人教版七年级数学下册第六章第三节实数学生试卷复习题(含答案) (9)
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
第六章 实数复习题---解答题(含解析)
人教版七下第六章实数复习题---解答题一.解答题(共46小题)1.(2018秋•东营区校级期末)若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.2.(2018秋•临淄区校级期中)一个正数的两个平方根分别是2a﹣2和a﹣4,求这个正数.3.(2018秋•宜兴市校级期中)求下列式子中的x:(x﹣1)2=04.(2018秋•宝安区校级月考)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.5.(2018秋•江阴市校级月考)求下列各式中x的值:(1)9x2﹣25=0(2)2(x+1)2﹣32=06.(2018春•越秀区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?7.(2018秋•宁波期中)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.8.(2018春•天河区校级期中)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.9.(2018春•临朐县期中)(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.10.(2017春•三亚校级月考)已知:字母a、b满足.求的值.11.(2016春•龙潭区校级期中)已知a、b满足+=0,解关于x的方程(a+2)x+b2=1﹣a.12.(2018秋•沭阳县期末)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.13.(2018秋•北碚区期末)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.14.(2018秋•南关区校级期中)已知A=是b+3的算术平方根,B=是a﹣2的立方根,求5A﹣2B的值.15.(2018春•柳州期末)计算:|﹣|+16.(2018春•黄陂区期中)已知和互为相反数,求x+y的平方根.17.(2018秋•农安县期末)已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+|a+b|.18.(2018秋•定兴县期末)如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=;t=1时,点Q表示的数是;当t=时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为;点T 表示的数为;MT=.(用含t的代数式填空)19.(2018秋•凤凰县期末)如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.20.(2018秋•莲湖区期中)如图,点A表示的数为﹣,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+2﹣2)的值.21.(2018秋•临川区校级月考)(1)解方程:﹣27=0.(2)比较大小与.22.(2018秋•邗江区校级期末)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c的平方根.23.(2018秋•临川区校级月考)已知:2+的小数部分为a,5﹣的小数部分为b,计算a+b的值.24.(2018秋•沙坪坝区校级月考)已知5+的小数部分是a,整数部分是m,5﹣的小数部分是b,整数部分是n,求(a+b)2015﹣mn的值.25.(2018•益阳)计算:|﹣5|﹣+(﹣2)2+4÷(﹣).26.(2018•苏州)计算:|﹣|+﹣()2.27.(2018•大庆)求值:(﹣1)2018+|1﹣|﹣.28.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)29.(2018秋•东阳市期末)计算:(1)(﹣2.4)+﹣×(﹣4)2+(2)﹣22﹣|﹣7|+3+2×(﹣)30.(2018秋•太仓市期末)计第:(1)(﹣)×(﹣)﹣﹣(﹣2)2;(2)+6x﹣x2.31.(2018秋•历城区期末)计算(1)﹣+﹣(2)﹣432.(2018秋•河口区期末)(1)计算:;(2)若(2x﹣1)3=﹣8,求x的值.33.(2018秋•北仑区期末)计算:(1)()×12;(2)﹣32+.34.(2018秋•延庆区期末)计算:+﹣+|1﹣|.35.(2018秋•象山县期末)计算:(1)|﹣2|++(﹣1)2018(2)﹣22﹣24×(﹣+)36.(2018秋•常熟市期末)计算:.37.(2018秋•越城区期末)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)201738.(2018秋•上城区期末)计算:(1)(﹣3)+(﹣5)(2)+(3)÷(﹣)+(﹣)2×2139.(2018秋•玄武区期末)计算:+()2﹣.40.(2018秋•金牛区期末)计算下列各题(1)(2)41.(2018秋•顺义区期末)计算:.42.