牛顿运动定律 - 教师版
第1课时:牛顿第一、三定律(教师版)
第一课时☆☆知识回顾与理解☆☆一、牛顿第一定律(惯性定律)1.历史上对力和运动关系的认识过程:①亚里士多德的观点:力是维持物体运动的原因。
②伽利略的理想实验:否定了亚里士多德的观点,他指出:如果没有摩擦,一旦物体具有某一速度,物体将保持这个速度继续运动下去。
③笛卡儿的结论:如果没有加速或减速的原因,运动物体将保持原来的速度一直运动下去。
④牛顿的总结:牛顿第一定律。
2.伽利略的“理想斜面实验”程序与内容:① (事实) 两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面。
② (推论) 如果没有摩擦,小球将上升到释放的高度。
③ (推论) 减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度。
④ (推论) 继续减小第二个斜面的倾角,最后使它成水平,小球沿水平面做持续的匀速直线运动。
⑤ (论断) 物体在水平面上做匀速运动时并不需要外力来维持。
此实验揭示了力与运动的关系:①力不是..维持物体运动的原因,而是..改变物体运动状态的原因,物体的运动并不需要力来维持。
②同时指出了一切物体都有一种属性(运动状态保持不变....的属性),只有受力时运动状态才改变。
这种运动状态保持不变....的属性就称作惯性。
即:一切物体具都有保持..原来匀速直线运动状态或静止状态的性质,这就是惯性。
3.对惯性的理解要点:惯性:物体保持匀速直线运动状态或静止状态的性质。
(物体都有保持原有运动状态的性质)。
①惯性是物体的固有属性,即:保持原来运动状态不变的属性,不能克服,只能利用。
惯性与物体的受力情况及运动状态无关。
任何物体,无论处于什么状态,不论任何时候,任何情况下都具有惯性。
②惯性不是力,惯性是物体的一种属性(即保持原来运动不变的属性)。
不能说“受到惯性”和“惯性作用”。
③物体的运动状态并不需要力来维持,因此惯性不是维持运动状态的力。
④惯性的大小:惯性的大小体现在运动状态改变的难易程度(保持原来运动状态的本领强弱),其大小由质量来决定。
第五讲 牛顿运动定律(教师版)
第五讲牛顿运动定律一、牛顿第一定律1、亚里士多德认为,必须___________物体才能运动;没有力的作用,物体就要______,这种认识是错误的。
2、伽利略通过___________和科学推理,得出的结论是:一旦物体具有某一速度,如果它不受力,就将以这一速度_____________地运动下去。
3、物体运动状态的改变是指物体由静止变为________________或由___________变为静止。
如果物体_________的大小或方向变了,也说它的运动状态发生改变。
【实战训练一】为更能反映自然规律。
伽利略设计了一个理想实验,其中有一个经验事实,其余是推论。
如图所示的斜面:①减小另一个斜面的倾角,小球在这个斜面上仍能达到原来的高度②两个对接斜面,让静止小球沿一个斜面滚下,小球将滑上另一个斜面③如果没有摩擦,小球将上升到原来释放时的高度④继续减小第二个斜面的倾角,最后使它成为水平面,小球要沿水平做持续的匀速运动。
将上述理想实验的设想步骤按正确的顺序排列②③①④(只写序号即可)在上述设想步骤中,有的属于属于可靠的事实,有的属于理想化的推论。
下列关于事实和推论的分类正确的是:(B)A、①是事实,②③④是推论B、②是事实,①③④是推论C、③是事实,①②④是推论D、④是事实,①②③是推论二、牛顿第一定律和惯性1、牛顿第一定律的内容是:一切物体总保持静止状态或匀速直线运动状态,除非作用在它上面的力迫使它改变这种运动状态为止。
2、惯性是物体具有保持原来静止状态或匀速直线运动状态的性质,任何物体都具有惯性,牛顿第一定律又叫惯性定律。
3、量度物体惯性大小的物理量是物体的质量,质量只有大小,没有方向,是标量,符号是m,国际单位是kg。
【实战训练二】下列说法中正确的是(D)A、运动越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B、小球由于重力的作用而自由下落时,它的惯性就不存在了C、一个小球被竖直上抛,当抛出后能继续上升,是因为小球受到了向上的推力D、物体的惯性是物体保持匀速直线运动状态或静止状态的一种属性,与物体的速度大小无关【实战训练三】如图所示,用玻璃弹子和浅圆盘做实验,把盘子放在光滑水平桌面上,盘子有四分之一缺损,给玻璃弹子一个推力,让它沿着圆弧运动,当它离开圆盘时,弹子的运动路径是(C )A 、①B 、②C 、③D 、④【实战训练四】某仪器内部电路如图所示,其中M 是一个质量较大的金属块,左右两端分别与金属丝制成的弹簧相连,并套在光滑水平细杆上,a 、b 、c 三块金属片的间隙很小,(b 固定在金属块上)。
高中物理必修一第四章牛顿运动定律第1讲(教师版)
高中物理必修一第四章牛顿运动定律第1讲(学生版)姓名:___________班级:___________一、单选题1.完成“探究加速度a与质量m的关系”实验后,小凡得出了加速度与质量成反比的结论。
下列图像中,与这一结论相符的是()A.B.C.D.A.B.C .D .【答案】C【详解】A .通过平面镜观察桌面的微小形变,所体现的物理思想方法为“放大法”,A 错误;B .探究合力与分力的关系实验中,所用到的物理思想方法为“等效替代法”,B 错误;C .伽利略理想斜面实验中,所用到的物理思想方法为“理想实验法”,C 正确;D .探究加速度与力、质量之间的定量关系实验中,所用到的物理思想方法为“控制变量法”,D 错误。
故选C 。
3.在物理学的发展过程中,科学家总结归纳了很多科学研究方法,以下叙述正确的是( )A .很多情况下,研究物体的运动时用质点来代替物体,运用了假设法B .实验探究物体运动的加速度与力、质量的关系时,运用了控制变量法C .用()0t t ∆∆→时间内的位移x ∆与t ∆的比值定义t 时刻的瞬时速度,运用了等效法D .推导匀变速直线运动的位移公式时,把整个运动过程分成若干小段,然后将各小段位移相加,运用了极限的方法【答案】B【详解】A .在研究物体运动时,用质点来代替物体运用了理想模型法,选项A 错误;B .在实验探究加速度与力、质量的关系时,运用了控制变量法,选项B 正确;C .用()0t t ∆∆→时间内的位移x ∆与t ∆的比值定义t 时刻的瞬时速度,运用了极限法,选项C 错误;D .在推导匀变速直线运动位移公式时,把整个运动过程分成很多小段,然后将各小段位移相加,运用了微元法,选项D错误。
故选B。
4.下列关于力与运动的说法正确的是()A.牛顿第一定律揭示了运动和力的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因B.亚里士多德通过对生活实际的观察,认为力是改变物体运动状态的原因C.笛卡尔阐明了一对平衡力的大小方向关系D.伽利略通过理想斜面实验证实了牛顿运动定律【答案】A【详解】A.牛顿第一定律揭示了运动和力的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,故A正确;B.亚里士多德通过对生活实际的观察,认为力是维持物体运动状态的原因,故B错误;C.笛卡尔发展了运动相对性的思想,但并没有阐明一对平衡力的大小方向关系,故C 错误;D.伽利略通过理想斜面实验为牛顿运动定律奠定了基础,牛顿第一定律无法通过实验证实,故D错误。
专题04 牛顿运动定律-2021年高考物理真题与模拟题分类训练(教师版含解析)
专题04 牛顿运动定律1.(2021·全国高考真题)水平地面上有一质量为1m 的长木板,木板的左端上有一质量为2m 的物块,如图(a )所示。
用水平向右的拉力F 作用在物块上,F 随时间t 的变化关系如图(b )所示,其中1F 、2F 分别为1t 、2t 时刻F 的大小。
木板的加速度1a 随时间t 的变化关系如图(c )所示。
已知木板与地面间的动摩擦因数为1μ,物块与木板间的动摩擦因数为2μ,假设最大静摩擦力均与相应的滑动摩擦力相等,重力加速度大小为g 。
则( )A .111=F m g μB .2122211()()m m m F g m μμ+=-C .22112m m m μμ+>D .在20~t 时间段物块与木板加速度相等 【答案】BCD【解析】A .图(c )可知,t 1时滑块木板一起刚在从水平滑动,此时滑块与木板相对静止,木板刚要滑动,此时以整体为对象有1112()F m m g μ=+,A 错误;BC .图(c )可知,t 2滑块与木板刚要发生相对滑动,以整体为对象,根据牛顿第二定律,有211212()()F m m g m m a μ-+=+,以木板为对象,根据牛顿第二定律,有221121()0m g m m g m a μμ-+=>,解得2122211()()m m m F g m μμ+=-,()12212m m m μμ+>,BC 正确;D .图(c )可知,0~t 2这段时间滑块与木板相对静止,所以有相同的加速度,D 正确。
故选BCD 。
2.(2021·全国高考真题)如图,将光滑长平板的下端置于铁架台水平底座上的挡板P 处,上部架在横杆上。
横杆的位置可在竖直杆上调节,使得平板与底座之间的夹角θ可变。
将小物块由平板与竖直杆交点Q 处静止释放,物块沿平板从Q 点滑至P 点所用的时间t 与夹角θ的大小有关。
若由30°逐渐增大至60°,物块的下滑时间t 将( )A .逐渐增大B .逐渐减小C .先增大后减小D .先减小后增大【答案】D【解析】设PQ 的水平距离为L ,由运动学公式可知21sin cos 2L g t θθ=,可得24sin 2L t g θ=,可知45θ=︒时,t 有最小值,故当θ从由30°逐渐增大至60°时下滑时间t 先减小后增大。
牛顿运动定律讲义(教师逐字稿)高清PDF版
牛顿运动定律讲义(学霸版)课程简介:PPT(第1页):今天我们要学习的内容是牛顿运动定律,牛顿运动定律这块内容一直就是我们高中阶段的重点和难点,那么今天让我们一起来提升它。
PPT(第2页):牛顿运动定律是高中阶段最重要的内容之一,对后面的知识点掌握有非常重要的影响,要注意,牛顿运动定律中知识模块的组成,牛顿运动定律主要组成部分为牛顿以第一定律、牛顿第二定律和牛顿第三定律,每块知识点都需要先掌握定义,然后通过模型去巩固应用,来让我们正式开始体验它。
PPT(第3页):主要内容和原来的板块一样,同样分为梳理知识体系和解决经典问题实例。
PPT(第4页):我们先看知识体系梳理,这部分也是我们经常说起的部分,物理是科学学科,一定要把知识梳理成体系和框架,科学是一张网。
PPT(第5页):我们先来看一下知识体系框架,牛顿运动定律主要组成部分是三个,分别是牛顿第一定律、牛顿第二定律和牛顿第三定律。
PPT(第6页):先来看一下牛顿第一定律。
