Abstract Tradeoffs of Implementing TCP Fairness Schemes

合集下载

基于静态非合作博弈的网络报文取样模型

基于静态非合作博弈的网络报文取样模型

A b t a t n o d rt m p o h e f r a c fn t r n r i n d tc i n s se s, a e t e r s r c :I r e o i r ve t e p ro m n e o e wo k i tuso e e to y t m g m h o y i nr d c d t mod l i tu i n p c e s m p ig f r n t r s c rt . Ba e n t e n l ss a si to u e o e n r so a k t a ln o e wo k e u y i s d o h a a y i p- pr a h o ttc n n c o r tv m e t e r o c fsai o — o pea i ega h o y,t e cos d s l to ft em i e ta e y Na h e u l h l e o u i n o h x d sr tg s q ii b—
f ci e e so h o h t l o t ms a e i pe td.Th e u t f smu ai n i d c t ha h P— e tv n s ft e b t wo ag r h r ns ce i e r s lso i l t n ia e t tt e CI o SA a r fe t t ii st a h h smo e ef c i u i te h n t e DDSP ve l A. M o e v r h PS h s t a c e s s m- r o e ,te CI A a he s me pa k t a
中式增量取 样 算法( IS , CP A) 以等概 率攻 击 、 随机 攻 击和博 弈攻的性 能. 真结果 表 明, IS 仿 CP A算 法 比 D P A 算 法更为 有效. IS 算 法在 3种攻 击方 DS CP A

一种基于离散对数问题的无证书代理签名方案

一种基于离散对数问题的无证书代理签名方案

无 证 书 公 钥 密 码 ( e iet esp bi ky C rf ae s u l e ti l c
Ab t a t:To s le t e p o lms o etfc t n g me to e s rw n p o y sg a u e s h me sr c ov h r b e fc riiae ma a e n rk y e c o i r x in t r c e s,
( .c ol f cecs 2 Sh o o o ue c nea dT c n l y U T, aj g2 0 9 , h a 1 S h o o i e ; . c ol f mp t Si c n eh oo ,N S N ni 10 4 C i ) S n C r e g n n
an w erf a ls poys n tr shm ( L S i pee t .T i shm o e h e srw e e ict es rx i a e c e e C P )s rsne ti e g u d hs c e esl stek yeco v
p o lm y b n i g t a i l rv t e s wi a d n i nd as aife lt e rq r d r be b i d n wo p r a y p a e k y t a s me ie t y a lo s ts s a h e uie tl i h t i l
K e r :dic e e l g rt m r b e s c ri c tl s r x inau e s h me ; p iae k y ; i y wo ds s r t o a h p o lm ; e t aee s p o y sg t r c e s i i f rv t e s — de tt n iy

电子商务系统分析与设计作业参考答案

电子商务系统分析与设计作业参考答案

《电子商务系统分析与设计》作业一答案一、名词解释1.广义电子商务是指企业利用Web进行的全部商务活动,包括电子交易、客户管理、物资调配、企业内部商务活动(如生产、管理、财务等)和企业间的商务活动,是企业利用电子手段实现各种商务活动及其运作管理的整个过程。

2.企业系统规划法是一种对企业管理信息系统进行规划和设计的结构化方法,它也是从企业目标入手,自上而下地识别系统目标,识别企业过程,识别数据类,逐步将企业目标转化为电子商务系统的目标和结构,然后自下而上设计系统,以支持企业目标的实现。

3. 数据字典:一个定义应用程序中使用的所有数据元素和结构的含义、类型、数据大小、格式、度量单位、精度以及允许取值范围的共享数据仓库。

4.面向对象分析方法:一种系统建模技术,它从系统的组成来进行分解,对问题进行自然分割,利用类和对象作为基本构造单元,以接近人类思维的方式建立问题域模型,使设计出的软件尽可能直接描述现实世界。

5.UML(统一建模语言):UML是用来对软件系统进行可视化建模的一种语言,是进行需求分析和概要设计的建模语言,UML为面向对象开发系统的产品进行说明、可视化和编制文档的一种标准语言。

二、填空题1.企业内部网Intranet2. 关键成功因素法,企业系统规划法3.树状因果图4.完备性检验,一致性检验,无冗余检验5.技术可行性,经济可行性6.成本,效益7.表示层,应用逻辑层8.计划与控制过程,产品与服务过程9.雏形阶段,发展阶段10. 概念模型三、选择题:1. B2. C3. B4. C5. B6. A7. D8. A9. A 10.C四、简答题1.电子商务系统的特点是什么?(1)是支持企业商务活动整个过程的技术平台(2)是企业业务流程重构、价值链增值的技术平台(3)采用B/S架构,提供基于WEB的分布式服务(4)对安全提出了很高要求(5)大多是依托企业原有信息资源运行的系统2.什么是电子商务系统规划?答:电子商务系统规划是指以企业实施电子商务为目标,制定企业的电子商务发展战略,给出企业未来的商务和盈利模式以及商务模型,并设计支持这种模型的体系结构,构造技术解决方案,确定实施步骤、时间安排和人员组织,最后评估系统建设的开销和收益,进行可行性分析并给出可行性研究报告。