(2018秋•密云区期末)计算:43.(2018秋•罗湖区期末)计算(1)(2)44.(2018秋•鸡东县期末)(1)计算:++(2)解方程:2(x﹣5)=5﹣3x(3)解方程:﹣x=1﹣45.(2018秋•香坊区期末)计算(1)+﹣(2)﹣|﹣|46.(2018秋•冷水江市期末)计算:﹣12+(﹣2)3×﹣×(﹣)人教版七下第六章实数复习题---解答题参考答案与试题解析一.解答题(共46小题)1.(2018秋•东营区校级期末)若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.2.(2018秋•临淄区校级期中)一个正数的两个平方根分别是2a﹣2和a﹣4,求这个正数.【分析】根据平方根的定义和相反数得出2a﹣2+a﹣4=0,求出a=2,求出2a﹣2=2,即可得出答案.【解答】解:一个正数的两个平方根分别是2a﹣2和a﹣4,∴2a﹣2+a﹣4=0,∴a=2,∴2a﹣2=2,∴这个正数为2的平方是4.3.(2018秋•宜兴市校级期中)求下列式子中的x:(x﹣1)2=0【分析】根据平方根的定义直接开平方即可求出(x﹣1)的值,然后解方程即可求出x的值.【解答】解:∵(x﹣1)2=0,∴x﹣1=0,解得x=1.4.(2018秋•宝安区校级月考)求下列x的值(1)5x2﹣4=11;(2)(x﹣1)2=9.【分析】根据平方根的定义即可求出答案.【解答】解:(1)5x2=15,x2=3,x=;(2)x﹣1=±3,x=4或x=﹣2.5.(2018秋•江阴市校级月考)求下列各式中x的值:(1)9x2﹣25=0(2)2(x+1)2﹣32=0【分析】(1)直接利用平方根的定义计算得出答案;(2)直接利用平方根的定义计算得出答案.【解答】解:(1)9x2﹣25=0x2=,故x=±;(2)2(x+1)2﹣32=0则(x+1)2=16,故x+1=±4,解得:x=3或﹣5.6.(2018春•越秀区期中)有一个边长为9cm的正方形和一个长为24cm、宽为6cm的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?【分析】利用已知得出新正方形的面积,进而求出其边长.【解答】解:设正方形的边长为x厘米.依题意得:x2=9×9+24×6,即x2=225,∴x=15.答:正方形的边长为15厘米.7.(2018秋•宁波期中)已知﹣8的平方等于a,b的平方等于121,c的立方等于﹣27,d的算术平方根为5.(1)写出a,b,c,d的值;(2)求d+3c的平方根;(3)求代数式a﹣b2+c+d的值.【分析】(1)根据平方根、立方根、算术平方根的定义即可求出答案.(2)求出d+3c的值后即可求出该数的平方根.(3)将a、b、c、d的值代入原式即可求出答案.【解答】解:(1)由题意可知:a=64,b=±11,c=﹣3,d=25;(2)当c=﹣3,d=25时,∴d+3c=25+3×(﹣3)=25﹣9=16,因此它的平方根为±4;(3)当a=64,b=±11,c=﹣3,d=25时,∴a﹣b2+c+d=64﹣121﹣3+25=﹣35.8.(2018春•天河区校级期中)已知=x,=2,z是9的算术平方根,求:2x+y﹣z的平方根.【分析】根据=x,=2,z是9的算术平方根,可以求得x、y、z的值,从而可以解答本题.【解答】解:∵=x,=2,z是9的算术平方根,∴x=5,y=4,z=3,∴=,即2x+y﹣z的平方根是.9.(2018春•临朐县期中)(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.【分析】(1)根据+(1﹣b)=0和二次根式有意义的条件,可以求得a、b的值,从而可以求得所求式子的值;(2)根据立方根的定义求出x2﹣2=2,再根据平方根的定义即可解答本题.【解答】解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.10.(2017春•三亚校级月考)已知:字母a、b满足.求的值.【分析】首先利用非负数的性质求得a,b的值,然后根据=﹣即可对所求的式子进行化简求值.【解答】解:根据题意得:,解得:.原式=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.11.(2016春•龙潭区校级期中)已知a、b满足+=0,解关于x的方程(a+2)x+b2=1﹣a.【分析】根据非负数的性质列出算式,求出a、b的值,再代入一元一次方程解方程即可求解.【解答】解:∵+=0,∴3a﹣9=0,b﹣=0,解得a=3,b=,则方程变形为(3+2)x+2=1﹣3,解得x=﹣0.8.12.(2018秋•沭阳县期末)求出下列x的值:(1)4x2﹣81=0;(2)8(x+1)3=27.【分析】(1)先将x2的系数化为1,再利用平方根的定义计算可得;(2)两边都除以8,再利用立方根的定义得出x+1的值,从而得出答案.【解答】解:(1)∵4x2﹣81=0,∴4x2=81,则x2=,∴x=±;(2)∵8(x+1)3=27,∴(x+1)3=,则x+1=,解得x=.13.(2018秋•北碚区期末)正数x的两个平方根分别为3﹣a和2a+7.(1)求a的值;(2)求44﹣x这个数的立方根.【分析】(1)根据一个正数有两个平方根,它们互为相反数,求出a的值;(2)根据a的值得出这个正数的两个平方根,即可得出这个正数,计算出44﹣x的值,再根据立方根的定义即可解答.