九年级数学月考试卷(2)_4

合集下载

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷(含答案)

江苏省南通市2023-2024学年九年级上学期第二次月考数学试卷一、选择题(本大题共10小题,每小题3分,共计30分,在每小题给出的四个选项中恰有一项是符合题目要求的)1.下列各点中,在反比例函数的图象上的是( )4y x =A. B. C. D.(14)--,(14)-,(2)-,2(2),-22.将抛物线向右平移2 个单位长度,再向下平移5 个单位长度,平移后的抛物线的2y x =解析式为( )A. B. C. D.2(2)5y x =+-2(2)5y x =++2(2)5y x =--2(2)5y x =-+3.如图,O 的半径为10,弦AB=16,点 M 是弦 AB 上的动点且点 M 不与点A 、B 重⊙合,则OM 的长不可能是( )A.5B.6C.8D.94.如图,等腰直角三角板ABC 的斜边AB 与量角器的直径重合,点D 是量角器上 120° 刻度线的外端点,连接CD 交AB 于点E ,则∠CEB 的度数是( )A.100°B.105°C.110°D.120°5.正方形网格中,如图放置,则=( )AOB ∠sin AOB ∠C. D.1226.如图,直线,直线m 、n 分别与直线a ,b ,c 相交于点A ,B ,C 和点D ,E ,F ,a ∥b ∥c 若AB =2,AC =5,DE =3,则EF =( )A.2.5B.4C.4.5D.7.57.已知点,,都在反比例函数的图象上,则,A (−4,y 1)B (−2,y 2)C (3,y 3)(0)ky k x =>y 1,的大小关系为( )y 2y 3 A. B. C. D.y 3<y 2<y 1y 2<y 3<y 1y 3<y 1<y 2y 2<y 1<y 38.如图,点D 在△ABC 的边AC 上,添加一个条件,不能判断△ABC 与△BDC 相似的是( )A.∠CBD =∠AB.C.∠CBA =∠C DBD.BC CD AC AB =BC CD AC BC=9.如图,∠B 的平分线 BE 与 BC 边上的中线 AD 互相垂直,并且 BE =AD =4,则BC 值为()A.7B.C. 6D.10.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为,50-(,)对角线 AC 和 OB 相交于点D ,且AC OB =40.若反比例函数的图象经过 ∙(0)k y x x =<点D ,并与BC 的延长线交于点E ,则值等于()CDE S ∆A. 2 B.1.5 C.1 D.0.5二、(本大题共8小题,第11~12每小题3分,13~18每小题4分,共30分)11.抛物线y =2(x +1)2 +3的顶点坐标是.12.在Rt △ABC 中,∠C =90°,AC =5,BC =4,则tanA=.13.正八边形的中心角是 度.14.圆锥的底面半径是3,母线长为4,则圆锥的侧面积为.15.如图,△ABC 和△DEF 是以点O 为位似中心的位似图形,若 OA ∶AD =2∶3,则△ABC 与DEF 的面积比是 .16.如图,有一个测量小玻璃管口径的量具ABC ,AB 的长为18 mm ,AC 被分为60 等份.如果小玻璃管口径DE正好对应量具上20 等份处(DE ∥AB ),那么小玻璃管口径DE = mm.17. 已知,,若 m ≤n ,则实数 a 的23236m n a +=++22324m n a +=++值为.18. 线段AB =,M 为AB 的中点,动点 P 到点 M 的距离是1,连接 PB ,线段 PB绕点P 逆 时针旋转 90° 得到线段 PC ,连接 AC ,则线段 AC 长度的最小值是.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;(2)如图,在Rt △ABC 中,∠C =90°,AC ,BC ,解这个直角三角形.20.(本小题满分10分)如图,是三角形的外接圆,是的直径,AD ⊥BC 于点E .O ABC AD O (1)求证:;BAD CAD ∠=∠(2)若长为8,,求的半径长.BC 2DE =O 21.(本小题满分10分)如图,在平面直角坐标系 xOy 中,直线 y =2x +b 经过点 A (-2,0)与 y 轴交于点 B ,与反比例函数的图象交于点 C (m ,6),过 B 作 BD ⊥y 轴,交反比例函数(0)k y x x =>的图象于点D .连接AD 、CD .(0)k y x x=>(1)b =,k =,不等式 >2x +b (x >0)的解集是;k x(2)求△ACD 的面积.如图,在△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD,交AB于点E,(1) 求证:△ADE∽△ABD;(2)若AB=10,BE=3AE,求线段AD长.23.(本小题满分12分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,(1)求证:AC平分∠BAD;(2)若∠BAD=60°,AB=4,求图中阴影部分的面积.24.(本小题满分12分)某商品进货价为每件40 元,将该商品每件的售价定为50 元时,每星期可销售250 件.现在计划提高该商品的售价增加利润,但不超过58 元.市场调查反映:若该商品每件的售价在50元基础上每上涨1元,其每星期的销售量减少10 件.设该商品每件的售价上涨x元(x为整数且x≥0)时,每星期的销售量为y 件.(1)求y与x之间的函数解析式;(2)当该商品每件的售价定为多少元时,销售该商品每星期获得的利润最大?最大利润是多少?(3)若该商品每星期的销售利润不低于3000 元,求商品售价上涨x元的取值范围.在矩形ABCD 中,AB <BC ,AB =6,E 是射线CD 上一点,点C 关于BE 的对称点F 恰好落在射线DA 上.如图,当点 E 在CD 边上时,①若BC =10,DF 的长为;②若AF ·FD =9时,求 DF 的长;(2)作∠ABF 的平分线交射线 DA 于点M ,当 时,求 DF 的长.12MF BC =26.(本小题满分13分)在平面直角坐标系中,如果一个点的纵坐标比横坐标大k ,则称该点为“k 级差值点”.例如,(1,4)为“3级差值点” ,(﹣3,2)为“5级差值点”.(1) 点(x ,y )是“4级差值点”,则y 与x 的函数关系式是;(2) 若反比例函数的图象上只有一个“k 级差值点”(﹣3≤ k ≤2),t =4m +2k +4,求t 的取m y x=值范围;(3) 已知直线l : y =nx +3与抛物线y =a (x ﹣h )²+h +3交于A ,B 两点,且AB ≥3.若 k ≠3时,2直线 l 上无“k 级差值点”,求a 的取值范围.答案一、选择题1. A2. C3.A4.B4.B5.B6.C7.D8.B9.D 10.C二填空题、11. (-1,3)12.4 513. 4514. 12π15. 4∶2516.1218.三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答题应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:tan45°﹣sin30°cos60°﹣cos 245°;解:原式= (2)分211122-⨯-…………………………………………………………………… 4分11142=--…………………………………………………………………… 5分14=(2)解:在在Rt △ABC 中,∠C =90°………………………………………………………… 7分∴∠A =60°…………………………………………………………………… 8分∠B =90°-∠A =90°-60°=30°………………………………………………… 9分 (10)分2AB AC ==20.(本小题满分10分)解:(1)∵AD 是的 ⊙O 直径∵AD ⊥BC∴弧BD =弧CD ,…………………………………… 2分∴∠BAD =∠CAD …………………………………… 4分C BAtan BC A AC ==(2) 连接OC∵AD 是的 ⊙O 直径∵AD ⊥BC∴CE =BE =BC…………………………………… 5分12∵BC =8∴CE =4…………………………… 6分在Rt △OEC 中,由勾股定理得,222OE EC OC +=设圆的半径长为r ,∵DE =2∴…………………8分222(2)4r r -+=∴5r =∴⊙O 的半径长为5…………………10分21.(本小题满分10分)(1) b =4,k =6,0<x<1…………………6分 (2)在y =2x +4中,令x =0,则y =4,∴B (0,4) ,在中,令y =4则x =1.56(0)y x x=>∴ D (1.5,4),∴BD =1.5…………………8分∴S △ACD =S △ABD +S △BCD ==…………………10分111.54 1.56422⨯⨯+⨯⨯-()9222.(本小题满分10分)(1)证明:∵BD 是∠ABC 的平分线∴∠ABD =∠DBC……………………………1分∵DE ⊥BD∴∠BDE =90°∵∠C =90°∴∠ADE + ∠BDC =90°,∠CBD +∠BDC =90°∴∠CBD = ∠ADE ……………………………………3分∴∠ADE = ∠ABD ……………………………………4分又∵∠A =∠A∴△ADE ∽△ABD ………………………………5分(2)解:∵AB =10,BE =3AE∴AE =2.5,BE =7.5………………………………6分由(1)得△ADE ∽△ABD ,∴………………………………8分AD AE AB AD∴AD 2=AB ·AE =10×2.5=25∴AD =5∴线段AD 长为5.………………………………10分23. (本小题满分12分)(1)证明:如图1,连接OC ,∵CD 为⊙O 切线,∴OC ⊥CD………………………………1分∵AD ⊥CD∴OC // AD ………………………………2分∴∠OCA =∠CAD , ………………………………3分又∵OA =OC∴∠OCA =∠OAC ………………………………4分∴∠CAD =∠OAC ,………………………………5分∴AC 平分∠DAB . ………………………………6分(2)解:如图所示,过点O 作OE ⊥AC 于点E ,则AE =EC =AC ,12∵∠BAD =60°,AC 平分∠DAB∴∠CAB =30°,∠COB =2∠CAB =60°,………………………………8分在Rt △AOE 中,AO =AB =2,12∴OE =OA =1,AE 12=∴AC =2AE =………………………………10分∴AOC BOCS S S ∆=+阴影扇形=2160212360π⨯⨯⨯+……………………………12分23π24.(本小题满分12分)解:(1)由题意可得, y =250-10x=﹣10x+250,y 与x 之间的函数解析式是y =﹣10x +250;……………………………2分(2)设当该商品每件的售价上涨x 元时,销售该商品每星期获得的利润为w 元.由题意可得:w=……………………………4分(5040)(10250)x x +--+=2101502500x x -++=210(7.5)3062.5x --+∵,0≤x ≤25且x 为整数100-<∴当x =7或8时,w 取得最大值3060,此时50+x =57或58.……………………6分答:当该商品每件的售价为57或58元时,每星期获得的利润最大,最大利润为3060元.……………………………7分(3)由题意得:……………………………8分21015025003000x x -++=解得……………………………10分12510x x ==,当x =5或10时,此时50+x =55或60又∵售价不超过58元∴5≤x ≤8且x 为整数…………………………12分25.(本小题满分13分)(1) ①DF 的长为 2 …………………………2分②解:∵四边形ABCD 是矩形∴∠BCD =∠A =∠ABC =∠D = 90°,CD =AB =6由对称可知∠BFE =∠BCD =90°, BF =BC∴∠AFB +∠DFE =90°,∠DEF +∠DFE =90°,∴∠AFB =∠DEF又:∠D =∠A =90°∴△FAB ∽△EDF . ………………………4分∴………………………5分AFBADE FD =∴AB ·DE =AF .DF =9.又∵AB =6,∴DE =……………………………………………6分32∴CE =CD -DE =6 -=………………………7分3292(2)分两种情况讨论.①当点F 在线段 AD 上时,如图(1),过点M 作 MN ⊥BF 于点N ,则∠MNF =∠A =90°.又∵∠AFB =∠NFM∴△FMN ∽△FBA∴MN MF FNAB BF AF==又∵,BF =BC12MF BC =∴12MNMFFNAB BF AF ===∴MN =3,AF =2FN …………………………………………8分∵BM 平分∠ABF ,∠BNM =∠A =90°,∴AM = MN =3.∴AM +MF =2FN∴13()22BN FN FN++=∴13(6)22FN FN++=∴FN =4…………………………………………9分∴AD =BF =BC =6+4=10∴AF =8∴DF =AD - AF =10-8=2…………………………………10分②当点F 在线段 DA 的延长线上时如图(2),过点M 作 MN ⊥BF 于点 P .同①可得AM =MN =AB =3,BN =AB =6,BC = AD =10,12MF =BC =5,12∴AF =8,∴DF =18.综上可知,DF 的长为2或18.…………………………………13分26.(本小题满分13分)26.(1)…………………………………3分4y x =+(2)解:由题意得:mx kx =+∴20x kx m +-=∵图象上只有一个“k 级差值点”∴方程 有两个相等的实数根20x kx m +-=∴△=0∴240k m +=∴…………………………………4分24m k =-∵424t m k =++∴…………………………………5分224t k k =-++=2(1)5k --+当k =1时,t 有最大值5,当t =-3时,t 有最小值-11-11≤t ≤5…………………………………7分(3)由题意得若 k =3时,直线 l 上有“k 级差值点”∴y =x +3∴n =1…………………………………8分∴x +3= a (x -h )²+h +3∴x 1=h ,x 2=…………………………………9分1h a+∵AB ≥利用两点间距离公式或根据够勾股定理得出≥3即≥3………………………………11分12x x -1a ∴或,即………………………………13分103a <≤103a >≥-11,033a a ≥≥-≠。

九年级上册第二次月考数学试卷

九年级上册第二次月考数学试卷

20 -20 学年九年级第一学期第二次月考数学学科试卷学校: 班级: 姓名: 考号:一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的。

1.抛物线2(2020)2021y x =-+的顶点坐标是( )A .(2020,2021)-B .(2020,2021)C .(2020,2021)-D .(2020,2021)-- 2.已知是方程x 2﹣3x +c =0的一个根,则c 的值是( )A .﹣6B .6C .D .23.为了解学生假期每天帮忙家长做家务活动情况,学校团委随机抽取了部分学生进行线上调查,并将调查结果绘制成频数直方图(不完整,每组含最小值,不含最大值),并且知道80~100分钟占所抽查学生的17.5%,根据提供信息,以下说法不正确的是( )A.本次共随机抽取了40名学生;B.抽取学生中每天做家务时间的中位数落在40~60分钟这一组;C.如果全校有800名学生,那么每天做家务时间超过1小时的大约有300人;D.扇形统计图中0~20分钟这一组的扇形圆心角的度数是30°; 4.抛物线y =2x 2与y =﹣2x 2相同的性质是( ) A .开口向下 B .对称轴是y 轴C .有最低点D .对称轴是x 轴5.某校高一年级今年计划招四个班的新生,并采取随机摇号的方法分班,小明和小红既是该校的高一新生,又是好朋友,那么小明和小红分在同一个班的机会是( ) A .B .C .D .6.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =48°,则∠OAB 的度数为( ) A .24°B .30°C .50°D .60°7.如图,△COD 是△AOB 绕点O 顺时针方向旋转30°后所得的图形,点C 恰好在AB 上,则∠A 的度数为( ) A .30°B .60°C .70°D .75° 8.若二次函数y =x 2+mx 的对称轴是x =4,则关于x 的方程x 2+mx =9的根为( ) A .x 1=0,x 2=8B .x 1=1,x 2=9C .x 1=1,x 2=﹣9D .x 1=﹣1,x 2=99.已知等腰三角形的两边长分别是一元二次方程x 2﹣6x +8=0的两根,则该等腰三角形的底边长为( ) A .2B .4C .8D .2或410.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(,1),下列结论:①abc <0;②b 2﹣4ac >0;③a +b <0;④2a +c <0,其中正确的个数是( ) A .1个B .2个C .3个D .4个二、填空题(本大题共4小题,每小题5分,满分20分) 11.点M (1,2)关于原点的对称点的坐标为 .12.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点H ,若AB =10,CD =8,则BH 的长度为 . 13.若一个圆锥的母线长为4,底面半径是1,则它的侧面展开图的面积是______. 14.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率.某圆的半径为R ,其内接正十二边形的周长为C .若R =,则C = ,≈ (结果精确到0.01,参考数据:≈2.449,≈1.414).三、(本大题共2小题,每小题8分,满分16分)15.解方程: 3x (x +1)=3x +316.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆. (1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,ΔABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,5)。

2022-2023学年度上期九年级月考(二)数学考试试卷

2022-2023学年度上期九年级月考(二)数学考试试卷

2022-2023学年度上期九年级月考(二)考试试卷数 学一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt △ABC 中,∠C=90°,BC=3,AB=5,则sinA 的值为( ) A.35 B.45 C.34 D.以上都不对 2.在Rt △ABC 中,∠C =90°,cos A =35,那么tan B =( ) A .35B .45C .43D .343.在△ABC 中,已知∠A 、∠B 都是锐角,|sinA ﹣12|+(1﹣tanB)2=0,则∠C 度数为( )A.75°B.90°C.105°D.120°4.一个不透明的口袋中,装有5个红球,2个黄球,1个白球,这些球除颜色外其余都相同,从口袋中随机摸一个球,则摸到红球的概率为( ) A .18B .38C .58D .345.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( ) A .B .C .D .6.抛物线22(3)1y x =++的顶点坐标是( )A .()3,1B .()3,1-C .()3,1-D .()3,1--7.二次函数y=3x 2的图象向左平移2个单位,得到新的图象的二次函数表达式是( )A.B.C.D.8.已知点(-2,y1),(0,y2),(1,y3)都在函数2y x=的图象上,则( )A.y2>y3>y1B.y1>y3>y2C.y3>y2>y1D.y2>y1>y39.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.10.已知二次函数2y ax bx c=++的图象如图所示,分析下列四个结论:①abc<0;②b2-4ac>0;③20a b-=;④a+b+c<0.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共5小题,每小题3分,共15分)11.如果一个三角形的三个内角之比是1:2:3,则它们所对的边的比是_________.12.如图所示,小明从坡角为30°的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为_____米.第12题图第14题图13.小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是__________.14.已知二次函数y=−x2+2x+m的部分图象如图所示,则该图象在y轴的左侧与x轴的交点坐标为________.15.已知抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,P是抛物线对称轴l上的一个动点,则PA+PC的最小值是__________.三、解答题(本大题共8小题,共75分)16.(10分)计算:(1)2﹣2﹣2cos30°+con245°﹣|3﹣2|; (2) 6tan230∘-√3sin60∘-2sin45∘17.(9分)一个不透明的口袋中装有三个除所标数字外完全相同的小球,小球上分别标有数字﹣1,0,1.从袋中一次随机摸出两个小球,把上面标注的两个数字分别作为点M的横、纵坐标.(1)请用列表或画树状图的方法列出点M所有可能的坐标;(2)求点M在直线y=﹣x﹣1上的概率.18.(8分)在美化校园的活动中,某兴趣小组用总长为28米的围栏材料,一面靠墙,围成一个矩形花园,墙长8米,设AB的长为x米,矩形花园的面积为S平方米,当x为多少时,S取得最大值,最大值是多少?、19.(9分)已知二次函数的图象以A(-1,4)为顶点,且过点B(2,-5).(1)求该函数的表达式;(2)求该函数图象与坐标轴的交点坐标;20.(9分)如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD =3cm,求BC的长.21.(9分)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:AB=DF;(2)若AD=10,AB=6,求tan∠EDF的值.22.(10分)如图,某建筑物BC上有一旗杆AB,小明在F处,由E点观察到旗杆顶部A的仰角为52︒,底部B的仰角为45︒,小明的观测点与地面距离EF为1.6m,(1)若F与BC相距12m,求建筑物BC的高度;(2)若旗杆AB长3.15m,求建筑物BC的高度.(结果精确到0.1m)(参考数据: 4 tan52 1.280︒≈,).23.(11分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S(3)若点P在第一象限内的抛物线上,且S△ABP,求P点坐标.△COE。

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

河南省郑州市二七区第八十二中学2023-2024学年九年级上学期第二次月考数学试题(含解析)