基于交易成本理论企业外包的边界选择的研究综述

基于交易成本理论企业外包的边界选择的研究综述

基于交易成本理论企业外包的边界选择的研究综述随着全球化和信息化的深入发展,企业外包成为越来越流行的管理方式。

外包使得企业能够专注于自身的核心业务,同时通过外部合作伙伴获取更高效、更优质的服务。

然而,企业外包也存在一些不利的因素,例如合作伙伴的不可靠性、信息交流的困难、合作风险的增加等。

因此,如何选择外包的边界成为企业外包决策中的一个重要问题。

本文将通过对交易成本理论的概述和外包边界的选择进行综述,探讨企业外包的决策方法。

交易成本理论是经济学中的一个重要理论,它主要研究当事人在市场环境下进行交易时所面临的各种成本。

这些成本包括交易性成本、协同配合成本、搜索成本等。

交易性成本是指由交易过程所带来的操作费用,例如信息处理、交易谈判、协议签署、市场监管等。

协同配合成本是由于合作交易而产生的额外成本,例如信息共享、统一决策的协调、技术培训等。

搜索成本是在市场中寻找合适的交易伙伴所带来的成本,例如寻找最优价格、选择最可靠的供应商等。

交易成本理论认为,在市场环境中,交易成本会对企业进行外包决策产生重要的影响。

企业的外包边界选择是指企业内部和外部之间确定功能的边界。

这个边界的位置,决定了哪些业务要内部处理,哪些要外包承包。

企业外包的决策通常需要考虑一些比较重要的因素,包括:成本、控制权、知识产权保护、环境要素等。

这些因素对外包决策的影响并非一成不变,而是取决于企业内外环境的变化。

在跨国公司的外包决策中,通常会根据交易成本理论来选择外包的边界。

公司会对所有交易成本进行分析,包括市场交易成本和内部管理成本。

如果内部管理成本较低,则会选择保持内部处理。

如果外部交易成本相对较低,则可以考虑向外承包。

通过逐步协商来组织商业交易,使得企业可以通过自身的竞争优势和外部的资源来获得利益。

在企业外包的实际选择中,还需要综合考虑其他因素,如合作伙伴的信誉度、合作期限、风险控制等。

此外,也需要注意一些外包的失败案例,以避免出现外包失败的局面。

26723315_一种以Artifact为中心的多业务流程协同监控方法

26723315_一种以Artifact为中心的多业务流程协同监控方法

第46卷第2期燕山大学学报Vol.46No.22022年3月Journal of Yanshan UniversityMar.2022㊀㊀文章编号:1007-791X (2022)02-0181-08一种以Artifact 为中心的多业务流程协同监控方法刘海滨1∗,柴朝华1,李㊀晖1,2,王㊀颖2(1.河北科技师范学院工商管理学院,河北秦皇岛066004;2.燕山大学信息科学与工程学院,河北秦皇岛066004)㊀㊀收稿日期:2020-10-11㊀㊀㊀责任编辑:孙峰基金项目:国家自然科学基金资助项目(61772450);河北省高等学校人文社会科学研究资助项目(BJ2020064);河北科技师范学院海洋科学研究专项(2018HY013)㊀㊀作者简介:∗刘海滨(1982-),男,河北承德人,博士,教授,主要研究方向为业务流程管理㊁流程挖掘㊁大数据分析,Email:champion_lhb @㊂摘㊀要:多业务流程协同监控是通过监控合作伙伴的行为,保证可以灵活㊁动态地选择最优合作伙伴,确保企业利益最大化的一种有效方法㊂已有的方法在监控过程中忽略了业务流程数据的重要性,一定程度上降低了监控信息质量和可利用性㊂因此,本文提出一种以Artifact 为中心的多业务流程协同监控方法㊂首先,给出了以Artifact 为中心的业务流程协同模型及Artifact 实例协同快照定义㊂其次,采用快照日志挖掘获得候选以Artifact 为中心的业务流程协同模型,然后,根据蚁群优化算法在候选流程模型中获取最优流程服务协同路径㊂最后,通过实例分析验证了方法的可行性㊂关键词:多流程协同;流程监控;Artifact;快照日志挖掘;蚁群优化中图分类号:TP311.52㊀㊀文献标识码:A㊀㊀DOI :10.3969/j.issn.1007-791X.2022.02.0110㊀引言云计算㊁大数据㊁人工智能㊁工业4.0及电子商务等技术的不断发展,从根本上彻底改变了当今世界企业的运营方式,企业全球化时代的到来促使未来企业必将走向合作共赢㊁融合发展的管理模式㊂在此背景下,业务流程管理(business process management,BPM)研究领域也在由传统的企业内部向跨企业业务流程转变㊂多业务流程协同[1]是BPM 技术新的热点问题之一㊂所谓多流程协同是指多个企业的业务协同工作共同完成一个业务目标㊂企业业务在协同工作中,不仅要考虑自身,更要考虑合作伙伴企业的利益㊂为了确保信誉,企业必须能实时监控业务环境,保证服务质量,必须能够灵活地应对变化的业务需求㊂因此,相关研究学者提出了多业务流程协同监控技术[2-3],旨在通过对多流程业务合作伙伴行为进行监控,进而快速适应业务需求的变更,降低由于业务需求改变而带来的损失,最大化企业自身的利益㊂目前,在BPM 领域,NGAMAKEUR 等人从多业务流程协同建模角度开展了深入研究,CORRADINI 提出了基于OMG 标准的多业务流程协同建模方法,文献[4]构建了在开发服务环境下进行业务流程协同的系统,文献[5]针对动态协作环境建立了以Artifact 为中心的业务流程执行框架㊂XIONG 等人则针对多业务流程协同中出现的数据流错误检测[6]㊁协同模式的分析与提取[7]等问题进行了研究,未考虑对协同执行进行系统的监控㊂文献[8-10]分别从以Artifact 驱动的流程协同监控㊁智能设备的应用㊁物联网的应用及区块链的应用等方面为切入点深入研究了多业务流程监控体系构建的问题,但其监控方法都是自顶向下的设计,在协同监控过程中只注重过程,而忽略了核心业务数据自身的重要性㊂文献[11-12]提出了182㊀燕山大学学报2022基于实时数据采集的监控模型,但研究重点仍是一个从监控需求到监控模型再自动转换为监控系统的自顶向下的体系,未强调数据的重要性㊂因此,本文提出一种自底向上,以Artifact 为中心的多流程协同监控方法㊂首先,给出了以Artifact 为中心的业务流程协同模型及其运行后产生的Artifact 协同快照实例定义㊂其次,采用快照日志挖掘获得候选的以Artifact 为中心的业务流程协同模型,然后,根据蚁群优化算法在候选流程模型中获取最优流程服务协同路径㊂最后,通过实例分析验证了方法的可行性㊂1㊀相关定义已有的多流程协同模型主要从管理模型和业务模型两个方面对多流程协同进行了描述,即着重在过程和控制流,忽略了业务流程之间的核心业务数据的交互,导致不能很好满足业务流程协同的合规性㊁灵活性和自治性三方面需求[13-14]㊂以Artifact 为中心的业务流程在建模过程中,充分考虑业务流程的核心业务数据及其更新情况,是以数据为中心业务流程建模思想的典型代表[15]㊂本文在以Artifact 为中心建模基础上进行扩展,提出以Artifact 为中心的业务流程协同模型㊂该协同模型强调6个核心要素:Artifacts㊁流程服务㊁协同角色㊁Artifacts 提供流程服务的监控信息及Artifacts 之间的服务协同的监控信息㊂定义1㊀以Artifact 为中心的业务流程协同模型(Artifact-centric Collaboration Model,ACCM ):以Artifact 为中心的业务流程协同模型Π定义为一个多元组(A ,V ,R ,C ,F ,B ),其中:1)A 为Artifact 类型集合,一个Artifact 类定义为一个四元组(D ,T ,S ,S f ),其中D 表示名称-值对的数据属性集合,T 表示与数据属性集合D 相对应的数据类型集合,S 表示数据属性赋值状态集合,并且S f ⊆S \{S init },S init 为初始数据属性赋值状态,S f表示数据属性赋值完成状态;2)V 为流程服务集合;3)R 为业务协同中的组织角色集合;4)C 是集合A 与集合R 的笛卡尔积的子集,即A ˑR ={(x ,y )|x ɪA ɡy ɪR },蕴含了流程协同模型中各个R 包含的Artifact 类型信息;5)F 是集合A 与集合V 的笛卡尔积的子集,即A ˑV ={(x ,y )|x ɪA ɡy ɪV },蕴含了对Artifact 类提供的各个流程服务的监控信息;6)B 是集合A ㊁集合V 及另一个集合A 的笛卡尔积的子集,即A ˑV ˑA ={(x ,y ,z )|x ɪA ɡy ɪV ɡz ɪA },蕴含了各个Artifact 类的生命周期过程中影响到其状态变化的流程服务及该流程服务隶属的Artifact 实例信息㊂本定义重点介绍了ACCM 在后续流程协同监控中涉及到的要素,其余要素在本文后续研究中涉及到,故从略㊂Artifact 实例间的协同快照反映了协同流程的相关监控信息,比如ACCM 模型中各个组织角色㊁各个Artifact 实例及其流程服务的总服务次数㊁服务成功率㊁平均服务成本及平均服务满意度等㊂这些监控信息可以客观地反映出当前各个组织角色在某一服务方面的服务能力㊁服务成本㊁服务质量等,从而对ACCM 的监控质量和可利用性提供更科学的支持㊂定义2㊀Artifact 实例协同快照:给定与Artifact 类A 相关的流程协同模型ACCM A ,该模型下的Artifact 类A 的一个实例协同快照H 可定义为多元组(ID,A l ,S b ,S a ,G ,P ,H ,M ,E ,L ,Z ,I ,Q ,K ),其中:1)ID 为Artifact 实例协同快照唯一标识符;2)A l 为本Artifact 类A 的实例名称;3)S b 为流程协同前Artifact 类A 的属性赋值状态;4)S a 为流程协同后Artifact 类A 的属性赋值状态;5)G 为流程协同类型,协同类型用于说明该快照代表的协同过程中本Artifact 实例是协同中服务的供给方还是需求方;6)P 为流程协同中的流程服务信息;7)H 为流程协同相关的Artifact 实例信息;8)M 为流程协同发生的时间;9)E 为流程协同凭证信息;10)L 为流程协同所需流程服务成本信息;11)Z 为流程服务的运行次数;12)I 为流程协同的结果信息;13)Q 为流程协同的满意度信息;14)K 为流程协同过程中的其他相关信息㊂第2期刘海滨等㊀一种以Artifact为中心多业务流程协同监控的方法183㊀2㊀以Artifact为中心的多流程协同监控2.1㊀ACCM协同监控模型挖掘如何从Artifact实例协同快照中找到各个组织角色㊁各个Artifact实例及其服务的相关监控信息,获得候选ACCM协同模型是一个关键问题㊂为此,本文提出了ACCM监控模型的挖掘算法㊂ACCM监控模型挖掘的主要过程就是对Artifact实例协同流程快照集合进行遍历㊂针对每一个快照H,取出A l(主体Artifact实例)㊁P(协同流程服务)㊁G(流程协同类型)㊁H(服务相关Artifact实例)㊁L(流程协同的所需成本)㊁Z(流程服务的运行次数)㊁I(流程协同的结果)及Q(流程协同的满意度)等信息,根据G的值确定出流程服务提供方Artifact实例A p㊁流程服务接受方Artifact实例A r㊂从ACCM的F集中寻找(A p,P)元素,如果找不到,则新建(A p,P)元素添加到ACCM的F集中㊂然后,根据本快照当中的L㊁Z㊁I㊁Q信息重新计算(A p,P)元素的服务总次数㊁成功服务次数㊁平均服务成本㊁服务平均满意度等指标并记录更新㊂从ACCM的B集中寻找(A r,P,A p)元素,如果找不到,则新建(A r,P,A p)元素并添加到ACCM的B集中㊂然后,根据本快照当中的L㊁Z㊁I㊁Q信息重新计算(A r,P,A p)元素的服务总次数㊁成功服务次数㊁平均服务成本㊁服务平均满意度等指标并记录更新㊂重复执行以上操作,直到遍历所有快照后算法结束㊂算法中F及B集合中元素的服务总次数C total的计算方法是通过将当前快照的Z值累计到C total中去即可;成功服务次数C success的计算需要先判断该快照的I值,如果I值为 成功 ,则将Z的值累积到C success中,否则不累计㊂而F㊁B集合中元素的平均服务成本C costavg㊁服务平均满意度D satisfaction的计算稍复杂,令F或B集合中元素的原本服务总次数㊁平均服务成本,服务平均满意度记为C original㊁C costoriginal和D original,则C costavg㊁D satisfaction的计算公式为C costavg=C costoriginalˑC original+IC original+Z,(1)D satisfaction=D originalˑC original+QˑZC original+Z㊂(2)㊀㊀下面是ACCM协同监控模型挖掘算法的伪代码描述:算法1㊀ACCM协同监控模型挖掘算法Input:协同流程快照集合S H,ACCM中各Artifact实例可提供的流程服务集合F㊁各Artifact实例生命周期中涉及到的由相关Artifact实例提供的流程服务集合BOutput:ACCM中的F㊁B集合Begin1.定义变量i=1,标记S H={H1,H2, ,H N};2.从S H中获取H i的A l㊁P㊁G㊁H㊁L㊁Z㊁I及Q等属性;3.如果G的值为 供给 ,则流程服务提供方Artifact实例A p=A l,流程服务接受方Artifact实例A r=H,否则A p=H,A r=A l;4.定义变量C original㊁C costoriginal㊁D original,如果元素(A P,P)ɪF,则取出(A P,P)元素的C total㊁C costavg㊁D satisfaction属性的值赋值分别给C original㊁C costoriginal㊁D original,否则将(A P,P)元素并入F,并给(A P,P)元素的C total㊁C success㊁C costavg㊁D sutisfaction属性赋初值0,变量C original㊁C costoriginal㊁D original也赋值为0;5.根据式(1)㊁(2)计算出(A P,P)元素新的C costavg㊁D satisfaction属性值更新到F集合中;6.如果快照H i的I属性值为 成功 ,则元素(A P,P)的属性C success=C success+Z,并更新到F集合中;7.元素(A P,P)的属性C total=C total+Z,并更新到F集合中;8.如果元素(A r,P,A p)ɪB,则取出B中(A r,P,A p)元素的C total㊁C costavg㊁D satisfaction属性的值分别记入变量C original㊁C costoriginal㊁D original,否则将(A r,P,A p)元素并入B,并给(A r,P,A p)元素的C total㊁C success㊁C costavg㊁D satisfaction属性赋初值0,变量C original㊁C costoriginal㊁D original也赋值为0;9.根据式(1)㊁(2)计算出(A r,P,A p)元素新的C costavg㊁D satisfaction属性值并更新到B集合中;10.如果快照H i的I属性值为 成功 ,则元素(A r,P,A p)的属性C success=C success+Z,并更新到B集合中;11.元素(A r,P,A p)的属性C total=C total+Z,并更新到B集合中;12.如果i<N,i=i+1,转向2;13.