【解答】解:(1)∵正数x的两个平方根是3﹣a和2a+7,∴3﹣a+(2a+7)=0,解得:a=﹣10(2)∵a=﹣10,∴3﹣a=13,2a+7=﹣13.∴这个正数的两个平方根是±13,∴这个正数是169.44﹣x=44﹣169=﹣125,﹣125的立方根是﹣5.14.(2018秋•南关区校级期中)已知A=是b+3的算术平方根,B=是a﹣2的立方根,求5A﹣2B的值.【分析】根据题意列出方程组,求出方程组的解得到a与b的值,进而确定出A与B的值,代入原式计算即可求出值.【解答】解:∵A=是b+3的算术平方根,B=是a﹣2的立方根,∴,解得:,∴A=2,B=1,则原式=10﹣2=8.15.(2018春•柳州期末)计算:|﹣|+【分析】根据差的绝对值是大数减小数,可化简绝对值,根据二次根式的加减,可得答案.【解答】解:原式=﹣+=.16.(2018春•黄陂区期中)已知和互为相反数,求x+y的平方根.【分析】根据立方根互为相反数的被开方数互为相反数,可得答案.【解答】解:由题意,得x﹣2+y﹣2=0,解得x+y=4==±2.17.(2018秋•农安县期末)已知表示a,b两个实数的点在数轴上的位置如图所示,化简|a﹣b|+|a+b|.【分析】根据数轴判定a、b与0的大小,然后根据绝对值的性质即可求出答案.【解答】解:由数轴知b<a<0,∴a﹣b>0,a+b<0,∴|a﹣b|=a﹣b,|a+b|=﹣(a+b)=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b.18.(2018秋•定兴县期末)如图1,已知在数轴上有A、B两点,点A表示的数是﹣6,点B表示的数是9.点P在数轴上从点A出发,以每秒2个单位的速度沿数轴正方向运动,同时,点Q在数轴上从点B出发,以每秒3个单位的速度在沿数轴负方向运动,当点Q到达点A时,两点同时停止运动.设运动时间为t秒.(1)AB=15;t=1时,点Q表示的数是6;当t=3时,P、Q两点相遇;(2)如图2,若点M为线段AP的中点,点N为线段BP中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长;(3)如图3,若点M为线段AP的中点,点T为线段BQ中点,则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t.(用含t的代数式填空)【分析】(1)根据两点间距离的定义,线段的和差定义计算即可;(2)根据线段的中点定义,可得MN=MP+NP=(AP+BP)=AB;(3)根据线段的中点定义,线段和差定义计算即可;【解答】解:(1)AB=9﹣(﹣6)=15,t=1时,BQ=3,OQ=6,设t秒后相遇,由题意(2+3)t=15,t=3,故答案为15,6,3(2)答:MN长度不变,理由如下:∵M为AP中点,N为BP中点∴MP=AP,NP=BP,∴MN=MP+NP=(AP+BP)=AB=7.5.(3)则点M表示的数为t﹣6;点T表示的数为9﹣t;MT=15﹣t;故答案为t﹣6,9﹣t,15﹣t;19.(2018秋•凤凰县期末)如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为﹣5;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.①当S=4时,画出图形,并求出数轴上点A′表示的数;②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.【分析】(1)利用正方形ABCD的面积为16,可得AB长,再根据AO=1,进而可得点B表示的数;(2)①先根据正方形的面积为16,可得边长为4,当S=4时,分两种情况:正方形ABCD向左平移,正方形ABCD向右平移,分别求出数轴上点A′表示的数;②当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,再根据点E,F所表示的数互为相反数,列出方程即可求得t的值.【解答】解:(1)∵正方形ABCD的面积为16,∴AB=4,∵点A表示的数为﹣1,∴AO=1,∴BO=5,∴数轴上点B表示的数为﹣5,故答案为:﹣5.(2)①∵正方形的面积为16,∴边长为4,当S=4时,分两种情况:若正方形ABCD向左平移,如图1,A'B=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1﹣3=﹣4;若正方形ABCD向右平移,如图2,AB'=4÷4=1,∴AA'=4﹣1=3,∴点A'表示的数为﹣1+3=2;综上所述,点A'表示的数为﹣4或2;②t的值为4.理由如下:当正方形ABCD沿数轴负方向运动时,点E,F表示的数均为负数,不可能互为相反数,不符合题意;当点E,F所表示的数互为相反数时,正方形ABCD沿数轴正方向运动,如图3,∵AE=AA'=×2t=t,点A表示﹣1,∴点E表示的数为﹣1+t,∵BF=BB′=×2t=t,点B表示﹣5,∴点F表示的数为﹣5+t,∵点E,F所表示的数互为相反数,∴﹣1+t+(﹣5+t)=0,解得t=4.20.(2018秋•莲湖区期中)如图,点A表示的数为﹣,一只蚂蚁从点A沿数轴向右直爬2个单位后到达点B,设点B所表示的数为n.(1)求n的值;(2)求|n+1|+(n+2﹣2)的值.【分析】(1)根据数轴上的点运动规律:右加左减的规律可求出n的值;(2)把n的值代入,再根据绝对值的性质、实数运算的法则计算即可得解.