2023-2024学年上学期第二次学科问卷试题九年级数学试卷(考试时间:100分钟;满分:120分))一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图所示几何体的左视图是( )A .B .C .D .2.(3分)cos60°的值等于()ABC . D3.(3分)下列平行四边形中,根据图中所标出的数据,不一定是菱形的是()A . B .C .D .4.(3分)如图所示,把两张矩形纸条交叉叠放在一起,重合部分构成一个四边形ABCD .固定一张纸条,另一张纸条在转动过程中,下列结论一定成立的是( )A .四边形ABCD 的周长不变B .四边形ABCD 的面积不变C .AD =AB D .AB =CD5.(3分)大约在两千四五百年前,如图1墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图2所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是9cm ,则蜡烛火焰的高度是()12A .6cmB .8cmC .10cmD .12cm6.(3分)一次函数y =﹣ax +a 与反比例函数在同一平面直角坐标系中的图象可能是( )A . B . C . D .b7.(3分)“儿童放学归来早,忙趁东风放纸鸢”,小明周末在龙潭公园草坪上放风筝,已知风筝拉线长100米且拉线与地面夹角为65°(如图所示,假设拉线是直的,小明身高忽略不计),则风筝离地面的高度可以表示为( )A .100sin65°B .100cos65°C .100tan65° D.8.(3分)如图,是圆桌正上方的灯泡O 发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m ,桌面距离地面1m ,若灯泡O 距离地面3m ,则地面上阴影部分的面积为( )a y x=100sin 65︒A .9.64πm 2B .2.56πm 2C .1.44πm 2D .5.76πm 29.(3分)2023年9月23日至10月8日,第19届亚洲运动会在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人,分别取名“琮琮”“宸宸”和“莲莲”,某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个.设该商户吉祥物周边产品销售量的月平均增长率为x ,则可列方程为( )A .10(1+x )2=11.5B .10(1+2x )=11.5C .10x 2=11.5D .11.5(1﹣x )2=1010.(3分)如图,在△ABC 中,AC =6,BC =8,AB =10.分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为S 1、S 2、S 3、S 4.则S 1﹣2S 2﹣3S 3+4S 4等于( )A .66B .56C .24D .12二、填空题(共5小题,满分15分,每小题3分)11.(3分)五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则的值是_______.12.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为16的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此三维码中黑色阴影的面积为________.AB BC13.(3分)把一块含60°角的三角板ABC 按图方式摆放在平面直角坐标系中,其中60°角的顶点B 在x 轴上,斜边AB 与x 轴的夹角∠ABO =60°,若BC =2,当点A ,C 同时落在一个反比例函数图象上时,B 点的坐标为__________.14.(3分)构建几何图形解决代数问题是“数形结合”思想的重要方法,在计算tan45°时,如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,延长CB ,使BD =AB ,连接AD ,使得∠D =15°,所以,类比这种方法,计算tan22.5°=__________.15.(3分)如图,边长为1的正方形ABCD 中,点E 为AD 边上动点(不与A 、D 重合),连接BE ,将△ABE 沿BE 折叠得到△EBH ,延长EH 交CD 于点F ,连接BF ,交AC 于点N ,连接CH .则下列结论:①∠EBF =45°;②△DEF 的周长是定值2;③当点E 是AD 中点时,D 到EF 距离的最大值为.其中正确的结论有__________(填写所有正确结论的序号).三.解答题(共8小题,满分75分)16.(8分)下面是杨老师讲解一元二次方程的解法时在黑板上的板书过程,请认真阅读并完成任务.2x 2﹣3x ﹣5=0解:第一步第二步tan152AC CD ︒====-CN =1-23522x x -=22233532424x x ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭第三步第四步第五步(1)任务一:①小颖解方程的方法是_________. 1分A .直接开平方法;B .配方法;C .公式法;D .因式分解法.②第二步变形的依据是 _________. .2分(2)任务二:请你按要求解下列方程:①x 2+2x ﹣3=0;(公式法) 5分②3(x ﹣2)2=x 2﹣4.(因式分解法)8分17.(9分)为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m =______%;并补全条形图; 1+1分(2)请你估计该校约有______名学生喜爱打篮球;4分(3)现学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少? 9分18.(10分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长AE 交时线CD 于点N ,连接MD 、AN .(1)求证:四边形AMDN 是平行四边形; .6分2349416x ⎛⎫-= ⎪⎝⎭3744x -=±125,12x x ==-(2)填空:①当AM 的值为__________时,四边形AMDN 是矩形;8分②当AM 的值为__________时,四边形AMDN 是菱形. 10分19.(9分)如图①、图②、图③,在4×4的正方形网格中,每个小正方形的边长为1,每个小正方形的顶点叫做格点,线段AB 的端点都在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中,按下列要求画图,只保留作图痕迹,不要求写出画法.(1)在图①中画出线段AB 的中点O .3分(2)在图②中的线段AB 上找到点C,使得. 6分(3)在图③中的线段AB 上找到点D ,使得. 9分20.(8分)如图,已知在△ABC 中,AD 是BC 上的高,且BC =6,AD =4,矩形EFGH 的顶点F 、G 在边BC 上,顶点E 、H 分别在边AB 、AC 上.(1)设EF =x (0<x <4),矩形EFGH 的周长为y ,求y 关于x 的函数解析式;.4分(2)当EFGH 为正方形时,求EF 的长度. 8分21.(9分)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P 点观察所测物体最高点C ,当量角器零刻度线上A ,B 两点均在视线PC 上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式表示β. .3分(2)如图3,为了测量广场上空气球A 离地面的高度,该小组利用自制简易测角仪在点B ,C 分别测得气球A 的仰角∠ABD 为37°,∠ACD 为45°,地面上点B ,C ,D 在同一水平直线上,BC =20m ,求气球A 离地面的高度AD .(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) .9分12AC BC =13BD AD =22.(10分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百毫升)与时间x (时)变化的图象如图(图象由线段OA与部分双曲线AB组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;.5分(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由..............5分23.(12分)综合与实践数学活动课上,李老师给出了一个问题:如图1,在△ABC中,点E,D分别在边AB,AC上,连接DE,∠ADE=∠ABC.【独立思考】(1)如图1,∠AED和∠C的数量关系是∠AED=∠C;.........2分【实践探究】(2)在原有问题条件不变的情况下,李老师增加下面的条件,并提出新问题.如图2,延长CA至点F,使DF=BE,连接BF,延长DE交BF于点H,若∠BHE=∠FAB.在图中找出与DH 相等的线段,并证明.数学活动小组的同学观察图2发现线段BH与线段DH相等,证明过程如下:如图3,在EH上截取EG=FH,连接BG.,∠BHE=∠F+∠FDH,∠FAB=∠AED+∠ADE,∠BHE=∠FAB,∠F=∠AED,……图3请将证明过程补充完整. ....8分【问题解决】(3)数学活动小组的同学对上述问题进行特殊化研究之后发现,当∠BAC =90°时,若给出△ABC 中任意两边长,则图4中所有已经用字母标记的线段长均可求出.该小组提出下面的问题,请你解答.如图4,在(2)的条件下,若∠BAC =90°,AB =3,AC =2,请直接写出BF 和EH 的长. .........12分参考答案1.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:该几何体的左视图如图所示:.故选:A .【点评】本题考查了简单组合体的三视图,掌握从左面看得到的图形是左视图是解题关键.2.【分析】根据60°的余弦值是解答即可.【解答】解:,121cos602=︒故选:C .【点评】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.3.【分析】根据平行四边形的性质及菱形的判定定理求解即可.【解答】解:根据等腰三角形的判定定理可得,平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故A 不符合题意;根据三角形内角和定理可得,平行四边形的对角线互相垂直,即可判定该平行四边形是菱形,故B 不符合题意;一组邻角互补,不能判定该平行四边形是菱形,故C 符合题意;根据平行四边形的邻角互补,对角线平分一个120°的角,可得平行四边形的一组邻边相等,即可判定该平行四边形是菱形,故D 不符合题意;故选:C .【点评】此题考查了菱形的判定及平行四边形的性质,熟记菱形的判定定理及平行四边形的性质定理是解题的关键.4.【分析】设两张等宽的纸条的宽为h ,由条件可知AB ∥CD ,AD ∥BC ,可证明四边形ABCD 为平行四边形,根据平行四边形的面积公式得到BC =CD ,根据菱形的判定和性质定理即可得到结论.【解答】解:设两张等宽的纸条的宽为h ,∵纸条的对边平行,∴AD ∥BC ,AB ∥DC ,∴四边形ABCD 是平行四边形.又∵S ▱ABCD =BC •h =CD •h ,∴BC =CD ,∴四边形ABCD 是菱形,∴AD =AB .故选:C .【点评】本题考查了菱形的判定和性质,面积法等知识,掌握矩形的性质是解题的关键.5.【分析】直接利用相似三角形的对应边成比例解答.【解答】解:设蜡烛火焰的高度是x cm ,由相似三角形对应高的比等于相似比得到:.解得x =6.即蜡烛火焰的高度是6cm .故选:A .【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比.6.【分析】根据反比例函数图象所在的象限可以判定a 的符号,根据a 的符号来确定直线所经过的象限.10159x【解答】解:A 、双曲线经过第一、三象限,则a >0.则直线应该经过第一、二、四象限,故本选项不符合题意;B 、双曲线经过第一、三象限,则a >0.所以直线应该经过第一、二、四象限,故本选项不符合题意;C 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项不符合题意;D 、双曲线经过第二、四象限,则a <0.所以直线应该经过第一、三、四象限,故本选项符合题意.故选:D .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.【分析】过点A 作AC ⊥BC 于C ,根据正弦的定义解答即可.【解答】解:如图,过点A 作AC ⊥BC 于C ,在Rt △ABC 中,,则AC =AB •sin B =100sin65°(米),故选:A .【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握锐角三角函数的定义是解题的关键.8.【分析】设C ,D 分别是桌面和其地面影子的圆心,依题意可以得到△OBC ∽△OAD ,然后由它们的对应边成比例可以求出地面影子的半径,这样可以求出阴影部分的面积.【解答】解:如图设C ,D 分别是桌面和其地面影子的圆心,CB ∥AD ,∴△OBC ∽△OAD∴,∵OD =3,CD =1,∴OC =OD ﹣CD =3﹣1=2,,∴,∴AD =1.2,∴S ⊙D =1.22•π=1.44π(m 2),即地面上阴影部分的面积为1.44πm 2.sin AC B AB=BC OC AD OD=1 1.60.82BC =⨯=0.823AD =故选:C .【点评】题主要考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的对应边成比例求出地面影子的半径,就可以求出阴影部分的面积.9.【分析】根据“某商户7月份销售吉祥物周边产品10万个,9月份销售11.5万个”即可得到一元二次方程.【解答】解:设该商户吉祥物周边产品销售量的月平均增长率为x ,由题意可得,10(1+x )2=11.5.故选:A .【点评】此题考查了从实际问题抽象出一元二次方程,读懂题意,找出等量关系是解题的关键.10.【分析】AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,求出,再根据勾股定理求得,由求得,再根据勾股定理列方程求得,即可求得,则,再证明△FAD ≌△ABI ,则,然后证明△E ′BN ≌△ABC ,则S 4=S △ABC =24,,所以,最后求得S 1﹣2S 2﹣3S 3+4S 4=66.【解答】解:如图,AF 交BP 于点I ,EF 交CM 于点D ,作DG ⊥AI 于点G ,CH ⊥AB 于点H ,∵AC =6,BC =8,AB =10,∴AC 2+BC 2=AB 2=100,∴△ABC 是直角三角形,且∠ACB =90°,∴,∴,245CH =185CG AH ==11816252ACI AI CI S ⨯=⨯=△53AI CI =92CI =272ACI S =△1452ACI ACPQ S S S =-=△正方形2168242FAD ACI ABI ACI S S S S S =-=-=⨯⨯=△△△△2772ACI ABC ABEF BCDE S S S S S =---=△△正方形四边形3432BCMN BCDE S S S S =--=正方形四边形11106822ABC CH S ⨯=⨯⨯=△24=5CH∵四边形ABEF 、四边形ACPQ 、四边形BCMN 都是正方形,∴∠CHA =∠HAG =∠AGC =∠ACP =∠BCM =90°,∴四边形AHCG 是矩形,∴,∵,∴,∴,∴,∴,∴,∵∠ACB +∠ACP =180°,∠ACB +∠BCM =180°,∴B 、C 、P 三点在同一条直线上,A 、C 、M 三点在同一条直线上,∵FA =AB ,∠F =∠BAI =90°,∴∠FAD ﹣∠ABI =90°﹣∠BAI ,∴△FAD ≌△ABI (ASA ),∴S △FAD =S △ABI ,∴,设射线BE 交MN 于点E ′,∵∠N =∠ACB =∠ABE =∠CBN =90°,BN =BC ,∴∠E ′BN =∠ABC =90°﹣∠CBE ,∴△E ′BN ≌△ABC (ASA ),∴E ′B =AB =EB ,∴点E 在MN 上,∴S 4=S △ABC =24,185CG AH ====11816252ACI AI CI S ⨯=⨯=△53AI CI =222563CI CI ⎛⎫=+ ⎪⎝⎭92CI =19276222ACI S =⨯⨯=△127456622ACI ACPQ S S S =-=⨯-=△正方形2168242FAD ACI ABI ACI ABC S S S S S S =-=-==⨯⨯=△△△△△∵,∴,∴,故选:A .【点评】此题重点考查正方形的性质、同角的余角相等、勾股定理、根据面积等式列方程求线段的长度、运用转化思想求图形面积等知识与方法,正确地作出所所需要的辅助线是解题的关键.11.2【分析】过点A 作AD ⊥a 于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【解答】解:过点A 作AD ⊥a 于D ,交b 于E ,∵a ∥b ,∴,故答案为:2.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.12.9.6【分析】用总面积乘以落入黑色部分的频率稳定值即可.【解答】解:经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的面积为16×0.6=9.6.故答案为:9.6.22277710242422ACI ABC ABEF BCDE S S S S S =---=---=△△正方形四边形23477382422BCMN BCDE S S S S =--=--=正方形四边形123445323422434246622S S S S --+=-⨯-⨯+⨯=2AB AE BC ED ==2AB AE BC ED==【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(5,0)【分析】根据题意作出辅助线,然后得出这三个直角三角形都是含有30°的特殊直角三角形,然后利用其性质可求出AE 、BE 、BF 、CF 的长,设OE 的长为m ,则可用含有m 的式子表示出点A 、点C 的坐标,再根据点A ,C 同时落在一个反比例函数图象上,即可求出m 的值,即可求出OB 的长.【解答】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点C 作CF ⊥x 轴于点F ,在Rt △ACB 中,∠ABC =60°,∴∠BAC =90°﹣60°=30°,∴AB =2BC =4,∵AE ⊥x 轴,∴∠AEB =90°,即∠EAB +∠ABO =90°,∴∠EAB =90°﹣60°=30°,∴,设OE =m ,则点A 的坐标为,∵∠ABO =∠ABC =60°,∴∠CBF =180°﹣∠ABO ﹣∠ABC =60°,∵CF ⊥x 轴,∴∠CFB =90°,即∠CBF +∠BCF =90°,∴∠CBF =30°,∴,∴OF =OE +BE +BF =m +3,∴点C 坐标为,∵点A ,C 同时落在一个反比例函数图象上,∴,解得:m =3,∴OB =OE +EB =3+2=5,∴B 点的坐标为:(5,0).故答案为:(5,0).12,2EB AB AE ====(m 11,2BF BC CF ====(m+3)m =+【点评】本题主要考查了反比例函数的性质以及含有30°角的直角三角形的性质:解题关键:用含有m 的式子表示出点A 和点C 的坐标.14【分析】仿照题例构造含22.5°的直角三角形,利用直角三角形的边角关系得结论.【解答】解:在Rt △ABC中,∠C =90°,AC =BC ,延长CB 到D ,使BD =AB ,连接AD .在Rt △ABC 中,∵AC =BC ,∴∠ABC =45°,.∵BD =AB ,∴∠D =∠BAD .∵∠ABC =∠D +∠BAD =45°,∴∠D =22.5°.在Rt △ACD 中,..【点评】本题考查了解直角三角形,看懂题例,学会构造含22.5°角的直角三角形是解决本题的关键.15.①②④【分析】①证明Rt △BHF ≌Rt △BCF 得∠HBF =∠CBF ,HF =CF ,进而得,便可判断①的正误;②由HF =CF 、HE =AE .可得△DEF 的周长是=DE +DE +EF =AD +DC .便可判断②的正误;③设FC =HF =x ,在Rt △DEF 中,利用勾股定理EF 2=ED 2+DF 2,求出FC ,再由相似三角形得出1-AB =tan tan 22.5AC D CD =︒===1=-1-12EBF ABC ∠=∠,即可求出;便可判断③的正误;④连接BD 、过D 作DG ⊥EF ,易得DG ≤DK ,BH ≤BK ,由DG +BH ≤DK +BK =BD .故DG ≤BD ﹣BH ,由此即可得出结论.便可判断④的正误.【解答】解:∵四边形ABCD 是正方形,∴BC =AB =CD =AD =1,∠DAB =∠ABC =∠BCD =∠ADC =90°由折叠性质可知:∠EHB =∠EAB =90°,BH =AB ,AE =EH ,∠EBA =∠EBH ,∴BH =BC ,∠FHB =90°=∠BCF ,又∵BF =BF ,∴Rt △BHF ≌Rt △BCF (HL ),∴∠HBF =∠CBF ,HF =CF ,∴∠ABC =∠CBF +∠FBH +∠HBE +∠EBA =2(∠FBH +∠HBE ),∵∠EBF =∠FBH +∠HBE ,∴∠ABC =2∠EBF ,∴,故①正确;∵AE =EH ,CF =HF ,∴EF =EH +HF =AE +CF ,∴△DEF 的周长=DE +DF +EF =DE +DF +AE +CF =AD +CD .∴△DEF 的周长=2AD =2,故②正确;如图:连接DB 交EF 于K ,过D 作DG ⊥EF ,∴DG ≤DK ,BH ≤BK ,∴DG +BH ≤DK +BK =BD ,∵,BH =AB =1,∴∴,故当K 、G 、H 三点重合,即B 、D 、H 在同一直线上时,点D 到EF 距离DG ,故④CF CN AB AN =CN =1452EBF ABC ∠=∠=︒BD ===1DG +≤1DG ≤-1-正确;设CF =HF =x ,则DF =1﹣x ,∵当点E 是AD 中点时,∴,∴,在Rt △DEF 中,EF 2=DF 2+DE 2,∴,∴,即,在正方形ABCD 中,AB ∥CD ,∴△FCN ∽△BAN ,∴,∵∴解得:故答案为:①②④.【点评】本题考查翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16.【分析】(1)①根据配方法解一元二次方程的一般步骤解答;②根据等式的基本性质解答;(2)①利用公式法解出方程;②利用因式分解法解出方程.【解答】解:(1)①小颖解方程的方法是配方法,故选:B ;②第二步变形的依据是等式的基本性质,故答案为:等式的基本性质;1122AE DE AD ===12EF x =+22211(1)22x x ⎛⎫⎛⎫+=+- ⎪ ⎪⎝⎭⎝⎭13x =13FC =CF CN AB AN=AC ==11=CN =(2)①x 2+2x ﹣3=0,a =1,b =2,c =﹣3,Δ=22﹣4×1×(﹣3)=16>0,则,所以x 1=1,x 2=﹣3;②3(x ﹣2)2=x 2﹣4,则3(x ﹣2)2﹣(x +2)(x ﹣2)=0,∴(x ﹣2)(3x ﹣6﹣x ﹣2)=0,∴x ﹣2=0或3x ﹣6﹣x ﹣2=0,∴x 1=2,x 2=4.【点评】本题考查的是一元二次方程的解法,掌握配方法、公式法、因式分解法解一元二次方程的一般步骤是解题的关键.17.【分析】(1)首先由条形图与扇形图可求得m =100%﹣14%﹣8%﹣24%﹣34%=20%;由跳绳的人数有4人,占的百分比为8%,可得总人数4÷8%=50,进而得出打乒乓球的人数;(2)由1500×24%=360,即可求得该校约有360名学生喜爱打篮球;(3)首先根据题意画出表格,然后由表格即可求得所有等可能的结果与抽到一男一女学生的情况,再利用概率公式即可求得答案.【解答】解:(1)m =100%﹣14%﹣8%﹣24%﹣34%=20%;∵跳绳的人数有4人,占的百分比为8%,∴4÷8%=50;∴50×20%=10(人).补全条形图如下:故答案为:20;(2)1500×24%=360;故答案为:360;(3)列表如下:﹣男1男2男3女24122x -±==-±男1﹣男2,男1男3,男1女,男1男2男1,男2﹣男3,男2女,男2男3男1,男3男2,男3﹣女,男3女男1,女男2,女男3,女﹣∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等.其中一男一女的情况有6种.∴抽到一男一女的概率.答:抽到一男一女学生的概率是.【点评】本题考查的是用列表法或画树状图法求概率以及扇形统计图、条形统计图的知识.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.【分析】(1)证△NDE ≌△MAE (AAS ),得NE =ME ,再由平行四边形的判定即可得出结论;(2)①证△AEM 是等边三角形,得ME =AE ,则MN =AD ,再由矩形的判定即可得出结论;②△AMD 是等边三角形,得AM =DM ,再由菱形的判定即可得出结论.【解答】(1)证明:∵四边形ABCD 是菱形,∴CD ∥AB ,∴∠NDE =∠MAE ,∠DNE =∠AME ,∵点E 是AD 边的中点,∴DE =AE ,在△NDE 与△MAE 中,,∴△NDE ≌△MAE (AAS ),∴NE =ME ,又∵DE =AE ,∴四边形AMDN 是平行四边形;(2)解:①当AM 的值为1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB =AD =2.∵,∴AM =AE ,∵∠DAM =60°,61122P ==12DNE AME NDE MAE DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩111,122AM AD AE AD ====∴△AEM 是等边三角形,∴ME =AE ,∴MN =AD ,∴平行四边形AMDN 是矩形;故答案为:1;②当AM 的值为2时,四边形AMDN 是菱形.理由如下:∵AM =2,∴AM =AD =2,∴△AMD 是等边三角形,∴AM =DM ,∴平行四边形AMDN 是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定以及等边三角形的判定和性质等知识,熟练掌握矩形的判定和菱形的判定与性质是解题的关键.19.【分析】(1)根据网格即可在图①中画出线段AB 的中点O ;(2)根据网格,利用相似三角形的性质即可在图②中的线段AB 上找到点C,使得.(3)根据网格,利用相似三角形的性质即在图③中的线段AB 上找到点D ,使得.【解答】解:(1)如图①线段AB 的中点O 即为所求;(2)如图②线段AB 上点C 即为所求;(3)如图③线段AB 上点D 即为所求.【点评】本题考查了作图﹣运用与设计作图、相似三角形的判定与性质,解决本题的关键是掌握以上知识.20.【分析】(1)根据矩形性质得:EH ∥BC ,从而得△AEH ∽△ABC ,利用相似三角形对应边的比和对应高的比相等表示EH 的长,利用矩形面积公式得y 与x 的函数解析式;(2)令EF =EH ,求得x 进而得到EF 的长度.【解答】解:∵四边形EFGH 是矩形,∴EH ∥BC ,∴△AEH ∽△ABC ,12AC BC =13BD AD =∴,∵EF =DM =x ,AD =4,∴AM =4﹣x ,∴,∴,∴;(2)当EFGH 为正方形时,EF =EH ,由(1)得:,解得:,∴当EFGH 为正方形时,EF 的长度为.【点评】本题考查了相似三角形的性质和判定、二次函数的关系式,熟练掌握相似三角形的性质和判定是本题的关键,注意二次函数自变量的取值.21.【分析】(1)由已知直接可得答案;(2)设AD =x m ,可得CD =AD =x m ,BD =(20+x )m ,而,有,即可解得答案.【解答】解:(1)根据题意得:β=90°﹣α;(2)设AD =x m ,∵∠ACD =45°,∠ADB =90°,∴CD =AD =x m ,∵BC =20m ,∴BD =(20+x )m ,在Rt △ABD 中,,∴,即,EH AM BC AD=464EH x -=3(4)2EH x =-32()2(4)12(04)2y EH EF x x x x ⎡⎤=+=+-=-+<<⎢⎥⎣⎦3(4)2x x =-125x =125tan AD ABD BD ∠=0.7520x x =+tan AD ABD BD∠=tan 3720x x =+︒0.7520x x=+解得:x =60,经检验,x =60是分式方程的解,∴AD =60(m ),答:气球A 离地面的高度AD 是60m .【点评】本题考查解直角三角形﹣仰角俯角问题,解题的关键是掌握锐角三角函数的定义.22.【分析】(1)首先求得线段OA 所在直线的解析式,然后求得点A 的坐标,代入反比例函数的解析式即可求解;(2)把y =20代入反比例函数解析式可求得时间,结合规定可进行判断.【解答】解:(1)依题意,直线OA 过,则直线OA 的解析式为y =80x ,当时,y =120,即,设双曲线的解析式为,将点代入得:k =180,∴;(2)由得当y =20时,x =9,从晚上22:00到第二天早上6:30时间间距为8.5小时,∵8.5<9,∴第二天早上6:30不能驾车去上班.【点评】本题为一次次函数和反比例函数的应用,涉及待定系数法等知识点.掌握自变量、函数值等知识是解题的关键.本题难度不大,较易得分.23.【分析】(1)由三角形内角和定理可得出结论;(2)证明△BGE ≌△DHF (SAS ),由全等三角形的性质得出BG =DH ,∠BGE =∠DHF ,证出∠BHG =∠BGH ,得出BG =BH ,则可得出结论;(3)由勾股定理求出,证出,证明△ADE ∽△ABC ,由相似三角形的性质得出,则,设AE =x ,则,DF =BE =3﹣x .得出方程,解方程可求出BE 的长,证明△BHE ∽△BAF ,由相似三角形的性质得出,即可求出答案.【解答】解:(1)在△ADE 中,∠A +∠ADE +∠AED =180°,在△ABC 中,∠A +∠ABC +∠C =180°,∵∠ADE =∠ABC ,1,204⎛⎫ ⎪⎝⎭32x =3,1202A ⎛⎫ ⎪⎝⎭k y x =3,1202A ⎛⎫ ⎪⎝⎭18032y x x ⎛⎫=≥ ⎪⎝⎭180y x=BC =BC BF ==23AE AC AD AB ==32AD AE =32AD x =3322x x -=+EH BE FA BF=∴∠AED =∠C ;故答案为:∠AED =∠C ;(2)BH =DH .证明:∵∠BEG =∠AED ,∴∠BEG =∠F .在△BGE 和△DHF 中,,∴△BGE ≌△DHF (SAS ).∴BG =DH ,∠BGE =∠DHF ,∵∠BHG +∠DHF =180°,∠BGH +∠BGE =180°,∴∠BHG =∠BGH ,∴BG =BH ,∴BH =DH ;(3)由(2)可知∠BEH =∠F .∴∠BAC =90°,∴,∠FAB =180°﹣∠BAC =90°,∴∠BHE =∠FAB =90°,∵∠HEB =∠AED ,∴∠ABF =∠ADE .∵∠ADE =∠ABC ,∴∠ABF =∠ABC .又∵AB ⊥FC ,∴AF =AC =2,,∵∠DAE =∠BAC ,∠ADE =∠ABC ,∴△ADE ∽△ABC ,∴,∴,设AE =x ,则,DF =BE =3﹣x .BE DF BEG F EG FH =⎧⎪∠=∠⎨⎪=⎩BC ===BF BC ==23AE AC AD AB ==32AD AE =32AD x =∵,∴,解得,∴,∵∠HBE =∠ABF ,∠BHE =∠BAF =90°,∴△BHE ∽△BAF ,∴,即∴.【点评】本题属于三角形综合题,考查了三角形内角和定理,全等三角形的判定和性质,相似三角形的判定与性质,勾股定理等知识,解题的关键是熟练掌握全等三角形的判定与性质及相似三角形的判定与性质.322DFAF AD x =+=+3322x x -=+25x =135BE =EH BE FA BF=2EH =EH =。