内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态;意义:(1)指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(2)指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
惯性:(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。
(2)量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
(3)普遍性:惯性是物体的固有属性,一切物体都有惯性。
与物体的运动情况和受力情况无关。
PPT(第7页):再来看一下牛顿第三定律,牛顿第三定律是我们要特别注意的内容,因为容易忽略。
首先我们来看一下内容:1.作用力和反作用力:两个物体之间的作用总是相互的。
一个物体对另一个物体施加了力,另一个物体一定同时对这一个物体也施加了力。
物体间相互作用的这一对力,通常叫做作用力和反作用力。
牛顿第三定律(1)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
高中物理 第3章 牛顿运动定律 5 牛顿运动定律的应用教案 教科版必修1
学习资料牛顿运动定律的应用学习目标知识脉络(教师用书独具)1。
进一步掌握受力分析的方法,并能结合物体的运动情况进行受力分析.(重点)2.知道动力学的两类问题.理解加速度是解决两类动力学问题的桥梁.(重点)3.掌握解决动力学问题的基本思路和方法,会用牛顿运动定律和运动学公式解决有关问题.(重点、难点)一、已知受力确定运动情况1.牛顿第二定律确定了运动和力的关系,使我们能够把物体的运动情况和受力情况联系起来.2.如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学规律确定物体的运动情况.二、已知运动确定受力情况1.如果已知物体的运动情况,根据运动学公式求出物体的加速度,再根据牛顿第二定律就可以确定物体所受的力.2.解决动力学问题的关键:对物体进行正确的受力分析和运动情况分析,并抓住受力情况和运动情况之间联系的桥梁——加速度.1.思考判断(1)根据物体加速度的方向可以判断物体所受合外力的方向.(√)(2)根据物体加速度的方向可以判断物体受到的每个力的方向.(×)(3)物体运动状态的变化情况是由它的受力决定的.(√)(4)物体运动状态的变化情况是由它对其他物体的施力情况决定的。
(×)(5)物体的运动情况仅由物体所受的合力所决定的.(×)2.A、B两物体以相同的初速度滑上同一粗糙水平面,若两物体的质量为m A>m B,两物体与粗糙水平面间的动摩擦因数相同,则两物体能滑行的最大距离x A与x B相比为() A.x A=x B B.x A〉x BC.x A<x B D.不能确定A[A、B两物体在滑行过程中所受合外力等于它们所受的滑动摩擦力,由牛顿第二定律知,-μmg=ma,得a=-μg,由运动学公式v错误!-v错误!=2ax得,x=错误!,故x A=x B,选项A正确,选项B、C、D错误.]3.质量为0.2 kg的物体从36 m高处由静止下落,落地时速度为24 m/s,则物体在下落过程中所受的平均阻力是多少?(g取10 m/s2)[解析] 由运动学公式v错误!-v错误!=2ax得加速度a=错误!=错误!m/s2=8 m/s2.物体受力分析如图所示,由牛顿第二定律得F合=ma=0.2×8 N=1.6N,而F合=mg-F阻,则物体在下落过程中所受的平均阻力F阻=mg-F合=0.2×10 N-1。
高中物理必修一第四章牛顿运动定律第3讲(教师版)
高中物理必修一第四章牛顿运动定律第3讲(学生版)姓名:___________班级:___________一、单选题1.如图所示为某幼儿园的一个滑梯,一名质量为m的儿童正沿滑梯匀速下滑。
若滑梯与水平方向的夹角为θ,儿童与滑梯之间的动摩擦因数为μ,则()mgθA.儿童受到滑梯的支持力为sinmgθ,这个力就是她对滑梯的压力B.儿童受到的支持力为cosC.儿童受到沿滑梯向下的摩擦力,所以她下滑D.儿童受到滑梯的作用力的大小等于她受到的重力大小【答案】D【详解】A.儿童做匀速运动,对儿童进行受力分析,在垂直于滑梯方向,儿童受到滑mgθ,故A错误。
梯的支持力与其重力在此方向上的分力等大反向,大小为cosB.儿童对滑梯的压力与儿童受到滑梯的支持力是一对作用力与反作用力,故B错误。
C.儿童相对于滑梯向下滑动,儿童受到滑梯的摩擦力方向与儿童相对滑梯的运动方向相反,方向沿滑梯向上,故C错误。
D.儿童做匀速运动,其所受合外力为零,所以他受到的重力与滑梯对他的总的作用力等大反向,故D正确。
故选D。
2.台球又称桌球或者弹子球,其中含有丰富的物理知识,如图所示,某位台球爱好者在练习台球时,在B点用杆击打台球,使台球获得一定的速度向右运动,台球碰撞球台右侧边框C并立即反弹,之后又碰撞球台左侧边框A,最终停在B点,台球的运动路径可看做一条直线,且台球和左、右两侧边框各碰撞一次,则台球运动过程中的速度随时-更符合实际的是()间变化的图像v tA.B.C.D.【答案】A【详解】由题可知若台球初速度的方向为正,台球开始向右做减速直线运动,在碰撞右侧边框C后并立即反弹,反弹后的速度方向与初速度方向相反,之后继续向左做减速直线运动,再与左侧边框A发生碰撞后并反弹,反弹后的速度方向与初速度方向相同,接着向右做减速运动,最后停在B点。
故选A。
3.运动员把冰壶沿水平冰面投出,让冰壶在冰面上自由滑行,在不与其他冰壶碰撞的情况下,最终停在远处的某个位置。
高中物理 第3章 牛顿运动定律 1 牛顿第一定律教案 教科版必修1
学习资料牛顿第一定律学习目标知识脉络(教师用书独具)1。
知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法.2.理解牛顿第一定律的内容及意义.(重点)3.理解力和运动的关系,知道物体的运动不需要力来维持.(重点)4.理解惯性的概念,知道质量是惯性大小的量度.(难点)一、从亚里士多德到伽利略1.亚里士多德的观点:地上的运动分为两类(1)天然运动:无须外力的帮助、自身就能实现,如气、火等轻的东西向上运动,重的东西向下运动.(2)受迫运动:必须依靠外力的不断作用才能维持,外力消失,受迫运动就会停止,如拉动地面上的小车,推动桌面上的书本.2.伽利略的研究(1)理想实验如图所示,让小球沿一个斜面从静止状态开始滚下,小球将滚上另一个斜面,如果没有摩擦,小球将上升到与左斜面同样的高度.减小右斜面的坡度,小球要达到同样的高度经过的坡长越长.由此推测,如果右斜面变成水平面,并且没有任何阻力,小球将达不到原来的高度,就应永远运动下去.(2)结论:力不是(填“是”或“不是”)维持物体运动的原因.二、牛顿第一定律惯性1.牛顿第一定律一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.2.惯性(1)惯性:物体保持原来匀速直线运动状态或静止状态不变的性质.牛顿第一定律也叫惯性定律.(2)一切物体都具有惯性,惯性是物体的固有属性.3.惯性的量度质量是惯性大小的唯一量度,质量越大,物体的惯性越大,物体运动状态越不易改变.1.思考判断(1)伽利略的理想实验说明了力是维持物体运动的原因.(×)(2)牛顿第一定律是由实验直接归纳总结得出的.(×)(3)由牛顿第一定律可知,当一个做匀加速直线运动的物体所受外力全部消失时,物体立刻停止运动.(×)(4)速度越大,物体的惯性越大.(×)(5)受力越大,物体的惯性越大.(×)2.(多选)由牛顿第一定律可知()A.物体的运动是依靠惯性来维持的B.力停止作用后,物体的运动就不能维持C.物体做变速运动时,一定有外力作用D.力是改变物体惯性的原因AC[物体具有保持原来静止状态或匀速直线运动状态的性质叫作惯性,由于惯性的存在,物体才保持原来的运动状态,A对.力是改变物体运动状态的原因,而不是维持物体运动的原因,B错,C对.惯性是物体的固有属性,力不能改变物体的惯性大小,D错.] 3.关于物体的惯性,下列说法中正确的是()A.运动速度大的物体不能很快地停下来,是因为物体速度越大,惯性也越大B.静止的火车启动时,速度变化慢,是因为静止的物体惯性大C.乒乓球可以快速抽杀,是因为乒乓球惯性小D.在宇宙飞船中的物体不存在惯性C[惯性大小只与物体质量有关,与物体的速度无关,故A错误;质量是物体惯性大小的唯一量度,火车速度变化慢,表明它的惯性大,是因为它的质量大,与是否静止无关,故B 错误;乒乓球能被快速抽杀,表明它的运动状态容易发生改变,是因为它的惯性小,故C正确;一切物体在任何情况下都有惯性,故D错误.]从亚里士多德到伽利略1.17世纪前对运动和力的关系的认识(1)亚里士多德的观点:力是维持物体运动的原因.(2)根据:有力作用在物体上,物体才运动;没有力的作用,物体就要静止在一个地方.(3)方法:观察+直觉(由生活经验得出直观印象).2.伽利略的理想实验(1)基本观点:在水平面上运动的物体之所以会停下来,是因为受到摩擦阻力.力是改变物体运动状态的原因,运动并不需要力来维持.(2)根据:理想实验.(3)方法:实验+科学推理(将可靠事实和理论思维结合起来).3.意义(1)伽利略用“实验+科学推理”的方法推翻了亚里士多德的观点.(2)第一次确立了物理实验在物理研究中的基础地位.(3)揭示了力不是维持物体运动的原因.(4)“理想实验”在自然科学的理论研究中有着重要的作用.但是,“理想实验"只不过是一种逻辑推理的思维过程,它的作用只限于逻辑上的证明与反驳,而不能用来作为检验认识正确与否的标准.相反,由“理想实验”所得出的任何推论,都必须由观察或实验的结果来检验.【例1】理想实验有时能更深刻地反映自然规律.伽利略设想了一个理想实验,如图所示的斜面实验,其中有一个是实验事实,其余是推论.①减小第二个斜面的倾角,小球在这个斜面上仍然要达到原来的高度.②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面.③如果没有摩擦,小球将上升到原来释放时的高度.④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动.(1)请将上述理想实验的设想步骤按照正确的顺序排列________(只要填写序号即可).(2)在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论.下列关于事实和推论的分类正确的是 ( )A.①是事实,②③④是推论B.②是事实,①③④是推论C.③是事实,①②④是推论D.④是事实,①②③是推论思路点拨:本题是在可靠事实的基础上进行合理推理,将实验理想化,进而得出正确的结论.[解析]体会伽利略的理想实验,可知顺序排列为②③①④,分类正确的是B。
2019版高中物理教科版必修一教师用书:第三章 牛顿运动定律 2 含答案
2探究加速度与力、质量的关系[学习目标]1。
学会用控制变量法研究物理规律。
2。
会测量加速度、力和质量,能作出物体运动的a-F、a-1m图像。