【解答】解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位到达点B,∴点B所表示的数比点A表示的数大2,∵点A表示﹣,点B所表示的数为n,∴n=﹣+2;(2)|n+1|+(n+2﹣2)=|﹣+2+1|+(﹣+2+2﹣2)=3﹣+=3.21.(2018秋•临川区校级月考)(1)解方程:﹣27=0.(2)比较大小与.【分析】(1)先移项,去分母,然后利用直接开平方法解题;(2)利用作差法比较大小.【解答】解:(1)﹣27=0(x﹣2)2=81x﹣2=±9x1=11,x2=﹣7;(2)﹣==.∵4<5<5.0625,∴2<<2.25,∴4<4<9,∴9﹣4>0,∴>0,即﹣>0,∴>.22.(2018秋•邗江区校级期末)已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是的整数部分,求3a﹣b+c的平方根.【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【解答】解:∵5a+2的立方根是3,3a+b﹣1的算术平方根是4,∴5a+2=27,3a+b﹣1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴3a﹣b+c=16,3a﹣b+c的平方根是±4.23.(2018秋•临川区校级月考)已知:2+的小数部分为a,5﹣的小数部分为b,计算a+b的值.【分析】估算确定出a与b的值,即可求出所求.【解答】解:∵4<6<9,∴2<<3,即4<2+<5,2<5﹣<3,则a=2+﹣4,b=5﹣﹣2,则a+b=2+﹣4+5﹣﹣2=1.24.(2018秋•沙坪坝区校级月考)已知5+的小数部分是a,整数部分是m,5﹣的小数部分是b,整数部分是n,求(a+b)2015﹣mn的值.【分析】先估算出的范围,再求出a、m、b、n的值,再代入求出即可.【解答】解:∵2<<3,∴m=7,a=5+﹣7=﹣2+,n=2,b=5﹣﹣2=3﹣,∴(a+b)2015﹣mn=(﹣2++3﹣)2015﹣7×2=1﹣14=﹣13.25.(2018•益阳)计算:|﹣5|﹣+(﹣2)2+4÷(﹣).【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=026.(2018•苏州)计算:|﹣|+﹣()2.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+3﹣=327.(2018•大庆)求值:(﹣1)2018+|1﹣|﹣.【分析】直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:原式=1+﹣1﹣2=﹣2.28.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.29.(2018秋•东阳市期末)计算:(1)(﹣2.4)+﹣×(﹣4)2+(2)﹣22﹣|﹣7|+3+2×(﹣)【分析】(1)直接利用有理数混合运算计算得出答案;(2)直接利用有理数混合运算计算得出答案.【解答】解:(1)(﹣2.4)+﹣×(﹣4)2+=﹣2.4+1.2﹣10﹣5=﹣16.2;(2)﹣22﹣|﹣7|+3+2×(﹣)=﹣4﹣7+3﹣1=﹣9.30.(2018秋•太仓市期末)计第:(1)(﹣)×(﹣)﹣﹣(﹣2)2;(2)+6x﹣x2.【分析】(1)直接利用二次根式的性质化简进而得出答案;(2)利用二次根式的性质分别化简得出答案.【解答】解:(1)(﹣)×(﹣)﹣﹣(﹣2)2=3+2﹣8=3﹣6;(2)+6x﹣x2=+6x×﹣x2×=+2x﹣=3x.31.(2018秋•历城区期末)计算(1)﹣+﹣(2)﹣4【分析】(1)直接化简二次根式以及立方根进而计算即可;(2)直接化简二次根式进而计算即可.【解答】解:(1)原式=2﹣+﹣3=﹣3;(2)原式=﹣4=10﹣4=6.32.(2018秋•河口区期末)(1)计算:;(2)若(2x﹣1)3=﹣8,求x的值.【分析】(1)根据实数的运算法则即可求出答案.(2)根据立方根的定义即可求出答案.【解答】解:(1)原式=5+(﹣3)﹣(4﹣)=﹣2﹣4+=﹣6+;(2)由题意可知:2x﹣1=﹣2,∴x=.33.(2018秋•北仑区期末)计算:(1)()×12;(2)﹣32+.【分析】(1)根据实数的运算法则即可求出答案.(2)根据实数的运算法则即可求出答案.【解答】解:(1)原式=8+9﹣6=11;(2)原式=﹣9+4+1+3=﹣1.34.(2018秋•延庆区期末)计算:+﹣+|1﹣|.【分析】根据实数的运算即可求出答案.【解答】解:原式=3+2﹣2+﹣1=4﹣1.35.(2018秋•象山县期末)计算:(1)|﹣2|++(﹣1)2018(2)﹣22﹣24×(﹣+)【分析】根据实数的运算法则即可求出答案.【解答】解:(1)原式=2++1=3.5;(2)原式=﹣4﹣2+20﹣9=5.36.(2018秋•常熟市期末)计算:.【分析】先计算算术平方根、立方根和乘方,再计算加减可得.【解答】解:原式=4﹣﹣3=1﹣=.37.(2018秋•越城区期末)计算(1)|﹣1|+﹣(2)(﹣30)×(﹣+)(3)﹣﹣|﹣2|(4)﹣22+(﹣2)2++(﹣1)2017【分析】(1)先计算绝对值和算式平方根、立方根,再计算加减可得;(2)利用乘法分配律计算,再计算加减可得;(3)先计算立方根、取绝对值符号,再去括号,计算加减可得;(4)先计算乘方和算术平方根,再计算加减可得.