苏州中学2024年九年级上学期第一次月考数学试卷(原卷版)

苏州中学2024年九年级上学期第一次月考数学试卷(原卷版)

2024-2025学年第一学期九年级数学第一次月考卷(范围:九上第1、2章、九下第6章 考试时间:120分钟试卷满分:150分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列方程一定是关于 x 一元二次方程的是( ) A. 22350x x −−= B. 2220x xy y ++=C. ()()()213x x x x +=−+D. 250x =2. 下列各条件中,能判断ABC A B C ′′′∽△△的是( )A. 3AB A B ′′=,A A ′∠=∠B. AB BCA B A C =′′′′ ,B B ∠=∠′ C. ABA B BC B C ′′=′′,∠+∠=∠+∠′′A C A CD. 40A ∠=°,80B ∠=°,80∠′=°A ,70B ′∠=°3. 如图,四边形ABCD 内接于O ,它的一个外角70CBE ∠=°,则ADC ∠的度数为( )A. 55°B. 70°C. 110°D. 140° 4. 定义运算21m n mn mn =−−☆,例如242424217=×−×−=☆,则方程20x =☆的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 只有一个实数根 5. 如图,AB 、CD 是O 的弦,且AB CD =,若84BOD ∠=°,则ACO ∠的度数为( )A. 42°B. 44°C. 46°D. 48° 6. 如图,ABC 与DEF 是位似三角形,位似比为2:3,已知3AB =,则DDDD 的长等于( )的A. 49B. 2C. 92D. 2747. “读万卷书,行万里路”我校为了丰富学生的阅历知识,坚持开展课外阅读活动,学生人均课外阅读量从七年级的每年50万字增加到九年级的每年80万字.设该校七至九年级人均阅读量年均增长率为x ,则可列方程为( )A. 250(1)80x +=B. 250(1%)80x +=C. 250(12)80x +=D. 25050(1)50(1)80x x ++++= 8. 如图,a b c ∥∥,若32AD DF =,则下面结论错误的是( ).A 35AD AF =B. 32C. 23AB EF =D. 35BC BE = 9. 如图,ABC 的内切圆O 与AB BC AC 、、相切于点D 、E 、F ,已知435AB AC BC ===,,,,则DE 的长是( )A.B.C.D. 10. 如图,ABC 和ADE 是以点A 为直角顶点的等腰直角三角形,且12AD AB =,分别作射线BD 、CE ,它们交于点M .以点A 为旋转中心,将ADE 按顺时针方向旋转,若AE 的长为2,则MBC △面积的最小值是( ).A. 4B. 8C. 2+D. 二、填空题:本题共8小题,每小题3分,共24分.11. 方程 250x =的解是____.12. 若32a b=,则22a b a b +−的值为____. 13. 已知点P 是线段AB 的一个黄金分割点,且AP BP >,那么:AP AB 的比值为________. 14. 如图,在宽为20m ,长为30m 的矩形地面上修建两条宽均为m x 的小路(阴影),余下部分作为草地,草地面积为2551m ,根据图中数据,求得小路宽x 的值为__________.15. 已知四边形ABCD 是矩形,2AB =,BC =B 为圆心BC 为半径的圆交AD 于点E ,则图中阴影部分的面积为__________.16. 如图,AD 是O 的直径,将弧AB 沿弦AB 折叠后,弧AB 刚好经过圆心O .若6BD =,则O 的半径长是___.17. 已知A 是方程2201010x x −+=的一个根,试求22201020091A A A −++的值______. 18. 如图,AB 为O 的直径,C 为O 上一点,其中6120AB AOC =∠=°,,P 为O 上的动点,连接AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为______.三、解答题:本题共10小题,共96分.解答应写出文字说明、证明过程或演算步棸. 19. 用指定方法解下列一元二次方程(1)23(21)120x −−=(直接开平方法) (2)22470x x −−=(配方法)(3)210x x +−=(公式法)(4)22(21)0x x −−=(因式分解法) 20. 如图,AAAA 是⊙O 的弦,C 是⊙O 上的一点,且60ACB ∠=°,OD AB ⊥于点E ,交⊙O 于点D .若⊙O 的半径为6,求弦AAAA 的长.21. 如图,在正方形ABCD 中,E 为边AD 中点,点F 在边CD 上,且3CF FD =,求证:ABE DEF △△∽.的22. 已知ABC 三边a b c ,,满足()()()271a c a b c b −+−=−∶∶∶∶,且24a b c ++=.(1)求a b c ,,的值;(2)判断ABC 的形状.23. 已知关于x 一元二次方程22230x mx m m ++−=.(1)若方程有两个实数根,求m 取值范围;(2)设22230x mx m m ++−=的两个实数根为1x ,2x ,若221212364x x x x =++,求m 的值. 24. 图Ⅰ是大拇指广场示意图及测量其高度的方案,图Ⅱ是求大拇指高度AB 的示意图.如图Ⅱ,在C 处放置一根高度为2m 且与地平线BF 垂直的竹竿IC ,点A ,I ,D 在同一直线上,测得CD 为3m .将竹竿3m 平移5m 至E 处,点A ,G ,F 在同一直线上,测得EF 为5m .求大拇指的高度.25. 如图,已知O 是ABC 的外接圆,AB 是O 的直径,P 是AB 的延长线上的点,弦CE 交AB 于点D .2POE CAB ∠=∠,P E ∠=∠.(1)求证:CE AB ⊥;(2)求证:PC 是O 的切线;(3)若BD OD =,9PB =,求O 的半径.26. 某超市销售一种饮料,进价为每箱48元,规定售价不低于进价.现在的售价为每箱60元,每月可销售60箱.现为了尽量减少库存,决定对该饮料降价销售,市场调查发现:若这种饮料的售价每降价1元,则每月的销量将增加10箱.的的(1)若11月份每箱饮料降价2元,则该超市11月份可获得的利润是多少?(2)若该超市预计12月份要获得770元的利润,则每箱饮料售价应定为多少元?(3)该超市能否每月获得880元的利润?若能,求出售价为多少元?若不能,请说明理由. 27. 按要求利用无刻度直尺作图(保留作图痕迹).(1)如图1,由小正方形构成的66×网格,每个小正方形的顶点叫做格点,且每个小正方形的边长为1,O 经过A ,B ,C 三个格点,用无刻度的直尺作出圆心O ;(2)如图2,在平行四边形ABCD 中,45A ∠=°,以AB 为直径的圆与CD 相切于点D .请仅用无刻度直尺在图中作出ABD △的重心M .28. 新定义:如果一个四边形的对角线相等,我们称这个四边形为美好四边形.【问题提出】(1)如图1,若四边形ABCD AD BD =,90ABC ∠=°,4AB =,3BC =,求四边形ABCD 的面积;【问题解决】(2)如图2,某公园内需要将4个信号塔分别建在A ,B ,C ,D 四处,现要求信号塔C 建在公园内一个湖泊的边上,该湖泊可近似看成一个半径为200m 的圆,记为E .已知点A 到该湖泊的最近距离为500m ,是否存在这样的点D ,满足AC BD =,使得四边形ABCD 的面积最大?若存在,求出最大值;若不存在,请说明理由.。

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】

九年级数学月考试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。

A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab + b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。

A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。

()2. 任何一个正整数都可以表示为两个质数的和。

()3. 两个等腰三角形的面积相等,则它们的周长也相等。

()4. 任何一个偶数都可以表示为两个奇数的和。

()5. 任何一个正整数都可以表示为三个连续整数的和。

()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积为______。

2. 若一个圆的半径为3,则它的面积为______。

3. 若一个等腰三角形的底边长为8,腰长为5,则它的高为______。

4. 若一个等差数列的首项为2,公差为3,第5项为______。

5. 若一个等比数列的首项为3,公比为2,第4项为______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述等差数列的定义。

3. 简述等比数列的定义。

江苏省南京市联合体2024--2025学年上学期九年级数学月考试卷

江苏省南京市联合体2024--2025学年上学期九年级数学月考试卷

江苏省南京市联合体2024--2025学年上学期九年级数学月考试卷一、单选题1.下列关于x 的方程中,一定是一元二次方程的为( )A .223x xy +=B .21x =C .2350x x +-=D .20ax bx c ++= 2.用配方法解方程2440x x --=时,原方程应变形为( )A .()220x -=B .()228x -=C .()220x +=D .()228x += 3.O e 的半径为5,圆心O 的坐标为()0,0,点P 的坐标为()4,2,则点P 与O e 的位置关系是( )A .点P 在O e 内B .点P 在O e 上C .点P 在O e 外D .点P 在O e 上或O e 外4.如图,AB 是O e 直径,130AOC ∠=︒,则D ∠的度数是( )A .15︒B .25︒C .35︒D .65︒5.如图,AB 是O e 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O e 于点E .若AC =4DE =,则BC 的长是( )A .1BC .2D .46.如图,AB 是半圆O 的直径,点D 在半圆O 上,AB =10AD =,C 是弧BD 上的一个动点,连接AC ,过D 点作DH AC ⊥于H ,连接BH ,在点C 移动的过程中,BH 的最小值是( )A .5B .6C .7D .8二、填空题7.一元二次方程22x =的根是.8.若关于x 的一元二次方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 . 9.某菜鸟驿站第一天揽件100件,第三天揽件169件,设该菜鸟驿站揽件日平均增长率为x ,根据题意所列方程为.10.如图,AB 是半圆O 的直径,点C ,D 在半圆O 上.若54ABC ∠=︒,则BDC ∠的度数为 .11.直角三角形的两直角边长分别为6和8,那么这个三角形的外接圆半径等于. 12.若弦长等于半径,则弦所对圆周角的度数是.13.若三角形的两边长分别是2和4,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长为.14.平面上一点A 与O e 上点的最短距离为2,最长距离为10,则O e 半径为.15.已知a ,b 是关于x 的方程2320100x x +-=的两根,则24a a b --的值是.16.如图,在半圆O 中,C 是半圆上的一个点,将»AC 沿弦AC 折叠交直径AB 于点D ,点E是»AD 的中点,连接OE ,若OE 1,则AB =.三、解答题17.解方程:(1)x 2-2x -3=0(2)(x ﹣3)2=2x ﹣618.如图,在⊙O 中,点C 是»AB 的中点,D 、E 分别是半径OA 和OB 的中点,求证:CD CE =.19.已知关于x 的方程(x -3)(x -2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.20.如图这是一个残缺的圆形部件,已知,,A B C 是该部件圆弧上的三点.(1)利用尺规作图作出该部件的圆心;(保留作图痕迹)(2)若ABC V 是等腰三角形,底边16cm BC =,腰10cm AB =,求该部件的半径R . 21.如图,AB 为O e 的直径,D 是弦AC 延长线上一点,AC CD =,DB 的延长线交⊙O 于点E ,连接CE .(1)求证A D ∠=∠;(2)若»AE 的度数为108︒,求E ∠的度数.22.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.23.如图,四边形ABCD 内接于O e ,连接AC 、BD 相交于点E .(1)如图1,若AC BD =,求证:AE DE =;(2)如图2,若AC BD ⊥,连接OC ,求证:OCD ACB ∠=∠.24.已知,在O e 中,设»BC 所对的圆周角为BAC ∠.求证: 12BAC BOC =∠∠ 证明;圆心O 可能在BAC ∠的一边上,内部和外部(如图①、②和③).如图①,当圆心O 在BAC ∠的一边上时.∵OA OC =,∴A C ∠=∠,∵BOC A C ∠=∠+∠,∴2BOC A ∠=∠,即12BAC BOC =∠∠ 请你完成图②、图③的证明.25.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为E ,K 为弧AC 上一动点,AK DC ,的延长线相交于点F ,连接CK KD ,.(1)求证:AKD CKF ∠=∠;(2)已知8AB CD ==,CKF ∠的大小.26.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±;∴原方程有四个根:11x =,21x =-,32x =,42x =-.(1)解方程()()2224120x x x x +-+-=. (2)解方程2318x x -=27.问题背景:在一次数学兴趣小组活动中,小军对苏科版数学九年级教材第42页的第4题很感兴趣.教材原题:如图1,BD 、CE 是ABC V 的高,M 是BC 的中点.点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?小军在完成此题解答后提出:如图2,若BD 、CE 的交点为点O ,则点A 、D 、O 、E 四点也在同一个圆上.(1)请对教材原题或小军提出的问题进行解答.(选择一个解答即可)直接应用: 当大家将上述两题都解决后,组员小明想起了在七年级通过画图归纳出的一个结论:三角形的三条高所在直线交于同一点,可通过上面的结论加以解决.(2)如图3,ABC V 的两条高BD 、CE 相交于点O ,连接AO 并延长交BC 于点F . 求证:AF 为ABC V 的边BC 上的高.拓展延伸:在大家完成讨论后,曾老师根据大家的研究提出一个问题:(3)在(2)的条件下连接DE 、EF 、FD (如图4),设DEF α∠=,则AOB ∠的度数为________.(用含α的式子表示)。

数学月考试卷(二)及答案

数学月考试卷(二)及答案

学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆第二十五中学九年级上学期 数学月考试卷(二)(本试卷共三道大题,测试满分:150分,测试时间:120分钟)1、下列说法正确的是( )A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.圆的切线垂直于圆的半径D.每个三角形都有一个内切圆2、下列事件发生的概率为0的是( )A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上B 、今年冬天黑龙江会下雪C 、随意掷两个均匀的骰子,朝上面的点数之和为1D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动 转盘,指针停在红色区域。

3、小强、小亮、小文三位同学玩投硬币游戏。

三人同时各投出一枚均匀硬 币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面 向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则 小文赢。

下面说法正确的是( )A 、小强赢的概率最小B 、小文赢的概率最小 C、小亮赢的概率最小 D 、三人赢的概率都相等 4、如图,小红要制作一个高为8cm ,底面圆直径是12cm 的圆锥形小漏斗, 若不计接缝,不计损耗,则她所需纸板的面积是:()A 、60πcm 2B 、48πcm 2 C 、120πcm 2 D 、96πcm25、如图,ABC △内接于圆O ,50A = ∠,60ABC =∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则AEB ∠等于( ) A 、70B 、110C 、90D 、120(第4题图) (第5题图) (第6题图)6、如图将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为( )A 、2cmB C 、 D 、7、如图,⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( ) A 、40° B 、55° C 、65° D 、70°8、如图,以BC 为直径,在半径为2、圆心角为90°的扇形内作一个半圆,交弦AB 于点D , 连接CD ,则阴影部分的面积是( )A .π-1B .π-2C .12π-1 D .12π-2 9、如图,一个小球从A 点沿制定的轨道下落,在每个叉口都有向左或向右两种机会均等的结果,小球最终到达H 点的概率是( )。

上海市松江区四校2023-2024学年九年级下学期月考数学试题

上海市松江区四校2023-2024学年九年级下学期月考数学试题

上海市松江区四校2023-2024学年九年级下学期月考数学试题一、单选题1.在中国共产党第二十次全国代表大会开幕会上,给出了这样的一组数据:基本养老保险覆盖人数已达10.4亿,推动实现全体老年人享有基本养老服务,将数据10.4亿用科学记数法表示,其结果是( ) A .810.410⨯B .81.0410⨯C .91.0410⨯D .100.10410⨯2.比较233、322的大小( ) A .233<322B .233=322C .233>322D .无法确定3.已知不等式组1215x x <⎧⎨-≥-⎩,其解集在数轴上表示正确的是( )A .B .C .D .4.生活垃圾分类回收是实现垃圾减量化和资源化的重要途径和手段.为了解2022年某市第二季度日均可回收物回收量情况,随机抽取该市2022年第二季度的m 天数据,整理后绘制成统计表进行分析.表中34x ≤<组的频率a 满足0.200.30a ≤≤.下面有四个推断: ①表中m 的值为20; ②表中b 的值可以为7;③这m 天的日均可回收物回收量的中位数在45x ≤<组; ④这m 天的日均可回收物回收量的平均数小于3.5. 所有合理推断的序号是( )A .①②B .①③C .②③D .③④5.某气球内充满了一定质量m 的气体,当温度不变时,气球内气体的气压p (单位:kPa )是气体体积V (单位:3m )的反比例函数:mp V=,能够反映两个变量p 和V 函数关系的图象是( )A .B .C .D .6.如图,ABC V 的三个顶点的坐标分别为()3,5A -,()3,0B -,()2,0C ,将ABC 绕点B 顺时针旋转一定角度后使A 落在y 轴上,与此同时顶点C 落在点C '处,则过点C '的反比例函数ky x=中,k 的值为( )A .12B .12-C .4-D .3-二、填空题7.在实数范围内因式分解:222x y -=8.若关于x 的方程2420x x k ++=有实数根,则k 的最大整数值为 .9.请写出一个y 关于x 的函数解析式,满足过点(0,2),且y 随x 的增大而减小 . 10.若m 是方程22310x x -+=的一个根,则2692022m m -+的值为.11.“红绿灯”已经有100多年的历史,“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则.小胡同学每天骑自行车都要经过两个安装有红绿灯的路口.假如每个路口红灯和绿灯亮的时间相同(不计黄灯时间),那么他上学“不遇红灯”的概率是 .12.第19届亚运会将于2023年9月23日至10月8日在杭州举行.在建设比赛场馆期间,某施工方使用A B ,两种机器人来搬运建筑材料,其中A 型机器人每小时搬运的建筑材料是B 型机器人每小时搬运的建筑材料的2倍,A 型机器人搬运1200kg 所用时间比B 型机器人搬运1000kg 所用时间少1小时.设B 型机器人每小时搬运建筑材料kg x ,则可列出方程13.点G 是△ABC 的重心,GD ∥AB ,交BC 于点D ,向量AB m =u u u r u r ,向量AC n =u u u r r,那么向量BDu u u r用向量m u r 、n r 表示为. 14.设两圆的半径为a ,b ,圆心距为d ,若两圆有公共点,则a ,b ,d 满足的数量关系是 15.如图,在ABC V 中,90ACB ∠=︒,5AC =,12BC =,按以下步骤作图:①分别以B C、为圆心,大于12BC 的长为半径画圆弧,两弧相交于点M 和点N ;②作直线MN ,交BC 于点D ;③以点D 为圆心,DC 的长为半径画圆弧,交AB 于点E ,连结CE ,则AE 的长为16.如图15个形状大小相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角为60︒,A ,B ,C 都在格点上,点D 在¼ABC 上,若E 也在格点上,且AED ACD ∠=∠,则t a n AEC ∠=.17.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG GN MN MG ==这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在ABC V 中,已知3AB AC ==,4BC =,若D ,E 是边BC 的两个“黄金分割”点,则ADE V 的面积为.18.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()1,0-,()0,1-,()2,0,点E 是三角形ABC 的外接圆P 上一点,BE 交线段AC 于点D ,若45DBC ∠=︒,则点D 的坐标为.三、解答题19.先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1,1x y . 20.解不等式组112589x x x+⎧≤⎪⎨⎪-⎩<,并写出它的整数解.21.如图,在平面直角坐标系中,直线8y x =-+分别交x 轴、y 轴于AB 、两点,点(),4C a 是直线上一点,点D 在线段OA 上,且6AD =.(1)求CD 所在直线的解析式;(2)在直线AB 上是否存在一点P ,使得18ADP S =V ?若存在,求出点P 的坐标;若不存在,请说明理由.22.筒车是我国古代利用水力驱动的灌溉工具,如图,半径为3m 的筒车O e 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 为2.2m ,筒车上均匀分布着若干个盛水筒,若以某个盛水筒P 刚浮出水面(点A )时开始计算时间.(1)求盛水筒P 从A 点到达最高点所经过的路程; (2)求浮出水面3.4秒时,盛水筒P 到水面的距离;(3)若接水槽MN 所在直线是O e 的切线,且与直线AB 交于点M ,8m MO =,直接写出盛水筒P 从最高点开始,经过多长时间恰好第一次落在直线MN 上.(参考数据:11cos43sin4715︒=︒≈,11sin16cos7440︒=︒≈,3sin22cos688︒=︒≈)23.如图1,在ABC V 中,AB BC =,90ABC ∠=︒,点D 是AC 的中点,点E 在BC 上,连接AE 交BD 于F ,作FG BC ∥交AC 于G ,连接BG ,BG 交AE 于P .(1)求证:AE BG ⊥.(2)连接CP 并延长交AB 于点K ,如图2,若K 恰好是AB 的中点,求证:点G 是线段AC 的黄金分割点.24.如图,直线3y kx =-经过点()1,2A -,与x 轴、y 轴分别交于B 、C 两点,D 点坐标为()1,4.(1)求B 点坐标;(2)在x 轴上找一点E (E 在B 的左边),使得BCD BED S S =V V ,求E 点的坐标;(3)直线AD 交x 轴于F 点,若线段AD 上存在一点P ,使DCP BDF ∠=∠,请直接写出过点O ,B ,P 的抛物线的解析式.25.在半径为2的扇形AOB 中,∠AOB =90°,P 是OA 延长线上一点,过线段OP 的中点H 作OP 的垂线交弧AB 于点C ,射线PC 交弧AB 于点D ,联结OD .(1)如图,当弧AC =弧CD 时,求弦CD 的长;(2)如图,当点C 在弧AD 上时,设P A =x ,CD =y ,求y 与x 的函数关系式,并写出x 的取值范围;(3)设CD 的中点为E ,射线HE 与射线OD 交于点F ,当DF 14=时,请直接写出∠P 的余切值.。

上海市浦东新区建平南汇实验学校2024-2025学年九年级上学期9月月考数学试卷(含答案)

上海市浦东新区建平南汇实验学校2024-2025学年九年级上学期9月月考数学试卷(含答案)