3.通过实验探究加速度与力、质量的定量关系.一、实验器材小车、砝码、砝码盘、细线、一端附有定滑轮的长木板、垫木、打点计时器、交流电源、纸带、刻度尺、天平.二、实验原理实验的基本思想——控制变量法1.保持研究对象即小车的质量不变,改变砝码盘内砝码的质量,即改变作用力,测出小车的对应加速度,验证加速度是否正比于作用力.2.保持砝码盘中砝码的质量不变,即保持作用力不变,改变研究对象即小车的质量,测出对应不同质量的加速度,验证加速度是否反比于质量.三、实验方案的设计1.三个物理量的测量方法——近似法本实验的研究对象:小车(装置如图1所示).图1(1)小车质量的测量:利用天平测出,在小车上增减砝码可改变小车的质量.(2)拉力的测量:当砝码盘和砝码的质量远小于小车质量的情况下,可以认为砝码盘和砝码的重力近似等于小车所受的拉力(合外力).(3)加速度的测量:由纸带根据公式Δx=aT2,结合逐差法计算出小车的加速度.2.实验数据的处理方法——图像法、“化曲为直"法(1)研究加速度a和力F的关系图2以加速度a为纵坐标,力F为横坐标,根据测量数据描点,然后作出图像,如图2所示,若图像是一条通过原点的直线,就能说明a 与F成正比.(2)研究加速度a与质量m的关系如图3所示,因为a-m图像是曲线,检查a-m图像是不是双曲线,就能判断它们之间是不是成反比关系,但检查这条曲线是不是双曲线,相当困难.若a和m成反比,则a与错误!必成正比.我们采取“化曲为直”的方法,以a为纵坐标,以1m为横坐标,作出a-错误!图像,若a-1m图像是一条过原点的直线,说明a与错误!成正比,即a与m成反比.图3四、实验步骤1.用天平测出小车的质量,并把数值记录下来.2.按如图4所示的装置把实验器材安装好(小车上先不系绳).图43.平衡摩擦力:在长木板不带定滑轮的一端下面垫一木块,反复移动木块位置,直到轻推小车在斜面上运动时可保持匀速直线运动为止(纸带上相邻点间距相等).4.在砝码盘里放入适量的砝码,用细绳绕过定滑轮系在小车上,在小车上加放适量的砝码,用天平测出砝码盘和砝码的质量m,记录下来.接通电源,放开小车,待打点计时器在纸带上打好点后取下纸带,并设计表格如下。
[高三物理第3讲:牛顿运动定律](教师版讲义)
第4讲牛顿运动定律【温故知新】(5-10分钟)1.牛顿第一定律的内容是什么?什么是惯性?(让学生回答具体内容,老师可以总结)师:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态;物体具有保持原来匀速直线运动状态或静止状态的性质就是惯性.质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.2.牛顿第三定律的内容是什么?(让学生回答,老师可以补充)师:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一条直线上.3.大家还记得牛顿定律有哪些应用吗?师:超失重;连接体;传送带等等,这节课我们主要来复习这个【趣味引入】(5-10分钟)车为什么总要停下来?踢出去的足球能永远飞行亚里士多德:物体的运动需要力来维持。
伽利略:物体的运动不需要力来维持,运动的物体之所以停下来,是因为受到了阻力的作用。
【知识梳理】(25分钟左右)一、牛顿第三定律1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生的效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.3应用牛顿第三定律应注意的三个问题(1)定律中的“总是”说明对于任何物体,在任何情况下牛顿第三定律都是成立的.(2)作用力与反作用力虽然等大反向,但因所作用的物体不同,所产生的效果(运动效果或形变效果)往往不同.(3)作用力与反作用力只能是一对物体间的相互作用力,不能牵扯第三个物体.二、牛顿第二定律1、牛顿第二定律※内容:物体的加速度与所受合外力成正比,跟物体的质量成反比。
※表达式:F=ma。
※特点:(1)瞬时性:有力立即产生加速度,速度不能立即改变(2)矢量性:加速度是矢量,其方向始终与物体受到的合外力的方向一致,与速度的方向没有直接关系。
(3)独立性:如果几个力同时作用于一个物体,则物体所产生的加速度等于每个力单独作用时产生的加速度的矢量和。
2023新教材高考物理二轮专题复习专题:牛顿运动定律与直线运动教师用书
专题二牛顿运动定律与直线运动高频考点·能力突破考点一匀变速直线运动规律的应用1.基本公式v=v0+at,x=v0t+12at2,v2−v02=2ax.2.重要推论v t2=v0+v2=v̅(利用平均速度求瞬时速度);初、末速度平均值vt2=√t02+t22;Δx=aT2(用逐差法测加速度).3.符号法则选定正方向,将矢量运算转化为代数运算.4.解决运动学问题的基本思路例 1 [2022·湖北卷]我国高铁技术全球领先,乘高铁极大节省了出行时间.假设两火车站W和G间的铁路里程为1 080 km,W和G之间还均匀分布了4个车站.列车从W站始发,经停4站后到达终点站G .设普通列车的最高速度为108 km /h ,高铁列车的最高速度为324 km /h .若普通列车和高铁列车在进站和出站过程中,加速度大小均为0.5 m /s 2,其余行驶时间内保持各自的最高速度匀速运动,两种列车在每个车站停车时间相同,则从W 到G 乘高铁列车出行比乘普通列车节省的时间为( )A .6小时25分钟B .6小时30分钟C .6小时35分钟D .6小时40分钟[解题心得]预测1 钢架雪车也被称为俯式冰橇,是2022年北京冬奥会的比赛项目之一.运动员需要俯身平贴在雪橇上,以俯卧姿态滑行.比赛线路由起跑区、出发区、滑行区及减速区组成.若某次运动员练习时,恰好在终点停下来,且在减速区AB 间的运动视为匀减速直线运动.运动员通过减速区时间为t ,其中第一个t 4时间内的位移为x 1,第四个t 4时间内的位移为x 2,则x 2:x 1等于( )A .1∶16B .1∶7C .1∶5D .1∶3预测2 [2022·福建泉州高三联考]如图为某轿车在行驶过程中,试图借用逆向车道超越客车的示意图,图中当两车相距L =4 m 时,客车正以v 1=6 m /s 速度匀速行驶,轿车正以v 2=10 m /s 的速度借道超车.客车长L 1=10 m ,轿车长L 2=4 m ,不考虑变道过程中车速的变化和位移的侧向变化.(1)若轿车开始加速并在3 s内成功超越客车L3=12 m后,才能驶回正常行驶车道,其加速度多大?(2)若轿车放弃超车并立即驶回正常行驶车道,则至少要以多大的加速度做匀减速运动,才能避免与客车追尾?[试解]考点二动力学基本规律的应用动力学两类基本问题的解题思路温馨提示动力学中的所有问题都离不开受力分析和运动分析,都属于这两类基本问题的拓展和延伸.例2 [2022·浙江卷1月]第24届冬奥会在我国举办.钢架雪车比赛的一段赛道如图1所示,长12 m水平直道AB与长20 m的倾斜直道BC在B点平滑连接,斜道与水平面的夹角为15°.运动员从A点由静止出发,推着雪车匀加速到B点时速度大小为8 m/s,紧接着快速俯卧到车上沿BC匀加速下滑(图2所示),到C点共用时5.0 s.若雪车(包括运动员)可视为质点,始终在冰面上运动,其总质量为110 kg,sin 15°=0.26(取g=10 m/s2),求雪车(包括运动员)(1)在直道AB上的加速度大小;(2)过C点的速度大小;(3)在斜道BC上运动时受到的阻力大小.[试解]预测3 (多选)14岁的奥运冠军全红婵,在第14届全运会上再次上演“水花消失术”夺冠.在女子10 m 跳台的决赛中(下面研究过程将全红婵视为质点),全红婵竖直向上跳离跳台的速度为5 m/s,竖直入水后到速度减为零的运动时间与空中运动时间相等,假设所受水的阻力恒定,不计空气阻力,全红婵的体重为35 kg,重力加速度大小为g=10 m/s2,则( )A.跳离跳台后上升阶段全红婵处于失重状态B.入水后全红婵处于失重状态C.全红婵在空中运动的时间为1.5 sD.入水后全红婵受到水的阻力为612.5 N预测4 衢州市2022年5月1日起部分县、区超标电动车不得上道路行驶,新的电动自行车必须符合国标GB17761-2018的标准,新标准规定最高车速不能高于25 km/h,整车质量应当小于或等于55 kg,制动性能要符合如下规定:某人体重m=50 kg,骑着符合新标准、质量M=50 kg的电动自行车在水平路面行驶.电动自行车的刹车过程可简化为匀变速直线运动.(1)当遇到紧急情况时,若他同时使用前后车闸刹车,在干燥路面上该车的最小加速度是多少?此时受到的制动力是多大?(保留两位有效数字)(2)若此人私自改装电瓶输出功率,致使车速超标(其他条件不变),当他以32 km/h速度在雨后的路面上行驶,遇见紧急情况,采取同时使用前后车闸方式刹车,则该车刹车后行驶的最大距离是多少?(3)根据你所学物理知识,分析电动自行车超速超载有什么危害?[试解]考点三连接体问题1.处理连接体问题的常用方法2.连接体问题中常见的临界条件例3 [2022·全国甲卷]如图,质量相等的两滑块P、Q置于水平桌面上,二者用一轻弹簧水平连接,两滑块与桌面间的动摩擦因数均为μ.重力加速度大小为g.用水平向右的拉力F拉动P,使两滑块均做匀速运动;某时刻突然撤去该拉力,则从此刻开始到弹簧第一次恢复原长之前( )A.P的加速度大小的最大值为2μgB.Q的加速度大小的最大值为2μgC.P的位移大小一定大于Q的位移大小D.P的速度大小均不大于同一时刻Q的速度大小[解题心得]预测5 如图所示,将一盒未开封的香皂置于桌面上的一张纸板上,用水平向右的拉力将纸板迅速抽出,香皂盒的移动距离很小,几乎观察不到,这就是大家熟悉的惯性演示实验(示意图如图所示),若香皂盒和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ,重力加速度为g.若本实验中,m1=100 g,m2=5 g,μ=0.2,香皂盒与纸板左端的距离d=0.1 m,若香皂盒移动的距离超过l=0.002 m,人眼就能感知,忽略香皂盒的体积因素影响,g取10 m/s2,为确保香皂盒移动不被人感知,纸板所需的拉力至少是( )A.1.41 N B.1.42 NC.1 410 N D.1 420 N预测6 [2022·全国乙卷]如图,一不可伸长轻绳两端各连接一质量为m的小球,初始时整个系统静置于光滑水平桌面上,两球间的距离等于绳长L.一大小为F的水平恒力作用在轻绳的中点,方向与两球连线垂直.当两球运动至二者相距35L时,它们加速度的大小均为( )A.5F8m B.2F5mC.3F8m D.3F10m预测7 如图所示,在倾角为θ=30°的光滑固定斜面上端系有一劲度系数为k=100 N/m的轻质弹簧,弹簧下端连一个质量为m=8 kg的小球,球被一垂直于斜面的挡板A挡住,此时弹簧没有形变.从t=0时刻开始挡板A以加速度a=1 m/s2沿斜面向下匀加速运动,则:(g=10 m/s2)(1)t=0时刻,挡板对小球的弹力多大?(2)从开始运动到小球与挡板分离所经历的时间为多少?