【解答】解:(1)原式=1+﹣2=﹣1=;(2)原式=﹣15+20﹣24=20﹣39=﹣19;(3)原式=2﹣﹣(2﹣)=0;(4)原式=﹣4+4+﹣1=﹣.38.(2018秋•上城区期末)计算:(1)(﹣3)+(﹣5)(2)+(3)÷(﹣)+(﹣)2×21【分析】(1)根据有理数的加法法则计算可得;(2)先计算算术平方根和立方根,再计算加法即可得;(3)根据实数的混合运算顺序和运算法则计算可得.【解答】解:(1)(﹣3)+(﹣5)=﹣(3+5)=﹣8;(2)+=4+(﹣4)=0;(3)原式=×(﹣)+×21=﹣2+=﹣.39.(2018秋•玄武区期末)计算:+()2﹣.【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:原式=3+2﹣=.40.(2018秋•金牛区期末)计算下列各题(1)(2)【分析】(1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用二次根式的性质分别化简得出答案.【解答】解:(1)=2﹣3+=﹣3;(2)=﹣(3﹣)÷+﹣=﹣3++﹣=﹣3.41.(2018秋•顺义区期末)计算:.【分析】先进行乘方和乘法运算,再进行除法运算,然后进行加减运算.【解答】解:原式=﹣9﹣8﹣81÷(﹣27)=﹣8+3=﹣.42.(2018秋•密云区期末)计算:【分析】先化简二次根式、计算零指数幂和负整数指数幂、取绝对值符号,再计算加减可得.【解答】解:原式=2﹣1+4+=3+3.43.(2018秋•罗湖区期末)计算(1)(2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【解答】解:(1)=3×3﹣×4+4×﹣2=9﹣2+﹣2=8﹣2;(2)=5﹣6﹣(5+1﹣2)=﹣1﹣6+2=﹣7+2.44.(2018秋•鸡东县期末)(1)计算:++(2)解方程:2(x﹣5)=5﹣3x(3)解方程:﹣x=1﹣【分析】(1)先计算算术平方根和立方根,再计算加减可得;(2)根据解一元一次方程的步骤依次计算可得;(3)根据解一元一次方程的步骤依次计算可得.【解答】解:(1)原式=3﹣3+5=5;(2)2x﹣10=5﹣3x,2x+3x=5+10,5x=15,x=3;(3)2(2x﹣1)﹣12x=12﹣3(3x﹣2),4x﹣2﹣12x=12﹣9x+6,4x﹣12x+9x=12+6+2,x=20.45.(2018秋•香坊区期末)计算(1)+﹣(2)﹣|﹣|【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=0.1﹣2﹣=﹣2.4;(2)原式=﹣+=.46.(2018秋•冷水江市期末)计算:﹣12+(﹣2)3×﹣×(﹣)【分析】直接利用立方根的性质以及算术平方根的性质分别化简各数进而得出答案.【解答】解:原式=﹣1﹣8×+3×(﹣)=﹣1﹣1﹣1=﹣3。
人教版初中七年级数学下册第六单元《实数》测试题(含答案解析)
一、选择题1.下列各数中,无理数有( )3.14125,8,127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个D解析:D【分析】 直接根据无理数的定义直接判断得出即可.【详解】解:无理数有8,π,2.32232223共3个. 故选D .【点睛】本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.2.64的算术平方根是( )A .8B .±8C .22D .22± C解析:C【分析】先化简64,再求算术平方根即可.【详解】64=8, 8的算术平方根是22,即64的算术平方根是22.故选择:C .【点睛】本题考查一个数的算术平方根的算术平方根,掌握求算式的平方根,一定要把算式化简得到结果后再求是解题关键.3.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+ B解析:B【分析】根据是数的运算,A 点表示的数加两个圆周,可得B 点,根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:A 点表示的数加两个圆周,可得B 点,所以,21π-,故选:B .【点睛】本题考查了实数与数轴,直径为1个单位长度的圆从A 点沿数轴向右滚动,A 点表示的数加两个圆周.4.已知n 是正整数,并且n -1<3+<n ,则n 的值为( )A .7B .8C .9D .10C 解析:C【分析】根据实数的大小关系比较,得到5<6,从而得到n 的值.【详解】解:∵<5<6,∴8<<9,∴n =9.故选:C .【点睛】5.下列选项中,属于无理数的是( )A .πB .227-CD .0A 解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.6.若53a=-,则a在()A.3-和2-之间B.2-和1-之间C.1-和0之间D.0和1之间C解析:C【分析】依据被开方数越大对应的算术平方根越大可求得5的大致范围,然后可得到问题的答案.【详解】解:∵4<5<9,∴2<5<3.∴-1<5-3<0.故选:C.【点睛】本题考查了估算无理数的大小,求得5的大致范围是解题的关键.