返回F㊁B集合;End以上算法中,主要的操作集中在对S H㊁F㊁B集合的遍历上㊂令集合F㊁B的基数为U㊁W,随着对S H的遍历,U㊁W从0开始逐渐增加,最极端的情况下,U㊁W最多增加到N,实际情况下U㊁W要远小于N;而在对S H的每一步遍历中,F㊁B集合的当时基数不超过i,且i<N,故整个算法的时间复杂度是O(N log N)㊂2.2㊀ACCM监控协同模型优化根据算法1,挖掘得到ACCM的协同监控模型图㊂该协同监控模型图中主要有Artifact实例㊁流184㊀燕山大学学报2022程服务两类节点,而边包括Artifact 实例与流程服务之间的边和流程服务之间的边两类㊂Artifact 实例与流程服务之间为有向边,由Artifact 实例指向流程服务的边代表了该Artifact 实例提供了此流程服务㊂反之,由流程服务指向Artifact 实例的边代表该流程服务给Artifact 实例提供了服务,并更新了Artifact 数据属性赋值状态㊂从算法1可知,监控模型的各个边上还包含服务总次数㊁成功服务次数㊁平均服务成本㊁平均服务满意度4个监控质量信息属性㊂ACCM 的协同监控模型图各个边上的监控质量信息属性值的差异给ACCM 优化提供了客观㊁可靠的依据㊂ACCM 监控协同模型优化的目的是给某个组织角色的某一服务寻找最优的合作伙伴,而在ACCM 监控模型中,待优化的服务具体表现为某Artifact 实例,每个指向Artifact 实例的边代表了其曾经使用的服务,边上的相关质量信息属性则可以作为这些服务进行比较的依据㊂针对ACCM 优化的需求,本文提出监控ACCM 模型中各流程服务的4个评价指标,分别是支持度㊁可信度㊁平均服务成本及平均服务满意度㊂流程服务的支持度是指在当前协同流程快照集中该流程服务发生的频繁度㊂针对各流程服务,设定一个支持度阈值,支持度超过该阈值的流程服务才进入ACCM 优化的选择范围㊂下面给出支持度的计算公式:S support (V )=C total (V )|S H |ˑ100%,(3)其中,|S H |代表本次协同流程快照集的基数,C total (V )代表流程服务V 发生的总次数㊂流程服务的可信度是指该流程服务发生过的次数中,成功结束的次数占比㊂该可信度将作为协同流程优化的一个重要评价指标,下面给出可信度的计算公式:C confidence (V )=C success (V )C count (V )ˑ100%,(4)其中,C success (V )代表流程服务V 成功的次数,C total (V )代表流程服务V 发生的总次数㊂流程服务的平均服务成本和平均服务满意度指标则直接使用监控模型中各个流程服务的平均服务成本和平均服务满意度属性即可㊂ACCM 监控协同模型优化的下一步工作是从ACCM 监控协同模型图中寻找一条最优流程服务协同路径㊂以某Artifact 实例为根节点(A root ),从ACCM 监控模型图中逐层找出该Artifact 实例需要的流程服务及提供这些流程服务的Artifact 实例,找到的相关流程服务及Artifact 实例即为实现目标Artifact 实例的一个路径㊂从图结构来看,该路径是ACCM 监控模型的一个子图㊂显然,在ACCM 监控模型图中,一个Artifact 实例存在多个流程服务协同路径㊂假设目标Artifact 实例为A root ,G (A root )为该Artifact 实例的流程协同路径集,ACCM 优化的最终目的就是要从针对A root 的流程服务协同路径集G (A root )中找出最优路径G opt (A root )㊂G (A root )是ACCM 监控模型的子图,其元素包括Artifact 实例㊁流程服务两类结点及连接这两类结点的边,其实质是完成A root 需要调用的所有下层流程服务的集合,这里每一个下层服务P 可以表示为该服务的接受Artifact 实例A r ㊁提供Artifact 实例A p 及其本身的组合(A r ,P ,A p ),故G (A root )可以表示为ACCM 监控模型中B 集合的子集㊂ACCM 监控模型中的流程服务已经建立了四类评价指标:支持度㊁可信度㊁平均服务成本及平均服务满意度㊂根据G (A root )中包含的各流程服务的指标值可以计算出G (A root )的支持度㊁可信度㊁平均服务成本及平均满意度㊂已知G (A root )可表示为ACCM 监控模型中B 集的一个子集Bᶄ,令G (A root )=Bᶄ={b 1,b 2, ,b n },b i 代表路径G (A root )中的某一服务(A r ,P ,A p )㊂下面给出G (A root )各评价指标值的计算公式:S support (G (A root ))=min b i ɪBᶄS support (b i ),(5)C confidence (G (A root ))=Πb i ɪBᶄC confidence (b i ),(6)C costavg (G (A root ))=ðb i ɪBᶄC costavg (b i ),(7)D satisfaction (G (A root ))=min b i ɪBᶄ(D satisfaction (b i ))㊂(8)㊀㊀上述评价指标对从G (A root )中选择G opt (A root )提供了依据㊂支持度指标反映了某一协同路径的利用价值,若该指标偏低,则说明该路径其余指标不具备较强的信息质量,通常设定一个阈值来判断某路径是否具备可利用性㊂其余三个指标均可作为评价最可信路径㊁最低成本路径及最大满意度路径的评价标准㊂综合上述指标,可找出综合第2期刘海滨等㊀一种以Artifact为中心多业务流程协同监控的方法185㊀性价比最优路径,下面给出G(A root)综合评价的计算公式:F evaluation(G(A root))=C confidence(G(A root))㊃D satisfaction(G(A root))C costavg(G(A root))㊂(9)㊀㊀在ACCM监控模型㊁目标服务即Artifact实例及评价函数(最大可信度㊁最低成本㊁最大满意度或综合性价比最优)明确的情况下,G opt(A root)也是确定的,可以算法找出G opt(A root)㊂ACCM监控模型具备图结构,ACCM优化无论采用什么评价指标,最终都可以转化为图优化问题中的最短路问题,故该问题是一个NP问题㊂下面给出一种基于蚁群算法的启发式ACCM优化算法㊂蚁群算法是一种模拟蚁群搜寻食物行为模式的启发式优化算法㊂单个蚂蚁的行为模式表现为在其经过的路径上释放一种 信息素 的物质,而其又可以感知该 信息素 并沿着 信息素 浓度较高的路径行走, 信息素 的浓度会随着时间的推移变小㊂这种单个蚂蚁的行为模式随着时间推移会在蚁群中形成了一种正反馈机制,一段时间以后,整个蚁群就会沿最短路径在食物与巢穴之间往返㊂用蚂蚁走过的路径作为优化问题的可行解,那么所有蚂蚁的走过的路径集合即为优化问题的解空间㊂把针对各个路径的评估函数值作为 信息素 ,随着时间的推移,最优路径上的 信息素 浓度会越来越高,最终整个蚁群在正反馈机制的作用下会逐渐集中在最优路径上,此时就找到了优化问题的最优解㊂下面是ACCM蚁群优化算法的伪代码描述:算法2㊀ACCM蚁群优化算法Input:目标Artifact实例A root㊁各Artifact实例生命周期中涉及到的由相关Artifact实例提供的流程服务集合B㊁由单个蚂蚁ant 组成的蚁群ANT㊁迭代次数NOutput:G optBegin1.定义变量n=0,F opt=0,初始化G opt=Ø2.while:n<N+1循环3.for all antɪANT循环4.定义路径G=Ø5.调用蚂蚁寻路算法(算法3),输入A root㊁B㊁ant,返回路径存入G6.计算F evoluation(G)7.计算路径G上各b元素 信息素 值的改变量8.如果G opt=Ø或者F evoluation(G)>F opt,那么F opt=F evoluation (G),G opt=G9.结束for循环10.保存ACCM监控模型中B集合中各b元素更新的 信息素 值11.n=n+112.结束while循环13.返回G optEnd算法3㊀蚂蚁寻路算法Input:目标Artifact实例A root㊁各Artifact实例生命周期中涉及到的由相关Artifact实例提供的流程服务集合B㊁蚂蚁ant Output:路径GBegin1.定义变量G=Ø,G cur=Ø2.for all bɪB循环3.读取b元素(A r,P,A p)的A r,如果A r=A root,G cur=G curɣ{b}4.结束for循环6.将G cur中的b元素根据P值的不同进行分类,从每一类的b元素中按照 信息素 分布选择一个b元素并入G7.如果G=Ø,返回G8.for all bɪG循环9.定义路径Gᶄ=Ø10.调用蚂蚁寻路算法,输入b㊁B㊁ant,返回路径存入Gᶄ11.G=GɣGᶄ12.结束for循环13.返回GEnd算法2中变量N代表着蚁群寻路的总迭代次数,这个次数对应着蚁群寻路原理中的一段时间, N越大,表示等待正反馈机制生效的时间越长,算法优化的效果越好,实际应用中要根据算法运行效率和优化效果的平衡来选取N的值㊂算法3中第6行提到按照 信息素 分布从一类具有相同的接受Artifact实例A r和流程服务P的b元素中选择一个b元素,令该具有相同的接受Artifact实例A r和流程服务P的b元素集为G P={b1,b2, , b n},当前蚁群寻路的迭代轮次为m,则其中各b元素的选取概率计算公式为Pr(b i)=τm(b i)ðb jɪG Vτm(b j),(10)式中,τm代表各个路径G上各b元素在当前迭代的 信息素 浓度值㊂从公式可以看出 信息素 浓度越高的b元素被选取的概率越大㊂在第0轮迭代时,整个ACCM监控模型中的B集合中所有b186㊀燕山大学学报2022元素的 信息素 值初始化为一个相同的值,一般设为0㊂算法2中的第7行提到了路径G 上b 元素的 信息素 改变量的计算,下面说明其计算方法㊂路径G 上的b 元素上的 信息素 的改变量就采用评价函数F evaluation (G )的值,蚁群ANT 中蚂蚁ant 走完其路径时,ACCM 监控模型中整个B 集合中的b 元素的 信息素 改变量的计算公式为Ψant (b i )=F evaluation (G ant )㊃F logical (b i ɪG ant ),(11)式中,F logical (A )表示逻辑取值函数,逻辑表达式A为真则函数值取1,逻辑表达式A 为假则函数值取0㊂令当前迭代轮次为m ,蚁群ANT 中所有蚂蚁走完其路径后,ACCM 监控模型中整个B 集合中的b 元素的总 信息素 改变量的计算公式为Ψ(b i )=ðantɪANTΨant (b i )㊂(12)㊀㊀ACCM 蚁群优化算法的主要操作集中在对B集合和蚁群的遍历及蚁群寻路的迭代㊂令蚁群寻路的迭代次数为X ,B 集合的基数为U ,蚁群的基数为W ,每个蚂蚁寻路的过程是递归的,但其路径中b 元素最多不超过U ,故其总体操作的时间复杂度为O (U U )㊂那么整个ACCM 蚁群优化算法的时间复杂度为O (XWU U),该算法的时间复杂度主要取决于ACCM 监控模型中B 集合的基数U 大小,若U 偏大时,还可以通过冗余法降低蚂蚁寻路算法单次调用的时间复杂度,从而使整体优化算法的时间复杂度降低到O (XWU log U )㊂3 实例分析本文以某一站式旅游服务平台为例进行实例分析㊂该旅游服务平台能提供满足旅游者所有旅游相关的产品的流程服务,包括吃㊁住㊁行㊁游㊁购㊁娱等方面㊂在该平台的服务过程中,不同组织角色的流程服务相互协同,给旅游者提供了一站式旅游服务㊂表1给出在业务流程协同模型ACCM 中的流程服务集V ㊂该ACCM 模型下产生的流程服务协同快照数约为20000个(随机选取其中的20%作为测试集),流程协同快照实例下所示:ID:ᶄ000001ᶄ;A l :ᶄa 1ᶄ;S b :协同流程开始前Artifact 实例a 1的状态集;S a :协同流程完成后Artifact 实例a 1的状态集;G :ᶄ接受ᶄ;P :ᶄv 1ᶄ;H :ᶄa 11ᶄ;M :ᶄ2020-05-03ᶄ;E :ᶄ18183562559965004ᶄ;L :380;Z :20;I :ᶄ成功ᶄ;Q :0.92;K :ᶄ外卖ᶄ㊂表1㊀流程服务表Tab.1㊀Table of process services流程服务编号流程服务说明v 1餐饮流程服务v 2住宿流程服务v 3景点订票流程服务v 4中介信息流程服务v 5出行订票流程服务v 51公共交通流程服务v 52包车流程服务v 6保险流程服务v 7物流流程服务㊀㊀已知ACCM 协同模型及其协同快照集合,利用算法2挖掘ACCM 监控模型,算法运行过程中,根据式(1)㊁(2)分别计算出C costavg ㊁D satisfaction 的值,C total ㊁C success 的值由Z 属性挖掘获得,最终挖掘出的部分B 集结果如表2所示㊂表2㊀B 集表Tab.2㊀Table of B setsb 元素C total C success C costavg D satisfaction (a 1,v 1,a 11)43241818.430.75(a 1,v 1,a 12)66563630.120.82(a 1,v 1,a 13)3063301025.210.97(a 1,v 1,a 14)1975195222.340.81(a 1,v 2,a 21)16431611199.430.95(a 1,v 2,a 22)628447321.340.73(a 1,v 2,a 23)731716245.120.75︙︙︙︙︙㊀㊀已知ACCM 监控模型的B 集,根据算法3得到最优路径如图1所示㊂图中,a 1为算法中的A root ,即一站式旅游服务平台Artifact 实例,v 1至v 7表示完成a 1所需的流程服务,各流程服务由其下连接的各Artifact 实例提供,Artifact 实例a 41需要流程服务v 1和v 2,v 1和v 2由各自连接的Artifact 实例提供㊂Artifact 实例a 42㊁a 52所需流程服务过程与a 41类似㊂最终,最优流程服务路径为图中加粗显示的路径㊂最优路径中各b 元素相关指标及F evalution (A root )的值如表3所示㊂第2期刘海滨等㊀一种以Artifact为中心多业务流程协同监控的方法187㊀图1㊀ACCM监控模型优化路径图Fig.1㊀The optimal path chart of ACCM表3㊀最优路径评价指标表Tab.3㊀Table of the optimal path evolutionC total C success C confidence/%C costavgD satisfaction F evalution G(A root)Null Null75.77680.560.800.089 (a1,v1,a13)3063301098.2725.210.97Null (a1,v2,a21)1643161198.05199.430.95Null (a1,v3,a33)4713471310076.230.93Null G(a1,v4,a41)Null Null83.54307.900.80Null ︙︙︙︙︙︙︙㊀㊀命中率(Hit Rate)㊁查准率(Precision)㊁查全率(Recall)和F1(Recall,Precision)是衡量优化㊁推荐方法质量的4个重要指标㊂命中率是指流程服务伙伴协同路径实际命中次数与其被推荐次数的比例㊂查全率是指推荐流程服务伙伴路径命中个数与测试集中相关实际流程服务伙伴路径数的比值㊂查准率是指推荐流程服务伙伴协同路径命中个数与流程服务伙伴协同路径推荐数的比值㊂F1则是综合查全率与查准率的一个指标值,其具体值为查全率与查准率之积除以查全率与查准率之和的商的2倍㊂在训练数据中挖掘出流程服务协同最优路径后,使用测试数据分析该最优路径的命中率㊁查准率㊁查全率和F1指标,结果如图2所示㊂从图中可以看出,随着每次推荐时最大推荐数的增加,监控效果大幅上升,较高的查准率说明通过本文监控模型得到的推荐结果的准确性,相对较低的查全率其实反映着实际存在的盲目购买行为㊂本文提出的ACCM监控模型通过挖掘到的B集及其评价指标,较好地呈现出各个流程服务Artifact实例评价指标的差异性,为业务流程协同过程中选择最优流程服务伙伴提供了可靠的数据,并在此数据基础上实现了ACCM流程协同监控的优化㊂实例分析结果表明,以数据为中心的多流程协同监控优化方法是可行的㊂图2㊀监控效果评价指标图Fig.2㊀The evaluation index of monitoring effect4 结论本文主要研究了以Artifact为中心的多流程协同监控方法㊂该方法给出了以Artifact为中心的多流程协同模型ACCM,在ACCM模型上通过蚁群优化算法,提取了流程服务的支持度㊁可信度㊁满意度和服务成本等指标,获得了最优服务伙伴协同路径,解决了传统多流程协同监控技术忽略业务流程数据交互的重要性问题,大大提高了流程协同监控的质量和可利用率㊂实际上,流程协同监控指标不仅局限于流程服务本身,也可以扩展到组织角色等其他元素㊂本文下一步的研究重点即在协同快照日志中挖掘更高质量的监控指标㊂参考文献1CORRADINI F FOMARI F POLINI A et al.A formal approach to modeling and verification of business process collaborations J . Science of Computer Programming 2018 166 15 35-70.2BARESI L CICCIO C D MENDLING J et al.mArtifact an Artifact-driven process monitoring platform C//2017BPM Demo Track and BPM Dissertation Award Co-located with15th International Conference on Business Process Management Barcelona Spain 2017 1920-1935.3MERONI G CICCIO C D MENDLING J.An Artifact-driven approach to monitor business processes through real-world objects C//International Conference on Service-Oriented Computing Dubai UAE 2017 297-313.4YE L ZHU B Q HU C L et al.On-the-fly collaboration of legacy。