(3)小球向下运动多少距离时速度最大?[试解]素养培优·情境命题实际情境中的直线运动情境1 [2022·山东押题卷]高速公路的ETC电子收费系统如图所示,ETC通道的长度是识别区起点到自动栏杆的水平距离,总长为19.6 m.某汽车以5 m/s的速度匀速进入识别区,ETC用0.3 s的时间识别车载电子标签,识别完成后发出“滴”的一声,汽车又向前行驶了2 s司机发现自动栏杆没有抬起,于是紧急刹车,汽车恰好没有撞杆.已知司机的反应时间和汽车系统的反应时间之和为0.8 s.则刹车的加速度大小约为( )A.2.52 m/s2B.3.55 m/s2C.3.75 m/s2D.3.05 m/s2[解题心得]情境2 驾驶员看见过马路的人,从决定停车,直至右脚刚刚踩在制动器踏板上经过的时间,叫反应时间,在反应时间内,汽车按一定速度匀速行驶的距离称为反应距离;从踩紧踏板(抱死车轮)到车停下的这段距离称为刹车距离;司机从发现情况到汽车完全停下来,汽车所通过的距离叫做停车距离.如图所示,根据图中内容,下列说法中正确的是( )A.根据图中信息可以求出反应时间B.根据图中信息可以求出汽车的制动力C.匀速行驶的速度加倍,停车距离也加倍D.酒后驾车反应时间明显增加,停车距离不变[解题心得]情境3 [2022·浙江6月]物流公司通过滑轨把货物直接装运到卡车中,如图所示,倾斜滑轨与水平面成24°角,长度l1=4 m,水平滑轨长度可调,两滑轨间平滑连接.若货物从倾斜滑轨顶端由静止开始下滑,其与滑轨间的动摩擦因数均为μ=2,货物可视为质点(取9cos 24°=0.9,sin 24°=0.4).(1)求货物在倾斜滑轨上滑行时加速度a1的大小;(2)求货物在倾斜滑轨末端时速度v的大小;(3)若货物滑离水平滑轨末端时的速度不超过2 m/s,求水平滑轨的最短长度l2.[试解]情境4 疫情期间,为了减少人与人之间的接触,一餐厅推出了一款智能送餐机器人进行送餐(如图甲).该款机器人的最大运行速度为4 m/s,加速度大小可调节在1 m/s2≤a≤3 m/s2范围内,要求:送餐过程托盘保持水平,菜碟与托盘不发生相对滑动,机器人到达餐桌时速度刚好为0.现把送餐过程简化为如图乙的直线情境图,已知机器人恰好以最大运行速度v=4 m/s通过O处,O与餐桌A相距x0=6 m,餐桌A和餐桌F相距L=16 m,机器人、餐桌都能看成质点,送餐使用的菜碟与托盘之间的动摩擦因数为μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10 m/s2.(1)在某次从O到餐桌A的过程中,机器人从O开始匀减速恰好到A停下,求机器人在此过程加速度a的大小.(2)完成(1)问中的送餐任务后,机器人马上从A继续送餐到F,若要求以最短时间从A 送餐到F,求机器人运行的最大加速度a m和加速过程通过的位移x加.[试解]专题二 牛顿运动定律与直线运动高频考点·能力突破考点一例1 解析:108 km/h =30 m/s ,324 km/h =90 m/s由于中间4个站均匀分布,因此节省的时间相当于在任意相邻两站间节省的时间的5倍,为总的节省时间,相邻两站间的距离x =1 080×1035m =2.16×105m普通列车加速时间t 1=v1a=300.5 s =60 s加速过程的位移x 1=12at 12=12×0.5×602m =900 m根据对称性可知加速与减速位移相等,可得匀速运动的时间t 2=x −2x 1v=2.16×105−2×90030s =7 140 s同理高铁列车加速时间t ′1=v 1′a=900.5s =180 s加速过程的位移x ′1=12at1′2=12×0.5×1802m =8 100 m根据对称性可知加速与减速位移相等,可得匀速运动的时间t ′2=x −2x 1′v 1′=2.16×105−2×8 10090s =2 220 s相邻两站间节省的时间Δt =(t 2+2t 1)-(t ′2+2t ′1)=4 680 s ,因此总的节省时间Δt 总=5Δt =4 680×5 s=23 400 s =6小时30分,B 正确.答案:B预测1 解析:由题意知,在减速区AB 间的运动视为匀减速直线运动,且最终减为零,将此减速过程由逆向思维,可看作初速度为零的匀加速直线运动,则根据初速度为零的匀加速直线运动,连续相等时间内位移之比为1∶3∶5…可知,x 2∶x 1之比即为初速度为零的匀加速直线中第一个t4时间内的位移与第四个t4时间内的位移之比,即x 2∶x 1=1∶7,故选B.答案:B预测2 解析:(1)设轿车的加速度大小为a ,经过t 1=3 s ,客车和轿车位移分别为s 1、s 2,由运动学公式得s 1=v 1t 1,s 2=v 2t 1+12at 12,s 2=s 1+L 1+L 2+L +L 3,解得a =4 m/s 2.(2)设轿车减速的加速度大小为a ′,经过时间t 2,轿车、客车达到共同速度,则v 2-a ′t 2=v 1,客车和轿车位移分别为s ′1、s ′2,满足s ′2=v 2t 2−12a ′t 22, s ′1=v 1t 2, s ′2=s ′1+L ,解得a ′=2 m/s 2,即轿车至少以2 m/s 2的加速度做匀减速运动,才能避免与客车追尾. 答案:(1)4 m/s 2(2)2 m/s 2考点二例2 解析:(1)设雪车从A →B 的加速度大小为a 、运动时间为t ,根据匀变速直线运动的规律有2al AB =v B 2、v B =at解得t =3 s 、a =83 m/s 2.(2)方法一 由题知雪车从A →C 全程的运动时间t 0=5 s ,设雪车从B →C 的加速度大小为a 1、运动时间为t 1,故t 1=t 0-t ,根据匀变速直线运动的规律有l BC =v B t 1+12a 1t 12v C =v B +a 1t 1代入数据解得a 1=2 m/s 2、v C =12 m/s.方法二 由于雪车在BC 上做匀变速运动,故l BC =v BC ̅̅̅̅·t 1=v B +v C 2(t 0-t )解得v C =12 m/s.(3)方法一 设雪车在BC 上运动时受到的阻力大小为f ,根据牛顿第二定律有mg sin 15°-f =ma 1代入数据解得f =66 N方法二 对雪车在BC 上的运动过程由动量定理有 (mg sin 15°-f )(t 0-t )=mv C -mv B 代入数据解得f =66 N.方法三 对雪车从B →C 由动能定理有(mg sin 15°−f )l BC =12tt t 2−12tt t 2解得f=66 N.答案:(1)83m/s2(2)12 m/s (3)66 N预测3 解析:跳离跳台后上升阶段,加速度向下,则全红婵处于失重状态,A正确;入水后全红婵的加速度向上,处于超重状态,B错误;以向上为正方向,则根据-h=v0t-12gt2,可得t=2 s,即全红婵在空中运动的时间为2 s,C错误;入水时的速度v1=v0-gt=5 m/s-10×2 m/s=-15 m/s,在水中的加速度大小a=0−v1t=7.5 m/s2,方向竖直向上,根据牛顿第二定律可得f=ma+mg=35×10 N+35×7.5 N=612.5 N,D正确.答案:AD预测4 解析:(1)根据匀变速运动公式2ax=t2−t02解得t=t2−t022t=-3.4 m/s2根据牛顿第二定律得:制动力F=(M+m)a=340 N.(2)根据匀变速运动公式2a1x1=v12,2a1x2=v22,x1x2=t12t22联立解得x2=36 m.(3)超速时,加速度不变但刹车距离变大,超载时,质量变大,减速的加速度变小,刹车距离变大.答案:(1)-3.4 m/s2340 N (2)36 m (3)见解析考点三例3 解析:撤去力F后到弹簧第一次恢复原长之前,弹簧弹力kx减小,对P有μmg+kx=ma P,对Q有μmg-kx=ma Q,且撤去外力瞬间μmg=kx,故P做加速度从2μg减小到μg的减速运动,Q做加速度从0逐渐增大到μg的减速运动,即P的加速度始终大于Q的加速度,故除开始时刻外,任意时刻P的速度大小小于Q的速度大小,故P的平均速度大小必小于Q的平均速度大小,由x=v̅t可知Q的位移大小大于P的位移大小,可知B、C错误,A、D正确.答案:AD预测5 解析:香皂盒与纸板发生相对滑动时,根据牛顿第二定律可得μm1g=m1a1解得a1=2 m/s2对纸板,根据牛顿第二定律可得F-μm1g-μ(m1+m2)g=m2a2为确保实验成功,即香皂盒移动的距离不超过l=0.002 m,纸板抽出时香皂盒运动的最大距离为x1=12a1t12纸板运动距离为d+x1=12a2t12纸板抽出后香皂盒运动的距离为x2=12a3t22则l=x1+x2由题意知a1=a3,a1t1=a3t2代入数据联立得F=1.42 N,故B正确,A、C、D错误.答案:B预测6解析:如图可知sin θ=12×3L5L2=35,则cos θ=45,对轻绳中点受力分析可知F=2T cos θ,对小球由牛顿第二定律得T=ma,联立解得a=5F8m,故选项A正确.答案:A预测7 解析:解答本题的关键是要能分析得出板和小球分离时,板对小球的作用力为零;当球的速度最大时,球的加速度为零.(1)因开始时弹簧无形变,故对小球,根据牛顿第二定律得mg sin 30°-F1=ma解得F1=32 N.(2)当挡板和小球分离时,根据牛顿第二定律得mg sin 30°-kx=ma,其中x=12at2解得t=0.8 s,x=0.32 m.(3)当小球的速度最大时,加速度为零,此时mg sin 30°=kx1解得x1=0.4 m.答案:(1)32 N (2)0.8 s (3)0.4 m素养培优·情境命题情境1 解析:设刹车的加速度大小为a,则有x=t0(t1+t2+tt)+t022t代入数据有19.6=5×(0.3+2+0.8)+522a解得a=3.05 m/s2,所以D正确;A、B、C错误.答案:D情境2 解析:图中知道汽车速度,反应距离,根据x=v0t可以求出反应时间,故A 正确;由于不知汽车质量,则无法求出汽车的制动力,故B错误;设停车距离为x,反应时间为t0.则x=t0t0+t022t,可知匀速行驶的速度加倍,停车距离不是简单的加倍,故C错误;除了反应时间,其他条件不变的情况下,根据公式x=t0t0+t022t,酒后驾车反应时间明显增加,停车距离增加,故D错误.答案:A情境3 解析:(1)根据牛顿第二定律mg sin 24°-μmg cos 24°=ma1a1=2 m/s2(2)在倾斜滑轨上运动过程为匀加速直线运动v2=2a1l1v=4 m/s(3)在水平滑轨上的运动过程为匀减速直线运动v12-v2=2a2l2a2=-μgl2=2.7 m答案:(1)2 m/s2(2)4 m/s (3)2.7 m情境4 解析:(1)从O点到A点,由运动公式0-v2=2ax0,解得a=0−v22x0=-422×6m/s2=-43m/s2,机器人在此过程加速度a的大小为43m/s2.(2)要想用时最短,则机器人先以最大加速度加速,然后匀速一段时间,再以最大加速度做减速到零.最大加速度为a m=μg=2 m/s2,加速的位移为x加=v22a m=4 m.答案:(1)43m/s2(2)2 m/s2 4 m。