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥3)行从左向右数第(n﹣2)个数是()(用含n的代数式表示)A21n-D24n- Bn-C23n-B22解析:B【分析】观察不难发现,被开方数是从1开始的连续自然数,每一行的数据的个数是从2开始的连续偶数,求出n-1行的数据的个数,再加上n-2得到所求数的被开方数,然后写出算术平方根即可.【详解】解:前(n﹣1)行的数据的个数为2+4+6+…+2(n﹣1)=n(n﹣1),所以,第n(n是整数,且n≥3)行从左到右数第n﹣2个数的被开方数是n(n﹣1)+n﹣2=n2﹣2,所以,第n(n是整数,且n≥3)行从左到右数第n﹣222n-.故选:B.【点睛】本题考查了算术平方根,观察数据排列规律,确定出前(n-1)行的数据的个数是解题的关键.8.已知:m、n为两个连续的整数,且5<<,以下判断正确的是()m nA 4B .3m =C 0.236D .9m n += A解析:A【分析】根据无理数的估算、实数的运算即可得.【详解】 459<<,<<23<<,22,则选项C 错误;∴)224-=A 正确;又m 、n 为两个连续的整数,且m n <<,2,3m n ==∴,则选项B 错误;235m n ∴+=+=,则选项D 错误;故选:A .【点睛】本题考查了无理数的估算、实数的运算,熟练掌握无理数的估算方法是解题关键.9. )A .5和6B .6和7C .7和8D .8和9A 解析:A【分析】【详解】解:∵∴56,∴在两个相邻整数5和6之间.故选:A .【点睛】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.10.1的值在( )A .5~6之间B .6~7之间C .7~8之间D .8~9之间B解析:B【分析】的取值即可得到答案.【详解】由题意得78<<,617∴<<,1介于6~7之间.故选B .【点睛】二、填空题11.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值;(2)如果x y ,都是同一个数的平方根,求这个数.(1)a=-8;(2)1或9【分析】(1)根据平方运算可得(1-a )的值求解可得答案;(2)根据题意可知相等或互为相反数列式求解可得a 的值根据平方运算可得答案【详解】解:(1)∵x 的算术平方根是3∴解析:(1)a=-8;(2)1或9.【分析】(1)根据平方运算,可得(1-a )的值,求解可得答案;(2)根据题意可知x y ,相等或互为相反数,列式求解可得a 的值,根据平方运算,可得答案.【详解】解:(1)∵x 的算术平方根是3,∴1-a=9,∴a=-8;(2)x ,y 都是同一个数的平方根,∴1-a=2a-5或1-a+(2a-5)=0,解得a=2,或a=4,当a=2时,(1-a )=(1-2)2=1,当a=4时,(1-a )=(1-4)2=9,答:这个数是1或9.【点睛】本题考查了平方根和算术平方根,注意第(2)问符合条件的答案有两个,小心漏解. 12.对于有理数,a b ,我们规定*a b b ab =-(1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.(1)3;(2)【分析】(1)由新定义的运算法则进行计算即可得到答案;(2)由新定义列出方程解方程即可得到答案【详解】解:∵∴;(2)由题意则∵∴解得:【点睛】本题考查了一元一次方程新定义的运算法则解析:(1)3;(2)1x =.【分析】(1)由新定义的运算法则进行计算,即可得到答案;(2)由新定义列出方程,解方程即可得到答案.【详解】解:∵*a b b ab =-,∴(2)*11(2)1123-=--⨯=+=;(2)由题意,则∵(2)*36x -=,∴(2)*333(2)6x x -=--=,解得:1x =.【点睛】本题考查了一元一次方程,新定义的运算法则,解题的关键是掌握运算法则进行解题. 13.求x 的值:(1)2(3)40x +-=(2)33(21)240x ++=(1)或;(2)【分析】(1)整理后利用平方根的定义得到然后解两个一元一次方程即可;(2)整理后利用立方根的定义得到然后解一元一次方程即可【详解】(1)移项得:∴∴或;(2)整理得:∴∴【点睛】本题解析:(1)1x =-或5x =-;(2)32x =-. 【分析】(1)整理后,利用平方根的定义得到32x +=±,然后解两个一元一次方程即可; (2)整理后,利用立方根的定义得到212x +=-,然后解一元一次方程即可.【详解】(1)2(3)40x +-=, 移项得:2(3)4x +=,∴32x +=±,∴1x =-或5x =-;(2)33(21)240x ++=, 整理得:3(21)8x +=-,∴212x +=-, ∴32x =-. 【点睛】 本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.这就是说,如果x 3=a ,那么x 叫做a 的立方根.也考查了平方根.14.对两数a ,b 规定一种新运算:2a b ab ⊗=,例如:2422416⊗=⨯⨯=,若不论x 取何值时,总有a x x ⊗=,则a =______.【分析】将转化为2ax=x 来解答【详解】解:∵可转化为:2ax=x 即∵不论x 取何值都成立∴解得:故答案为:【点睛】本题考查实数的运算正确理解题目中的新运算是解题的关键 解析:12【分析】将a x x ⊗=,转化为2ax=x 来解答.