COBIT5.0实施指南中文版

COBIT5.0实施指南中文版

COBIT5 Implementation 实施
目录 Байду номын сангаас
一、关于我们 .................................................................................................................................. 4 二、引言 ......................................................................................................................................... 5 目标和指南适用范围 ................................................................................................................ 6 三、GEIT 定位 ................................................................................................................................. 8 了解背景 .................................................................................................................................. 8 什么是 GEIT? ....................................................

深入理解TCP的三次握手及其源代码

深入理解TCP的三次握手及其源代码

深⼊理解TCP的三次握⼿及其源代码TCP简介 TCP服务: 传输控制协议(TCP,Transmission Control Protocol)是⼀种⾯向连接的、可靠的、基于字节流的传输层通信协议,由IETF的RFC 793 。

TCP旨在适应⽀持多⽹络应⽤的分层协议层次结构。

连接到不同但互连的计算机通信⽹络的主计算机中的成对进程之间依靠TCP提供可靠的通信服务。

TCP假设它可以从较低级别的协议获得简单的,可能不可靠的数据报服务。

原则上,TCP应该能够在从硬线连接到分组交换或电路交换⽹络的各种通信系统之上操作。

TCP将⽤户数据打包构成报⽂段,它发送数据时启动⼀个定时器,另⼀端收到数据进⾏确认,对失序的数据重新排序,丢弃重复的数据。

TCP提供⼀种⾯向连接的可靠的字节流服务,⾯向连接意味着两个使⽤TCP的应⽤(B/S)在彼此交换数据之前,必须先建⽴⼀个TCP连接,类似于打电话过程,先拨号振铃,等待对⽅说喂,然后应答。

在⼀个TCP连接中,只有两⽅彼此通信。

TCP可靠性来⾃于:(1)应⽤数据被分成TCP最合适的发送数据块(2)当TCP发送⼀个段之后,启动⼀个定时器,等待⽬的点确认收到报⽂,如果不能及时收到⼀个确认,将重发这个报⽂。

(3)当TCP收到连接端发来的数据,就会推迟⼏分之⼀秒发送⼀个确认。

(4)TCP将保持它⾸部和数据的检验和,这是⼀个端对端的检验和,⽬的在于检测数据在传输过程中是否发⽣变化。

(有错误,就不确认,发送端就会重发)(5)TCP是以IP报⽂来传送,IP数据是⽆序的,TCP收到所有数据后进⾏排序,再交给应⽤层(6)IP数据报会重复,所以TCP会去重(7)TCP能提供流量控制,TCP连接的每⼀个地⽅都有固定的缓冲空间。

TCP的接收端只允许另⼀端发送缓存区能接纳的数据。

(8)TCP对字节流不做任何解释,对字节流的解释由TCP连接的双⽅应⽤层解释。

TCP消息 TCP数据是封装在⼀个IP数据中。

私募股权投资基金考点:外包和托管

私募股权投资基金考点:外包和托管

私募股权投资基金考点:外包和托管2017私募股权投资基金考点:外包和托管导语:外包表明的是对当前业务流程的一种“安排”或另外的一种“诠释”,其目的是希望通过引入外部来进行一种更加有效率的资源配置!托管是是融于通用语言运行时(CLR)中的一种新的编程理念,因此完全可以把“托管”视为“.NET”。

由托管概念所引发的C++应用程序包括托管代码、托管数据和托管类三个组成部分。

(1) 托管代码:.Net环境提供了许多核心的运行(RUNTIME)服务,比如异常处理和安全策略。

为了能使用这些服务,必须要给运行环境提供一些信息代码(元数据),这种代码就是托管代码。

所有的C#、默认时都是托管的,但Visual C++默认时不是托管的,必须在编译器中使用命令行选项(/CLR)才能产生托管代码。

(2) 托管数据:与托管代码密切相关的是托管数据。

托管数据是由公共语言运行的垃圾回收器进行分配和释放的数据。

默认情况下,C#、Visual Basic 和数据是托管数据。

不过,通过使用特殊的关键字,C# 数据可以被标记为非托管数据。

Visual C++数据在默认情况下是非托管数据,即使在使用 /CLR 开关时也不是托管的。

(3) 托管类:尽管Visual C++数据在默认情况下是非托管数据,但是在使用C++的托管扩展时,可以使用“__gc”关键字将类标记为托管类。

就像该名称所显示的那样,它表示类实例的内存由垃圾回收器管理。

另外,一个托管类也完全可以成为 .NET 框架的成员,由此可以带来的好处是,它可以与其他语言编写的类正确地进行相互操作,如托管的C++类可以从Visual Basic类继承等。

但同时也有一些限制,如托管类只能从一个基类继承等。

需要说明的是,在托管C++应用程序中既可使用托管类也可以使用非托管类。

这里的非托管类不是指标准C++类,而是使用托管C++语言中的__nogc关键字的类。

在解释托管和非托管,有必要了解一下什么是interopinterop:Visual Studio .NET 通过引入面向公共语言运行时的受管代码(或托管代码)的概念,使开发人员在创建和运行应用程序的方式上有了重大改变。

DS2208数字扫描器产品参考指南说明书

DS2208数字扫描器产品参考指南说明书
- Updated 123Scan Requirements section. - Updated Advanced Data Formatting (ADF) section. - Updated Environmental Sealing in Table 4-2. - Added the USB Cert information in Table 4-2.
-05 Rev. A
6/2018
Rev. B Software Updates Added: - New Feedback email address. - Grid Matrix parameters - Febraban parameter - USB HID POS (formerly known as Microsoft UWP USB) - Product ID (PID) Type - Product ID (PID) Value - ECLevel
-06 Rev. A
10/2018 - Added Grid Matrix sample bar code. - Moved 123Scan chapter.
-07 Rev. A
11/2019
Added: - SITA and ARINC parameters. - IBM-485 Specification Version.
No part of this publication may be reproduced or used in any form, or by any electrical or mechanical means, without permission in writing from Zebra. This includes electronic or mechanical means, such as photocopying, recording, or information storage and retrieval systems. The material in this manual is subject to change without notice.