高中物理—牛顿运动定律—教师版
牛顿运动定律第1节牛顿第一定律牛顿第三定律一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.2.表现:物体不受外力作用时,其惯性表现在保持静止或匀速直线运动状态;物体受外力作用时其惯性表现在反抗运动状态的改变.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一条直线上.2.表达式:F=-F′.1.(多选)关于牛顿第三定律,下列说法正确的是()A.对重力、弹力、摩擦力等都适用B.当相互作用的两个物体相距很远时不适用C.当相互作用的两个物体做加速运动时不适用D.相互作用的两个物体没有直接接触时也适用解析:选AD.2.关于惯性,下列说法中正确的是()A.磁悬浮列车能高速行驶是因为列车浮起后惯性小了B.卫星内的仪器由于完全失重惯性消失了C.铁饼运动员在掷出铁饼前快速旋转可增大铁饼的惯性,使铁饼飞得更远D.月球上物体的重力只有在地球上的1/6,但是惯性没有变化解析:选D.3.一个榔头敲在一块玻璃上把玻璃打碎了.对于这一现象,下列说法正确的是()A.榔头敲玻璃的力大于玻璃对榔头的作用力,所以玻璃才碎裂B.榔头受到的力大于玻璃受到的力,只是由于榔头能够承受比玻璃更大的力才没有碎裂C.榔头和玻璃之间的作用力应该是等大的,只是由于榔头能够承受比玻璃更大的力才没有碎裂D.因为不清楚榔头和玻璃的其他受力情况,所以无法判断它们之间的相互作用力的大小解析:选C.考点一对牛顿第一定律的理解1.指出了物体的一种固有属性牛顿第一定律揭示了物体所具有的一个固有属性——惯性,即物体总保持原有运动状态不变的一种性质.2.揭示了力的本质牛顿第一定律明确了力是改变物体运动状态的原因,而不是维持物体运动的原因,物体的运动不需要力来维持.3.揭示了不受力作用时物体的运动状态牛顿第一定律描述的只是一种理想状态,而实际中不受力作用的物体是不存在的,当物体受外力作用但所受合力为零时,其运动效果跟不受外力作用时相同,物体将保持静止或匀速直线运动状态.牛顿第一定律的“三点注意”(1)牛顿第一定律不能用实验直接验证,而是通过伽利略斜面实验等大量事实推理得出的.(2)牛顿第一定律并非牛顿第二定律的特例,而是不受任何外力的理想化情况.(3)物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来.1.(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是()A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动解析:选AD.2.在一次交通事故中,一辆载有30吨“工”字形钢材的载重汽车由于避让横穿马路的摩托车而紧急制动,结果车厢上的钢材向前冲出,压扁驾驶室.关于这起事故原因的物理分析正确的是() A.由于车厢上的钢材有惯性,在汽车制动时,钢材继续向前运动,压扁驾驶室B.由于汽车紧急制动,使其惯性减小,而钢材惯性较大,所以继续向前运动C.由于车厢上的钢材所受阻力太小,不足以克服其惯性,所以继续向前运动D.由于汽车制动前的速度太大,汽车的惯性比钢材的惯性大,在汽车制动后,钢材继续向前运动解析:选A.考点二对牛顿第三定律的理解1.作用力与反作用力的“三同、三异、三无关”2.应用牛顿第三定律时应注意的问题(1)定律中的“总是”二字说明对于任何物体,在任何条件下牛顿第三定律都是成立的.(2)牛顿第三定律说明了作用力和反作用力中,若一个产生或消失,则另一个必然同时产生或消失.(3)作用力、反作用力不同于平衡力正确认识作用力和反作用力的“两点技巧”(1)抓住特点:无论物体的运动状态、力的作用效果如何,作用力和反作用力总是等大、反向、共线的.(2)明确力的作用点:要区别作用力和反作用力与平衡力,最直观的方法是看作用点的位置,一对平衡力的作用点在同一物体上,作用力和反作用力的作用点在两个物体上.1.两人的拔河比赛正在进行中,两人均保持恒定拉力且不松手,而脚下开始移动.下列说法正确的是()A.两人对绳的拉力大小相等、方向相反,是一对作用力和反作用力B.两人对绳的拉力是一对平衡力C.拔河的胜利与否取决于谁的力量大D.拔河的胜利与否取决于地面对人的摩擦力大小解析:选D.2. 物体静止于一斜面上,如图所示,则下列说法正确的是()A.物体对斜面的压力和斜面对物体的支持力是一对平衡力B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C.物体所受的重力和斜面对物体的作用力是一对作用力和反作用力D.物体所受的重力可以分解为沿斜面向下的力和对斜面的压力解析:选B.3. 如图所示,两块小磁铁质量均为0.5 kg,A磁铁用轻质弹簧吊在天花板上,B磁铁在A正下方的地板上,弹簧的原长L0=10 cm,劲度系数k=100 N/m.当A、B均处于静止状态时,弹簧的长度为L=11 cm.不计地磁场对磁铁的作用和磁铁与弹簧间相互作用的磁力,求B对地面的压力大小.(g取10 m/s2)答案:9 N解析:A受力如图甲所示,由平衡条件得:k(L-L0)-mg-F=0解得:F=-4 N,故B对A的作用力大小为4 N,方向竖直向上.由牛顿第三定律得A对B的作用力F′=-F=4 N,方向竖直向下B受力如图乙所示,由平衡条件得:F N-mg-F′=0 解得:F N=9 N由牛顿第三定律得B对地面的压力大小为9 N.第1节牛顿第一定律牛顿第三定律—课后作业1.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展,利用如图所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后沿斜面向下运动,并沿右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐降低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.根据三次实验结果的对比,可以得到的最直接的结论是() A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小解析:选A.2.(多选)伽利略开创了实验研究和逻辑推理相结合探索自然规律的科学方法,利用这种方法伽利略发现的规律有()A.力不是维持物体运动的原因B.物体之间普遍存在相互吸引力C.忽略空气阻力,重物与轻物下落得同样快D.物体间的相互作用力总是大小相等、方向相反解析:选AC.3.(多选)科学家关于物体运动的研究对树立正确的自然观具有重要作用.下列说法符合历史事实的是()A.亚里士多德认为,必须有力作用在物体上,物体的运动状态才会改变B.伽利略通过“理想实验”得出结论:一旦物体具有某一速度,如果它不受力,它将以这一速度永远运动下去C.笛卡儿指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来也不偏离原来的方向D.牛顿认为,物体具有保持原来匀速直线运动状态或静止状态的性质解析:选BCD.亚里士多德认为物体的运动需要力来维持;伽利略通过实验推翻了亚里士多德的错误结论,笛卡儿对伽利略的实验结果进行了完善,牛顿总结了伽利略和笛卡儿的理论,得出了牛顿第一定律.4.(多选)用手托着一块砖,开始静止不动,当手突然向上加速运动时,砖对手的压力() A.一定小于手对砖的支持力B.一定等于手对砖的支持力C.一定大于手对砖的支持力D.一定大于砖的重力解析:选BD.由牛顿第三定律知砖对手的压力与手对砖的支持力是作用力和反作用力,二者等大反向,B项对;对砖受力分析,则F N-mg=ma,F N>mg,D项对.5.如图所示,甲、乙两人在冰面上“拔河”,两人中间位置处有一分界线,约定先使对方过分界线者为赢.若绳子质量不计,冰面可看成光滑,则下列说法正确的是()A.甲对绳的拉力与绳对甲的拉力是一对平衡力B.甲对绳的拉力与乙对绳的拉力是作用力与反作用力C.若甲的质量比乙大,则甲能赢得“拔河”比赛的胜利D.若乙收绳的速度比甲快,则乙能赢得“拔河”比赛的胜利解析:选C.6.(多选)在水平路面上有一辆匀速行驶的小车,车上固定一盛满水的碗.现突然发现碗中的水洒出,水洒出的情况如图所示,则关于小车的运动情况,下列叙述正确的是() A.小车匀速向左运动B.小车可能突然向左加速C.小车可能突然向左减速D.小车可能突然向右减速解析:选BD.7.图为杂技“顶竿”表演的示意图,一人站在地上,肩上扛一质量为M的竖直竹竿,当竿上一质量为m的人以加速度a加速下滑时,竿对“底人”的压力大小为()A.(M+m)gB.(M+m)g-maC.(M+m)g+maD.(M-m)g解析:选B.8.某人乘坐列车时发现,车厢的双层玻璃窗内积水了.列车进站过程中,他发现水面的形状如图中的()解析:选C.9.火车在长直的水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回到车上原处,这是因为()A.人跳起后,车厢内空气给他一向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的底板给他一向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离很小,不明显而已D.人跳起后直到落地,在水平方向上始终具有和车相同的速度解析:选D.10.(多选)如图所示,在匀速前进的磁悬浮列车里,小明将一小球放在水平桌面上,且小球相对桌面静止.关于小球与列车的运动,下列说法正确的是()A.若小球向前滚动,则磁悬浮列车在加速前进B.若小球向后滚动,则磁悬浮列车在加速前进C.磁悬浮列车急刹车时,小球向前滚动D.磁悬浮列车急刹车时,小球向后滚动解析:选BC.11.(多选)抖空竹是人们喜爱的一项体育活动.最早的空竹是两个如同车轮的竹筒,中间加一个转轴,由于外形对称,其重心在中间位置,初玩者能很好地找到支撑点而使之平衡.随着制作技术的发展,如图所示的不对称的空竹也受到人们的欢迎,现在的空竹大多是塑料制成的,也有天然竹木制成的.关于抖空竹,在空气阻力不可忽略的情况下,下列说法中正确的是()A.空竹启动前用绳子拉住提起,要保证支持力和重力在同一条直线上B.空竹的转动是依靠绳子的拉动,绳子与转轴之间的摩擦力越小越好C.空竹抛起后由于惯性而继续向上运动,在空中受重力和惯性作用D.空竹从抛起到接住,转速会减小,表演时还要继续牵拉绳子使其加速转动解析:选AD.12.如图所示为英国人阿特伍德设计的装置,不考虑绳与滑轮的质量,不计轴承、绳与滑轮间的摩擦.初始时两人均站在水平地面上,当位于左侧的甲用力向上攀爬时,位于右侧的乙始终用力抓住绳子,最终至少一人能到达滑轮.下列说法中正确的是()A.若甲的质量较大,则乙先到达滑轮B.若甲的质量较大,则甲、乙同时到达滑轮C.若甲、乙质量相同,则乙先到达滑轮D.若甲、乙质量相同,则甲先到达滑轮解析:选A.13.