定理,即验证c² = a² + b²是否成立。
如果计算结果与这个等式相符,那么我们可以确认计算正确,并得到了直角三角形的未知边长。
总结:使用勾股定理的逆定理计算直角三角形的未知边长的步骤包括了了解逆定理、确定已知信息、应用逆定理解方程、计算未知边长和检查计算结果的合理性。
通过这些步骤,我们可以准确地计算直角三角形的未知边长。
《勾股定理的逆定理》优质公开课1
第十七章
17.2.1 勾股定理的逆定理
学习目标
1.能利用勾股定理的逆定理判定一个三角形是 否为直角三角形.
2.灵活运用勾股定理及其逆定理解决问题. 3.理解原命题、逆命题、逆定理的概念及关 系.
导入新知
同学们,古埃及人曾经用下面的 方法画直角:将一根长绳打上等距离 的13个结,然后用桩钉成一个三角形 (如图),他们认为其中一个角便是直 角.你知道这是什么道理吗?
新知小结
用数学几何知识解决生活实际问题的关键是:建模 思想,即将实际问题转化为数学问题;这里要特别注意 弄清实际语言与数学语言间的关系;如本例中:“点与 点之间的最短路线”就是“连接这两点的线段”,“点 与直线的最短距离”就是“点到直线的垂线段的长”.
巩固新知
1 如果三条线段长a,b,c满足a2=c2–b2,这三 条线段组成的三角形是不是直角三角形?为 什么?
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论互换,写出原命题的逆命题,最后判 断逆命题的真假.
解:(1)原命题是真命题.逆命题为:如果两条直线只有 一个交点,那么它们相交.逆命题是真命题.
(2)原命题是假命题.逆命题为:如果a2>b2,那么a >b.逆命题是假命题.
(3)原命题是真命题.逆命题为:如果两个数的和为 零,那么它们互为相反数.逆命题是真命题.
A.1个 便是直角.你知道这是什么道理吗?
B.2个
C.3个 D.4个
合作探究
知识点 3 勾 股 数
1. 勾股数:能够成为直角三角形三条边长的三个 正整数. 常见的勾股数有:3,4,5;5,12,13; 8,15,17;7,24,25;9,40,41;….
2.判断勾股数的方法: (1)确定是否是三个正整数; (2)确定最大数; (3)计算:看较小两数的平方和是否等于最大数的
新人教版初中数学八年级下册17.2.1 勾股定理的逆定理
8.(2018·南通)下列长度的三条线段能组成直角三角形的是( A )
A.3,4,5
B.2,3,4
C.4,6,7
D.5,11,12
9.(2019·益阳)已知 M,N 是线段 AB 上的两点,AM=MN=2, NB=1,以点 A 为圆心,AN 长为半径画弧;再以点 B 为圆 心,BM 长为半径画弧,两弧交于点 C,连接 AC,BC,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形
答案显示
1.如果两个命题的题设和结论刚好相反,那么这样的两个命题 叫做__互__逆___命__题___,如果把其中一个命题叫做原命题,那么 另一个叫做它的__逆__命__题____.
2.一般地,如果一个定理的逆命题经过证明是正确的,那么它 也是一个定理,称这两个定理互为_逆__定___理__.
3.下列命题的逆命题正确的是( A ) A.两条直线平行,内错角相等 B.若两个实数相等,则它们的绝对值相等 C.全等三角形的对应角相等 D.若两个实数相等,则它们的平方也相等
17.(2019·河北)已知:整式 A=(n2-1)2+(2n)2,整式 B>0. 尝试 化简整式 A. 解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1 =(n2+1)2.
发现 A=B2,求整式 B. 解:∵A=B2,B>0,∴B=n2+1.
联想 由上可知,B2=(n2-1)2+(2n)2,当 n>1 时,n2-1,2n,
(30°,60°,45°)的和的形式; (2)用旋转法将△CPB 绕点 C 顺时针旋转 90°到△CP′A 的位置.