【详解】解:∵a x x ⊗=可转化为:2ax=x ,即()210a x -=,∵不论x 取何值,()210a x -=都成立,∴210a -=, 解得:12a =, 故答案为:12. 【点睛】本题考查实数的运算,正确理解题目中的新运算是解题的关键.15.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.510;;402016;﹣2030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案【详解】解析:5,10%;52,43--;4,0,2016;3π,﹣2.030030003…(每两个3之间依次多一个0)【分析】根据实数的分类即可求出答案.【详解】16.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时a*b=当a <b 时a*b=a ∴当x=时1*=13*=2∴(1*)-(3*)=故答案为:【点睛】本题是新定义的问题解决此类问题的关键是按2【分析】根据题中所给的运算法则进行求解即可;【详解】∵当a≥b 时,a*b=2b ,当a <b 时,a*b=a∴ 当=1,=2,∴)2,2.【点睛】本题是新定义的问题,解决此类问题的关键是按题中的规定去运算即可;17.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.或【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可【详解】解:4※(-2)=;(-1)※1=(-1)※1※m=2※m=36当时原式可化为解得:;解析:6m =-或38m =.【分析】根据新定义规定的式子将数值代入再计算即可;先根据新定义的式子将数值代入分情况讨论列方程求解即可.【详解】解:42>-∴4※(-2)=()42=16-;11-<∴(-1)※1=()11=2--∴[(-1)※1]※m=2※m=36当2m ≥时,原式可化为236m =解得:6m =±6m ∴=-;当2m <时,原式可化为:236m -=解得:38m =;综上所述,m 的值为:6m =-或38m =;故答案为:16;6m =-或38m =.【点睛】本题考查了新定义的运算,读懂新定义的式子,将值正确代入是解题的关键.18.若30a +=,则+a b 的立方根是______.-1【分析】根据绝对值和二次根式的非负性求出ab 的值计算即可;【详解】∵∴∴∴∴的立方根-1故答案是-1【点睛】本题主要考查了代数式求值结合绝对值二次根式的非负性立方根的性质计算是解题的关键解析:-1【分析】根据绝对值和二次根式的非负性求出a ,b 的值计算即可;【详解】∵30a ++=,∴30a +=,20b -=,∴3a =-,2b =, ∴321a b +=-+=-,∴+a b 的立方根-1. 故答案是-1.【点睛】本题主要考查了代数式求值,结合绝对值、二次根式的非负性、立方根的性质计算是解题的关键.19_____;16的平方根为_____;()34-的立方根是_____.【分析】分别根据算术平方根相反数平方根和立方根的概念直接计算即可求解【详解】解:=所以的相反数是;16的平方根为;的立方根是故答案为:;±4;-4【点睛】本题考查了算术平方根平方根和立方根的概念进行解析:- 4± 4-【分析】分别根据算术平方根、相反数、平方根和立方根的概念直接计算即可求解.【详解】-;16的平方根为4±;()34-的立方根是4-.故答案为:—±4;-4【点睛】本题考查了算术平方根、平方根和立方根的概念进行求解即可.注意一个正数有两个平方根,它们互为相反数,正的平方根即为它的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.20.已知3y =,则y x 的平方根是____.±3【分析】根据二次根式的非负性和平方根的定义即可求出【详解】∵二次根式的被开方数是非负数∴且∴∴y=3∴yx=32=9∴yx 的平方根是±3故答案是:±3【点睛】本题主要考查了二次根式非负性和平方根解析:±3【分析】根据二次根式的非负性和平方根的定义即可求出.【详解】∵二次根式的被开方数是非负数∴20x -≥且20x -≥∴=2x∴y=3∴y x =32=9∴y x 的平方根是±3故答案是:±3.【点睛】本题主要考查了二次根式非负性和平方根知识点,准确理解记住它们的基本性质是解题关键.三、解答题21.一个四位正整数的千位、百位、十位、个位上的数字分别为a ,b ,c ,d ,如果a b c d ≤≤≤,那么我们把这个四位正整数叫做进步数,例如四位正整数2347:因为2347<<<,所以2347叫做进步数.(1)求四位正整数中的最大的“进步数”与最小的“进步数”的差;(2)已知一个四位正整数的百位、个位上的数字分别是1、4,且这个四位正整数是“进步数”,同时,这个四位正整数能被7整除,求这个四位正整数.解析:(1)8888;(2)1134 .【分析】(1)根据进步数的定义分别求出四位正整数中的最大“进步数”与最小“进步数”即可得解; (2)根据进步数的定义可以推得所求数为1114、1124、1134、1144中的某一个,再根据这个四位正整数能被7整除逐一对4个数进行验证可以得解 .