如图所示,用细线将A物体悬挂在顶板上,B物体放在水平地面上.A、B间有一劲度系数为100 N/m的轻弹簧,此时弹簧伸长了2 cm.已知A、B两物体的重力分别是3 N和5 N.则细线的拉力及B对地面的压力分别是()A.8 N和0B.5 N和7 NC.5 N和3 N D.7 N和7 N解析:选C.14. 一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的质量为M,环的质量为m,如图所示.已知环沿杆匀加速下滑时,环与杆间的摩擦力大小为F f,则此时箱对地面的压力大小为()A.Mg+F f B.Mg-F fC.Mg+mg D.Mg-mg解析:选A.第2节牛顿第二定律两类动力学问题一、牛顿第二定律1.内容:物体加速度的大小跟它受到作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.动力学的两类基本问题(1)由受力情况确定物体的运动情况.(2)由运动情况确定物体的受力情况.2.解决两类基本问题的思路:以加速度为桥梁,由运动学公式和牛顿第二定律列方程求解.三、力学单位制1.单位制由基本单位和导出单位共同组成.2.力学单位制中的基本单位有米(m )、千克(kg)、秒(s).3.导出单位有牛顿(N)、米/秒(m/s)、米/平秒(m/s 2) 等.1.在国际单位制(简称SI)中,力学和电学的基本单位有:m(米)、kg(千克)、s(秒)、A(安培).导出单位V(伏特)用上述基本单位可表示为( )A .m 2·kg·s -4·A -1B .m 2·kg·s -3·A -1C .m 2·kg·s -2·A -1D .m 2·kg·s -1·A -1解析:选B.1 J =1 V·A·s =1 kg·m·s -2·m 可得,1 V =1 m 2·kg·s -3·A -12.如图甲、乙所示,两车都在光滑的水平面上,小车的质量都是M ,人的质量都是m ,甲图人推车、乙图人拉绳(绳与轮的质量和摩擦均不计)的力都是F ,对于甲、乙两图中车的加速度大小说法正确的是( )A .甲图中车的加速度大小为F MB .甲图中车的加速度大小为F M +mC .乙图中车的加速度大小为2F M +mD .乙图中车的加速度大小为F M解析:选C.4.如图所示,在光滑水平面上,A 、B 两物体用轻弹簧连接在一起,A 、B 的质量分别为m 1、m 2,在拉力F 作用下,A 、B 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬间A 和B 的加速度大小分别为a 1、a 2,则( )A .a 1=0,a 2=0B .a 1=a ,a 2=m 2m 1+m 2a C .a 1=m 1m 1+m 2a ,a 2=m 2m 1+m 2a D .a 1=a ,a 2=m 1m 2a 解析:选D.考点一 对牛顿第二定律的理解1.牛顿第二定律的“五性”2.力、加速度、速度间的关系(1)加速度与力有瞬时对应关系,加速度随力的变化而变化.(2)速度的改变需经历一定的时间,不能突变;加速度可以突变.1.(多选)一质点做匀速直线运动.现对其施加一恒力,且原来作用在质点上的力不发生改变,则( )A .质点速度的方向总是与该恒力的方向相同B .质点速度的方向不可能总是与该恒力的方向垂直C .质点加速度的方向总是与该恒力的方向相同D .质点单位时间内速率的变化量总是不变解析:选BC.2.(多选)一物体重为50 N ,与水平桌面间的动摩擦因数为0.2,现加上如图所示的水平力F 1和F 2,若F 2=15 N 时物体做匀加速直线运动,则F 1的值可能是(g =10 m/s 2)( )A .3 NB .25 NC .30 ND .50 N 解析:选ACD.3.(多选) 如图所示,固定在水平面上的光滑斜面的倾角为θ,其顶端装有光滑小滑轮,绕过滑轮的轻绳一端连接一物块B ,另一端被人拉着,且人、滑轮间的轻绳平行于斜面.人的质量为M ,B 物块的质量为m ,重力加速度为g ,当人拉着绳子以大小为a 1的加速度沿斜面向上运动时,B 物块运动的加速度大小为a 2,则下列说法正确的是( )A .物块一定向上加速运动B .人能够沿斜面向上加速运动,必须满足m >M sin θC .若a 2=0,则a 1一定等于mg -Mg sin θMD .若a 1=a 2,则a 1可能等于mg -Mg sin θM +m 解析:选CD.对人受力分析,由牛顿第二定律可知F -Mg sin θ=Ma 1,得F =Mg sin θ+Ma 1,若F >mg ,则物体B 加速上升,若F <mg ,则物体B 加速下降,若F =mg ,物体B 静止,故A 错误; 人能够沿斜面向上加速运动,只需满足F >Mg sin θ即可,故B 错误;若a 2=0,则F =mg ,故mg -Mg sinθ=Ma 1,a 1=mg -Mg sin θM,故C 正确;F =Mg sin θ+Ma 1,当F <mg 时,有mg -F =ma 2,又a 1=a 2,则a 1=mg -Mg sin θM +m,故D 正确.考点二 牛顿第二定律瞬时性的理解1.两种模型:牛顿第二定律F =ma ,其核心是加速度与合外力的瞬时对应关系,两者总是同时产生,同时消失、同时变化,具体可简化为以下两种模型:2.求解瞬时加速度的一般思路在求解瞬时性加速度问题时的“两点注意”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度和位移的变化需要一个积累的过程,不会发生突变.1.如图所示,A 、B 两小球分别连在轻线两端,B 球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在线被剪断瞬间,A 、B 两球的加速度大小分别为( )A .都等于g 2B .g 2 和0C. g 2 和 m A m B ·g 2D. m A m B ·g 2 和 g 2 解析:选C.2.如图所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )A .0B. 332g C .gD. 33g 解析:选B.3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m ,物块2、4质量为M ,两个系统均置于水平放置的光滑木板上.并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a 1、a 2、a 3、a 4.重力加速度大小为g ,则有( )A .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.考点三 动力学的两类基本问题1.求解两类问题的思路,可用下面的框图来表示:2.分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.考向1:由受力情况求运动情况[典例1] 如图所示,工人用绳索拉铸件,铸件的质量是20 kg ,铸件与地面间的动摩擦因数是0.25.工人用80 N 的力拉动铸件,从静止开始在水平面上前进,绳与水平方向的夹角为α=37°并保持不变,经4 s 后松手.(g =10 m/s 2)求:(1)松手前铸件的加速度;(2)松手后铸件还能前进的距离.答案 (1)1.3 m/s 2 (2)5.4 m解析 (1)a =F cos 37°-μ(mg -F sin 37°)m=1.3 m/s 2 (2)松手时铸件的速度v =at =5.2 m/s , a ′=μmg m =μg =2.5 m/s 2 , x =v 22a ′=5.4 m1.一个原来静止在光滑平面上的物体,质量是7 kg ,在14 N 的恒力作用下运动,则5 s 末的速度及5 s 内通过的路程为( )A .8 m/s 25 mB .2 m/s 25 mC .10 m/s 25 mD .10 m/s 12.5 m 解析:选C.2.(多选)如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面.若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中( )A .桌布对鱼缸摩擦力的方向向左B .鱼缸在桌布上的滑动时间和在桌面上的相等C .若猫增大拉力,鱼缸受到的摩擦力将增大D .若猫减小拉力,鱼缸有可能滑出桌面解析:选BD.3.一质量m=5 kg的滑块在F=15 N的水平拉力作用下,由静止开始做匀加速直线运动,若滑块与水平面间的动摩擦因数μ=0.2,g取10 m/s2,问:(1)滑块在力F作用下经5 s,通过的位移是多大?(2)5 s末撤去拉力F,滑块还能滑行多远?答案:(1)12.5 m(2)6.25 m考向2:由运动情况求受力情况[典例2] 有一种大型游戏机叫“跳楼机”,参加游戏的游客被安全带固定在座椅上,由电动机将座椅沿光滑的竖直轨道提升到离地面40 m高处,然后由静止释放.可以认为座椅沿轨道做自由落体运动2 s后,开始受到恒定阻力而立即做匀减速运动,且下落到离地面4 m高处时速度刚好减小到零.然后再让座椅以相当缓慢的速度稳稳下落,将游客送回地面.(取g=10 m/s2)求:(1)座椅在自由下落结束时刻的速度是多大?(2)座椅在匀减速阶段的时间是多少?(3)在匀减速阶段,座椅对游客的作用力大小是游客体重的多少倍?答案(1)20 m/s(2)1.6 s(3)2.254.在欢庆节日的时候,人们会在夜晚燃放美丽的焰火.按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4 s末到达离地面100 m的最高点时炸开,构成各种美丽的图案.假设礼花弹从炮筒中竖直射出时的初速度是v0,上升过程中所受的平均阻力大小始终是自身重力的k倍,那么v0和k分别等于(重力加速度g取10 m/s2)()A.25 m/s, 1.25 B.40 m/s, 0.25 C.50 m/s, 0.25 D.80 m/s, 1.25解析:选C.5.行车过程中,如果车距不够,刹车不及时,汽车将发生碰撞,车里的人可能受到伤害,为了尽可能地减轻碰撞引起的伤害,人们设计了安全带,假定乘客质量为70 kg,汽车车速为90 km/h,从踩下刹车到完全停止需要的时间为5 s,安全带对乘客的作用力大小约为(不计人与座椅间的摩擦)() A.450 N B.400 N C.350 N D.300 N解析:选C.第2节 牛顿第二定律 两类动力学问题—课后作业1.物块A 放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g =10 m/s 2,则物块A 沿此斜面下滑的加速度大小为( )A .5 3 m/s 2B .3 3 m/s 2C .(5-3) m/s 2 D.1033 m/s 2解析:选D.2.(多选)如图所示,质量为m =1 kg 的物体与水平地面之间的动摩擦因数为0.3,当物体运动的速度为10 m/s 时,给物体施加一个与速度方向相反的大小为F =2 N 的恒力,在此恒力作用下(取g =10 m/s 2)( )A .