上海市建平南汇实验学校初三数学月考试卷2024.9一、单选题(每题4分,共6小题)1.已知,那么下列等式中,不一定正确的是( )A .;B .;C .;D ..2.如果地图上两地的图距是6cm ,表示实际距离为80km ,那么在地图上图距是3cm 的两地,实际距离是()A .4000m ;B .400000cm ;C .40km ;D .40000dm .3.已知点C 是线段AB上的一点,且满足,则下列式子成立的是()第3题图A .B .C .D.4.在下列命题中,真命题是()A.两边之比是1:2的两个直角三角形相似;B .两边之比是1:2的两个等腰三角形相似;C .有一个内角是50°的两个等腰三角形相似;D .四边长分别是2cm 、3cm 、4cm 、5cm 和8cm 、12cm 、16cm 、20cm 的两个四边形相似.5.如图,在梯形ABCD 中,,对角线AC 和BD 相交于点E ,且,下列等式成立的是()第5题图A .;B .;C .;D .6.如图,在正方形ABCD 中,是等边三角形,AO 和DO 的延长线分别交边BC 于点E 和点F ,联35a b =8a b +=53a b =85a b b +=38a ab =+2AC BC AB =⋅ACBC =BC AB =BCAC =ACAB =AB CD ∥32CD AB =32CDE ABE S S =△△23ADE CDE S S =△△ADE BCE S S =△△49BCE CDE S S =△△AOD △结BD 交线段AO 于点G ,联结BO ,下列结论中错误的是( )第6题图A .;B .;C .;D..二、填空题(每题4分,共12小题)7.已知,则______.8.已知P 是线段AB 上的一个黄金分割点,,cm ,那么______cm .9.已知线段b 是线段c 和线段d 的比例中项,且,,则线段______.10.如图,,如果,,,则______.第10题图11.在某一时刻,测得一根长为1米的竹竿影长为1.6米,同时同地测得一栋居民楼的影长为96米,那么这栋居民楼的高度为______米.12.在中,点E 和点F 分别是边AB 和AC 上的点,已知,,,,则EF 和BC 是否平行?______(填“一定平行”或“可能平行”或“一定不平行”).13.如果将一个三角形的形状保持不变但面积扩大为原三角形面积的25倍,那么扩大后的三角形的周长为原三角形周长的______倍.14.在中,,,垂足为点D ,当,时,______.15.如图,在中,,点O 是的重心,如果,则点O 到边AB 的距离是______.第15题图2AE CF =2BO GO AO =⋅BEO DOG △△∽DO BOBO EO=0234a b c ==≠a b ca b c+-=-+AP BP <8AB =AP =3b =8d =c =AB CD EF ∥∥2AC =5CE =9BD =DF =ABC △2EF =6BC =3AE =9AB =Rt ABC △90ABC ∠=︒BD AC ⊥9AC =2CD =BC =Rt ABC △90B ∠=︒Rt ABC △6BC =16.如图,在中,正方形DEFG 的一边在边BC 上,点G 、F 分别在边AB 、AC 上,AH 是边BC 上的高,AH 与GF 相交于点O ,已知,,则正方形的边长是______.第16题图17.如图,在中,,cm ,cm ,点D 是AB 的中点,点E 以2cm/s 的速度沿着的方向运动,运动到点A 后停止,当与相似时,运动时间是______秒.第17题图18.如图,在矩形ABCD 中,,点E 在AD 边上,且,点F 是边BC 上的一个动点,将四边形ABFE 沿EF 翻折,A 、B 的对应点G 、H 与点C 在同一条直线上,GH 与边AD 交于点O ,当时,BF 的长为______.第18题图三、解答题(本大题共7题,满分78分.19-22题每题10分,23、24题每题12分,25题14分.)19.已知a 、b 、c 是的三边长,且,求:(1)的值.(2)若的周长为24,求各边的长并判断该三角形的形状.20.如图,直线、、分别截直线于点A 、B 、C ,截直线于点D 、E 、F ,且.ABC △8AH =10BC =Rt ABC △90B ∠=︒8BC =10AC =C A →ADE △ABC △4CD =43AE =3DO =ABC △0354a b c==≠4256a bc a+-ABC △1l 2l 3l 4l 5l 123l l l ∥∥(1)如果,,求的长.(2)如果,,,求EF 的长.21.如图,在矩形ABCD 中,,四边形ABFE 是正方形,若矩形DEFC 与矩形ABCD 是相似形.(1)求AD 的长.(2)延长FE 至点O ,使得,联结OA 并延长、联结OB 并延长,分别交直线BC 于点G 、H ,求GH 的长.22.如图,在中,,,点C 和点D 都在边AB 上,且.(1)求证:.(2)求证:.23.如图,在四边形ABCD 中,,对角线,点E 是边AB 的中点,CE 与BD 相交于点F ,.:5:3EF DE =4AB =AC 6AB =8BC =12DF =2AB =3FO EF =Rt AOB △90AOB ∠=︒OA OB =45AOC BOD ∠+∠=︒ADO COB ∠=∠2OB AD BC =⋅90DCB ∠=︒BD AD ⊥2BD AB BC =⋅(1)求证:BD 平分.(2)求证:.24.如图,在梯形ABCD 中,,,,,点P 是线段BD 上的动点,点E 、F 分别是线段AD 和线段BD 上的点,且,联结EP 、EF .(1)求证:.(2)当时,如果,求线段BP 的长.25.如图,在中,,,,点D 是AB上一点,且,过点D 作,垂足为E ,点F 是边AC 上的一个动点,联结DF ,过点F 作交线段BC 于点G (不与点B 、C 重合).(1)求证:;(2)设,,求出y 关于x 的函数解析式,并直接写出定义域;(3)联结DG ,若与相似,直接写出CG 的长度.ABC ∠BE CE BC EF ⋅=⋅AD BC ∥10BC BD ==4CD =6AD =DE DF BP ==EF CD ∥BP BF >EF EP =ABC △90C ∠=︒4AC =5AB =57BD AB =DE AC ⊥FG FD ⊥FCG DEF △△∽AF x =CG y =DFG △CFG △参考答案一、选择题1.A2.C3.D4.B5.C6.D二、填空题7.8.9.10.11.6012.可能平行13.514.15.216.17.或18.三、解答题19、解:设(1)原式.(2)由,得,所以.因为,即 所以是直角三角形20、解(1) 即得(2)即得,21、解:(1)设∵四边形ABFE 是正方形,四边形ABCD 是矩形 ∴∴ ∵矩形DEFC 与矩形ABCD 相似 ∴即解得(负值舍去)即AD(2)四边形ABFE 是正方形,四边形ABCD 是矩形 ∵∴即OE 和OF 分别是边AD 和边GH 边上的高 ∵ ∴∵解得22、证明:(1)∵是等腰直角三角形 ,1312-9845240952411083()3,5,40a k b k c k k ===≠432512102211546320182k k k k kk k k k k⨯+⨯+====⨯-⨯-35424ABC C k k k =++=△2k =36,510,48a k b k c k ======2226810+=222a c b +=ABC △:5:3EF DE = 38DE DF ∴=123l l l ∥∥38AB DE AC DF ∴==438AC =323AC =6,8AB BC == 14AC ∴=123l l l ∥∥EF BCDF AC∴=81212EF =487EF =AD x =2AE AB CD ===2DE x =+DE CDAB AD=222x x-=1x =+1+,90AD BC EFB ∠=︒∥90OEA ∠=︒AD BC ∥AD OEGH OF=3FO EF =23=GH =90,AOB OA OB∠=︒=AOB ∴△45A B ∴∠=∠=︒,且(2),且23、解(1)和都是直角三角形平分(2)过点F 作,垂足为O ,过点F 作,垂足为P ∵BD 平分,且,∴又(同高) 24、解(1)∵, ∴ ∵ ∴又∵ ∴ ∴ ∴(2)设,则∵,且∴∵ ∴即 ∴ ∵ ∴ ∴∴ 即 ∴(舍),即BP 的长为25.解:(1)∵ ∴∴ ∴又∵ ∴(2)∵ ∴ ∵∴∴即 ∴90AOB ∠=︒ 45AOC BOD ∠+∠=︒45COD ∴∠=︒,ADO B BOD COB COD BOD∠=∠+∠∠=∠+∠ADO COB∴∠=∠ADO COB ∠=∠ 45A B ∠=∠=︒ADO BOC∴△△∽OA AD BC OB ∴=OA OB = OB ADBC OB∴=2OB AD BC =⋅,90BD AD DCB ⊥∠=︒ABD ∴△DBC △2BD AB BC =⋅ BC BDBD AB∴=Rt ABD Rt DBC ∴△△∽ABD DBC ∠=∠BD ∴ABC∠FO AB ⊥FP BC ⊥ABC ∠FO AB ⊥FP BC ⊥FO FP=1212BCF BEFBC FPS BCS BE BE FO ⋅⋅==⋅⋅△△BCF BEF S CF S EF=△△BC CFBE EF ∴=BE CF BC EF ∴⋅=⋅AD BC ∥EDF CBD ∠=∠,DE DF BC BD ==DE DFBC BD=EDF CBD ∠=∠DEF BCD △△∽EFD BDC ∠=∠EF CD ∥BP x =DE DF x ==10BD =BP BF>210PF x =-DEF BCD△△∽EF DE CD BC =410EF x =25EF x =,DE DF EF EP ==,DEF EFP EFD FPE ∠=∠∠=∠DEF EFP △△∽EF PE DE EF =2210525xx x x -=10x =212523x =1252390,C FG FD ∠=︒⊥90C DFG ∠=∠=︒90,1809090EDF EFD EFD CFG ∠+∠=︒∠+∠=︒-︒=︒CFG EDF ∠=∠90C DFG ∠=∠=︒FCG DEF △△∽90C ∠=︒3BC ===,90DE AC C ⊥∠=︒DE BC ∥DE AE AD BC AC AB ==2347DE AE ==68,77DE AE ==∵ ∴ 即 ∴ (3)CG 的长为或FCG DEF △△∽CF CG DE EF =46877x y x -=-2736328467x x y x -+-⎛⎫=<< ⎪⎝⎭502167。

太原市育英中学校2024届九年级上学期月考数学试卷(含解析)

太原市育英中学校2024届九年级上学期月考数学试卷(含解析)

数学试题一、单选题1. 如图,已知与位似,位似中心为点O,且的面积等于面积的,则的值为().A. B. C. D.答案:B解析:详解:解:∵与位似,位似中心为点O,且的面积等于面积的,∴,∴,∴;故选B2. 测量楼高时,先测出楼房落在地面上的影长为米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长为米,则楼高为( )A. 米B. 米C. 米D. 米答案:B解析:详解:解:∵标杆高∶标杆的影长=楼高∶楼的影长,即,∴楼高(米).故选:B.3. 如图,直线,直线分别交、、于点、、,直线分别交、、于点、、,已知,若,则的长是()A. B. C. 9 D. 6答案:C解析:详解:解:∵,∴,∵,∴,∴,故选:C.4. 如果,那么下列各式中不成立的是()A. B. C. D. 答案:A解析:详解:解:设,则,A. 不能运算,故不能成立,符合题意;B. ,故成立,不符合题意;C. ,故成立,不符合题意;D. ,故成立,不符合题意;故选A.5. 下列各组图形相似的是()A. 任意两个直角三角形B. 任意两个菱形C. 任意两个矩形D. 任意两个正方形答案:D解析:详解:解:A、任意两个直角三角形,两组直角边的比不一定相等,两三角形不一定相似,故选项不符合题意;B、任意两个菱形对应角不一定相等,故不一定相似,故选项不符合题意;C、任意两个矩形,对应边的比不一定相等,故不一定相似,故选项不符合题意;D、任意两个正方形,对应角相等,对应边的比相等,故一定相似,故选项符合题意.故选:D.6. 如图,,,若,则的长为().A. 1.5B. 2C. 3D. 4答案:C解析:详解:解:∵,∴,∵,∴,∴;故选C.7. 已知线段,,,是成比例线段,其中,,,则的值是()A. 6B. 4C. 8D. 10答案:B解析:详解:解:∵线段,,,是成比例线段,∴,∵,,,∴,解得:.故选:B8. 反比例函数图象经过点,则下列说法错误的是( )A. 函数图象始终经过点B. 函数图象分布在第一、三象限C. 当时,随的增大而减小D. 当时,随的增大而增大答案:D解析:详解:∵反比例函数图象经过点,∴,∴,A. 由于,∴函数图象始终经过点,说法正确;B. ,函数图象分布在第一、三象限,故说法正确;C. 当时,y随x的增大而减小,说法正确;D. 当时,y随x的增大而增大,说法错误.故选D.9. 点、、都在反比例函数的图象上,则、、的大小关系是()A. B. C. D.答案:C解析:详解:解:点,,都在反比例函数的图象上,,,,,,故选:C.10. 若反比例函数的图象经过点,则k的值是( )A. 3B.C.D. 2答案:B解析:详解:解:∵反比例函数的图象经过点,∴,∴,故选B.二、填空题11. 若,则__________.答案:5解析:详解:解:,,,,,,,故答案为:5.12. 已知:点P是线段的黄金分割点,其中较短,若,则___________答案:解析:详解:解:∵点P是线段的黄金分割点,其中较短,,,,故答案为:.13. 如图,已知,请你再补充一个条件______,使得.答案:(答案不唯一)解析:详解:解:添加条件,理由如下:∵,添加,∴,故答案为:(答案不唯一).14. 若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有______________桶.答案:6解析:详解:解:综合三视图,这堆方便面底层应该有桶,第二层应该有2桶,因此共有桶.故答案为:6.15. 如图,点P是第二象限内的一点,且在反比例函数的图象上,过点P作轴于点A,若的面积为5,则k的值为______.答案:解析:详解:解:由题意得,解得,又,,故答案为:.三、解答题16. 如图,在中,点D,E分别在上,,,,求.答案:解析:详解:解:∵,·∴∵,∴∵∵.17. 如图,AB表示路灯,CD、C′D′表示小明所在两个不同位置:(1)分别画出这两个不同位置小明的影子;(2)小明发现在这两个不同的位置上,他的影子长分别是自己身高的1倍和2倍,他又量得自己的身高为1.5米,DD′长为3米,你能帮他算出路灯的高度吗?(B、D、D′在一条直线上)答案:(1)详见解析;(2)4.5米.解析:详解:(1)作图如图:(2)∵CD∥AB,C′D′∥AB,∴,∴.∵DE=CD=1.5,D′E′=2CD=3,∴,解得:BD=3,∴AB=BE=BD+DE=3+1.5=4.5(米).18. 已知:△ABC在直角坐标系中,三个顶点的坐标分别为A(-5,4),B(-4,2),C(-3,4).(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)以点A为位似中心,在网格内画出△A2B2C2,使得△A2B2C2与△ABC位似,且位似比为2:1.答案:见解析解析:详解:(1)如图所示,△A1B1C1为所求(2)如图所示△A2B2C2为所求.19. 已知和中,有,且和的周长之差为15厘米,求和的周长.答案:分别是30厘米和45厘米.解析:详解:解:设和的周长分别是x厘米和y厘米.①..由题意可得:②由①式得③将③式代入①式得:...将代入②式得:...答:和周长分别是30厘米和45厘米.20. 分别画出图中两个几何体(其中第2个几何体是两个高不相等的圆锥组成的组合体)的三视图.答案:见解析解析:详解:解:(1)如图所示:(2)如图所示:21. 如图,在的正方形网格中,和的顶点都在格点上,已知网格中每个小正方形的边长都为1,判断与是否相似,并说明理由.答案:相似,见解析解析:详解:解:与相似.理由如下:,,.易错点分析:易认为,从而,所以两个三角形不相似,因此得出了错误答案.正确的方法应该是按照边的大小来找对应边.22. 已知当电压U(V)一定时,电阻R(Ω)与电流强度I(A)成反比例.一个汽车前灯灯泡的电阻为40Ω,电流强度为0.3A,这个电路中的电压不变.(1)若灯泡的电阻为R,通过的电流强度为I,求I与R之间的函数关系式;(2)如果把汽车前灯换成电阻为25Ω灯泡,那么此时电流强度为多少?答案:(1);(2)此时电流强度为0.48A.解析:详解:(1)根据题意,得,∴I与R之间的函数关系式为.(2)当时,.即此时电流强度为0.48A.23. 如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(-1,n)、B(2,-1).(1)分别求出这两个函数的表达式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)直接写出一次函数的函数值大于反比例函数的函数值时的x的取值范围.答案:(1)反比例函数的解析式是y=-;一次函数的解析式是y=-x+1;(2)C(1,0),△AOB的面积为1.5;(3)x<-1或0<x<2.解析:小问1详解:解:∵把B(2,-1)代入y=得:m=-2.∴反比例函数的解析式是y=-;把A(-1,n)代入y=-得:n=2,∴A(-1,2),把A、B的坐标代入y=kx+b得:,解得:,∴一次函数的解析式是y=-x+1;小问2详解:解:∵把y=0代入y=-x+1得:0=-x+1,解得x=1,∴C(1,0),∴△AOB的面积S=S△AOC+S△BOC=×1×2+×1×1=1.5;小问3详解:解:由函数图象得:一次函数的值大于反比例函数的值的x的取值范围是x<-1或0<x<2.。

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷

广西南宁市第二中学2024--2025学年上学期九年级10月月考数学试卷一、单选题1.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”“谷雨”“白露”“大雪”,其中是中心对称图形的是()A.B.C.D.2.下面图形中的角,是圆周角的是()A. B.C.D.3.5G是第五代移动通信技术的简称,是最新一代蜂窝移动通信技术,它将带领人类进入新智能时代,5G网络以每秒1048576KB以上的速度传输数据,将数据“1048576”用科学记数法表示为()A.5⨯1.04857610⨯B.510.4857610C.6⨯1.048576101.04857610⨯D.74.如图,小明从A入口进入博物馆参观,参观后可从B,C,D三个出口走出,他恰好从C 出口走出的概率是()A .14B .13C .12D .235.在一元二次方程2230x x --=中,常数项是( ) A .3B .2-C .3-D .06.如图,CD 是O e 的直径,点A 、B 在O e 上.若»»AC BC=,36AOC ∠=o ,则D ∠=( )A .9oB .18oC .36oD .45o7.关于二次函数2(2)6y x =-+的图象,下列结论不正确的是( ) A .开口向上B .对称轴是2x =C .与y 轴交于点()0,6D .当2x <时,y 随x 的增大而减小8.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD ∠=o ,则BCD ∠的度数是( )A .90°B .100°C .110°D .120°9.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是( ) A .()22001242x += B .()22001242x -= C .()20012242x +=D .()20012242x -=10.苯分子的环状结构是由德国化学家凯库勒提出的,随着研究的不断深入,发现苯分子中的6个碳原子与6个氢原子均在同一平面,且所有碳碳键的键长都相等(如图1),组成了一个完美的六边形(正六边形),图2是其平面示意图,则1∠的度数为( )A .130︒B .120︒C .110︒D .60︒11.如图,在正方形ABCD 的边CD 上有一点E ,连接AE ,把AE 绕点E 逆时针旋转90︒,得到FE ,连接CF 并延长与AB 的延长线交于点G .则FGCE的值为( )AB C D 12.如图,抛物线21462y x x =-+与y 轴交于点A ,与x 轴交于点B ,线段CD 在抛物线的对称轴上移动(点C 在点D 下方),且3CD =.当A D B C +的值最小时,点C 的坐标是( )A .()8,6B .()8,3C .()4,2-D .()4,1二、填空题13.在平面直角坐标系中,若点()2,1P -与点()2,Q m -关于原点对称,则m 的值是.14x 的取值范围是 . 15.圆弧的半径为2,弧所对的圆心角为120°,则该弧的长度为.16.如图:一把折扇的骨架长是30厘米,扇面宽为20厘米,完全展开时圆心角为135°,扇面的面积为平方厘米.17.如图,O e 的直径AB =AM ,BN 分别是它的两条切线,DE 与O e 相切于点E ,并与AM ,BN 分别交于D ,C 两点,AD x =,BC y =,则y 关于x 的函数表达式为.18.第二十四届国际数学家大会会微的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形()DAE ABF BCG CDH V V V V ,,,和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .若EBF △的内切圆半径为1,小正方形EFGH 的面积为16,则大正方形ABCD 的面积为.三、解答题19.计算:()()()22934-+÷-⨯-. 20.解方程:x 2+10x +9=0.21.如图,在平面直角坐标系xOy 中,ABC V 的三个顶点分别为()3,4A -,()5,1B -,()1,2C -.(1)画出ABC V 关于原点对称的111A B C △,并写出点1A 的坐标;(2)画出ABC V 绕原点逆时针旋转90°后的222A B C △,并写出点2C 的坐标.22.如图,某校食堂实行统一配餐,为方便学生取餐,食堂开设了4个窗口,分别记为①、②、③、④,学生可以从这4个窗口中任意选取一个窗口取餐.(1)若小明去食堂用餐时4个窗口都没有人,则小明选择在②号窗口取餐的概率是________; (2)若小红和小丽-起去食堂用餐时4个窗口都没有人,求小红和小丽在相邻窗口取餐的概率.(请用画树状图或列表等方法说明理由)23.每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x 元,每天的销售利润为y 元. (1)求y 与x 的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅? 24.【综合与实践】 主题:制作圆锥形生日帽. 素材:一张圆形纸板、装饰彩带.步骤1:如图1,将一个底面半径为r 的圆锥侧面展开,可得到一个半径为l 、圆心角为n ︒的扇形.制作圆锥形生日帽时,要先确定扇形的圆心角度数,再度量裁剪材料. 步骤2:如图2,把剪好的纸板粘合成圆锥形生日帽,(1)现在需要制作一个10cm r =,30cm l =的生日帽,请帮忙计算出所需扇形纸板的圆心角度数;(2)为了使(1)中所制作的生日帽更美观,要粘贴彩带进行装饰,其中需要粘贴一条从点A 处开始,绕侧面一周又回到点A 的彩带(彩带宽度忽略不计),求彩带长度的最小值. 25.如图,抛物线2y x bx c =-++的图象与x 轴正半轴交于点A (3,0),与y 轴交于点B (0,3)直线l 的函数表达式为6y x =-+, (1)求抛物线的函数表达式;(2)动点P 在抛物线AB 段上运动,经过点P 作y 轴的平行线交直线l 于点Q ,求线段PQ 的取值范围.26.定义:同一个圆中,互相垂直且相等的两条弦叫做等垂弦,等垂弦所在直线的交点叫做等垂点.(1)如图1,AB AC ,是O e 的等垂弦,OD AB OE AC ⊥⊥,,垂足分别为D ,E .求证:四边形ADOE 是正方形;(2)如图2,AB 是O e 的弦,作OD OA OC OB ⊥⊥,,分别交O e 于D ,C 两点,连接CD .求证:AB ,CD 是O e 的等垂弦;(3)已知O e 的半径为10,AB ,CD 是O e 的等垂弦,P 为等垂点.若3=AP BP ,求AB 的长.。

2024年上海市建平实验学校九年级下学期月考数学试卷(含解析)

2024年上海市建平实验学校九年级下学期月考数学试卷(含解析)