基于MQL4的交易策略自动化设计与优化

基于MQL4的交易策略自动化设计与优化

基于MQL4的交易策略自动化设计与优化一、引言在金融市场中,交易策略的设计和优化是投资者获取稳定收益的关键。

随着计算机技术的不断发展,自动化交易系统逐渐成为投资者的首选工具。

MQL4作为MetaTrader 4平台上的编程语言,为交易策略的自动化提供了便利。

本文将探讨基于MQL4的交易策略自动化设计与优化。

二、MQL4简介MQL4是MetaQuotes Language 4的缩写,是专门为MetaTrader 4平台设计的一种编程语言。

通过MQL4,交易者可以编写自己的交易指令、脚本和指标,实现自动化交易。

MQL4语法类似于C语言,易学易用,适合金融领域从业者进行交易策略的编写。

三、交易策略设计1. 策略逻辑在设计交易策略时,首先需要明确策略的逻辑。

包括但不限于买入信号、卖出信号的条件、止损止盈设置等。

通过MQL4编程,将这些逻辑转化为代码实现。

2. 编写代码利用MQL4语言编写交易策略代码。

可以通过MetaEditor工具进行编程,实现对市场行情数据的获取、分析和交易指令下达等功能。

合理利用MQL4提供的函数库,可以简化代码编写过程。

四、交易策略优化1. 参数优化在设计完交易策略后,需要对其进行参数优化。

通过历史数据回测,找到最优的参数组合,提高策略的盈利能力和稳定性。

2. 风险控制在优化交易策略时,要注意风险控制。

设置合理的止损线和止盈线,控制每笔交易的风险水平,避免大额亏损。

五、实例分析以某一具体交易策略为例,通过MQL4编程实现其自动化交易,并进行参数优化和风险控制。

展示如何利用MQL4语言设计高效稳健的交易策略。

六、总结基于MQL4的交易策略自动化设计与优化是金融领域中一个重要且热门的话题。

通过本文对MQL4语言及其在交易策略中的应用进行介绍,希望读者能够更深入地了解自动化交易系统,并在实践中不断优化和改进交易策略,获取更好的投资回报。

用两阶段提交协议保证WEB服务的事务

用两阶段提交协议保证WEB服务的事务

个事务上下文 cn e t 回给客 户端 。 o tx 返 上下文和其它交互作用
致 性 秆到 一 的绌 聚. j 致 胁 中 恻状 褂到 , f 敛f鲇 .略 微 巾n状忐 的改变 们足 客户 J l ; J 埘见』幂 妁 l 艘般 务控制 I地 _乖约 嫩性被舭 务拧 沌 壁『 嫩 性 I 堑¨ f 4
躏尚性
持久性 窒粜的持久稳定性 占
蚰 的持久秘l性,仍付 ll能 I 稳定 】 表 1A I 的定义 CD
二.2 C协议 P
2 I原 理 .
2C ( P 两阶段提交)是一个原予事务


WE B服务 中的事务
定殳了多个参与者如何就 一 个原_ 】 ! .
前育
w b服务是一 种新的技术 .它从根本 e 上解决 了企业之间硬企 业内部异构系统之 间的互操作和 通信的问题。它的一个 目 的是保证下一代的软件能枉数槲服务之间 动态组 合。但是 在松耦 合的环 境下 .对 WE I 务的事务集成还 没有 ~种可靠的解 B] I 决方案。庆幸的是,现在出现了几种 不同 的事 务标 准协议,如 i m 和微软 的 W s b tr i 和蛳调 框架 :W s nsact n a 0 — c o d n t n 还有 OA I o r ia i , o S S的商业事务 议: T 但是他们 猩相互竞争。 P I 商 B P. B E 业可执行语言,目 wE I B服务中的工作流, 】 它的 目的是组合一系列分布l不 地 方的 在 WE B服务作为一个 大的服务 .放到 B E PL 引擎中来执行。 但是要在流程-加入事务, I I 到现在还没有一种 可靠的方案 原 子提交协议是支持分布式事务的原
性质 原子性

TOGAF 9.2 题库练习(Level 1及Level 2)-中培课程【】.

TOGAF 9.2 题库练习(Level 1及Level 2)-中培课程【】.
2021/9/15
Level 2(Certified)
问题23
阅读案例回答问题: 你是某公司的首席架构师,该公司主要生产用于工业设备的滚珠轴承。他们制造业务,主要是在美国,德国和英国的几个城市。该公司历来允许各工厂推动自己的生产计划系统。每个工厂都有自己的定制物料需求计划,主生产计划,物料清单和车间控制系统。 通过"Just In Time"制造技术,能减少因过多库存和在制品造成的浪费。竞争日益激烈的商业环境迫使企业改善其业务能力,以更好适应客户的需求。为进一步提升这种能力,该公司已经决定实施企业资源计划(ERP)解决方案,使它与其制造能力更好地匹配,满足产品需求。此外,在未来的六个月内,他们的制造过程必须加以调整以符合即将出台的欧洲新法规。作为实施过程的重要组成部分,企业架构(EA)部门已经开始实施基于TOGAF9的架构过程。CIO是活动的发起人。首席架构师已指示,该计划应包括使用架构内容框架和TOGAF的元模型内容的正式建模。这有助于公司使用架构工具支持其架构过程。首席架构师表示,为了模拟复杂的制造过程,有必要对事件驱动进行流程建模。此外,为了整合多个数据中心的应用程序,有必要针对IT资产的位置进行建模。特别是,最终的目标是单一的ERP应用程序运行在一个数据中心。目前该项目处于初步阶段,架构师正在剪裁架构开发方法(ADM)和架构内容框架,以适应企业环境。
D. 你应该建议架构团队将数据和服务扩展纳入到他们定制的内容元模型中,使他们能够针对IT资产的位置建模,并确保制造流程的合规性。这有助于识别那些在单一数据中心的整合过程中过剩的能力。
2021/9/15
Байду номын сангаасevel 2(Certified)
问题24阅读案例回答问题:你是汽车行业的一家主要供应商的首席企业架构师。该公司总部设在美国俄亥俄州克里夫兰市,在美国,巴西,德国,日本和韩国都有制造工厂。这些工厂一直运营着自己的生产计划和调度系统,以及定制开发的用以驱动自动化生产设备的应用程序。该公司正在实施精益制造原则,以减少浪费,在所有生产业务方面提高工作效率。最近举行的一次内部质量改进演习表明,通过替换位于克利夫兰数据中心的生产计划和调度系统的系统,生产浪费能显著减少。该中央系统能为每一个工厂更换现有系统的功能提供支持。它也能消除每个厂房设施都必须有独立完整的数据中心的需求。 节省出来的IT人员用来可以支持其它的应用程序。在某些情况下,一个第三方承包商能够提供这些员工。几年来,企业架构部门已经拥有基于TOGAF 9的成熟而且完善的治理架构和开发流程。在最近的一次会议上,架构委员会批准了一项来自负责全球制造业务的总工程师的架构工作请求。 请求涵盖了最初的架构调查和一个用来规划转型的全面体系结构的发展。目前,通用的ERP部署架构项目组已经形成,项目组已被要求制定一个架构愿景,以期达到预期的成果和收益。有些工厂经理对远程集中系统的实施计划和生产调度的安全性和可靠性都比较关注。总工程师想知道这些问题如何能得到解决。请参考情景:在通用ERP部署架构项目组的启动会议上,针对如何开展工作,项目组的成员提出了一些可供选择的方案。你需要选择最合适的建议,以确保项目组能针对问题评估不同的方案,并阐明架构的需求。基于TOGAF9 ,下列哪项是最佳答案?A.项目组应为每个制造工厂制定基线和目标架构,以确保与被选择的观点相对应的视图能解决干系人关注的核心问题。针对几个架构的综合对比分析,被用来验证方案,并确定实现目标要求所需的能力增量。B.项目组应该谨慎处理,并仔细研究厂商的文献,并和目前批准的供应商举行一系列的简报会。基于研究结果,项目组应该定义一个初步的架构愿景。然后,项目组根据它构建模型,和重要干系人达成共识。C. 项目组应针对干系人进行分析,以了解他们真正关注的问题。然后,利用业务场景技术,对每家制造工厂进行一系列的访谈。这将帮助他们识别和记录高层干系人对架构的关键需求。D. 项目组应推行一个试点项目,使候选人名单的厂商能演示能解决干系人所关注问题的各种解决方案。根据该试点项目的结果,可以开发出一套完整的退出机制,推动该架构的自我进化。

MODIFIED METHODS AND APPARATUS FOR TCP

MODIFIED METHODS AND APPARATUS FOR TCP

专利名称:MODIFIED METHODS AND APPARATUS FOR TCP发明人:SOLES, Roger, L.,TEODOSIU, Dan,PISTRITTO, Joseph, C.,BOYEN, Xavier申请号:US2001045804申请日:20011030公开号:WO02/091709P1公开日:20021114专利内容由知识产权出版社提供摘要:A communication protocol service is support of TCP based communication is modified to improve the operational efficiency of a server for a particular type of client-server application. The service is modified to support connection pools and connection groups within the connection pools, to enable connections with clients to be grouped and share a common file descriptor. The service is provided with an API to allow an application server to create the connection pools, connection groups and connections. The API also include receive and send services adapted to support the connection pool and connection group architecture, and to allow explicit acknowledgement of received transmissions under control of the application server. Further, in various embodiments, the buffering architecture of the service, as well as acknowledgement of request packets by the service are also modified.申请人:MICROSOFT CORPORATION地址:US国籍:US代理机构:CONKLIN, John, B.更多信息请下载全文后查看。

协议原理英语作文

协议原理英语作文

协议原理英语作文The principle of a protocol is to establish a set of rules and guidelines for communication and interaction between different systems or parties. It serves as a common language that allows devices or individuals to understand and interpret the data or information being exchanged.In the world of networking, protocols are essential for ensuring that data is transmitted accurately and efficiently. They define the format, timing, sequencing, and error checking of data packets, enabling devices to communicate with each other regardless of their underlying hardware or software differences.Protocols can be categorized into different layers, such as the physical layer, data link layer, network layer, transport layer, and application layer. Each layer has its own set of protocols that perform specific functions, from transmitting raw data over a physical medium to enabling high-level application functionalities.One of the key aspects of protocols is their standardization, which allows for interoperability and compatibility between different systems and devices. Standardized protocols ensure that a device manufactured by one company can communicate with a device from another company, as long as they both adhere to the same protocol standards.Security is also an important consideration in protocol design. Many protocols incorporate encryption, authentication, and other security measures to protect the confidentiality, integrity, and availability of the data being transmitted.The evolution of technology and the increasing complexity of communication systems have led to the development of new protocols and the enhancement ofexisting ones. As the Internet of Things (IoT) and other emerging technologies continue to grow, the need for robust and efficient protocols will only become more critical.In conclusion, protocols are the backbone of modern communication and networking. They enable devices and systems to communicate with each other, ensure data is transmitted reliably and securely, and facilitate the interoperability of diverse technologies. Without protocols, the seamless exchange of information that we often take for granted would not be possible.。

ntrf 交易类型 -回复

ntrf 交易类型 -回复

ntrf 交易类型-回复交流追踪(NTRF)交易类型:详细解析与实践引言:随着科技的快速发展,我们进入了一个全球化世界,跨境交易成为了现代经济发展的重要组成部分。