物体经10 s 速度减为零B .物体经2 s 速度减为零C .物体速度减为零后将保持静止D .物体速度减为零后将向右运动 解析:选BC.3.如图所示,a 、b 两物体的质量分别为m 1和m 2,由轻质弹簧相连.当用恒力F 竖直向上拉着a ,使a 、b 一起向上做匀加速直线运动时,弹簧伸长量为x 1,加速度大小为a 1;当用大小仍为F 的恒力沿水平方向拉着a ,使a 、b 一起沿光滑水平桌面做匀加速直线运动时,弹簧伸长量为x 2,加速度大小为a2.则有( )A .a 1=a 2,x 1=x 2B .a 1<a 2,x 1=x 2C .a 1=a 2,x 1>x 2D .a 1<a 2,x 1>x 2解析:选B.4.如图所示,质量分别为m 、2m 的小球A 、B ,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F ,此时突然剪断细线.在线断的瞬间,弹簧的弹力大小和小球A 的加速度大小分别为( )A.2F 3,2F 3m +gB.F 3,2F 3m +gC.2F 3,F3m +g D.F 3,F3m +g 解析:选A.5.(多选)如图所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( )A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB .B 球的受力情况未变,瞬时加速度为零C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零 解析:选BC.6.一质量为m =2 kg 的滑块能在倾角为θ=30°的足够长的斜面上以a =2.5 m/s 2匀加速下滑.如右图所示,若用一水平向右的恒力F 作用于滑块,使之由静止开始在t =2 s 内能沿斜面运动位移x =4 m .求:(g 取10 m/s 2)(1)滑块和斜面之间的动摩擦因数μ;。
4.6牛顿运动定律的应用+教学设计2023-2024学年高一上学期物理教科版(2019)必修第一册
6.牛顿运动定律的应用★课标解析1.课标内容要求。
理解牛顿运动定律,能用牛顿运动定律解释生产生活中的有关现象、解决有关问题。
2.课标内容解析。
牛顿运动定律包括牛顿三大定律。
牛顿第一定律指出力不是维持物体运动状态的原因,而是改变物体运动状态的原因,一切物体都有惯性,且物体的质量是其惯性大小的量度,物体的惯性与物体的运动状态无关。
牛顿第二定律可用公式F=ma简洁表述,是运动学和静力学联系的桥梁与纽带,是动力学的基础。
牛顿第三定律阐述了物体间作用力与反作用力的关系。
牛顿运动定律是日常生活、自然规律的总结与提炼,日常生产生活中的现象与牛顿运动定律规律相符合。
培养学生用牛顿运动定律解释生产生活中的有关现象、解决有关问题的能力是培育物理学科核心素养的重要载体,也是物理教学的学科价值的体现。
★教学目标1.理解牛顿第二定律中的加速度、力、质量三者之间的关系,形成正确的物理观念。
2.了解力与运动是与我们日常生产、生活密不可分的两大物理内容。
3.会用牛顿运动定律来解释和解决遇到的相关问题。
4.体会用牛顿运动定律解决生产生活中的问题的过程是理论联系实际的过程。
5.在牛顿运动定律的应用过程中体会科学解决问题的思路与策略。
6.在用牛顿运动定律科学解决问题的过程中培养模型建构能力和科学推理能力。
7.体会日常生活中物理无处不在,均是物理规律在起作用,培养学生的科学态度与责任心。
★教学准备1.本节的教学用1课时。
2.多媒体使用。
PPT课件,电脑投影。
3.教学顺序。
(1)复习引入:牛顿第二定律表达式F=ma中含有加速度、力、质量三个方面关系;(2)问题导向:以教科书中的问题1为例,体会动力学测物体质量的方法;(3)交流讨论,提炼思路;(4)问题导向:以教科书中的问题2为例,体会从受力确定运动情况的过程;(5)问题导向:以教科书中的问题3为例,体会从运动情况确定受力的过程;(6)以理点悟、深化主题:请学生整理、提炼、领悟牛顿运动定律应用的思路与策略。
2019版高中物理教科版必修一教师用书:第三章 牛顿运动定律 5 含答案
5牛顿运动定律的应用[学习目标] 1.明确动力学的两类基本问题。
2。
掌握应用牛顿运动定律解题的基本思路和方法.一、从受力确定运动情况如果已知物体的受力情况,可以由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况.二、从运动情况确定受力如果已知物体的运动情况,根据运动学公式求出物体的加速度,再根据牛顿第二定律就可以确定物体所受的力.判断下列说法的正误.(1)根据物体加速度的方向可以判断物体所受合外力的方向.(√)(2)根据物体加速度的方向可以判断物体受到的每个力的方向.(×)(3)物体运动状态的变化情况是由它的受力决定的.(√)(4)物体运动状态的变化情况是由它对其他物体的施力情况决定的.(×)一、从受力确定运动情况如图1所示,运动小车中悬线下的小球向左偏离,偏角恒为θ。
图1(1)小球受几个力作用?合力方向向哪?(2)小球的加速度方向向哪?小车可能做什么运动?答案(1)两个力;合力方向水平向右.(2)小球的加速度方向与合力方向相同,所以加速度方向水平向右;若小车向左运动,则做向左的匀减速直线运动;若小车向右运动,则做向右的匀加速直线运动.1.解题步骤(1)确定研究对象,对研究对象进行受力分析,并画出物体的受力分析图.(2)根据力的合成与分解,求合力(包括大小和方向).(3)根据牛顿第二定律列方程,求加速度.(4)结合物体运动的初始条件,选择运动学公式,求运动学量—-任意时刻的位移和速度,以及运动时间等.2.流程受力情况→合力F错误!求a,错误!―――――→求x、v0、v t、t。
例1如图2所示,质量m=2 kg的物体静止在水平地面上,物体与水平面间的滑动摩擦力大小等于它们间弹力的0.25倍,现对物体施加一个大小F=8 N、与水平方向成θ=37°角斜向上的拉力,已知sin 37°=0.6,cos 37°=0。
8,g取10 m/s2.求:图2(1)画出物体的受力图,并求出物体的加速度;(2)物体在拉力作用下5 s末的速度大小;(3)物体在拉力作用下5 s内通过的位移大小.答案(1)见解析图 1.3 m/s2,方向水平向右(2)6。
大学老师试讲教案
课程名称:《大学物理》授课对象:大学一年级学生授课时间:2课时教学目标:1. 知识目标:使学生掌握牛顿运动定律的基本概念和内容,了解牛顿运动定律在物理学中的地位和作用。
2. 能力目标:培养学生运用牛顿运动定律分析解决实际问题的能力,提高学生的物理思维能力。
3. 情感目标:激发学生对物理学的兴趣,培养学生的科学精神。
教学重点:1. 牛顿运动定律的基本概念和内容。
2. 牛顿运动定律的应用。
教学难点:1. 牛顿运动定律的推导过程。
2. 牛顿运动定律在不同情况下的应用。
教学过程:第一课时一、导入1. 引入物理学中的力学部分,简要介绍力学在物理学中的地位和作用。
2. 引出牛顿运动定律,介绍牛顿运动定律的发现者和历史背景。
二、新课讲授1. 牛顿第一定律:惯性定律- 解释惯性的概念,说明惯性与质量的关系。
- 介绍牛顿第一定律的内容,引导学生分析物体在不同情况下所表现出的惯性。
2. 牛顿第二定律:加速度定律- 介绍力的概念,说明力的作用效果。
- 引导学生分析物体受力后的运动状态变化,推导出牛顿第二定律。
3. 牛顿第三定律:作用与反作用定律- 介绍作用与反作用的概念,说明作用与反作用力的关系。
- 举例说明牛顿第三定律在生活中的应用。
三、课堂练习1. 让学生运用牛顿运动定律分析生活中的实例,如抛物线运动、汽车刹车等。
2. 学生分组讨论,总结牛顿运动定律的应用规律。
四、课堂小结1. 总结本节课所学内容,强调牛顿运动定律的基本概念和内容。
2. 强调牛顿运动定律在物理学中的地位和作用。
第二课时一、复习导入1. 回顾上一节课所学内容,引导学生回忆牛顿运动定律的基本概念和内容。
2. 引出本节课要学习的内容:牛顿运动定律在不同情况下的应用。
二、新课讲授1. 牛顿运动定律在匀速直线运动中的应用- 介绍匀速直线运动的概念,说明牛顿运动定律在匀速直线运动中的应用。
- 举例说明牛顿运动定律在匀速直线运动中的具体应用。
2. 牛顿运动定律在匀变速直线运动中的应用- 介绍匀变速直线运动的概念,说明牛顿运动定律在匀变速直线运动中的应用。
基础物理教师手册_牛顿运动定律
牛顿运动定律壹教学目标与节数贰教材地位分析参教学摘要2-1 牛顿第一运动定律—状态与惯性1. 自早期伽利略观察实验、笛卡儿的贡献,到牛顿第一运动定律的说明。
2. 以生活实例说明惯性定律与力平衡的关系,并藉此机会强调画力图的方法,及其重要性。
2-2 牛顿第二运动定律—状态的改变与力1. 藉由牛顿第二运动定律说明是状态的改变(加速度)与其原因(力)互相结合的因果关系。
2. 介绍推力与拉力、重力几种常见的力,并以此作为牛顿第二运动定律范例。
2-3 牛顿第三运动定律—作用力与反作用力1. 强调任何作用力皆有其反作用力的存在,例如:你用力推墙,则你是施力体,而墙是受力体;但你会感受到墙推你的反作用力,即墙变为施力体,你则为受力体。
2. 由于作用力与反作用力分别作用在两个不同物体上,因此不能互相抵消。
2-4 摩擦力说明摩擦力的来源:由于物体表面的凹凸不平,则当两物体互相接触并挤压时,会产生不平滑的突起颗粒相互卡住,因此要让两物体产生相对滑动就必须克服这种卡住的力量,这个力量称为摩擦力。
肆教学方法与注意事项教学眉批伽利略的惯性定律并非牛顿的第一运动定律,因伽利略所言的惯性定律并未提及“力”与“状态”。
教学眉批伽利略认为地球表面上的物体,若没受到阻碍,会继续(等速率)运动下去,但不会是沿着一直线,而是会绕着地球一圈,如此物体才可一直维持着与地心相同距离,而不会离地心愈来愈远。
教学眉批笛卡儿的贡献,在于提出了“状态”的概念。
“静止”与“等速”都是不受外界干扰时的一种“状态”,并且会一直维持原先的此种状态;一旦受到外界干扰时,则静止者将不再静止,等速者将不再等速。
教学眉批第一运动定律原文:Every body continues in it’s state of rest,or of uniform motion in a right line,unless it is compelled to change that state by forces impressed upon it.教学眉批自惯性定律提出后,“位置的改变”不再是运动探讨的主要重心,静止或(速度)状态的改变才是运动探讨的重心。
教师招聘考试:牛顿运动定律
教师招聘考试:牛顿运动定律【牛顿运动定律】一、牛一定律:一切物体总保持匀速直线运动状态或静止状态,一直到有外力迫使它改变这种状态为止。
牛一定律说明:力不是维持运动,而是改变运动状态,产生加速度。
任何物体在任何情况下,都有惯性,惯性只与物体的质量有关。
质量越大,物体的惯性越大。