上海市建平实验中学2023学年第二学期阶段练习(2)初三数学一、选择题:本题共6小题,每小题4分,共24分.每题只有一项是符合题目要求的.1. 下列实数中,无理数的是( )A. 5B.C.D. 2. 下列计算正确是( )A. B. C. D. 3. 下列用于证明勾股定理的图形中,是轴对称图形的是( )A. B. C. D.4. 若反比例函数,y 随x 增大而增大,则的图像大致是( )A. B. C. D.5. 下列四个命题:①平行四边形的两组对角分别相等;②对角线互相垂直且平分的四边形是菱形;③矩形是轴对称图形;④对角线相等的菱形是正方形;其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个6. 如图,是的直径,若,连接,,则的度数是( )A. B. C. D. 二、填空题:本题共12小题,每小题4分,共48分.7. 的相反数是_________________;8. 在函数中,自变量x 的取值范围为_______.9.=0解是_______.的的372242x x x +=623x x x ÷=()2242x y x y =222()x y x y -=-()0k y x x=>2y kx =-AB O AC CDBD ==BD CD BDC ∠100︒110︒120︒130︒223y x =-10. 如果一个正多边形的中心角等于,那么这个正多边形的边数是______.11. 关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是______.12. 在平面直角坐标系中,若反比例函数的图象位于第二、四象限,则k 的取值范围是 _________.13. 如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小奵泡发光.现随机从A ,B ,C ,D 中抽取一个字母(每个字母被抽到的可能性相等)并闭合对应开关,则小灯泡发光的概率为__________.14. 为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量/t1013141718户数31321则这10户家庭月用水量的中位数是______.15. 如图,点是的重心,如果,,那么向量用向量和表示为______.16. 如图,点是直线上一动点,当线段最短时,的长为______.17. 如图,以点O 为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB 与小圆相交,则弦长AB 的取值范围是 __.30︒2210kx x +-=xOy 2k y x+=G ABC AB a = AC b = BG a b P 334y x =-+OP OP18. 如图,矩形纸片中,,,折叠纸片,使点落在边上的点处,并且折痕交边于点,交边于点,把纸片展平,则线段长度的取值范围为______.三、解答题:本题共7小题,共78分.解答应写出文字说明,证明过程或演算步骤.19. 计算;(-)-120. 解不等式组:21. 如图,在中,,以点O 为圆心,长为半径的圆交于点C ,点D 在边上,且.(1)判断直线与位置关系,并说明理由;(2)若,求的半径.22. 阅读理解:七年级一班数学学习兴趣小组在解决下列问题中,发现该类问题可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列解决问题的方法,然后再应用此方法解决后续问题.问题:如图①,直立在点处标杆长,站立在点处的观察者从点处看到标杆顶、旗杆顶在一条直线上.已知,,,求旗杆高.解:建立如图②所示直角坐标系,则线段可看作一个一次函数的图象由题意可得各点坐标为:点,,,且所求高度就为点的纵坐标.设直线的函数关系式为.把,代入得,解得∴当时,,即.的的的ABCD 10AB =26AD =A BC A 'AB T AD S AT 1223352623x x x x ->-⎧⎪+⎨<-⎪⎩Rt AOB △90AOB ∠=︒OA AB OB CD BD =CD O 24tan ,327ODC OB ∠==O D CD 3m F E C A 15m BD =2m FD = 1.6m EF =AB AE ()0,1.6E ()2,3C ()17,0B A AE y kx b =+()0,1.6E ()2,3C 1.623b k b =⎧⎨+=⎩0.71.6k b =⎧⎨=⎩0.7 1.6y x =+17x =0.717 1.613.5y =⨯+=()13.5m AB =解决问题:请应用上述方法解决下列问题:如图③,河对岸有一路灯杆,在灯光下,小明在点处测得自己的影长,沿方向到达点处再测得自己的影长.如果小明的身高为,求路灯杆的高度.(参考:建立直角坐标系如图④)23. 如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线于点F .(1)求证:;(2)如图2,连接AC 交BD 于O ,连接OE ,若CE ⊥BC ,求证:△POC ∽△AEC .24. 如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .(1)求抛物线的解析式;(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP .①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.25. 如图,已知菱形,对角线、相交于点,,.点从点A 出发,以每秒4AB D 3m DF =BD F 4m FG = 1.6m AB2PE PF PC ⋅=ABCD AC BD O 20AB =32AC =P个单位的速度沿线段向点运动,同付,点从点出发,以每秒3个单位的速度沿折线向点运动,当点P 、Q 中有一个点达到终点时,两点同时停止运动.连接、、,设点的运动时间为秒.(1)求线段的长;(2)在整个运动过程中,能否成为直角三角形?若能,请求出符合题意的t 的值;若不能,请说明理由;(3)以为圆心,为半径作,当与线段只有一个公共点时,求的值或的取值范围.AC C Q O OD DC C BP PQ BQ Q t OD BPQ V P PQ P P CD t t上海市建平实验中学2023学年第二学期阶段练习(2)初三数学一、选择题:本题共6小题,每小题4分,共24分.每题只有一项是符合题目要求的.1. 下列实数中,无理数的是()A. 5B.C.D.【答案】C【分析】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,等;开方开不尽得到的数;以及像0.1010010001…(两个1之间依次多一个0),等有这样规律的数.根据无限不循环小数是无理数判定即可.【详解】解:A、5是整数,不是无理数,故此选项不符合题意;B、是分数,不是无理数,故此选项不符合题意;CD整数,不是无理数,故此选项不符合题意;故选:C.2. 下列计算正确的是()A B. C. D.【答案】C【分析】本题考查合并同类项、同底数幂的除法、积的乘方、完全平方公式,根据相关运算法则逐项计算即可.【详解】解:A,,计算错误;B,,计算错误;C,,计算正确;D,,计算错误;故选C.3. 下列用于证明勾股定理的图形中,是轴对称图形的是()A. B. C. D.【答案】C【分析】本题考查轴对称图形,关键是掌握轴对称图形的定义.如果一个图形沿一条直线折叠,直线两旁的部分能是.372π372=2242x x x+=623x x x÷=()2242x y x y=222()x y x y-=-222422x x x x+=≠626243x x x x x-÷==≠()()2222242x x yy x y==⋅22222()2x y x xy y x y-=-+≠-够互相重合,这个图形叫做轴对称图形,由此即可判断.【详解】解:A 、B 、D 中的图形不是轴对称图形,故A 、B 、D 不符合题意;C 中的图形是轴对称图形,故C 符合题意;故选:C .4. 若反比例函数,y 随x 增大而增大,则的图像大致是( )A. B. C. D.【答案】D【分析】根据反比例函数,y 随x 增大而增大,得出,则中,y 随x 的增大而减小,结合得出与y 轴交于负半轴,即可得出结论.【详解】解:∵反比例函数,y 随x 增大而增大,∴,∴中,y 随x 的增大而减小,∵,∴与y 轴交于负半轴,故选:D .【点睛】本题主要考查了一次函数和反比例函数的性质,解题的关键是熟练掌握一次函数和反比例函数的增减性.5. 下列四个命题:①平行四边形的两组对角分别相等;②对角线互相垂直且平分的四边形是菱形;③矩形是轴对称图形;④对角线相等的菱形是正方形;其中真命题的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【分析】根据平行四边形、矩形的性质定理以及菱形、正方形的判定定理进行判断即可.【详解】解:由题意知,平行四边形的两组对角分别相等是真命题,故①符合要求;对角线互相垂直且平分的四边形是菱形是真命题;故②符合要求;矩形是轴对称图形是真命题;故③符合要求;对角线相等的菱形是正方形是真命题;故④符合要求;∴真命题有4个,故选:D.()0k y x x=>2y kx =-(0)k y x x=>0k <2y kx =-20-<2y kx =-(0)k y x x=>0k <2y kx =-20-<2y kx =-【点睛】本题考查了平行四边形、矩形的性质定理以及菱形、正方形的判定定理,真命题等知识.解题的关键在于对知识的熟练掌握.6. 如图,是的直径,若,连接,,则的度数是( )A. B. C. D. 【答案】C 【分析】本题考查了圆心角的性质,圆的内接四边形互补,等边三角形的判定,解题的关键是求出.【详解】解:如下图,连结,,,,,故选:C .二、填空题:本题共12小题,每小题4分,共48分.7. 的相反数是_________________;【答案】2【分析】根据只有符号不同的两个数叫做互为相反数解答即可.2的相反数是2故答案为2【点睛】本题考查了实数的性质,熟记概念与性质是解题的关键.AB O AC CDBD ==BD CD BDC ∠100︒110︒120︒130︒60OAC ∠=︒,AC OC AC CDBD == 60AOC ∴∠=︒OA OC= 60OAC ∴∠=︒18060120BDC ∴∠=︒-︒=︒2-8. 在函数中,自变量x 的取值范围为_______.【答案】【分析】本题考查了函数的取值范围,解题的关键是知晓分式有意义的条件.根据函数中分式的分母不为0即可得到答案.【详解】当分式的分母为零时,分式才没有意义,故.即自变量x 的取值范围为.故答案为:.9.=0的解是_______.【答案】1【分析】首先根据二次根式有意义的条件,判定x 的取值范围,然后方程两边同时平方,解一元二次方程即可得解.【详解】根据题意,得解得将方程两边平方,得解得综上,【点睛】此题主要考查二次根式有意义的条件以及一元二次方程的求解,熟练掌握,即可解题.10. 如果一个正多边形的中心角等于,那么这个正多边形的边数是______.【答案】12【分析】本题考查正多边形的中心角与边数之间的关系,根据正边形的中心角为,即可解题.【详解】解:设这个正多边形的边数是,且一个正多边形的中心角等于,有,解得,故答案为:12.11. 关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是______.【答案】且【分析】本题考查了根的判别式,根据方程的根的判别式且计算即可.【详解】∵一元二次方程有两个不相等的实数根,∴且,23y x =-3x ≠23x -3x ≠3x ≠3x ≠1010x x -≥⎧⎨+≥⎩1x ≥()()110x x -+=121,1x x ==-1x =30︒n 360n ︒n 30︒36030n︒=︒12n =2210kx x +-=1k >-0k ≠()22Δ42410b ac k =-=-⨯-⨯>0k ≠2210kx x +-=()22Δ42410b ac k =-=-⨯-⨯>0k ≠解得且,故答案为:且.12. 在平面直角坐标系中,若反比例函数的图象位于第二、四象限,则k 的取值范围是 _________.【答案】【分析】本题考查反比例函数的性质,解题的关键是掌握当时,的图象位于第二、四象限.根据反比例函数的性质列不等式即可解得答案.【详解】解:反比例函数的图象位于第二、四象限,,解得,故答案为:13. 如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小奵泡发光.现随机从A ,B ,C ,D 中抽取一个字母(每个字母被抽到的可能性相等)并闭合对应开关,则小灯泡发光的概率为__________.【答案】【分析】本题考查用概率公式计算事件发生的概率,熟练掌握概率公式:是解题的关键.所有可能的结果共有4种可能,而让小灯泡发光的只有抽到D ,一种可能,由概率公式即可求解.【详解】解:小灯泡发光的概率为.故答案为:.14. 为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:月用水量/t1013141718户数31321则这10户家庭月用水量的中位数是______.【答案】14吨1k >-0k ≠1k >-0k ≠xOy 2k y x +=2k <-0k <k y x =2k y x+=20k ∴+<2k <-2k <-14()A P A =事件数总数1414【分析】本题考查了求中位数,正确理解中位数的定义是解题的关键.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.根据中位数的定义,即得答案.【详解】将表中数据为从小到大排列,处在第5位、第6位的是14吨,所以这10户家庭月用水量的中位数是14吨.故答案为:14吨..15. 如图,点是的重心,如果,,那么向量用向量和表示为______.【答案】##【分析】由是的重心,推出,,求出,可得结论.【详解】解:∵G 是的重心,∴,,∵,∴,故答案为:.【点睛】本题考查三角形的重心,三角形法则等知识,解题的关键是掌握重心的性质,学会利用三角形法则解决问题.16. 如图,点是直线上一动点,当线段最短时,的长为______. 【答案】【分析】根据直线解析式求出点A 、B 的坐标,再根据勾股定理求出AB 的长度,根据点到直线的所有线段中,垂线段最短,利用三角形的面积列式即可求解.【详解】解:当时,,当时,,解得,G ABC AB a = AC b = BG a b 3312b a - 21+33a b - G ABC AD DC =2BG DG =BDABC AD DC =2BG DG =12BD BA AD a b =+=-+ 212333BG BD b a ==- 3312b a - P 334y x =-+OP OP 1250x =3y =0y =3304y x =-+=4x =∴点A 、B 的坐标是,,∴,根据垂线段最短性质,时,最短,如点所示此时,,即,解得,即.故答案为:.【点睛】本题综合考查了一次函数的问题,主要利用勾股定理,垂线段最短的性质,根据直线解析式求出点A 、B 的坐标是解题的关键.17. 如图,以点O 为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB 与小圆相交,则弦长AB 的取值范围是 __.【答案】【分析】此题可以首先计算出当AB 与小圆相切的时候的弦长.连接过切点的半径和大圆的一条半径,根据勾股定理和垂径定理,得AB =8.若大圆的弦AB 与小圆有两个公共点,即相交,此时AB >8;又因为大圆最长的弦是直径10,则8<AB ≤10.【详解】解:当AB 与小圆相切,∵大圆半径为5,小圆的半径为3,∴.的()03A ,()40B ,AB =5=OP AB ⊥OP P '1122AOB S OA OB AB OP '=⨯⨯=⨯⨯ 1134522OP '⨯⨯=⨯⨯125OP '=min 125OP =125810AB <…22248AB AC ===⨯=当AB 过圆心时最长即为大圆的直径10,∴8<AB ≤10.故答案为:8<AB ≤10.【点睛】本题综合运用了切线的性质、勾股定理和垂径定理.此题可以首先计算出和小圆相切时的弦长,再进一步分析相交时的弦长.18. 如图,矩形纸片中,,,折叠纸片,使点落在边上的点处,并且折痕交边于点,交边于点,把纸片展平,则线段长度的取值范围为______.【答案】【分析】设,则,当与重合时,证得即,进而利用勾股定理得,当与重合时,,即可得解.【详解】解:设,则,当与重合时,如下图,∵四边形是矩形,∴,,,由折叠的性质可得,,,∴,∴,∴,∴即,解得,∵,∴即,ABCD 10AB =26AD =A BC A 'AB T AD S AT 5.210AT ≤≤AT x =10BT x =-S D BTA CA D ' ∽TA BA DA DC ''='2610x BA '=5.2AT x ==T B 10AT AB ==AT x =10BT x =-S D ABCD 90A B C ∠∠∠===︒10AB CD ==26BC AD ==A T AT x '==26A D AD '==90TAD TA D '∠=∠=︒90BTA TA B CA D TA B ∠+∠=∠+∠''=''︒BTA CA D ∠='∠'BTA CA D '' ∽TA BA DA DC ''='2610x BA '=513x BA '=90B ∠=︒()()222BT BA AT '='+()22251013x x x ⎛⎫-+= ⎪⎝⎭解得或(舍去),当与重合时,如下图,此时,∴,故答案为:.【点睛】本题主要考查了勾股定理,相似三角形的判定及性质,折叠的性质,矩形的性质,熟练掌握矩形的性质及相似三角形的判定及性质是解题的关键.三、解答题:本题共7小题,共78分.解答应写出文字说明,证明过程或演算步骤.19. 计算;(-)-1【答案】【分析】直接利用绝对值的性质以及二次根式的性质、特殊角的三角函数值分别化简得出答案.【详解】解:原式.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20. 解不等式组:【答案】【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:解不等式①,得,解不等式②,得,∴不等式组的解集为.21. 如图,在中,,以点O 为圆心,长为半径的圆交于点C ,点D 在边上,5.2AT x ==130AT x ==T B 10AT AB ==5.210AT ≤≤5.210AT ≤≤1223352623x x x x ->-⎧⎪+⎨<-⎪⎩0x <23352623x x x x ->-⎧⎪⎨+<-⎪⎩①②2x <0x <0x <Rt AOB △90AOB ∠=︒OA AB OB且.(1)判断直线与的位置关系,并说明理由;(2)若,求半径.【答案】(1)直线与相切,理由见解析(2)【分析】本题考查了切线的证明、正切的应用等知识点,掌握相关几何结论是解题关键.(1)连接,由得,结合,即可求解;(2)设的半径为,可得,根据可得,即可求解;【小问1详解】解:直线与相切,理由如下:连接,如图所示:则∴∵∴∵∴∴∵为半径,∴直线与相切【小问2详解】解:设的半径为,∵的CD BD =CD O 24tan ,327ODC OB ∠==O CD O 24OC OA OC =OAC OCA ∠=∠CD BD =O r 724CD BD r ==OD =2524OD r =CD O OC OA OC=OAC OCA∠=∠CD BD=DCB DBC∠=∠90DBC OAC ∠+∠=︒90DCB OCA ∠+∠=︒()18090OCD DCB OCA ∠=︒-∠+∠=︒OC CD O O r 24tan ,7OC r ODC CD CD ∠===∴,∴∵∴,解得:22. 阅读理解:七年级一班数学学习兴趣小组在解决下列问题中,发现该类问题可以“建立直角坐标系、应用一次函数”解决问题.请先阅读下列解决问题的方法,然后再应用此方法解决后续问题.问题:如图①,直立在点处的标杆长,站立在点处的观察者从点处看到标杆顶、旗杆顶在一条直线上.已知,,,求旗杆高.解:建立如图②所示直角坐标系,则线段可看作一个一次函数的图象由题意可得各点坐标为:点,,,且所求的高度就为点的纵坐标.设直线的函数关系式为.把,代入得,解得∴当时,,即.解决问题:请应用上述方法解决下列问题:如图③,河对岸有一路灯杆,在灯光下,小明在点处测得自己的影长,沿方向到达点处再测得自己的影长.如果小明的身高为,求路灯杆的高度.(参考:建立直角坐标系如图④)【答案】724CD BD r ==2524OD r ==32OB OD BD =+=257322424r r +=24r =D CD 3m F E C A 15m BD =2m FD = 1.6m EF =AB AE ()0,1.6E ()2,3C ()17,0B A AE y kx b =+()0,1.6E ()2,3C 1.623b k b =⎧⎨+=⎩0.71.6k b =⎧⎨=⎩0.7 1.6y x =+17x =0.717 1.613.5y =⨯+=()13.5m AB =AB D 3m DF =BD F 4m FG = 1.6m AB6.4m【分析】根据题中的例题过程连求两次一次函数解析式作答即可.【详解】由题意可得各点坐标为:,,且所求的高度就为点的纵坐标.设直线的函数关系式为.把,代入得,解得.∴直线的函数关系式为①.∵直线过点,,同理可得直线的解析式为②,联立①②解得,,答:路灯杆的高度.【点睛】本题考查了求两直线的交点和对例题的理解应用能力,题目不难,但注意做题时需要运用题目所给方式做题而不能用其他的解答方法.23. 如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线于点F .(1)求证:;(2)如图2,连接AC 交BD 于O ,连接OE ,若CE ⊥BC ,求证:△POC ∽△AEC .【答案】(1)证明见解析(2)证明见解析【分析】(1)根据菱形的性质,首先利用SAS 证明△CDP ≌△ADP ,得PC =PA ,∠DCP =∠DAP ,再说明△PAE ∽△PFA,得,即可证明结论; (2)根据菱形的性质可说明∠COP =∠CEA ,从而证明结论.【小问1详解】()0,1.6E ()4,0G ()3,1.6C -A AE y kx b =+()0,1.6E ()4,0G 1.604b k b =⎧⎨=+⎩ 1.625b k =⎧⎪⎨=-⎪⎩AE 2 1.65y x =-+AF ()3,1.6C -()0,0F AF 815y x =-12x =- 6.4y =AB 6.4m 2PE PF PC ⋅=PA PE PF AP=证明:∵四边形ABCD 菱形,∴AD =CD ,∠CDP =∠ADP ,,在△CDP 和△ADP 中,∴△CDP ≌△ADP (SAS ),∴PC =PA ,∠DCP =∠DAP ,∵,∴∠DCP =∠F ,∴∠DAP =∠F ,∵∠APE =∠FPA ,∴△PAE ∽△PFA , ∴, ∴PA 2=PE •PF ,∴PE •PF =PC 2;【小问2详解】∵CE ⊥BC ,∴∠ECB =90°,∵,∴∠CEA =∠BCE =90°,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COP =90°,∴∠COP =∠CEA ,∵∠OCP =∠ECA ,∴△POC ∽△AEC .【点睛】本题主要考查了菱形的性质,相似三角形的判定与性质,全等三角形的判定与性质,证明PA =PC 是解决问题(1)的关键.24. 如图,直线y =﹣x +n 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =﹣x 2+bx +c 经过点A ,B .CD AB ∥,CD AD CDP ADP DP DP =⎧⎪∠=∠⎨⎪=⎩CD AB ∥PA PE PF AP=AD BC ∥(1)求抛物线解析式;(2)E (m ,0)为x 轴上一动点,过点E 作ED ⊥x 轴,交直线AB 于点D ,交抛物线于点P ,连接BP .①点E 在线段OA 上运动,若△BPD 直角三角形,求点E 的坐标;②点E 在x 轴的正半轴上运动,若∠PBD +∠CBO =45°.请直接写出m 的值.【答案】(1)y =﹣x 2+3x +4;(2)① E (2,0)或(3,0);②m =7或.【分析】(1)将点A 坐标代入直线解析式可求n 的值,可求点B 坐标,利用待定系数法可求解;(2)①分两种情况讨论,勾股定理可求解;②分两种情况讨论,由相似三角形的性质和等腰三角形的性质,可求BP 解析式,联立方程可求解.【详解】解:(1)∵直线y =﹣x +n 与x 轴交于点A (4,0),∴0=﹣4+n ,∴n =4,∴直线解析式为:y =﹣x +4,当x =0时,y =4,∴点B (0,4),∵抛物线y =﹣x 2+bx +c 经过点A ,B ,则,解得,∴抛物线的解析式为:y =﹣x 2+3x +4①;(2)①∵ED ⊥x 轴,∴∠PEA =90°,∴∠BDP =∠ADE <90°,设点E (m ,0),点P (m ,﹣m 2+3m +4),则点D (m ,﹣m +4),∴PD 2=(﹣m 2+4m )2,BP 2=m 2+(﹣m 2+3m )2,BD 2=m 2+(﹣m +4﹣4)2=2m 2,当∠PBD =90°时,BP 2+BD 2=PD 2,∴m 2+(﹣m 2+3m )2+2m 2=(﹣m 2+4m )2,∴m =2,m =0(舍去)∴点E 的坐标为(2,0),当∠BPD =90°时,BP 2+PD 2=BD 2,的13441640c b c ⎧⎨-++⎩==34b c ==⎧⎨⎩同理可得:m =0(舍去)或3或4(舍去),∴点E 的坐标为(3,0),综上所述:点E 的坐标为(2,0)或(3,0);②当点P 在x 轴上方时,如图1,连接BC ,延长BP 交x 轴于N ,∵点A (4,0),点B (0,4),∴OA =OB =4,∴∠BAO =∠ABO =45°,∵抛物线y =﹣x 2+3x +4与x 轴交于点A ,点C ,∴0=﹣x 2+3x +4,∴x 1=4,x 2=﹣1,∴点C (﹣1,0),∴OC =1,∵∠PBD +∠CBO =45°,∠BAO =∠PBD +∠BNO =45°,∴∠CBO =∠BNO ,又∵∠BOC =∠BON =90°,∴△BCO ∽△NBO ,∴,∴,∴ON =16,∴点N (16,0),∴直线BN 解析式为:y x +4②,联立①②并解得:x =0(舍去)或,∴m ;当点P 在x 轴下方时,如图2,连接BC ,设BP 与x 轴交于点H ,BO ON CO OB414ON =14=134134=∵∠PBD +∠CBO =45°,∠OBH +∠PBD =45°,∴∠CBO =∠OBH ,又∵OB =OB ,∠COB =∠BOH ,∴△BOH ≌△BOC (ASA ),∴OC =OH =1,∴点H (1,0),∴直线BH 解析式为:y =﹣4x +4③,联立①③并解得:x =0(舍去)或7,∴点P 的横坐标为7,∴m =7,综上所述:m =7或.【点睛】本题是二次函数综合题,考查了二次函数的性质,待定系数法求解析式,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.25. 如图,已知菱形,对角线、相交于点,,.点从点A 出发,以每秒4个单位的速度沿线段向点运动,同付,点从点出发,以每秒3个单位的速度沿折线向点运动,当点P 、Q 中有一个点达到终点时,两点同时停止运动.连接、、,设点的运动时间为秒.(1)求线段的长;(2)在整个运动过程中,能否成为直角三角形?若能,请求出符合题意的t 的值;若不能,请说明理由;(3)以为圆心,为半径作,当与线段只有一个公共点时,求的值或的取值范围.【答案】(1)12(2)能,(3)或134ABCD AC BD O 20AB =32AC =P AC C Q O OD DC -C BP PQ BQ Q t OD BPQ V P PQ P P CD t t t =t =96817t <≤【分析】(1)首先根据四边形是菱形,可得,,,利用勾股定理即可求出.(2)情形1:如图1中,当时,,利用得列出方程求解;情形2:如图2,当时,,作垂足为,利用得到列出方程即可解决.(3)情形1:如图3,当点在线段上时,与线段相切于,连接,此时与线段只有一个交点,利用得到列出方程解决.情形2:如图4,当时,作垂足为,由得到列出方程求解.【小问1详解】解: 四边形是菱形,,,,,,在中,,,.【小问2详解】解:能.理由如下:如图1,当时,,,,,,,,,或ABCD AC BD ⊥AO OC =OB OD =OD 04t <<90BPQ ∠=︒POB QOP ∽PO BO QO PO=48t <<90BPQ ∠=︒QH AC ⊥H QHP POB ∽QH PH PO OB =P OA P CD M OM P CD CPM CDO ∽CP PM CD DO=PC PQ =PN CD ⊥N CPN CDO ∽CN CP CO CD = ABCD AC BD ∴⊥OD OB =AO CO =32AC = 11321622AO AC ∴==⨯=Rt AOD 20AD AB == 16AO =12OD ∴===04t <<90BPQ ∠=︒90BPO OPQ ∠+∠=︒ 90OPQ PQO ∠+∠=︒BPO PQO ∴∠=∠90POB POQ ∠=∠=︒ POB QOP ∴ ∽∴PO BO QO PO =∴164123164t t t-=-t =如图2,当时,,作垂足为,,,,,,,,,,,,,,,解得或不合题意舍弃)综上所述是直角三角形.【小问3详解】解:①如图3,当点在线段上时,与线段相切于,连接,此时与线段只有一个交点,在中,,,t ∴=48t <<90BPQ ∠=︒QH AC ⊥H QH OD ∥ ∴QH CH CQ DO CO CD ==∴323121620QH CH t -==3(323)5QH t =-4(323)5CH t =-83255HP t =-416OP t =-90QPH BPO ∠+∠=︒ 90OBP BPO ∠+∠=︒OBP HPQ ∴∠=∠90BOP QHP ∠=∠=︒ QHP POB ∴ ∽∴QH PH PO OB=∴3832(323)55541612t t t --=-t =t =PQB △P OA P CD M OM P CD Rt POQ △164PO t =- 3OQ t =,,,,,,解得或不合题意舍弃).②如图4,当时,作垂足为,,,,,,解得.时与线段只有一个交点.综上所述或时与线段只有一个交点.【点睛】本题考查菱形的性质、勾股定理、相似三角形的判定和性质、圆的有关知识,学会分类讨论是解题的关键,解题中培养动手画图能力,利用转化的数学思想去思考问题.PQ PM ∴==90PMC DOC ∠=∠=︒ PCM DCO ∠=∠CPM CDO ∴ ∽∴CP PM CD DO=∴32420t -=t PC PQ =PN CD ⊥N PCN DCO ∠=∠ 90PNC DOC ∠=∠=︒CPN CDO ∴ ∽∴CN CP CO CD=∴32332421620t t --=9617t =∴96817t <≤P CD t =96817t <≤P CD。