然而,由于各国法律制度和商业实践的差异,跨境交易也带来了许多复杂性和风险。

为了解决这些问题,国际贸易专家们提出了一种名为交流追踪(NTRF)的交易类型,旨在提供一种更高效、安全和透明的跨境交易解决方案。

本文将一步一步详细讨论NTRF交易类型,并探讨其在实践中的应用。

第一部分:NTRF交易类型的概述交流追踪(NTRF)交易类型是一种基于区块链技术的跨境交易解决方案,它旨在提供一种透明、高效和安全的交易环境。

NTRF采用区块链技术,将交易信息和相关数据存储在一个分布式账本中,确保所有交易参与者都能够查看和验证交易的真实性。

此外,NTRF还利用智能合约来自动执行和管理交易中的各项条件和规则。

通过这些创新性的技术和方法,NTRF 能够解决许多跨境交易中存在的问题,如信息不对称、欺诈风险和交易执行的低效率。

第二部分:NTRF交易类型的实践步骤1. 参与者注册和身份验证:在NTRF交易中,每个参与者都需要注册并进行身份验证。

注册过程通常包括提供个人或机构信息、身份文件和支付相关费用等。

这一步骤旨在确保交易参与者的真实性和合法性。

2. 创建交易:一旦参与者成功注册并通过身份验证,他们可以开始创建并提交交易。

交易的创建通常需要提供交易类型、交易金额、参与者信息和交易条款等。

创建交易时,NTRF系统会根据智能合约的规则验证交易的合法性和有效性。

3. 智能合约执行:创建并提交交易后,NTRF系统会自动执行智能合约中定义的规则和条件。

这些智能合约可以自动处理和处理交易的各个方面,如支付、交割和执行特定的规定。

通过智能合约的自动执行,NTRF能够大大提高交易的效率和可靠性。

4. 交易验证和确认:一旦交易被执行,NTRF系统会对交易进行验证并通知所有参与者。

交易验证包括对交易信息、参与者身份和智能合约执行结果的确认。

转发包装接口 程序

转发包装接口 程序

转发包装接口程序(原创实用版)目录1.转发包装接口的定义和作用2.程序设计的基本原则3.编写程序的步骤和方法4.转发包装接口程序的实际应用5.程序优化和未来发展方向正文转发包装接口(Forward Packaging Interface,FPI)是一种在计算机网络中实现数据传输的技术,主要用于在不同网络环境下实现数据包的转发和路由。

通过使用转发包装接口,可以实现对数据包的有效管理,确保数据在网络中的高效传输。

在现代计算机网络中,转发包装接口已经成为了一种必不可少的技术手段。

程序设计是一种用计算机语言实现特定功能的方法。

在编写程序时,需要遵循一定的基本原则,例如模块化、结构化和清晰易读等。

模块化是指将程序划分为多个具有独立功能的模块,以便于程序的组织和管理;结构化是指程序应该按照一定的逻辑结构进行编写,以便于程序的阅读和理解;清晰易读是指程序的代码应该简洁明了,方便程序员进行调试和维护。

编写程序的步骤和方法可以概括为以下几个步骤:首先,明确程序的目标和需求,确定程序的基本功能;其次,设计程序的结构和模块,编写程序代码;然后,对程序进行调试和测试,确保程序的正确性和稳定性;最后,对程序进行优化和升级,提高程序的性能和效率。

转发包装接口程序是一种实际应用广泛的程序类型,它可以用于实现各种网络功能,例如数据包的转发、路由和过滤等。

通过使用转发包装接口程序,可以有效地提高网络的传输效率和安全性,确保网络的稳定运行。

随着计算机网络技术的不断发展,程序优化和未来发展方向也日益成为人们关注的焦点。

程序优化是指通过改进程序的设计和实现方法,提高程序的性能和效率。

未来,程序优化将更加注重智能化和自动化,以适应计算机网络技术的快速发展。

此外,程序的未来发展方向还将包括更加注重安全性和隐私保护,以及更加注重用户体验和个性化需求等方面。

总之,转发包装接口和程序设计是计算机网络领域中的重要技术手段。

OBS网络上多TCP流的性能分析的开题报告

OBS网络上多TCP流的性能分析的开题报告

OBS网络上多TCP流的性能分析的开题报告一、选题背景及研究意义在现实网络环境中,多个TCP流同时传输数据是非常常见的情况。

而对于流量繁忙的网络来说,多个TCP流传输时往往会出现严重的性能问题,比如高延迟、低吞吐量等。

这些问题的根源在于TCP的拥塞控制算法,它的设计并不适用于多TCP流场景。

在这样的背景下,通过对多TCP流传输的性能进行研究,可以帮助优化网络性能,提高网络效率,满足人民日益增长的网络服务需求。

二、选题目的与意义本课题旨在对多TCP流的性能进行分析,主要包括以下目的:1.研究多TCP流传输中的性能问题,如延迟、吞吐量等;2.探究TCP拥塞控制算法在多TCP流传输中的优化方法;3.通过实验和数据分析,验证提出的优化方法的有效性。

本课题的主要意义:1.为网络性能优化提供技术支持,提高网络效率;2.为用户提供更优质的网络服务,满足用户服务需求;3.为TCP拥塞控制算法的改进提供参考。

三、研究内容本文的研究内容主要包括以下方面:1.多TCP流传输的性能分析,包括延迟、吞吐量等方面;2.多TCP流中TCP拥塞控制算法的问题探究;3.多TCP流性能优化方法提出与实验验证;4.数据分析与结论。

四、研究方法本课题采用实验室实验和仿真实验相结合的方法,对多TCP流传输的性能进行研究。

1.实验室实验通过在实验室中搭建一定数量的网络环境,利用真实的TCP流传输数据,采集数据包、延迟等相关数据进行分析和研究,从而找出影响网络性能的因素和问题。

2.仿真实验采用网络仿真软件,模拟多TCP流的传输场景,通过仿真实验测试不同的TCP拥塞控制算法在多TCP流传输中的性能表现,并找到性能瓶颈所在,从而提出优化方法。