解:如图,将△CPB 绕点 C 顺时针旋转 90°得△CP′A,则 P′C =PC=2,P′A=PB=1,∠BPC=∠AP′C,连接 PP′. 因为∠PCP′=90°,所以 PP′2=22+22=8. 又因为 P′A=1,PA=3, 所以 PP′2+P′A2=8+1=9,PA2=9. 所以 PP′2+P′A2=PA2. 所以∠AP′P=90°. 易知∠CP′P=45°, 所以∠BPC=∠AP′C=∠AP′P+∠CP′P=90°+45°=135°.
人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解
勾股定理的逆定理要点讲解一、勾股定理的逆定理1 .勾股定理的逆定理“如果直角三角形两直角边分别为a、b 、c,且满足a2+b2=c2.那么这个三角形是直角三角形.” 我们在判断一个三角形是不是直角三角形时,可直接运用这个逆定理.如图1所示,在△ABC中,如果AC2+BC2=AB2,那么△ABC就是直角三角形.2.勾股定理的逆定理与勾股定理的联系与区别联系:(1)两者都与a2+b2=c2有关,(2)两者所讨论的问题都是直角三角形区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系,“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判别一个三角形是否是直角三角形的一个方法.特别说明:勾股定理的逆定理和勾股定理一样,不是凭空想象出来的,而是古代科学家们在实践中逐步发现和认识的,所以我们在学习勾股定理时,也应通过实践来认识和理解它.如通过勾股数画图、剪纸、户外实践等活动认识和理解逆定理,这样才能使我们的印象深刻,认识清楚,理解透彻.二、勾股定理的逆定理的应用勾股定理的逆定理是判断一个三角形是不是直角三角形的重要依据,是运用直角三角形各种性质的先决条件,它体现了数形结合的重要数学思想,在生产实践与现实生活中有着广泛的应用.例2 如图2所示,在△ABD中,∠A 是直角,AB=3,AD =4,BC=12,DC=13,△DBC是直角三角形吗?为什么?图2分析:要判断△DBC是不是直角三角形,首先要有它的三条边,而其中的BD边需要通过Rt△BAD得到,所以,解答这个问题的步骤应是,先由Rt△BAD 中的AB、AD求得BD,再根据勾股定理的逆定理进行判定.解:是直角三角形.理由:在Rt△BAD中,根据勾股定理,得BD2=AD2+AB2=33+42=25,所以BD=5 .在△DBC中,BD2+BC2=25+144=169=132=CD2.所以△DBC是直角三角形.例3 如图3所示,在某市的地图上有三个景点A、B、C,已知景点A、B 之间的距离为0.4cm,景点C、B之间的距离为0.3cm,景点A、C之间的距离为0.5cm,问这三个景点为顶点的三角形是直角三角形吗?为什么?分析:要判别三角形是不是直角三角形只要验证AB2+BC2=AC2即可.解:因为0.3 2+0.42=0.52,所以这个三角形一定是直角三角形.说明:在运用勾股定理的逆定理判断三角形是不是直角三角形时,一是要根据三角形中的三条边,看两条较小边的平方和是否等于最大边的平方;二是注意将一组勾股数同时扩大或缩小同样的倍数所得数仍是勾股数.。
八年级下册数学勾股定理的逆定理1
勾股定理的逆定理1知识点1.勾股定理的逆定理 考点1.直角三角形的判别方法例1.判断满足下列条件的三角形是不是直角三角形:(1)在△ABC 中,∠A=25°,∠C=65°; (2)在△ABC 中,AC=12,AB=20,BC=16; (3)一个三角形的三边长a 、b 、c 满足222c a b =-.练习:判断下列下列三角形的形状.(1)在△ABC 中,AC=5,AB=12, BC =13;(2)一个三角形三边长之比为1:1:.2考点2.利用三角形三边关系判定直角三角形.1.三边组成直角三角形的条件.例2.下面给出几组数:①7,8,9;②12,9,15;③均为正整数,n m mn n m n m ,(2,,2222-+ m>n);④2,1,222++a a a .以它们为边长的三角形一定是直角三角形的是( ).练习:在△ABC 中,∠A ,∠B ,∠C 的对边分别为a,b,c,且,))((2c b a b a =-+则( ). A.∠A 为直角 B.∠C 为直角 C.∠B 为直角D.△ABC 不是直角三角形2.从三边满足的关系式中判断三角形的形状.例3.已知a,b,c 为△ABC的三边长,且满足.ABC ,442222的形状试判断△b a c b c a -=-练习:已知a、b、c是△ABC的三边长,且满足关系式:.ABC ,0222的形状试判断△=-+--b a b a c3.通过求三角形三边长判断三角形的形状例4.如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC41,F为CD的中点,连接AF、AE,问:△AEF是什么三角形?