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷

山西省大同市大同一中南校2024-2025学年上学期第一次月考九年级数学试卷一、单选题1.方程()()3240x x −−=的根是( ) A .13x =−,22x =− B .13x =,22x = C .13x =,22x =−D .13x =−,22x =2.抛物线2(3)5y x =−+的开口方向、顶点坐标分别是( ) A .开口向上;()3,5− B .开口向下;()3,5−− C .开口向上;()3,5D .开口向下;()3,5−3.解方程()()2513510x x x −−−=最适当的方法是( ) A .直接开平方法 B .配方法C .公式法D .因式分解法4.拋物线243y x x =−++的对称轴是( ) A .x =2B .2x =−C .4x =D .4x =−5.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.我校为响应全民阅读活动,打造书香校园,在校园里建立了图书角。

据统计,八(10)班第一周阅读128人次,阅读人次每周增加,到第三周累计阅读608人次,若阅读人次的周平均增长率为x 可得方程( ) A .128(1+x)=608B .128(1+x )2=608C .128(1+x)+128(1+x)2=608D .128+128(1+x)+128(1+x)2=6086.关于x 的一元二次方程22210x ax a ++−=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关7.下表给出了二次函数()20y ax bx c a =++≠的自变量x 与函数值y 的部分对应值,则方程20ax bx c ++=的一个根的近似值可能是( )A .1.09B .1.19C .1.29D .1.398.若点()14A y −,,()21B y −,,3(1)C y ,在抛物线21(2)12y x =−+−上,则( ) A .132<y y y <B .213<<y y yC .321<y y y <D .312y y y <<9.二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值如下表:下列说法正确的是( ) A .抛物线的开口向下 B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-5210.如图,抛物线()210:+=+L y ax bx c a ≠与x 轴只有一个公共点A (1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为( )A .1B .2C .3D .4二、填空题11.方程32=2x x x ++()()的解为 .12.二次函数2=23y x x −−的顶点坐标是 ,与y 轴的交点坐标是 .13.汽车刹车后行驶的距离y (单位:m )关于行驶的时间x (单位:s )的函数解析式是:2156s x x =−,汽车刹车后前进了 米才能停下来.14.三角形的两边长分别是3和4,第三边长是方程x 2﹣13x+40=0的根,则该三角形的周长为 .15.如图,抛物线2824277y x x =−++与x 轴交于A 、B 两点,与y 轴交于C 点,P 为抛物线对称轴上动点,则PA PC +取最小值时,点P 坐标是 .三、解答题 16.解下列方程: (1)22480x x +−=; (2)262−+=−x ; (3)22530x x +−=17.已知关于x 的一元二次方程22240x mx m ++−=. (1)求证:无论m 为何值,该方程总有两个不相等的实数根. (2)若该方程的两个根为p 和q ,且满足0pq p q −−=,求m 的值.18.如图,直线12y x =−−交x 轴于点A ,交y 轴于点B ,抛物线22y ax bx c =++顶点为A ,且经过点B .(1)求该抛物线的解析式; (2)求当12y y ≥时,x 的取值范围.19.平安路上,多“盔”有你,在“交通安全宣传月”期间,某商店销售一批头盔,进价为每顶40元,售价为每顶68元,平均每周可售出100顶.商店计划将头盔降价销售,每顶售价不高于58元,经调查发现:每降价2元,平均每周可多售出40顶.设每顶头盔降价x 元,平均每周的销售量为y 顶.(1)每顶头盔降价x 元后,每顶头盔的利润是 元(用含x 的代数式表示); (2)平均每周的销售量y (顶)与降价x (元)之间的函数关系式是 ; (3)若该商店希望平均每周获得4000元的销售利润,则每顶头盔应降价多少?20.如图,利用一面墙(墙的长度不超过45m ),用79m 长的篱笆围成一个矩形场地,并且与墙平行的边留有1m 宽建造一扇门方便出入(用其他材料),设m AB x =,矩形ABCD 的面积为2m y .(1)请求出y 与x 之间的函数关系式,并写出x 的取值范围; (2)怎样围才能使矩形场地的面积为2750m ?(3)当x 为何值时,矩形场地的面积最大?最大值为多少平方米? 21.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务:用函数观点认识一元二次方程根的情况,我们知道,一元二次方程()200ax bx c a ++=≠的根就是相应的二次函数()20y ax bx c a =++≠的图象与x 轴交点的横坐标.抛物线与x 轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x 轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标24,24b ac b aa ⎛⎫−− ⎪⎝⎭和一元二次方程根的判别式24Δb ac =−分别分0a >和0a <两种情况进行分析:(i )0a >时,拋物线开口向上:①当2Δ40b ac =−>时,有240ac b −<.0a >,∴顶点纵坐标2404ac b a−<.∴顶点在x 轴的下方,犹物线与x 轴有两个交点(如图①).∴—元二次方程()200ax bx c a ++=≠有两个不相等的实数根.②当2Δ40b ac =−=时,有240.−=ac b 0a >,∴顶点纵坐标2404ac b a−=.∴顶点在x 轴上,抛物线与x 轴有一个交点(如图②).∴—元二次方程()200ax bx c a ++=≠有两个相等的实数根.③当2Δ40b ac =−<时,L (ii )0a <时,抛物线开口向下:… 任务:(1)请参照小论文中当0a >时①②的分析过程,写出(ii )中当0a <,Δ0>时,一元二次方程根的情况的分析过程,并画出相应的示意图;(2)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解,请你再举出一例22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y =16−x 2+bx +c 表示,且抛物线上的点C 到OB 的水平距离为3m ,到地面OA 的距离为172m .(1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?23.如图,已知二次函数23y ax bx =++的图象交x 轴于点()1,0A ,()3,0B ,交y 轴于点C .(1)求这个二次函数的解析式:(2)点P 是直线BC 下方抛物线上的一动点,求BCP 面积的最大值,并求出此时点P 的坐标.。

初三月考数学试卷带答案

初三月考数学试卷带答案

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-4D. √0答案:A2. 下列等式中,正确的是()A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 4C. 4x - 5 = 3x - 2D. 2x + 1 = 5x + 3答案:C3. 下列函数中,y是x的一次函数的是()A. y = 2x + 3B. y = 3x^2 - 2C. y = √xD. y = 4/x答案:A4. 已知函数y = 2x - 3,若x = 2,则y的值为()A. -1B. 1C. 3D. 5答案:D5. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:A6. 下列各组数中,存在反比例关系的是()A. x = 2,y = 4B. x = 3,y = 6C. x = 5,y = 10D. x = 4,y = 8答案:D7. 一个长方形的长是10cm,宽是5cm,它的周长是()A. 20cmB. 25cmC. 30cmD. 35cm答案:C8. 一个等腰三角形的底边长是8cm,腰长是6cm,那么这个三角形的面积是()A. 24cm²B. 30cm²C. 36cm²D. 42cm²答案:C9. 若a > b > 0,则下列不等式中正确的是()A. a + b > a - bB. a - b > a + bC. a - b > a - cD. a + b < a - c答案:A10. 已知一元二次方程x² - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或1D. 3或4答案:A二、填空题(每题5分,共25分)11. 若x = 3,则2x - 1的值为______。

答案:512. 下列函数中,y = 3x - 2是一次函数,自变量x的取值范围是______。

江苏省扬州市2024届九年级上学期9月月考数学试卷(含答案)

江苏省扬州市2024届九年级上学期9月月考数学试卷(含答案)

九年级数学第一次阶段测试卷一、选择题(本大题共8小题,共24.0分。

)1. 某校运动会前夕,要选名身高基本相同的女同学组成表演方阵,在这个问题中,最值得关注的是该校所有女生身高的( )A. 方差 B. 众数C. 平均数D. 中位数2. 若是的一个根,则的值是( )A. B. C.D.3. 如图,,直线、与这三条直线分别交于点、、和、、若,,,则的长为( )A.B.C.D.4. 如图,要使,需补充的条件不能是( )A. B. C. D.5. 如图,在的正方形网格中,以为位似中心,把格点放大为原来的倍,则的对应点为( ) A. 点B. 点C. 点D. 点6. 关于的一元二次方程有两个不相等的实数根,则整数最大是( )A. B. C.D. 7. 如图,已知的直径为,弦,动点、在上,弦,若点、分别是弦、的中点,则线段的取值范围是( )A.B.C.D.8. 如图,四边形为矩形,,,点是线段上一动点,,垂足为,则的最小值为( )A.B.C. D.二、填空题(本大题共10小题,共30.0分)9. 一组数据:,,,的极差为______ .10. 一只蚂蚁在如图的方格地板上随机爬行每个小方格形状、大小完全相同则当蚂蚁停下时,停在地板中阴影部分的概率为______.11. 方程是关于的一元二次方程,则.12. 在世纪年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果如图利用黄金分割法,所作将矩形窗框分为上下两部分,其中为边的黄金分割点,即已知为米,则线段的长为______ 米结果保留根号.13. 某药品经两次降价,从每盒元下调至元,则平均每次降价的百分率是______.14.的圆心是原点,半径为,点在上,如果点在第一象限内,那么______.15. 如图,是的直径,是的弦,,则的度数是______16. 如图,点、、、在网格中小正方形的顶点处,与相交于点,若小正方形的边长为,则的长为______ .17. 半圆形纸片的半径为,用如图所示的方法将纸片对折,使对折后半圆弧的中点与圆心重合,则折痕的长为.18. 如图,已知是等边边上的一点,现将折叠,使点与重合,折痕为,点、分别在和上.如果::,则:的值为______.三、解答题(本大题共10小题,共96.0分)19. 本小题分解方程:;.20.本小题分已知关于的一元二次方程.求证:此方程总有两个实数根;若此方程恰有一个根小于,求的取值范围.21.本小题分加强劳动教育是学校贯彻“五育并举”的重要举措为了解学生参加各项劳动的情况,某校对七年级部分学生进行了随机问卷调查,其中一个问题是“你每周在家参加家务劳动的时间是多少?”,共有如下四个选项:A .小时以下B .小时不包含小时C .小时包含小时 D .小时以上图、图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:填空:本次问卷调查一共调查了______ 名学生;请将图的条形统计图补充完整,并求出图中部分所对应的圆心角度数;若该校共有名学生,请你估计全校可能有多少名学生每周在家参加家务劳动的时间在小时以上包含小时?22. 本小题分随着高铁、地铁的大量兴建以及铁路的改扩建,我国人民的出行方式越来越多,出行越来越便捷.为保障旅客快捷、安全的出入车站,每个车站都修建了如图所示的出入闸口.某车站有四个出入闸口,分别记为、、、.一名乘客通过该站闸口时,求他选择闸口通过的概率;当两名乘客通过该站闸口时,请用树状图或列表法求两名乘客选择相同闸口通过的概率.23. 本小题分如图,是的内接三角形,直径,平分交于点,交于点,连接、.若,求的度数;求的长.24. 本小题分商场某种商品平均每天可销售件,每件盈利元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件.设每件商品降价元.据此规律,请回答:商场日销售量增加______件,每件商品盈利______元用含的代数式表示;在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到元?25. 本小题分如图,在矩形中,,,是边的中点,点在线段上,过作于,设.求证:∽.当点在线段上运动时,是否存在实数,使得以点,,为顶点的三角形也与相似?若存在,请求出的值;若不存在,请说明理由.26. 本小题分其数学小组想利用所学知识测量一棵树的高度在第一次测量中,小莉来回走动,走到点时,其影子末端与树梢末端重合于点,其中随后,组员在直线上平放一平面镜,在镜面上做了一个标记,这个标记在直线上的对应位置为点镜子不动,小莉从点沿着直线后退到点时,恰好在镜子中看到顶端的像与标记重合,此时如图,已知,,小莉的身高为眼睛到头顶距离忽略不计,平面镜的厚度忽略不计.根据以上信息,求树,的高度.27. 本小题分阅读理解:转化思想是常用的数学思想之一在研究新问题或复杂问题时,常常把问题转化为熟悉的或比较简单的问题来解决如解一元二次方程是转化为一元一次方程来解决的解分式方程是转化为整式方程来解决的由于“去分母”可能产生增根,所以解分式方程必须检验利用转化思想,我们还可以解一些新的方程,如无理方程根号下含有未知数的方程解无理方程关键是要去掉根号,可以将方程适当变形后两边同时平方,将其转化为整式方程由于“去根号”可能产生增根,所以解无理方程也必须检验.例如:解方程.解:两边平方得,解得,,经检验,是原方程的根,代入原方程中不合理,是原方程的增根,原方程的根是.解决问题:填空:已知关于的方程有一个根是,那么的值为求满足的的值代数式的值能否等于,若能,求出的值若不能,请说明理由.28. 本小题分定义:在等腰三角形中,若有一条边是另一条边的倍,则称这个三角形为倍腰三角形.理解定义:若有一个倍腰三角形有一条边为,这个倍腰三角形的周长为________;性质探究:判断下列关于倍腰三角形的说法是否正确,正确的打“”;错误的打“”;所有的倍腰三角形都是相似三角形( )如图,依次连接倍腰三角形各边的中点,则图中共有个倍腰三角形( )性质应用:如图,倍腰三角形是的内接三角形,且,若的半径为,求倍腰三角形的面积;拓展应用:如图,是的外接圆,直径于点,与相交于点,与相交于点,是倍腰三角形,其中,请直接写出的长.九年级数学第一次阶段测试卷参考答案1. 2. 3. 4. 5. 6.7.8.9.10.11.12.13.14.15.16.17.18.:19.解:,,,,20.【答案】解:关于的一元二次方程,;此方程总有两个实数根;解:,,,解得,此方程恰有一个根小于,,解得.21.(1)劳动的时间在小时以上的人数有:名,补全统计图如下:部分所对应的圆心角度数是;根据题意得:名,答:估计全校可能有名学生每周在家参加家务劳动的时间在小时以上包含小时.22.解:一名乘客通过该站闸口时,他选择闸口通过的概率为;画树状图得:两名乘客选择相同闸口通过的概率.23.解:的度数为;的长为.24.解:;解:设每件商品降价元,则由题意得:,解得:,,该商场为了尽快减少库存,选,答:每件商品降价元,商场日盈利可达元.25.【答案】证明:矩形,,,,又,,∽.解:分两种情况:若∽,如图,则,,四边形为矩形,是边的中点,,,即.如图,若∽,则,,..,点为的中点,中,,,,,∽,,,,,即,满足条件的的值为或.26.【答案】解:设树的高度为,依题意知:,,,.,,,.∽.,即.则由平面镜反射规律可得:.,.∽.,即.则由得.故树的高度为.27.【答案】解:把代入方程得,两边平方得,解得,经检验,是方程的解,的值为.,方程两边平方得,解得,,经检验,代入原方程中不合理,是原方程的增根,是原方程的根,原方程的根是.不能,理由如下:设,移项得,两边平方得,整理得,两边平方得,故方程无解,代数式的值不能等于.28.理解定义:周长为;性质探究:×;性质应用:如图,设为,则根据性质有在中,有所以,解得:所以,,所以的面积为拓展应用:如图,过点作于,连接,,则,是倍腰三角形,,,,,是倍腰三角形,,,,,垂直平分,经过圆心,设半径为,在中,,,解得,,,在中,在中,,,,∽,,,设,则,,,,,,解得,,的长为.。

2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)

2020-2021学年安徽省九年级(上)月考数学试卷(二)(附答案详解)