五、研究预期通过本次研究,预计能够得到以下成果:1.发现各种网络拥塞控制算法在多TCP流传输中的应用场景;2.提出一些改进多TCP流性能的有效方法,并通过实验验证;3.对TCP拥塞控制算法的优化提出建设性意见。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Tradeoffs of Implementing TCP Fairness Schemes Xudong Wu Ioanis NikolaidisComputing Science DepartmentUniversity of AlbertaEdmonton,Alberta T6G2E8,Canada{xudong,yannis}@cs.ualberta.caAbstractIn this paper we consider two recently proposed schemes for the fair allocation of bandwidth in high speed networks carrying TCP traffic:XCP and Fair-Share.We explain the different design philosophies represented by each one and demonstrate through a set of simulations that FairShare,by making better use of the round-trip-time information,avoids the performance shortcomings that appear in XCP under environments with diverse round–trip times.Further-more,it is pointed out that XCP cannot perform well under environments where short lived and long lived flows share the link bandwidth and the isolation of flows on the basis of their lifetimes,as implemented in FairShare is preferable.Keywords:TCP,XCP,Max–Min Fairness,Router Policies1IntroductionProviding bandwidth fairness guarantees across TCP connections in the Internet is a challenging problem. Part of the problem is due to the lack of mechanisms installed in the core routers of the network to enforce certain per–flow policies.Another part of the prob-lem is the fact that shortflows,like the ones related to HTTP transfers,are too short lived to be meaning-fully compared against otherflows on the basis of the bandwidth they receive.That is,the fact that they last for a short amount of time means that they are hardly capable of substantially increasing their con-gestion window,and are thus unable to exploit the available link bandwidth.It thus makes sense to study the bandwidth fairness across long livedflows,leaving the short livedflows for separate consideration.In a previous study[24]we addressed the topic of short versus long livedflows,how they can be separated and how they can be handled independently.The schemes discussed in detail in this paper are FairShare[23,25] and XCP[19].Both schemes rely on knowledge of the round–trip times and the congestion window of each flow.Nevertheless,they obtain this information via different mechanisms and produce distinctly different results.In the model of fairness we consider,if Nflows are“greedy”,i.e.,they can use as much bandwidth as is available,and if the link bandwidth is C,then each should be allocatedλi=C/N.However,flows may be bottlenecked elsewhere along their path,and cannot,as a result,behave in a greedy fashion.In such case,their demands can be considered bounded. Evidently,in the previous example,if oneflow was al-ready bounded to a rate less than C/N,it would make no sense to assign C/N to the particularflow.How the bandwidth is assigned depending on the demands (represented by a demand vector)is dependent on the particular fairness criterion.Note also that aflow may have reduced demands not only because of a bottle-neck at a remote link,but also because,simply,the flow does not have enough data to send at all times.A fairness algorithm provides,given a resource de-mand vector,an allocation vector,with elementsλi, that are less or equal to the requested demands.An allocation is called max–min fair if,it is feasible(with respect to the capacity constraints),andλi cannot in-crease without reducing the allocation for some other session(s),j,for whichλj≤λi.An alternative is proportional fairness.An allocation is proportionally fair if,for any alternate allocation vectorλ i the net proportional improvement brought about by an alter-nate allocation vector is negative,i.e.,iλi−λiλi≤0.An extension of proportional fairness is(p,α)–proportional fairness,whereby,any alternative allo-cation vector,λ results inip iλ i−λiλαi≤0.It can beshown,[9],that(p,α)–proportional fairness approxi-mates max–min fairness,asα→∞.When determining the fair allocation of bandwidth toflows,allflows present in the network have to be considered.Whether such an approach is technically feasible depends,apparently,on the type of fairness. For example,max–min fairness appears difficult to achieve without global information.Nevertheless,this does not eliminate the possibility of deriving(e.g.,via measurements)or inferring a part of this global infor-mation that is necessary for max–min allocation by each individual link.Charny[16]studied distributed algorithms for achieving global max–min fairness.The algorithm presented in[16]is better understood in its centralized form.It involves the identification of the most congested link(first level bottleneck),and ap-plication of the max–min fairness on theflows cross-ing this link.The demands of allflows crossing this first link are then limited(bounded)by the share they receive in this most congested link.Given the new bounds for some of theflows,the residual capacity in the remaining links is calculated and this,in turn, changes the share received by otherflows.The pro-cess is repeated until allflows have been marked by a certain rate.Note that allflows are assumed to be greedy,but it is trivial to force the realistic assump-tion of boundedflows by assuming that each traffic flow is introduced via an access link,which is of course bounded,and possibly congested.The important element of[16]is the proof that the process terminates after a limited number of itera-tions,resulting in a global max–min fairness alloca-tion.Nevertheless,in order to achieve this objective we need two building blocks(a)a means for allocating bandwidth at each link in a max–min fashion depend-ing on the demands of theflows,and,(b)a means to actually calculate the demands of theflows.Both of the building blocks can be found in the FairShare scheme,and we have thus demonstrated its ability to reach global max–min fairness[25].The open ques-tion is whether XCP is also capable of global max–min fairness.In this study we indicate that XCP cannot provide max–min fairness even on a single link(hence, cannot provide building block(a)),and therefore its potential for global fairness is very much at doubt.Another important element in our study is the fact that we consider essential the involvement of the routers in attaining the global max–min fair operat-ing point.A totally distributed implementation of a fairness scheme relying solely on the endpoint oper-ation is an open research issue.In particular,using end-to-end mechanisms[9]it was shown that it is pos-sible to achieve(p,1)–proportional fairness,but max–min fairness has so far been unimplementable on an end–to–end basis.Moreover,even the implementable (p,1)–proportional fairness is unattractive because it requires a different end-to-end congestion control pro-tocol,which is neither TCP nor any other legacy pro-tocol.For this reason,and also because proportional fairness tends to victimizeflows that span over a longer path,we consider max–min fairness as a preferable alternative and we are looking for support of legacy TCPflows instead of proposing a new congestion con-trol scheme.2The Unfairness ProblemTCPflows combined with DropTail router policy are difficult to predict and control,and the resulting divi-sion of the bandwidth of congested links is significantly unfair.By attributing the unfairness to the router drop policy,proposals have indicated how it should be changed to alleviate the problem.One such proposal is the Random Early Detection(RED)[8].Its essence is that although not all of the TCPflows will receive con-gestion signals in times of congestion,the TCPflows with more packets stored in the buffer are more likely to receive such congestion signal1.RED and its vari-ant are frequently called Active Queue Management (AQM)policies.Unfortunately,even though RED improves fairness and also eliminates the“Phase Effect”,it is far from being sufficient to ensure fairness.This fact is already known since[8]but it helps to know what magnitude of unfairness we are up against.Figure1demonstrates the ratio of the throughput received by twoflows,as a function of the ratio of their corresponding prop-agation delay RTTs.The twoflows share the same bottleneck link with a buffer space of24packets and a link speed of100packets per second(fixed size pack-ets)but the ratio of the RTTs of the twoflows spans an order of magnitude.Specifically,the RTT offlow 1is set to100msec(approximating the RTT of aflow within the North American continent),while that of flow0ranges from100msec to1sec(representing the range from intra-continental to inter-continental traf-fic).As it can be seen,DropTail results in a ratio up 1RED defines two thresholds,minth and max th.When the average queue occupancy,Q is below the min th,packets are not marked.If,Q is between min th and max th,each arriving packet will be marked with probability max p Q−min thmax th−min th.If Q is larger than max th,the packet is marked.Note that Q is the moving average of the queue length:Q=Q(1−w q)+q·w q where q is the queue occupancy measurement and w q is a weight factor of the exponential moving averaging.5101520253035T h r o u g h p u t R a t i o (F l o w 1 / F l o w 0)RTT Ratio (Flow 1 / Flow 0)(a)DropTail5101520253035T h r o u g h p u t R a t i o (F l o w 1 / F l o w 0)RTT Ratio (Flow 1 / Flow 0)(b)REDFigure 1:Comparison of the ratio of throughputs achieved under,(a)DropTail and,(b),RED ,of two TCP flows,with different RTT values,but otherwise indistinguishable.to 34:1between the throughput achieved by the two flows (the lesser throughput received by flow 0)while RED produces 2a ratio up to 14:1.This is precisely what we wish to avoid.The ideal ratio in this exam-ple ought to be 1:1regardless of the RTT of the two flows.3The FairShare SchemeThe FairShare scheme [23]is a class-based bandwidth allocation and active queue management scheme.Given a link l with capacity C l ,the capacity is split be-tween UDP traffic,long TCP traffic,short TCP traffic,and routing–related traffic,with capacity,correspond-ingly:C UDP l ,C L-TCP l ,C S-TCP l ,and,C Route l ,where C l =C UDP l +C L-TCP l +C S-TCP l +C Route l .The rest of the paper deals with how to administer the C L-TCP l among long lived flows.FairShare is the scheme that will perform this function.It is as-sumed that the class capacities are quasi–static,that is,they can change but with operator intervention and at time scales much larger than the average connec-tion lifetime.We believe that this is a reasonable as-sumption,in light of the fact that operators may wish to,intentionally,restrict the total bandwidth available to long lived flows in order to provide short response times to short transfers,as is the case for most Web document transfers.The first step of the control is to determine the fair share of capacity at the bottleneck link for a particular TCP flow,i .Let us denote this share as share i .The share is the element of the allocation vector provided by the fairness algorithm 3,i.e.,share i =λi .Shares can be calculated on the basis of a demand vector.The demand vector is obtained by a measurement process that will be described later in this section.We will use demand i to describe the measured demand of flow i .Given an intended share value share i and the RTT of flow i ,rtt i ,the desirable long–run window size that would provide the share i to flow i is simply W =rtt i ·share i .Let us define a TCP–Tahoe “epoch”as the time interval from the point that the TCP congestion win-dow is 1until the first packet loss occurs.A single epoch of congestion window evolution consists of two periods,t 1,the exponential growth period,and t 2,the linear growth period.In steady state,the final win-2REDparameters:max p =0.02,min th =5,max th =15,w q =0.002.3We tacitly assume in the rest that the fairness implemented is max–min fairness,but any fairness objective could be used in its place.dow size at the end of the epoch,which coincides with the end of the linear growth,W ,is twice as large as that of the exponential stage.Because the congestion window increases exponentially before it reaches W 2,we have W 2=2y,where y stands for the rounds that the TCP–Tahoe flow spends in exponential growth.Since the congestion window increases only by one perround,the rounds spent in linear growth is W 2or 2y.In short,the time of one epoch of TCP–Tahoe with RTT as the unit can be presented as y +2y .The to-tal count of the packets communicated in one epoch is the sum of packets transferred in the exponential in-crease phase, y 02x dx ,and those in the linear growthphase, Ty (2y +x )dx .Based on the congestion control window evolution algorithm,we can derive equation (1),where W is the average congestion window.The numerator of the left side of equation (1)is the num-ber of packets transferred in steady state during one epoch (including both exponential and linear increase phase).The denominator is the the number of rounds within the complete TCP–Tahoe epoch.W =y2x dx +Ty(2y +x )dxy +2y(1)If a packet loss is scheduled at the point where the window size is 2y +1,it will effectively limit the long-term average flow to approximately W .By setting,W =rtt i ·share i ,a loss scheduled to occur when the flow’s window is 2y +1effectively controls the long–run throughput of the flow to be consistent with the calculated fair share.Based on this observation,we claim that we can regulate the long–term flow rate by inflicting losses when the window of the flow reaches a specific value.Hence,we can use on–line observations of the window size to drive the loss instants with the intention of preserving a desirable long-term mean.Equation (1)can also be expressed as equation (2),but given the lack for an explicit solution for y to equation (2),a table lookup can be implemented to determine the target window size as soon as the aver-age congestion window size objective is calculated.1ln 22y +32(2y )2=W (2y +y )(2)For TCP–Reno,the calculation is straightforward be-cause of the simplicity of the algorithm.We assume the ideal equilibrium state will be reached and the con-gestion window of TCP–Reno will construct a perfect “sawtooth”with a peak at W 2.Therefore,the time of one epoch in terms of RTT is W 2,and the packets communicated in one epoch is (W 2+W )W22.The aver-age congestion window size is calculated by W =3W 4.init long flow (p ):1.rtt i ←rttlookup (p.src,p.dst );2.count i ←p.size ;3.demand i ←C L-TCP l ;4.share ←maxmin (demand ,C L-TCP l );5.flag i ←FALSE ;6.dropevent i ←0;7.tick ();Figure 2:The init long flow ()function.In the following,we need the inverse of this function,that is,a function transforming the average window size to the peak window size necessary at the time of packet loss.We will assume that this function is called avg2peak ().3.1The AlgorithmIn this section,the pseudo-code of the FairShare al-gorithm is presented in the form of three basic func-tions.We assume the existence of a simple functionmaxmin ()which,given the link bandwidth and the demands of the flows,produces a vector indicating the per-flow bandwidth allocation as per the max–min fairness criterion.A packet is indicated by the variable p .In addi-tion,p.size ,p.src ,and p.dst stand,respectively,for the packet size,source and destination.The per–flow variables