二、牛二定律:物体的加速度跟合外力成正比,与物体的质量成反比。
a = F合/m 或 F合=ma (合外力方向与加速度方向一致)解题方法:先确定受力物体,受力分析,然后根据物体的运动方向建立坐标系,将不在坐标系上的力分解。
利用平衡力来解题。
如受力在三个以内,可用力的合成:F合力= ma三、牛三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在一条直线上。
由于这两个力不作用在一个物体上,所以它们不是平衡力。
等大、反向、共线、异体。
四、牛顿定律的适用范围:宏观、低速运动的物体。
五、力学单位制中基本单位:质量m:千克(kg),长度L:米(m),时间t:秒(s)经典习题1.用力拉一辆停在水平路面上的小车,车便沿路面开始运动,若停止用力,车就逐渐停下来,针对这一现象下列选项中正确的是( )A.车所以运动是因为对车用了力,车所以停下来是因为车不再受力的作用B.车从静止到运动是因为拉力大于摩擦力,车所受的合外力不为零,从而改变了车的运动状态C.小车从静止到运动,由运动到逐渐停下来,都说明小车的运动状态改变了D.小车从运动到停下来是因为小车受到摩擦力的作用答案:BCD2.如图所示为某质点所受合力与时间的关系图象,各段时间内合力大小相同,设质点从静止开始运动,由此可判定( )A.质点向前运动,再返回原处停止B.质点不断地往返运动C.质点始终向前运动D.t=2s时质点的瞬时速度等于零答案:CD。
解析:在每一秒的间隔内,合力为恒力,所以物体做匀变速运动第一秒内质点由静止开始匀加速,第二秒内合力与运动方向相反,物体做匀减速运动,且加速度大小与第一秒内相等,当t=2s时,速度减为零;之后物体又从静止开始匀加速运动,重复前两秒的运动形式所以质点不断向前运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿运动定律复习题
一、选择题(本题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~10题有多项符合题目要求。
)
1.伽利略用两个对接的斜面,一个斜面固定,让小球从固定斜面上滚下,又滚上另一个倾角可以改变的斜面,斜面倾角逐渐改变至零,如图所示。
伽利略设计这个实验的目的是为了说明()A.如果没有摩擦,小球将运动到与释放时相同的高度
B.如果没有摩擦,物体运动时机械能守恒
C.维持物体做匀速直线运动并不需要力
D.如果物体不受到力,就不会运动
答案 C
2.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动。
假定两板与冰面间的动摩擦因数相同。
已知甲在冰上滑行的距离比乙远,这是由于() A.在推的过程中,甲推乙的力小于乙推甲的力
B.在推的过程中,甲推乙的时间小于乙推甲的时间
C.在刚分开时,甲的初速度大于乙的初速度
D.在分开后,甲的加速度大小小于乙的加速度大小
答案 C
3.在水平地面上运动的小车车厢底部有一质量为m 1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k 。
在车厢的顶部用一根细线悬挂一质量为m 2的小球,某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与车厢保持相对静止,如图所示。
不计木块与车厢底部的摩擦力,则在这段时间内弹簧的形变为( A )
A .伸长量为
1tan m g k θ B .压缩量为1tan m g k θ C .伸长量为1tan m g k θ D .压缩量为1tan m g k θ
4.建筑工人用如图所示的定滑轮装置运送建筑材料.质量为70.0 kg 的工人站在地
面上,通过定滑轮将20.0 kg 的建筑材料以0.5 m/s 2的加速度拉升,忽略绳子和定
滑轮的质量及定滑轮的摩擦,则工人对地面的压力大小为(g 取10 m/s 2)( B )
A .510 N
B .490 N
C .890 N
D .910 N
5.如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( C )
A.两个小球的瞬时加速度均沿斜面向下,大小均为g sinθ
B.B球的受力情况改变,瞬时加速度不为零
C.A球的瞬时加速度沿斜面向下,大小为2g sinθ
D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零
6.物体静止放在光滑水平面上,在如图所示的水平方向的力的作用下由静止开始运动,下列说法正确的是( D )
A.0~T时间内物体的加速度和速度都逐渐减小
B.T时刻物体的加速度和速度都等于零
C.T~2T时间内物体的运动方向与原来相反
D.T时刻物体的加速度等于零,速度最大
7.如图所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m,现施加水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动。
若改用水平力
F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不超过( B )
A.2F B.F/2 C.3F D.F/3
8.质量为0.3kg的物体在水平面上运动,图中的两条直线分别表示物体
受水平拉力和不受水平拉力的速度—时间图像,则下列说法中正确的是
()
A.物体不受水平拉力时的速度图像一定是b
B.物体受水平拉力时的速度图像一定是b
C.摩擦力一定等于0.2N
D.水平拉力一定等于0.1N
【答案】D
9.将一个质量为1kg的小球竖直向上抛出,最终落回抛出点,运动过程中所受阻力大小恒定,方向与运动方向相反。
该过程的v-t图象如图所示,g取10 m/s2。
下列说法中正确的是()
A.小球所受重力和阻力之比为5∶1
B.小球上升过程与下落过程所用时间之比为2∶3
C.小球落回到抛出点时的速度大小为8 6 m/s
D.小球下落过程中,受到向上的空气阻力,处于超重状态
答案AC
10.如图,水平传送带A、B两端相距s=3.5 m,工件与传送带间的动摩擦因数μ=0.1,取重力加速度大小g=10 m/s2。
工件滑上A端瞬时速度v A=4 m/s,达到B端的瞬时速度设为v B,则() A.若传送带不动,则v
=3 m/s
B.若传送带以速度v=4 m/s逆时针匀速转动,则v B=3 m/s
C.若传送带以速度v=2 m/s顺时针匀速转动,则v B=3 m/s
D.若传送带以速度v=2 m/s顺时针匀速转动,则v B=2 m/s
答案ABC
二、实验与填空题(本题包括3小题,共24分。
)
11.如图所示,固定在小车上的竖直挡板和斜木板间夹角α=45°,一个质量m =2kg 的光滑小球放在其中,随车一起以加速度a =1 m/s 2向右匀加速运动时,小球对竖直挡板的压力F 1=_____________,对斜木板的压力F 2=_____________。
(g 取10 m/s 2)
12.雨摘下落时所受到的空气阻力与雨滴的速度有关,雨滴速度越大,它受到的空气阻力越大:此外,当雨滴速度一定时,雨滴下落时所受到的空气阻力还与雨滴半径的α次方成正比(12α≤≤).假设一个大雨滴和一个小雨滴从同一云层同时下落,最终它们都_______(填“加速”、“减速”或“匀速”)下落.______(填“大”或“小”)雨滴先落到地面;接近地面时,______(填“大”或“小”)雨滴的速度较小.
【答案】匀速 大 小
13.如图所示,某同学将力传感器固定在小车上,然后把绳的一端
固定在传感器拉钩上,用来测量绳对小车的拉力,探究在小车及
传感器总质量不变时加速度跟它们所受拉力的关系,根据所测数
据在坐标系中作出了如图所示的a -F 图象。
(1)图线不过坐标原点的原因是____________________。
(2)本实验中是否仍需要砂和桶的总质量远小于小车和传感器的总质量。
________(填“是”或“否”)。
(3)由图象求出小车和传感器的总质量为________kg 。
解析 (1)a -F 图象与横轴交点为(0.1,0),说明施加外力在0.1 N 之内小车和传感器没有加速度,说明实验前没有平衡摩擦力或者平衡摩擦力不足。
(2)因传感器可直接测出小车和传感器受到的拉力,因此不需要保证砂和桶的质量远小于小车和传感器的总质量。
(3)a -F 图象斜率为1m
,由图知图象斜率k =1,则小车和传感器的总质量为1 kg 。
答案 (1)未平衡摩擦力或平衡摩擦力不足 (2)否 (3)1
三.计算题(本题包括3小题,共36分。
)
14.(12分)如图,足够长的斜面倾角θ=37°。
一个物体以v 0=12m/s 的初速度,从斜面A 点处沿斜面向上运动。
加速度大小为a =8.0m/s 2。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
求:
(1)物体沿斜面上滑的最大距离x ;
(2)物体与斜面间的动摩擦因数μ;
(3)物体沿斜面返回到A点时的速度大小v。
解(1)根据v02=2ax
求出x=9(m)
(2)物体沿斜面向上运动时,
根据牛顿第二定律mgsinθ+μN=ma
N=mgcosθ
求出μ=0.25
(3)物体沿斜面向下运动时,
根据牛顿第二定律mgsinθ-μN=ma′
求出a′=4(m/s2)
根据v2=2a′x
求出v=
15.(12分)如图所示,质量M=1kg的木板A静止在水平地面上,在木板的左端放置一个质量m =1kg的铁块B(大小可忽略),铁块与木板间的动摩擦因数μ1=0.3,木板长L=1m,用F=5N的水平恒力作用在铁块上。
设铁块B与木板A间的最大静摩擦力等于滑动摩擦力,取重力加速度g =10m/s2。
(1)若水平地面光滑,计算说明铁块B与木板A间是否会发生相对滑动;
(2)若木板与水平地面间的动摩擦因数μ2=0.1,求铁块运动到木板右端的时间。
解析(1)A、B之间的最大静摩擦力为
F f m=μ1mg=0.3×1×10 N=3 N
假设A、B之间不发生相对滑动,则
对A、B整体:F=(M+m)a
对B:F fAB=ma
解得F fAB=2.5 N
因FfAB<F f m,故A、B之间不发生相对滑动(2)对B:F-μ1mg=ma B
对A:μ1mg-μ2(M+m)g=Ma A
据题意x B-x A=L,x A=1
2a A t
2,x
B
=
1
2a B t
2,解得t= 2 s
答案(1)不会发生相对滑动(2) 2 s
16.(12分)如图所示为上、下两端相距L=5m、倾角α=30°、始终以v=3m/s的速率顺时针转动的传送带(传送带始终绷紧)。
将一物体放在传送带的上端由静止释放滑下,经过t=2s到达下端,重力加速度g取10m/s2,求:
(1)传送带与物体间的动摩擦因数多大?
(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?
答案:(1)0.29 (2)8.66 m/s。