2020-2021学年安徽省九年级(上)月考数学试卷(二)一、选择题(本大题共10小题,共40.0分)1.已知2a=3b,则a−bb的值为()A. 12B. −12C. 13D. −132.若反比例函数y=2−kx的图象分布在第二、四象限,则k的取值范围是()A. k<−2B. k<2C. k>−2D. k>23.如图,点D在△ABC的边AB上,DE//BC,DE交AC于点E,EF//AB交BC于点F,下列比例式不成立的是()A. ADDB =BFFCB. ADAB =BFBCC. DEBC =EFABD. DBAB =CFBC4.把二次函数y=−2x2+4x−1配方成顶点形式y=−2(x+ℎ)2+k,则h,k的值分别为()A. ℎ=−1,k=1B. ℎ=−1,k=−2C. ℎ=1,k=1D. ℎ=1,k=−35.如图,CD是Rt△ABC斜边AB上的中线,过点C作CE⊥CD交AB的延长线于点E,添加下列条件仍不能判断△CEB与△CAD相似的是()A. ∠CBA=2∠AB. 点B是DE的中点C. CE⋅CD=CA⋅CBD. CECA =BEAD6.肚脐眼是人上下身的分界点,已知某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,若该人的身高约为1.8米,则他的上身长度约为()(精确到0.1米)A. 0.9米B. 1.0米C. 1.1米D. 1.2米7.如图,在矩形ABCD中,AB=24,AD=10,将矩形ABCD沿某直线折叠,使点A与点C重合,折痕与AB交于点M,与CD交于点N,则线段MN的长是()A. 5B. 12C. 6512D. 6568.已知抛物线y=−x2−4x+5,下列说法正确的是()A. 抛物线与y轴的交点位于y轴的负半轴上B. 当x>−2时,函数值y随x的增大而减小C. 若2≤x≤5,则函数一定有最大值是9D. 抛物线与x轴的交点坐标是(−1,0)和(5,0)9.如图,△ABC中,CA=CB=5cm,AB=8cm,直线l经过点A且垂直于AB,现将直线l以1cm/s的速度向右匀速移动,直至经过点B时停止移动,直线l与边AB交于点M,与边AC(或CB)交于点N.若直线l移动的时间是x(s)、△AMN的面积为y(cm2),则y与x之间函数关系的图象是()A. B.C. D.10.如图,△ABC中,∠ACB=90°,CA=CB=3√2,点D、E分别在边AB,BC上,且∠CDE=45°,下列结论中:①△CAD∽△DBE;②若点D是AB的中点,则点E也是BC的中点;③若点D是AB的三等分点,则BE的长是4√2,其中正确的结3论有()A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共4小题,共20.0分)11.已知a=3,b=6,则a,b的比例中项是______.12.已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则a+b+c______0(填“>”或“=”或“<”).13.如图,点A(2,4)在第一象限,点B(b,3)在第二象限,且OA⊥OB,反比例函数y=(k≠0)的图象经过点B,则k的值为______.−kx14.如图,在矩形ABCD中,点E是边CD上一点,连接BE,过点C作CG⊥BE于G,CG的延长线交AD于F,连接DG并延长交BC于H,且点H恰好是BC的中点.(1)若∠CBE=35°,则∠CDH=______°.(2)若CE=6,DE=2,则DF的长是______.三、解答题(本大题共9小题,共90.0分)15.已知a:b:c=2:3:4,求a−3b−c的值.b16.如图,抛物线y=2x2+bx−2过点A(−1,m)和B(5,m).(1)求b和m的值;(2)若抛物线与y轴交于点C,求△ABC的面积.17.如图,小明为了测量大树AB的高度,在离B点21米的N处放了一个平面镜,小明沿BN方向后退1.4米到D点,此时从镜子中恰好看到树顶的A点,已知小明的眼睛(点C)到地面的高度CD是1.6米,求大树AB的高度.18.如图,在10×10网格中,点O是格点,△ABC是格点三角形(顶点在网格线交点上),且点A1是点A以点O为位似中心的对应点.(1)画出△ABC以点O为位似中心的位似图形△A1B1C1;(2)△A1B1C1与△ABC的位似比是______.19.已知△ABC的面积为S,点D,E分别在边AB,AC上,且DE//BC.【填空】(1)如图1,若AD:DB=1:1,则四边形DECB的面积a1=______(用含S的式子表示,下同);(2)如图2,若AD:DB=1:2,则四边形DECB的面积a2=______;(3)如图3,若AD:DB=1:3,则四边形DECB的面积a3=______;以此类推,…【猜想】根据上述规律猜想,若AD :DB =1:n ,则四边形DECB 的面积a n =______;【应用】计算a 1⋅a 2⋅a 3…a 10.20. 喷洒酒精能有效杀灭“新型冠状肺炎”病毒.根据实验知道喷洒酒精在教室内空气中的浓度y(单位:mg/m 3)与时间x(单位:ℎ)的函数表达式为y ={2x(0<x <m)−x 2+6x −4(x ≥m).其大致图象如图所示.请根据以上信息解答下列问题: (1)试确定点A 的坐标;(2)根据经验,当教室空气中的药物浓度不低于1mg/m 3时,杀灭“新型冠状肺炎”病毒的效果最佳,请通过计算说明单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为多少小时?(mk≠0)的图象相交于点A(1,6)和点21.已知一次函数y=kx+b与反比例函数y=mxB(n,−2).(1)试确定一次函数与反比例函数的表达式;(2)若点P在x轴上,且△PAB的面积为12,求点P的坐标;(3)结合图象直接写出不等式kx+b>m的解集.x22.如图,在平面直角坐标系xOy中,直线l:y=x−2与x轴、y轴分别交于点A和点B,抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(6,n)(1)求n的值和抛物线的解析式;(2)已知点P是抛物线上位于点B、C之间的一动点(不与点B,C重合),设点P的横坐标为a.当a为何值时,△APC的面积最大,并求出其最大值;(3)在y轴上是否存在点M,使△BMC与△BAO相似?若存在,直接写出点M的坐标(不用说理);若不存在,请说明理由.23.如图,四边形ABCD和四边形AEFG都是正方形,C,E,F三点在一条直线上,连接FA并延长交边CB的延长线于点H.(1)求证:△HCA∽△HFC;(2)求CF的值;BE(3)若HC=6,HB=2,求正方形AEFG的边长.答案和解析1.【答案】A【解析】解:∵2a=3b,∴ab =32,∴a−bb =ab−1=32−1=12;故选:A.根据已知条件得出ab =32,再把要求的式子化成ab−1,再代值计算即可得出答案.此题考查了比例的性质,熟练掌握比例的性质是解题的关键.2.【答案】D【解析】解:∵反比例函数y=2−kx的图象分布在第二、四象限,∴2−k<0,解得k>2,故选:D.根据反比例函数的图象和性质,由2−k<0即可解得答案.本题考查了反比例函数的图象和性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.3.【答案】C【解析】解:∵DE//BC,∴ADBD =AECE,∵EF//AB,∴AECE =BFCF,∴ADBD =BFCF,故A正确,不符合题意;∵DE//BC,∴ADAB =AEAC,∵EF//AB,∴AEAC =BFBC,∴ADAB =BFBC,故B正确,不符合题意;∵DE//BC,∴△ADE∽△ABC,∴DEBC =AEAC,∵EF//AB,∴△CEF∽△CAB,∴EFAB =CEAC,∴C错误,符合题意;∵DE//BC,∴DBAB =CEAC,∵EF//AB,∴CEAC =CFBC,∴DBAB =CFBC,故D正确,不符合题意;故选:C.利用平行线分线段成比例和相似三角形的判定与性质,逐一进行判断即可.本题主要考查了平行线分线段成比例,以及相似三角形的判定与性质,熟记平行线分线段成比例是解题的关键.4.【答案】A【解析】解:∵二次函数y=−2x2+4x−1=−2(x−1)2+1,∴ℎ=−1,k=1,故选:A.将题目中的函数解析式化为顶点式,即可得到h、k的值,本题得以解决.本题考查二次函数的性质、二次函数的三种形式,解答本题的关键是明确题意,利用二次函数的性质解答.5.【答案】D【解析】解:∵CE⊥CD,∴∠EDC=90°,∵∠BCA=90°,∴∠BCE=∠DCA=90°−∠BCD,∵CD是Rt△ABC斜边AB上的中线,∴DC=DB=DA,∴∠DAC=∠A,∴∠BCE=∠DCA=∠A,∵∠CBA=2∠A,∠CBA+∠A=90°,∴∠A=∠BCE=∠DCA=30°,∠CBA=60°,∴∠E=∠CBA−∠BCE=30°,∴∠BCE=∠DCA=∠E=∠A,∴△CEB∽△CAD,∴A不符合题意,∵点B是DE的中点,∴BE=BC,∴∠BCE=∠E,∴∠BCE=∠E=∠DCA=∠A,∴△CEB∽△CAD,∴B不符合题意,∵CE⋅CD=CA⋅CB,∴CECA =CBCD,∵∠BCE=∠DCA,∴△CEB∽△CAD,∴C不符合题意.由CECA =BEAD,由于∠E和∠A不能判断相等,故不能判断△CEB与△CAD相似,∴D符合题意,故选:D.根据相似三角形的判定方法一一判断即可.本题考查相似三角形的判定,直角三角形斜边中线的性质,直角三角形30度角的性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握相似三角形的判定方法,属于中考常考题型.6.【答案】C【解析】解:∵某人的肚脐眼恰好是他的身高的黄金分割点,且他的上身比下身长,该人的身高约为1.8米,∴他的上身长度约为√5−12×1.8≈0.618×1.8≈1.1(米),故选:C.直接根据黄金分割的定义求解即可.本题主要考查了黄金分割以及近似数.关键是明确黄金分割所涉及的线段的比值.7.【答案】D【解析】解:∵矩形ABCD中,AB=24,AD=BC=10,∠B=90°,∴AC=√AB2+BC2=√242+102=26,由折叠可得,MN垂直平分AC,∴AO=CO=13,又∵CD//AB,∴∠NCO=∠MAO,∠CNO=∠AMO,∴△CON≌△AOM(AAS),∴MO=NO,∵∠AOM=∠B=90°,∠MAO=∠BAC,∴△ABC∽△AOM,∴OMBC =AOAB,即OM10=1324,解得OM=6512,∴MN=2OM=656.故选:D.先判定△CON≌△AOM,即可得到MO=NO,再根据△ABC∽△AOM,即可得到OM=6512,进而得出MN=2OM=656.本题主要考查了折叠问题、相似三角形的判定与性质的运用,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用.8.【答案】B【解析】解:A、由于c=5>0,所以抛物线与y轴的交点位于y轴的正半轴上,故本选项不符合题意.B、由于y=−x2−4x+5=−(x+2)2+9的开口方向向下,对称轴是直线x=−2,所以当x>−2时,函数值y随x的增大而减小,故本选项符合题意.C、由于y=−x2−4x+5=−(x+2)2+9的顶点坐标是(−2,9),且开口方向向下,所以当x=−2时,函数一定有最大值是9,故本选项不符合题意.D、由于y=−x2−4x+5=−(x+5)(x−1),所以抛物线与x轴的交点坐标是(1,0)和(−5,0),故本选项不符合题意.故选:B.根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.此题考查二次函数的性质,抛物线与x轴的交点,正确判定开口方向,求得对称轴与顶点坐标是解决问题的关键.9.【答案】C【解析】解:过点C作CD⊥AB于D,在等腰△ABC中,AC=5,AD=12AB=4,则CD=3,在Rt△ACD中,tanA=CDAD =34=tanB,(1)当0≤x≤4,如图1,∵tan∠A=MNAM =34=MNx,即MN=34x,y=12×AM⋅MN=12x×34x=38x2,该函数为开口向上的抛物线,且对称轴为y轴,位于y轴的右侧抛物线的一部分;(2)当4<x≤8时,同理:y=12x×34(8−x)=−38x2+3x,该函数为开口向下的抛物线的一部分,对称轴为x=4,故选:C.用面积公式,分段求出△AMN的面积即可求解.本题考查的是动点图象问题,涉及到解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.10.【答案】D【解析】解:∵∠ACB=90°,CA=CB=3√2,∴∠A=∠B=45°.∵∠CDB=∠A+∠ACD=∠CDE+∠BDE,∠CDE=45°,∴∠ACD=∠BDE,∴△CAD∽△DBE,故①正确;∵CA=CB=3√2,∴AB=√CA2+CB2=6,当点D是AB的中点时,BD=AD=12AB=3,由①结论可得:CADB =ADBE,即3√23=3BE,解得:BE=3√22=12BC,故点E为BC的中点,故②正确;若点D是AB的三等分点,则AD=2或4,由①中结论可得:CADB =ADBE,∴3√24=2BE或3√22=4BE,解得:BE=4√23.故③正确.综上,正确的共有3个.故选:D.根据外角定理结合已知条件可得∠CDB=∠A+∠ACD=∠CDE+∠BDE,从而可得∠ACD=∠BDE,又∠A=∠B=45°,故可判定△CAD∽△DBE,则①正确;根据勾股定理可得AB=6,当D为AB中点时,由由①结论可得:CADB =ADBE,可得BE=3√22=12BC,则可判断②正确;若点D是AB的三等分点,则AD=2或4,由①结论可得:CADB =ADBE,进而可得到BE=4√23.故③正确.本题考查了相似三角形的判定与性质、等腰三角形的性质,推出△CAD∽△DBE是解本题的关键.11.【答案】±3√2【解析】解:设c是a,b的比例中项,则c2=ab,∵a=3,b=6,∴c2=18,解得c=±3√2.故答案为:±3√2.首先设c是a,b的比例中项,根据比例中项的定义,即可得c2=ab,又由a=3,b=6,即可求得a,b的比例中项的值.此题考查了比例中项的定义.此题比较简单,解题的关键是熟记比例中项的定义.12.【答案】<【解析】解:∵抛物线对称轴为直线x=−1,抛物线与x轴的一个交点在−2、−3之间,∴另一个交点在0、1之间,∴当x=1时,y<0,则a+b+c<0,故答案为<.根据二次函数的对称性求得抛物线与x轴的另一个交点在0、1之间,即可判断当x=1时,y<0,即a+b+c<0.本题主要考查二次函数图象与系数之间的关系,熟练掌握二次函数的性质是解题的关键.13.【答案】18【解析】解:如图,作BD⊥x轴,AC⊥x轴.∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴ODAC =BDOC,∵A(2,4),B(b,3),∴OC=2,AC=4,OD=−b,BD=3,∴−b4=32,∴b=−6,∴B(−6,3),∵设反比例函数y=−kx(k≠0)的图象经过点B,∴−k=−6×3=−18,∴k=18,故答案为18.作AC⊥x轴,BD⊥x轴.易得△ACO∽△ODB,根据比例式求出OD,可得出点B的坐标,代入y=−kx(k≠0)即可求出k的值.本题主要考查了相似三角形的判定与性质及反比例函数图象上点的坐标特征,解题的关键是正确作出辅助线,构造相似三角形.14.【答案】20 4【解析】解:(1)∵CG⊥BE,H是BC的中点,∴HB=HC=HG=12BC,∴∠CBE=∠HGB,∵∠CBE=35°,∴∠HGB=35°,∴∠CHD=∠CBE+∠HGB=70°,在矩形ABCD中,∠BCD=90°,∴∠CDH=90°−∠CHD=20°,故答案为:20;(2)由(1)得∠HBG=∠HGB,∵∠HGB=∠DGE,∴∠HBG=∠DGE,∵∠BCE=90°,∴∠DCG+∠BCG=90°,∵CG⊥BE于G,∴∠HBG+∠BCG=90°,∴∠DCG=∠HBG,∴∠DGE=∠DCG,∵∠D=∠D,∴△DGE∽△DCG,∴DGDC =DEDG,∴DG2=DE⋅DC,∵HC=HG,∴∠HCG=∠HGC,∵AD//BC,∴∠HCG=∠GFD,∵∠HGC=∠DGF,∴∠GFD=∠DGF,∴DG=DF,∴DF2=DE⋅DC=2×(2+6)=2×8=16,∴DF=4,故答案为:4.(1)根据直角三角形斜边上的中线性质得出∠CBE=∠HGB=35°,再根据三角形外角性质得出∠CHD=70°,最后根据直角三角形两锐角互余即可得解;(2)由(1)得∠HBG=∠HGB,再根据直角三角形的两锐角互余可求得∠DGE=∠DCG,即可判定△DGE∽△DCG,可得出DG2=DE⋅DC,再根据矩形的性质及对顶角相等可求得DG=DF,即可得解.此题考查了矩形的性质,根据矩形的性质得出∠CBE=∠HGB及DG=DF是解题的关键.15.【答案】解:由a:b:c=2:3:4可设a=2k,b=3k,c=4k,则原式=2k−9k−4k3k =−113.【解析】根据比例设a=2k,b=3k,c=4k,然后代入比例式进行计算即可得解.本题考查了比例的性质,利用“设k法”表示出a、b、c求解更简便.16.【答案】解:(1)∵点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,∴−b2×2=−1+52,解得,b=−8,∴抛物线解析式为y=2x2−8x−2,把A(−1,m)代入得,m=2+8−2=8;(2)由y=2x2−8x−2可知,抛物线与y轴交点C的坐标为(0,−2),∴OC=2,∵A(−1,8)和B(5,8),∴AB=6,∴S△ABC=12×6×(2+8)=30.【解析】(1)根据点A(−1,m)和B(5,m)是抛物线y=2x2+bx−2上的两点,可以得到b 的值,即可得到函数解析式,把A(−1,m)代入解析式即可求得m的值;(2)求得C的坐标,然后根据三角形面积公式即可求得.本题考查了二次函数图象上点的坐标特征、三角形的面积,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】解:∵AB⊥DB,DC⊥DB,∴∠CDN=∠ABN=90°,∵∠CND=∠ANB,∴△CDN∽△ABN.∴CDDN =ABBN,即1.61.4=AB21,∴AB=1.6×21÷1.4=24(m),答:大树AB的高度为24m.【解析】由图不难得出,△CDN∽△ABN,再利用相似三角形对应边成比例,进而可求解线段的长.此题主要考查了相似三角形的应用,根据已知得出△CDN∽△ABN是解题关键.18.【答案】3【解析】解:(1)如图所示,△A1B1C1即为所求.(2)△A1B1C1与△ABC的位似比=OA1OA=3,故答案为:3.(1)连接OB、OC,分别延长OB、OC到点B1、C1,使OB1OB =OC1OC=OA1OA,再首尾连接即可;(2)由位似比=OA1OA可得答案.本题主要考查作图−位似变换,解题的关键是掌握位似变换的定义和性质,并据此得出变换后的对应点.19.【答案】34S89S1516S n(n+2)(n+1)2【解析】解:(1)∵AD:DB=1:1,∴ADAB =12,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =14,∴S△ADES =14,∴S△ADE=14S,∴a1=S−S△ADE=34S,故答案为:34S;(2)∵AD:DB=1:2,∴ADAB =13,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =19,∴S△ADES =19,∴S△ADE=19S,∴a2=S−S△ADE=89S,故答案为:89S;(3)∵AD:DB=1:3,∴ADAB =14,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =116,∴S△ADES =116,∴S△ADE=116S,∴a3=S−S△ADE=1516S,故答案为:1516S;【猜想】∵AD:DB=1:n,∴ADAB =1n+1,∵DE//BC,∴△ADE∽△ABC,∴S△ADES△ABC =1(n+1)2,∴S△ADES =1(n+1)2,∴S△ADE=1(n+1)2S,∴a n=S−S△ADE=[1−1(n+1)2]S=(n+1)2−1(n+1)2S=n(n+2)(n+1)2S,故答案为:n(n+2)(n+1)2S;【应用】由【猜想】知,a n=n(n+2)(n+1)2S,∴a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112=12×12112=6121.(1)先算出ADAB =12,再判断出△ADE∽△ABC,得出S△ADES△ABC=14,进而得出S△ADE=14S,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论;【猜想】同(1)的方法,即可得出结论;【应用】先得出a1⋅a2⋅a3…a10=1×322⋅2×432⋅3×542⋅4×652⋅5×762…⋅10×12112,即可得出结论.此题是四边形综合题,主要考查了相似三角形的判定和性质,得出a n=n(n+2)(n+1)2S是解本题的关键.20.【答案】解:(1)由题意可得A为函数y=2x与y=−x2+6x−4的交点,所以2x=−x2+6x−4,解得x1=x2=2,代入y=2x得y=4,可得A(2,4).(2)当教室空气中的药物浓度不低于1mg/m3时,杀灭“新型冠状肺炎”病毒的效果最佳,由(1)得m=2,当0<x<2时,令y=1,2x=1,x=12;当x≥2时,令y=1,−x2+6x−4=1整理得x2−6x+5=0解得x1=1(不合题意,舍去),x2=5,所以x=5,所以单次喷洒酒精杀灭“新型冠状肺炎”病毒的效果处于最佳状态的时间为(5−12)= 4.5小时.【解析】(1)点A是一次函数与二次函数的交点,令函数值相等即可求解;(2)教室空气中的药物浓度不低于1mg/m3,分别令一次函数与二次函数等于1,求得相应的X值,再根据取值范围确定解,进而算出处于最佳状态的时间.本题考查了二次函数的应用:能把实际的问题转化为数学问题,建立函数模型.注意在自变量和函数值的取值上的实际意义.也考查了一次函数.21.【答案】解:(1)把A(1,6)代入y =mx 得m =1×6=6;∴反比例函数解析式为y =6x ,把B(n,−2)代入y =6x 得−2=6n ,解得n =−3, ∴B(−3,−2),把A(1,6),B(−3,−2)分别代入y =kx +b 得{k +b =6−3k +b =−2, 解得{k =2b =4,∴一次函数解析式为y =2x +4;(2)y =2x +4中,令y =0,则2x +4=0, 解得x =−2,∴一次函数y =2x +4的图象与x 轴的交点C 的坐标为(−2,0). ∵S △PAB =12,∴12PC ×6+12PC ×2=12. ∴PC =3,∴点P 的坐标为(−5,0)、(1,0).(3)由图象可知不等式kx +b >mx 的解集为:−3<x <0或x >1.【解析】(1)把A 点坐标代入y =mx 得m =6,则反比例函数解析式为y =6x ,再利用反比例函数解析式确定B 点坐标;进而利用待定系数法求出一次函数解析式;(2)首先求得AB 与x 轴的交点,设交点是C ,然后根据S △ABP =S △ACP +S △BCP 即可列方程求得P 的坐标;(3)结合函数图象,写出反比例函数图象在一次函数图象上方所对应的自变量的范围即可.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.【答案】解:(1)对于y =x −2,令x =0,则y =−2,令y =x −2=0,解得x =2,当x =6时,y =x −2=4=n ,故点A 、B 、C 的坐标分别为(2,0)、(0,−2)、(6,4);将点B 、C 的坐标代入抛物线的表达式得{c =−24=36+6b +c ,解得{b =−5c =−2,故抛物线的表达式为y =x 2−5x −2;(2)如图,过点P 作y 轴的平行线交AB 于点H ,设点P 的坐标为(a,a 2−5a −2),则点H(a,a −2),则△APC 的面积=S △PHA +S △PHC =12×PH ×(x C −x A )=12×(a −2−a 2+5a +2)×(6−2)=−2a 2+12a ,∵−2<0,故△APC 的面积存在最大值,当a =3时,△APC 的面积的最大值为18;(3)存在,理由:由点A 、B 的坐标知,△ABO 为等腰直角三角形,当△BMC 与△BAO 相似时,则△BMC 为等腰直角三角形, ①当∠BM′C 为直角时,则点M′的纵坐标与点C 的纵坐标相同,故点M′(0,4);②当∠BCM为直角时,则点M′是BM的中点,故点M(0,10);故点M的坐标为(0,4)或(0,10).【解析】(1)用待定系数法即可求解;(2)由△APC的面积=S△PHA+S△PHC,即可求解;(3)分∠BM′C为直角、∠BCM为直角两种情况,利用数形几何即可求解.本题是二次函数综合题,主要考查了一次函数的性质、等腰直角三角形的性质、面积的计算等,其中(3),要注意分类求解,避免遗漏.23.【答案】(1)证明:∵四边形ABCD和四边形AEFG都是正方形,∴∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,∴△HCA∽△HFC;(2)解:∵四边形ABCD和四边形AEFG都是正方形,∴∠ABC=90°,由勾股定理可得AC=√2AB,同理可得:AF=√2AE,又∠FAE=∠BAC,∴∠FAE+∠EAC=∠BAC+∠EAC,即∠FAC=∠BAE,∴AFAE =ACAB=√2,∴△FAC∽△EAB,∴CFBE =ACAB=√2.(3)解:∵HC=6,HB=2,∴BC=6−2=4.由勾股定理得:AH=√AB2+HB2=2√5,由(1)得△HCA∽△HFC,∴HCHF =HAHC,即6HF =2√56,解得:HF=18√55,∴AF=HF−AH=18√55−2√5=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理有:2x2=(8√55)2,解得:x=4√105.即正方形AEFG的边长为4√105.【解析】(1)由四边形ABCD和四边形AEFG都是正方形,所以∠BCA=∠AFE=45°,即∠HCA=∠HFC=45°,又∠CHA=∠FHC,所以△HCA∽△HFC;(2)由四边形ABCD和四边形AEFG都是正方形,所以AC=√2AB,AF=√2AE,可证明∠FAC=∠BAE,结合AFAE =ACAB=√2,可判定△FAC∽△EAB,所以CFBE=ACAB=√2;(3)因为BC=6−2=4,由勾股定理可得AH=2√5,由(1)得△HCA∽△HFC,所以HCHF=HA HC ,可得HF=18√55,所以AF=HF−AH=8√55.设正方形AEFG的边长为x,在直角三角形AEF中,由勾股定理得方程2x2=(8√55)2,解出x即可得答案.本题考查了正方形的性质,相似三角形的判定与性质,勾股定理,关键是要学会综合运用这些知识.。

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

人教版2022-2023学年第一学期九年级数学第二次月考测试题(附答案)