maintained for each long TCP flows are ly:flag i :binary flag indicating whether a loss is due on the flow.dropevent i :timestamp of last loss inflicted on the flow.count i :bytes arriving from the flow within the last RTT.rtt i :the RTT time of the flow.demand i :the flow demand (average of measured rate).share i :the flow share allocated by the fairness scheme.All flows,when first starting are assumed to be short lived.If a flow is active more than a few seconds,or has sent more than 50packets,it is revised to being assumed long lived and is upgraded to share the band-width set aside for long lived flows alone.On deciding that the flow is a long TCP flow,init long flow (Fig-ure 2)is invoked.First,the RTT value of the flow is determined via the collaboration of the routing infor-mation (line 1).The first packet arrival sample within the current RTT window is recorded (line 2).Because the demand is yet unknown,it is assumed to be un-bounded (“greedy”flow),so,technically,it is sufficient to be set as high as all the available bandwidth of theclass(line3).The introduction of the newflow re-quires the re-calculation of the shares not just forflow i,but the entire share vector4for all long TCPflows (line4).A grace period of at least one RTT is given (lines5and6)for the dropping of packets–since we need at least one measurement,i.e.,one RTT period before we can gauge an approximation of the true de-mands of theflow.The last step is to invoke the tick function to periodically check the demands of theflow.The purpose of tick(Figure3)is to perform the observation of the rate during the last RTT(line2), thus resetting the counter(line3).If the share al-located to theflow is less than its demand,then the flow needs to be regulated by introducing losses,but this is necessary only when the current rate(trans-lated into its window value)reached the correspond-ing maximum value possible as per the TCP window model of subsection3.1(line4).If this is the case,we signal to the next arrival that it has to be discarded (line5).The demand is subsequently calculated(line 9)and the new shares are calculated(line11)if the demands over all theflows cannot be satisfied with the bandwidth available to the class(line10).The next observation will occur an RTT later(line13).Finally,function upon packet arrival is the sub-stance of operations taking place when a packet of flow i arrives.The only decision taken is whether the packet ought to be enqueued or dropped.Dropping the packet is a decision based on(a)whether the tick function has determined it is time to do so,and(b)if enough time has elapsed since the last drop,because, otherwise,repeated losses within an RTT time would likely force the TCPflow to timeout and its through-put deteriorate substantially.We should note that the proper operation of Fair-Share involves knowledge of the end–to–end RTT of aflow.The RTT can be measured on-line by sam-pling the time between thefirst few packets of aflow when theflow isfirst set up,i.e.,time from SYN to SYN/ACK or until the transmission of thefirst data packet,depending on whether both upstream and downstream,or only one direction of aflow traverse the router.The on–line passive measurement(i.e., without the use of a”ping”command)and estima-tion of RTT of aflow has been studied recently in [22].Suffice is to say that the RTT can be estimated within reasonable accuracy,using a passive scheme, in thefirst few seconds of a long livedflow’s lifetime. Another aspect of FairShare’s operation is that it is keeping track of the number of packets sent by aflow 4Variables in typewriter font without the subscript i are as-sumed to represent the entire vector.within an RTT through the use of the count i vari-able.That is,FairShare is actually monitoring what is essentially the evolution of each longflow’s window size.4XCPThe design rationale of XCP[19]is based on recog-nizing the inherent weaknesses of the current TCP congestion control design.Firstly,TCP has no spe-cific and explicit congestion signal.Packet loss is in-terpreted as congestion signal.This interpretation is based on the assumption that congestion causes far more packet loss than unreliable underlying network. In fact,this assumption does not always hold in all environments,such as wireless network.The impre-cise interpretation of packet loss causes unnecessary throttling of the sending rate and waste of precious bandwidth.Secondly,loss as a congestion signal only reflects the worst case congestion scenario.With current con-gestion signaling,the sender is notified only after the buffers are overflown,which is the worst outcome of congestion.Thus,senders only provide reaction on se-vere congestion,rather than act proactively and elim-inate congestion at an early stage.Thirdly,current congestion control is slow.TCP receives only implicit congestion signals.Congestion signals are inferred by detected timeouts and persis-tent packet reordering.Both mechanisms need more time than explicit congestion signaling.Fourthly,the current congestion signal is a binary signal.It can only indicate whether congestion oc-curs or not.It cannot provide information on the de-gree of congestion.With such imprecise information, TCP senders have to react conservatively.Instead of sending at a precise available rate,TCP senders back offdrastically and recover cautiously in the presence congestion.This protocol design leads to oscillatory behavior of individual TCPflows,which is particu-larly undesirable feature when the protocol is used for delivering real time traffic.Lastly,the loss congestion signal is unreliable.The current mechanism cannot guarantee all TCP senders receive congestion signals.And the congestion signal does not provide information on how senders should react to the congestion.Thus,the reaction on conges-tion is unbalanced;some aggressive TCPflows might get significantly more bandwidth than their competi-tors.XCP accounts for the weakness of TCP by provid-ing explicit congestion signaling,precise congestion in-tick ():1.while (1)2.m ←count i /rtt i ;3.count i ←0;4.if (share i <demand i and m >avg2peak (share i ))then5.flag i ←TRUE;6.else7.flag i ←FALSE;8.endif9.demand i ←m ·β+demand i ·(1−β)10.if (i demand i >C L-TCP l )then11.share ←maxmin (demand ,C L-TCP l );12.endif13.sleep (rtt i );14.endwhileFigure 3:The tick ()function.upon packet arrival (p ):1.now ←time ();2.if (flag i and dropevent i +rtt i <now )then3.dropevent i ←now ;4.drop (p );5.else6.count i ←count i +p.size ;7.enqueue (p );8.endifFigure 4:The upon packet arrival ()function.formation,decoupled efficiency control(EC)and fair-ness control(FC),and robust design[19].Towards this end,XCP proposes a specific congestion header as an extension of the TCP header(optionalfields) to carry necessary information for congestion control, the state of eachflow,and feedback from routers. The header options provide an opportunity for the sender to disclose to intermediate routers the conges-tion window size(cwnd)and the current RTT esti-mate.The routers use this information to determine the link utilization status,and how to reassign the bandwidth towards the fairness objective.The inter-mediate routers instruct the senders to adjust their window size by stipulating feedback information in the congestion header of each packet.The informa-tion in these”congestion”headers is copied in the ac-knowledgments(ACKs)returned to the sender,thus the feedback loop is closed.With respect to the information used by XCP,we note that it includes both the current window size and,in essence,the round-trip-time,as they both are obtained from the header information that XCP re-quires TCP endpoints to support.In this respect, XCP is similar to FairShare which requires the same information.We note however that contrary to XCP that obtains this information with the collaboration (and hence the modification)of the TCP endpoints, FairShare utilizes router-based estimators for both the congestion window size and the round-trip-time.It would therefore appear that XCP and FairShare are almost equivalent with respect to complexity.Unfor-tunately,this is not the case because in XCP,the headers also convey control information back to the senders.Specifically,XCP senders update their congestion window of aflow by adding the feedback received in each and every packet to the current congestion win-dow(Equation3).The feedback contains the control information from routers.It is either positive or nega-tive,which means increasing or decreasing congestion window size,respectively.The units of feedback and window size are bits.Although feedback is mainly used as instruction supplied by the router,senders initialize the feedback at the start indicating their de-mands on bandwidth.The XCP sender algorithm is described in the following formula.The s in the for-mula(Equation3)is the length of a packet in bits.It stands for the minimum unit of updating congestion window,which is one packet.cwnd=max(cwnd+F eedback,s)(3) The operation of the congestion window adjustment in XCP is the most significant difference regarding the TCP endpoint behavior,compared to FairShare.Fair-Share does not require any particular window adjust-ment scheme at the sender,or copying of control at the recipient from incoming data packets to the ACKs sent on the reverse path.4.1XCP Fairness&Efficiency ControlA feature of XCP is the decoupling of(bandwidth) efficiency control(EC)from the(bandwidth)fairness control(FC)in the router policy.The objective of EC is to maximize the link utilization and minimize the packet dropping and thus control the queue size.The algorithm is described in(Equation4)φ=α×d×S−β×Q(4)φstands for the total feedback generated in the router within the control epoch d,where d is the aver-age RTT of allflows traversing the link.S is the differ-ence between the sum of demands of allflows and the link capacity.Q stands for persistent queue size that is obtained by smoothing from transient queue size via a simple low passfilter.Finally,αandβare opera-tional constants.Basically,the total feedback is pro-portional to the difference between expected demands of bandwidth of allflows and the actual bandwidth. To be more accurate,the feedback is also adjusted to account for the packets stored in the buffer.The Fairness Control(FC)(Equation5)is the al-gorithm for apportioning the total feedback,that is obtained in EC,to each individualflow.The basic idea of FC can be described as follows:In case of pos-itive feedback,that is,the expected total demand is smaller than actual capacity,the surplus bandwidth is apportioned to allflows equally.To increase the per-flow surplus bandwidth the increase of the sending rate is the same regardless of theflow’s RTT.In case of negative feedback,that is,the expected total demand exceeds the actual capacity,allflows reduce their send-ing rate by the same fraction.Feedback apportioned to the individualflow is uniformly distributed to all packets from that particularflow that will be handled by the router during the next control epoch,of length d time units.The positive and negative feedback com-ponents are communicated back to the sender in the feedback ly,for each packet from flow i the feedback indicated in the packet header is:F eedback=p i−n i(5) where p i is the”positive”component and the n i is the ”negative”component of the feedback.Ifφ(the totalfeedback)is positive,φ>0,it means that the linkis underutilized,and thus we have spare bandwidthto distribute.In XCP,such spare bandwidth is dis-tributed equally among the activeflows.That is,therate increase of eachflow should be the same,leadingto the following:∆r=∆r1+∆r2+...+∆r n∆r1=∆r2=...=∆r nHere,∆r is the total increase rate(spare bandwidth,φd )in one epoch,and∆r i stands for the increased rateforflow i.n stands for the number of activeflows.From the above two equations,we also have∆r i=∆rn=φndand it can be found after some algebra that:p i=ξp∗rtt2i cwnd iwhereξp=φd∗all packets in epoch drtt icwnd iWhenφ<0,congestion has occurred.That is, the total demands for bandwidth exceeds the link ca-pacity.In XCP FC policy,everyflow should reduce its rate by the same fraction.Suppose f is the com-mon reduction factor,we translate the policy into the following formulas:∆r=∆r1+∆r2+...+∆r n∆r i=r i∗f=cwnd irtt i∗fand after some algebra wefind:n i=ξn∗rtt iandξn=φd∗(#packets in d)It thus appears that XCP’s advantage is in simpli-fying the router operation.XCP’s claim is that it does not need to maintain a record for each one of the in-dividualflows traversing a link,i.e.,no per–flow state. Namely,ξp can be calculated by adding up the RTT over cwnd rations of each packet that arrived since the last control epoch.Similarly,ξn appears to be calculated by counting the packets that arrived since the last epoch.We note two caveats though:(a)the value of d is the average RTT,and the means to ob-tain it are not clear,and certainly calculating it at the router is not the suggested way for XCP as it would require per-flow state,and(b)there is no clear indica-tion that the max–min fairness is indeed attainable by XCP.To settle(a)we will assume that off-line infor-mation exists on the average RTT.It is not unreason-able to assume that an off-line statistical processing of the”typical”workload,is the source of the aver-age RTT value,d.We will also consider the fact that FairShare isolates the short from the long livedflows, while XCP does not.Hence,to the points(a)and(b) we add,(c),the appearance that XCP can operate on short and long livedflows alike.This is a matter of definition for XCP:by not possessing per-flow state,it cannot distinguish short from long livedflows–indeed it possesses no notion of a”flow”anyway.Instead it deals with each packet individually without concern whether it came from a short or long livedflow.5Simulation ResultsIn this section we present two sets of the most rep-resentative results that illustrate the shortcomings of XCP compared to FairShare.The results should be seen in the context of the corresponding complexity. That is,both XCP and FairShare require RTT and window size information from theflows.Whereas XCP requires the cooperation of the endpoints in the adjustment of the window size using special feedback information,FairShare does not.At the same time, FairShare requires per–flow state information which, in principle anyway,is avoided by XCP.This last dif-ference is weakened by the fact that XCP requires a reliable estimate of the average RTT over allflows, which is not available by the endpoints alone without some substantial cooperation from the routers.5.1Fairness for Mixed RTTsIn the experiments we consider a simple”dumbell”topology with a single bottleneck link.The bottleneck link rate is4500packets per second.Severalflows ar-rive,after experiencing different propagation delays, to the bottleneck link.We study the fraction of the bandwidth obtained by each TCPflow as a function of the discrepancy of the RTTs between theflows.The simulations for XCP were conducted with the code provided from[19]using ns2version2.1b9[12].We vary the difference between RTTs from0to100ms. That is,we assign RTTs that are t time units apart where t varies from0to100msec.We also conduct。

相关文档
最新文档