请说明理由.练习:如图,在四边形ABCD中,∠C是直角,AB=13,BC=4,CD=3,AD=12,求证:AD⊥BD.考点3.勾股定理及其逆定理的综合应用例5.如图,在△ABC中,AB=17,BC=16,BC边上的中线AD等于15,证明:AB=AC. 练习:如图,在四边形ABCD中,已知AB:BC:CD:DA=2:2:3:1,且∠B=90°,求:∠DAB的度数.考点4.勾股定理及其逆定理的实际应用某校把一块三角形的废地开辟为植物园,如图,测得AC=80m,BC=60m,AB=100m.(1)若入口E在边AB上,且与A,B的距离相等.求从入口E到出口C的最短路线的长(提示:直角三角形中斜边上的中线等于斜边的一半);(2)若线段CD是一条小渠,且点D在边AB上,点D距点A多远时,水渠的距离最短?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习内容:勾股定理的逆定理(一)课型:新授课时间:2009年3月20号
学习目标: 1.阐述直角三角形的判断条件(勾股定理的逆定理).
2.应用直角三角形的判定条件判定一个三角形是直角三角形,探索怎样的数组是“勾股数”,进一步发展说理和简单的推理的意识及能力.
3.历探索一个三角形是直角三角形的条件的过程,发展合情推理能力,体会“形”与“数”的内在联系.
学习重点:用三角形的三边a、b、c满足a2+b2=c2,那么这个三角形是直角三角形这一方法进行直角三角形的判定.
学习难点:理解勾股数的由来,并能用它来解决一些简单的问题.
一新课导入
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a3>0,那么a2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.【画图】请画一个三边分别为3cm,4cm,5cm的三角形,你有什么发现?
3.【实验观察】
实验方法:用一根钉上13个等距离结的细绳子,让同学操作,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用角尺量出最大角的度数.可以发现这个三角形是直角三角形.
4.猜想:三角形的三边满足什么条件时,这个三角形是直角三角形?
5.结论:如果三角形的三边长a、b、c满足 ,那么这个三角形是直角三角形. 6.这个结论有什么用途?
7.这个结论与勾股定理有什么关系?
我的疑问?
二精讲
例1:以6,8,10为三边的三角形是直角三角形吗?如三边为5,6,7的三角形是不是直角三角形?
例2:根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形
(1)a=7,b=24,c=25; (2) a=32,b=1,c=3
2
例3:满足a 2+b 2=c 2的3个正整数a ,b ,c 称为勾股数.
例如:3,4,5是一组勾股数,除了3,4,5这组勾股数之外,你还能写出其他的勾股数吗? 判断:下列各组数是勾股数吗?
(1)3,4,5 (2)6,8,10
(3)9,12,15 (4)12,16,20
你发现什么规律?你还能写出更多的勾股数吗?
例4:已知ABC Δ的三边分别a,b,ca=22n m -,b=2mn,c=2
2n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。
例5.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c 。
三、展示
1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )
A.等腰三角形;
B.直角三角形;
C.等腰三角形或直角三角形;
D.等腰直角三角形。
2.若△ABC的三边a、b、c,满足a:b:c=1:1:2,试判断△ABC的形状。
四、学习小节
通过今天的学习,你有哪些收获?你还有哪些遗憾?
五.检测。
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。
”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是()
A.a=8,b=15,c=17 B.a=9,b=12,c=15
C.a=5,b=3,c=2D.a:b:c=2:3:4
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
2,c=5;⑵a=5,b=7,c=9;
⑴a=3,b=2
⑶a=2,b=3,c=7;⑷a=5,b=6
5.若△ABC的三边a、b、c满足a2+b2+c2+50=6a+8b+10c,求△ABC的面积。
6.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。