2022-2023学年第一学期九年级数学第二次月考测试题(附答案)一、选择题:(共30分)1.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形2.下列函数解析式中,一定为二次函数的是()A.y=3x﹣1B.y=ax2+bx+cC.s=2t2﹣2t+1D.y=(x﹣1)(2+x)﹣x23.在平面直角坐标系中,点P(﹣2,a)与点Q(b,3)关于原点对称,则a+b的值为()A.5B.﹣5C.1D.﹣14.下列命题中假命题的个数是()①三点确定一个圆;②三角形的内心到三边的距离相等;③相等的圆周角所对的弧相等;④平分弦的直径垂直于弦;⑤垂直于半径的直线是圆的切线.A.4B.3C.2D.15.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°6.抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.x轴的正半轴上D.x轴的负半轴上7.设⊙O的直径为m,直线l与⊙O相离,点O到直线l的距离为d,则d与m的关系是()A.m=d B.m<d C.2d>m D.2d<m8.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:2510.如图,点E和点F是正方形ABCD的边BC和边CD上的两动点,且∠EAF=45°,有下列结论:①EF=BE+DF;②∠AEB=∠AEF;③BG2+DG2=2AG2;④如果BE=CE,那么DF:CF=1:3;⑤△AFE∽△AGM且相似比是;其中正确的结论有()个.A.1B.2C.3D.4二、填空题:(共18分)11.一元二次方程2x2=x的解是.12.在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为.13.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.14.如图,P A,PB切⊙O于A,B两点,CD切⊙O于点E,分别交P A,PB于点C,D.若⊙O的半径为2,∠P=60°,则△PCD的周长等于.15.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B (如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b 的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.16.如图所示,在平面直角坐标系中,A(0,0),B(2,0),△AP1B是等腰直角三角形且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C,把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,得到的等腰直角三角形的直角顶点P2021的坐标为.三、解答题:(共72分)17.解下列方程:(1)3x2﹣5x+1=0(公式法);(2)3(2x﹣5)2﹣27=0.18.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.19.已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满足5x1+x2=8,求实数m的值.20.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.21.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?22.如图1,四边形ABCD内接于⊙O,AD为直径,点C作CE⊥AB于点E,连接AC.(1)求证:∠CAD=∠ECB;(2)若CE是⊙O的切线,∠CAD=30°,连接OC,如图2.①请判断四边形ABCO的形状,并说明理由;②当AB=2时,求AD,AC与围成阴影部分的面积.23.如图①,△ABC与△DEF是将△ACF沿过A点的某条直线剪开得到的(AB,DE是同一条剪切线).平移△DEF使顶点E与AC的中点重合,再绕点E旋转△DEF,使ED,EF分别与AB,BC交于M,N两点.(1)如图②,△ABC中,若AB=BC,且∠ABC=90°,则线段EM与EN有何数量关系?请直接写出结论;(2)如图③,△ABC中,若AB=BC,那么(1)中的结论是否还成立?若成立,请给出证明:若不成立,请说明理由;(3)如图④,△ABC中,若AB:BC=m:n,探索线段EM与EN的数量关系,并证明你的结论.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F(不与点C重合),使|FC﹣FE|的值最大,若存在,请求出点F的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,△OPQ是等腰三角形.参考答案一、选择题:(共30分)1.解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选:A.2.解:A、y=3x﹣1,是一次函数,故A不符合题意;B、当a=0时,函数y=ax2+bx+c不是二次函数,故B不符合题意;C、s=2t2﹣2t+1,是二次函数,故C符合题意;D、y=(x﹣1)(2+x)﹣x2=2x+x2﹣2﹣x﹣x2=x﹣2,是一次函数,故D不符合题意;故选:C.3.解:∵点P(﹣2,a)与Q(b,3)关于原点对称,∴b=2,a=﹣3,则a+b的值为:2﹣3=﹣1.故选:D.4.解:①错误,不在同一条直线上的三点确定一个圆;②正确,三角形的内心到三边的距离相等;③错误,在同圆或等圆中,相等的圆周角所对的弧相等;④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦;⑤错误,过半径的外端且垂直于半径的直线是圆的切线.故选:A.5.解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.6.解:∵y=x2﹣2x+m2+2=(x﹣1)2+(m2+1),∴顶点坐标为:(1,m2+1),∵1>0,m2+1>0,∴顶点在第一象限.故选:A.7.解:∵⊙O的直径为m,点O到直线L的距离为d,直线L与⊙O相离,∴d>,即2d>m,故选:C.8.解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠CAD=45°,∠ACD=90°﹣20°=70°,∴∠ADC=180°﹣45°﹣70°=65°,故选:C.9.解:∵DE∥AC,∴△DEO∽△CAO,∴=()2=,∴DE:AC=BE:BC=1:5,∴BE:EC=1:4,∴S△BED:S△DEC=1:4,故选:B.10.解:如图,延长CB至Q,使BQ=DF,连接AQ,∵BQ=DF,∠ADF=∠ABQ,AB=AD,∴△ADF≌△ABQ(SAS),∴AF=AQ,∠DAF=∠BAQ,∵∠EAF=45°,∴∠EAQ=∠BAH+∠BAE=∠DAF+∠BAE=90°﹣∠EAF=45°,∴∠EAQ=∠EAF=45°,在△AEF和△AEQ中,,∴△AEF≌△AEQ(SAS),∴EQ=EF,∠AEB=∠AEF,∴BE+BQ=BE+DF=EF,故①②正确;设AB=BC=CD=2a,当BE=EC=a时,∵EF2=CF2+EC2,∴(a+DF)2=(2a﹣DF)2+a2,∴DF=a,∴CF=a,∴DF:CF=1:2,故④错误;如图,将△ABG绕点A逆时针旋转90°,连接PG,∴AP=AG,∠P AG=90°,∠ADP=∠ABG=45°,∴PG2=AG2+AP2=2AG2,∠BDP=90°,∴DG2+PD2=PG2,∴BG2+DG2=2AG2,故③正确;如图,连接ME,∵∠CBD=∠EAF=45°,∴点A,点B,点E,点M四点共圆,∴∠AEM=∠ABD=45°,∴∠AEM=∠EAM=45°,∴AM=EM,∴AE=AM,∵∠DAG=90°﹣∠BAG,∠AMB=180°﹣∠ABD﹣∠EAF﹣∠BAG=90°﹣∠BAG,∴∠DAG=∠AMB,∵AD∥BC,∴∠DAG=∠AEB,∵∠AEB=∠AEF,∴∠AMB=∠AEF,又∵∠EAF=∠GAM,∴△EAF∽△MAG,∴相似比为=,故⑤正确;故选:D.二、填空题:(共18分)11.解:2x2=x,2x2﹣x=0,x(2x﹣1)=0,x1=0,x2=.12.解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故答案是:10.13.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.14.解:如图,连接OA,OB,OP,∵P A,PB切⊙O于A,B两点,OA,OB是半径,∴OA⊥P A,OB⊥PB,且OA=OB,∴OP是∠APB的平分线,∵∠APB=60°,∴∠APO=30°,∴OP=2OA=4,在Rt△APO中,由勾股定理得AP==2,∵P A,PB切⊙O于A,B两点,∴P A=PB=2,∵CD切⊙O于点E,∴AC=CE,BD=DE,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=P A+PB=4,故答案为:4.15.解:由题意得:AB=b﹣a=2,设AM=x,则BM=2﹣x,x2=2(2﹣x),x=﹣1±,x1=﹣1+,x2=﹣1﹣(舍),则AM=BN=﹣1,∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4,故答案为:2﹣4.16.解:∵A(0,0),B(2,0),∴AB的中点为(1,0),∴P1(1,1),∵△AP1B绕点B顺时针旋转180°,∴P2(3,﹣1),同理分别得到P3(5,1),P4(7,﹣1),P5(9,1),…,∴P n(2n﹣1,(﹣1)n+1),∴P2021的坐标为(4041,1),故答案为:(4041,1).三、解答题:(共72分)17.解:(1)∵a=3,b=﹣5,c=1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x==,∴;(2)∵3(2x﹣5)2﹣27=0,∴3(2x﹣5)2=27,∴(2x﹣5)2=9,则2x﹣5=3或2x﹣5=﹣3,解得x1=1,x2=4.18.解:(1)如图1,直径CD为所求;(2)如图2,弦AD为所求.19.解:(1)∵方程有两个不相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4×1×m>0,m<4,∴实数m的取值范围是m<4.(2)∵x1+x2=4,5x1+x2=8,∴x1=1,∵x1是方程的根,把x1=1代入原方程得1﹣4+m=0,∴m=3,∴实数m的值是3.20.解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∴即∵PD∥AB∴即∴∴∴BP=21.解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.22.(1)证明:∵四边形ABCD是⊙O的内接四边形,∴∠CBE=∠D,∵AD为⊙O的直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∴∠CBE+∠CAD=90°,∵CE⊥AB,∴∠CBE+∠BCE=90°,∴∠CAD=∠BCE;(2)①四边形ABCO是菱形,理由:∵∠CAD=30°,∴∠COD=2∠CAD=60°,∵CE是⊙O的切线,∴OC⊥CE,∵CE⊥AB,∴OC∥AB,∴∠DAB=∠COD=60°,由(1)知,∠CBE+∠CAD=90°,∴∠CBE=90°﹣∠CAD=60°=∠DAB,∴BC∥OA,∴四边形ABCO是平行四边形,∵OA=OC,∴▱ABCO是菱形;②由①知,四边形ABCO是菱形,∴OA=OC=AB=2,∴AD=2OA=4,由①知,∠COD=60°,在Rt△ACD中,∠CAD=30°,∴CD=2,AC=2,∴AD,AC与围成阴影部分的面积为S△AOC+S扇形COD=S△ACD+S扇形COD=××2×2+=+π.23.解:(1)EM=EN.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图②所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(2)EM=EN仍然成立.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图③所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵BA=BC,点E为AC中点,∴BE平分∠ABC.又∵EH⊥AB,EG⊥BC,∴EH=EG.在△HEM和△GEN中,∵∠HEM=∠GEN,EH=EG,∠EHM=∠EGN,∴△HEM≌△GEN.∴EM=EN.(3)线段EM与EN满足关系:EM:EN=n:m.证明:过点E作EG⊥BC,G为垂足,作EH⊥AB,H为垂足,连接BE,如答图④所示.则∠EHB=∠EGB=90°.∴在四边形BHEG中,∠HBG+∠HEG=180°.∵∠HBG+∠DEF=180°,∴∠HEG=∠DEF.∴∠HEM=∠GEN.∵∠HEM=∠GEN,∠EHM=∠EGN,∴△HEM∽△GEN.∴EM:EN=EH:EG.∵点E为AC的中点,∴S△AEB=S△CEB.∴AB•EH=BC•EG.∴EH:EG=BC:AB.∴EM:EN=BC:AB.∵AB:BC=m:n,∴EM:EN=n:m.24.解:(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),∴,解得,∴抛物线解析式为y=x2﹣3x﹣8,∵y=x2﹣3x﹣8=(x﹣3)2﹣,∴抛物线对称轴为直线x=3,又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),∴点B坐标(8,0).设直线l的解析式为y=kx,∵经过点D(6,﹣8),∴6k=﹣8,∴k=﹣,∴直线l的解析式为y=﹣x,∵点E为直线l与抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为﹣×3=﹣4,∴点E坐标(3,﹣4);(2)抛物线上存在点F,连接FC,FE.则有|FC﹣FE|≤CE.当点F为直线CE与抛物线交点时(不与点C重合),FC﹣FE=CE,此时|FC﹣FE|值最大.设直线CE解析式为y=kx﹣8,点E的坐标为(3,﹣4),∴3k﹣8=﹣4,∴k=,∴直线CE解析式为y=x﹣8,∵抛物线的表达式为y=x2﹣3x﹣8,联立解得,(舍去),,∴点F为直线CE与抛物线交点时(不与点C重合),|FC﹣FE|值最大.此时F;(3)①如图1,当OP=OQ时,△OPQ是等腰三角形.∵点E坐标(3,﹣4),∴OE==5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.∴,∴OM=OE=5,∴点M坐标(0,﹣5).设直线ME的解析式为y=k1x﹣5,∴3k1﹣5=﹣4,∴k1=,∴直线ME解析式为y=x﹣5,令y=0,得x﹣5=0,解得x=15,∴点H坐标(15,0),∵MH∥PB,∴,即,∴m=﹣,②如图2,当QO=QP时,△POQ是等腰三角形.∵当x=0时,y=x2﹣3x﹣8=﹣8,∴点C坐标(0,﹣8),∴CE==5,∴OE=CE,∴∠1=∠2,∵QO=QP,∴∠1=∠3,∴∠2=∠3,∴CE∥PB,设直线CE交x轴于N,解析式为y=k2x﹣8,∴3k2﹣8=﹣4,∴k2=,∴直线CE解析式为y=x﹣8,令y=0,得x﹣8=0,∴x=6,∴点N坐标(6,0),∵CN∥PB,∴,∴,∴m=﹣.③OP=PQ时,显然不可能,理由,∵D(6,﹣8),∴∠1<∠BOD,∵∠OQP=∠BOQ+∠ABP,∴∠PQO>∠1,∴OP≠PQ,综上所述,当m=﹣或﹣时,△OPQ是等腰三角形.。

河北省石家庄河北国际学校教育集团2024—2025学年上学期九年级月考数学试卷

河北省石家庄河北国际学校教育集团2024—2025学年上学期九年级月考数学试卷

河北省石家庄河北国际学校教育集团2024—2025学年上学期九年级月考数学试卷一、单选题1.一元二次方程2315x x +=的二次项系数、一次项系数、常数项分别是( ) A .3,5,1B .3,1,5C .3,5-,1D .3,1,5-2.下列各组中的四条线段成比例的是( ) A .1,1,2,3 B .3,6,4,7 C .5,6,7,8D .2,3,6,93.已知43a b =,则2b b a-的值为( ) A .53-B .53C .35D .35-4.用配方法解方程2620x x -+=,下列变形正确的是( ) A .2(3)2x -=-B .2(3)2x +=-C .2(3)7x -=D .2(3)7x +=5.关于x 的方程()221x m -=-无实数根, 那么m 满足的条件是( ) A .2m >B .2m <C .1m >D .1m <6.小红在班上做节水意识调查,收集了班上7位同学家里上个月的用水量(单位:吨)如下:5,5,6,7,8,9,10.她发现,若去掉其中两个数据后,这组数据的中位数、众数保持不变,则去掉的两个数可能是( ) A .5,10B .5,9C .6,8D .7,87.若下列方程都存在实数根,则以x 为根的是( )A .270x x c +-=B .270x x c ++=C .270x x c -+=D .270x x c --=8.2022年卡塔尔世界杯足球赛正在进行,小组内比赛采用单循环制,即每支球队必须和其余球队比赛一场,现A 组有x 支球队参加,共比赛了28场,则下列方程中符合题意的是( ) A .(1)28x x -= B .1(1)282x x +=C .1(1)282x x -=D .(1)28x x +=9.校园里一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP >PB ),如果AB 的长度为10cm ,那么AP 的长度为( )cm .A 1B . 2C . 5D .1010.中国射击队在本届巴黎奥运会中获5金2银3铜共计10枚奖牌,完美收官.射击运动最早起源于狩猎和军事活动,是一项用枪支对准目标打靶的竞技项目.小强、小刚、小明三位选手进行男子10米气手枪射击比赛,比赛第一枪小强以10.9环满环的好成绩暂列第一,小刚以10环暂列第三.这三位选手第一枪的平均成绩在( )A .10环以下B .10到10.3环之间C .10.3到10.6环之间D .10.6到10.9环之间11.在解一元二次方程x 2+px +q =0时,小红看错了常数项q ,得到方程的两个根是﹣3,1.小明看错了一次项系数P ,得到方程的两个根是5,﹣4,则原来的方程是( )A .x 2+2x ﹣3=0B .x 2+2x ﹣20=0C .x 2﹣2x ﹣20=0D .x 2﹣2x ﹣3=012.某校“研学”活动小组在一次野外实践中,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,则这种植物每个支干长出的小分支的个数是( )A .8B .7C .6D .513.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁14.已知实数k ,现有甲、乙、丙、丁四人对关于x 的方程21(2)04kx k x k -++=进行了讨论:甲说:这一定是关于x 的一元二次方程; 乙说:这有可能是关于x 的一元一次方程; 丙说:当1k ≥-时,该方程有实数根; 丁说:只有当1k ≥-且0k ≠时,该方程有实数根. 正确的是( )A .乙和丙说的对B .甲和丁说的对C .甲和丙说的对D .乙和丁说的对15.如图,有一面积为2600m 的长方形鸡场,鸡场的一边靠墙(墙长35m ),另三边用竹篱笆围成,其中一边开有1m 的门,竹篱笆的总长为69m .设鸡场垂直于墙的一边为m x ,则列方程正确的是( )A .()6912600x x +-=B .()6912600x x --=C .()692600x x -=D .()3512600x x +-=16.已知等腰ABC V 的一边5AB =,另外两边是关于x 的一元二次方程22240x mx m -+-=的根.则ABC V 的周长为( )A .11或19B .15或13C .11或15D .19或13二、填空题17.若x =−1是方程220x x a -+=的根,则a =.18.若一元二次方程2220250x x +-=的两个根分别为m ,n ,则代数式253m m n ++的值为.19.如图,6AO BO ==厘米,OC 是一条射线,OC AB ⊥.一动点P 从点A 以1厘米/秒的速度向点B 爬行,另一动点Q 从点O 以2厘米/秒的速度沿射线OC 方向爬行,它们同时出发,当点P 到达B 点时点Q 也停止运动.设运动时间为t 秒,经过秒,POQ △的面积为8平方厘米.三、解答题 20.解下列方程: (1)221x x -=;(2)()()22232x x -=-.21.已知:ABCD Y 的两邻边AB ,AD 的长是关于x 的方程220x mx m -+=的两个实数根. (1)当m 为何值时,ABCD Y 是菱形? (2)若AB 的长为3,求ABCD Y 的周长. 22.“逐梦寰宇问苍穹中国载人航天工程三十年成就展”的成功举办,标志着我国载人航天工程正式进入空间站应用与发展阶段.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取m 名学生进行测试,对成绩(百分制))进行整理、描述和分析,成绩划分为()90100A x ≤≤,()8090B x ≤<,()7080C x ≤<,()6070D x ≤<,四个等级,并制作出不完整的统计图如下.已知:B 等级数据(单位:分):80 80 81 82 85 86 86 88 89 89 ; 根据以上信息,回答下列问题:(1)补全条形统计图,并填空:m = ______ ,n = ______ ;(2)抽取的m 名学生中,成绩的中位数是______ 分,成绩不低于80分的人数占测试人数的百分比为______ ;(3)这所学校共有2100名学生,若全部参加这次测试,请你估计成绩能达到A 等级的学生人数.23.有一电脑程序:每按一次按键,屏幕的A 区就会自动减去2a ,同时B 区就会自动加上3a ,已知A ,B 两区初始显示的分别是25和15-,如:第一次按键后,A ,B 两区分别显示.(1)第一次按键后A 区代数式与B 区代数式的值相等,请通过计算求a 的值. (2)从初始状态按2次后,求A ,B 两区代数式的和的最大值.24.如图为2022年10月的日历表,在其中用一个方框圈出4个数(如图中虚框所示),设这4个数从小到大依次为a ,b ,c ,d .(1)若用含有a的式子分别表示出b,c,d,其结果应为:b=______;c=________;d=________;(2)按这种方法所圈出的四个数中,ab的最大值为_________;(3)嘉嘉说:“按这种方法可以圈出四个数,使得bc的值为135.”淇淇说:“按这种方法可以圈出四个数,使最小数a与最大数d的乘积ad为84.”请你运用一元二次方程的相关知识分别说明二人的说法是否正确.25.“阳光玫瑰”是一种优质的葡萄品种.某葡萄种植基地2021年年底已经种植“阳光玫瑰”300亩,到2023年年底“阳光玫瑰”的种植面积达到432亩.(1)求该基地“阳光玫瑰”种植面积的年平均增长率.(2)某水果市场9月底以25元/kg的价格从基地批发500千克“阳光玫瑰”放在冷库内,冷库存放一天需费用100元(储藏时间不超过12天),此时“阳光玫瑰”市场价为30元/kg每千克,因国庆黄金周的到来,此后每千克“阳光玫瑰”的市场价格每天上涨1.5元,但是,平均每天还有10千克“阳光玫瑰”变质丢弃.若市场经理想获得4500元的利润,需将“阳光玫瑰”储藏多少天后一次性售出.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学月考试卷
一、选择题(每小题3分,共30分)
1.sin 2θ+sin 2(90°-θ) (0°<θ<90°)等于( )
(A )0 (B )1 (C )2 (D )2sin 2θ 2.若2cosa - 3 =0,则锐角a =( )
(A ) 30°(B )15° (C )45°(D )60°
3.在直角三角形中,各边的长度都扩大3倍,则锐角A 的四个三角形函数的值( )
(A )也扩大3倍 (B )缩小为原来的3
1
(C )都不变 (D )有的扩大,有的缩小
4、如图1在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且5
3
c o s =α, AB = 4, 则AD 的长为
( ). (A )3 (B )316 (C )320 (D )5
16
5.二次函数y =ax 2+bx +c 的图象如图2,则下列各式中成立的个数是( )
(1)abc <0; (2)a +b +c <0; (3)a +c >b ; (4)a <-2
b

图2
图1
(A )1 (B )2 (C )3 (D )4
6、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )
A 、6,4
B 、-8,14
C 、-6,6
D 、-8,-14
7、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )
A 、x =-3
B 、x =-2
C 、x =-1
D 、x =1
2 ( )
A B C D 9、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )
A 、22
B 、23
C 、32
D 、33
10、已知二次函数y=3(x-1)2+k 的图象上有三点A(2,y 1),B(2,y 2),C(-5,y 3),则y 1、 y 2、y 3的大小关系为( )
A .y 1.> y 2> y 3 B..y 2> y 1> y 3 C .y 3> y 1> y 2 D .y 3> y 2> y 1
A
B
C
D
E
二填空题(每题3分,共10分)
11、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水
平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

(精确到0.1m) 12、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角仪高为1.5米.那么旗杆的高为 米(用含α的三角函数表示). 13、抛物线y=-3x 2+5的开口向________,对称轴是_______,顶点坐标是________,顶点是最_____点,所以函数有最________值是_____.
14. 如图,河对岸有古塔AB.小敏在C 处测得塔顶A 的仰
角为α,向塔前进s 米到达D ,在D 处测得A 的仰角为β则塔高是
米.
15.已知函数y=(k+2)24
k k x
+-是关于x 的二次函数,则
k=_______
_.
16.二次函数6332-+=x x y 与x 轴有 交点.交点坐标是 .
17
解析式是 (任写一个)
18、根据图中的抛物线,当x
时,y 随x 的 增大而增大,当x 时,y 随x 的增大而减小, 当x 时,y 有最大值。

19.已知抛物线y=ax 2+bx+c 经过点(1,2)与(-l ,4),则a+c 20.把一根长100cm 的铁丝分为两部分,每一部分均弯曲成一个正方形, 它们的面积和最小是______. 三 计算题(每小题4分,)
21.(1)tan30°sin 60°+cos 230°-sin 2
45°tan45°
(2)12 sin60°+2
2
cos45°+sin30°·cos30°
四 解答题
22. (6分) 甲、乙两楼相距45米,从甲楼顶部A 点观测乙楼顶 部D 点的俯角为30°,观测乙楼的底部C 点的俯角为45°,
试求两楼的高.
300 450
A E D B
23. (8分)如图,二次函数y=x 2+bx+c 的图像与x 轴相交于A,B ,点A 在原点左边,点B 在原点右边,点P (1,m )(m>0)在抛物线上,AB=2,
tan ∠PAB=2
5 ,(1)求m 的值;(2)求二次函数解析式
24、(8分)某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。

不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?
25.(8分)如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x (m ),面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;
(2)当x 为何值时,所围苗圃的面积最大,最大面 积是多少?
26.(10分)如图,抛物线y =ax 2+bx +c 与x 轴、y 轴分别相交于A (-1,0)、B (3,0)、C (0,
3)三点,其顶点为D ..
(1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积;
27.(12分)已知二次函数y =ax 2+bx +c 的图象抛物线经过(-5,0),(0,
2
5),(1,6)三点,直线l 的解析式为y =2 x -3.(1)求抛物线的函数解析式;(2)求证抛物线与直线l 无公共点;(3)若与l 平行的直线y =2 x +m 与抛物线只有一个公共点P ,求P 点的坐标.。

相关文档
最新文档