【详解】解:(1)由进步数的定义可知四位正整数中最大的“进步数”应该是9999,又最高位不能为0,所以四位正整数中的千位最小为0,所以四位正整数中最小的“进步数”应该是1111,∴9999-1111=8888,∴四位正整数中的最大的“进步数”与最小的“进步数”的差为8888;(2)由已知可得所求数的千位为1,十位为1-4中的某个数字,∴所求数为1114、1124、1134、1144中的某一个,∵这个四位正整数能被7整除,∴由1114=159×7+1,1124=160×7+4,1134=162×7,1144=163×7+3可知所求数为1134 .【点睛】本题考查新定义下的实数规律探索,由材料归纳出新定义并应用于具体问题求解是解题关键.22.(1)求x 的值:2490x -=;(2)计算:()2325227+-- 解析:(1)32x =或32x =-;(2)4 【分析】 (1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.23.计算:()23143282--⨯-⨯-() 解析:【分析】 利用实数的混合运算法则计算得出答案.【详解】解:原式=4+9⨯12-(2)2⎡⎤⨯-⎢⎥⎣⎦=4+9⨯[]2+1=4+9⨯3=4+27=31.【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.24.如图,数轴上点A ,B ,C 所对应的实数分别为a ,b ,c ,试化简()323|-|b a c a b -++.解析:2a-c【分析】根据数轴得到a<b<0<c ,由此得到a-c<0,a+b<0,依此化简各式,再合并同类项即可.【详解】由数轴得a<b<0<c ,∴a-c<0,a+b<0,∴|-|a c =-b-(c-a )+(a+b)=-b-c+a+a+b=2a-c.【点睛】此题考查数轴上的点表示数,利用数轴比较数的大小,绝对值的性质,立方根的化简,整式的加减法计算法则,解题的关键是依据数轴确定各式子的符号由此化简各式. 25.计算题.(1)12(7)6(22)-+----(2)2122⨯(33(2)(4)-⨯- (4)13248243⎛⎫-⨯-+- ⎪⎝⎭ 解析:(1)-3(2)-1(3)2(4)-20【分析】(1)先去括号在进行加减运算.(2)先进行平方和开方,在进行乘法和减法的运算.(3)先进行开方和平方,在由左至右进行除法和乘法的运算.(4)首先去括号内的绝对值,在进行括号内的分式加减,最后相乘.【详解】(1)12(7)6(22)-+----=127622---+=3-(2)2122⨯ 1=432⨯- =1-(33(2)(4)-⨯-=4(8)(4)÷-⨯-1=(-)(4)2⨯- =2 (4)13248()243-⨯-+-4354812=-⨯ 20=-【点睛】考察有理数的混合运算,掌握运算法则的顺序是解答本题的关键.26.计算:(12(2)22(2)8x -=解析:(1)1;(2)124,0x x ==【分析】(1)实数的混合运算,利用算术平方根和立方根的概念逐个进行化简计算; (2)直接用平方根的概念求解.【详解】解:(12=4(2)23----=4+223--=1(2)22(2)8x -=2(2)4x -=22x -=±22x =±∴124,0x x ==.【点睛】本题考查实数的混合运算及利用平方根解方程,掌握相关概念和性质正确计算是解题关键.27.111111133557792017201920192021++++⋯+⨯⨯⨯⨯⨯⨯ 解析:10102021【分析】利用裂项法计算即可.【详解】 原式1111111233520192021⎛⎫=⨯-+-+⋯+- ⎪⎝⎭22021 ⎪⎝⎭1202022021=⨯ 10102021=. 【点睛】 本题考查了利用裂项法进行分数的加法计算,熟练掌握裂项法是解题的关键. 28.把下列各数填在相应的横线上1.4,2020,,32-,0.31,0π-,1.3030030003…(每相邻两个3之间0的个数依次加1)(1)整数:______(2)分数:______(3)无理数:______解析:(1)2020,02)1.4,32-,0.31;(3),π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【分析】根据实数的分类进行填空即可.【详解】,(1)整数:2020,0(2)分数:1.4,32-,0.31(3)无理数:π-,1.3030030003…(每相邻两个3之间0的个数依次加1)故答案为:2020,0 1.4,32-,0.31;π-,1.3030030003…(每相邻两个3之间0的个数依次加1)【点睛】本题考查了实数的分类,掌握实数的分类是解题的关键.。
人教版七年级数学下册第六章第三节实数试题(含答案) (79)
人教版七年级数学下册第六章第三节实数练习试题三(含答案)计算:(111-()()2212224⎛---⨯- ⎝ 【答案】(1) 2;(2) 6-【解析】【分析】(1)利用立方根定义和绝对值的代数意义计算即可;(2)分别进行乘方、开立方、开平方的运算,然后合并即可.【详解】11-3113=+--312=+-2=;(2)()221224⎛---⨯ ⎝ 1144242=--⨯-⨯ 411=---6=-.【点睛】本题考查了实数的运算,涉及了绝对值、乘方、开平方等知识,熟练掌握运算法则是解本题的关键.82.计算:(1)-12018+|-6|×12+(13)2×(-3)2 (2)0.25÷(-12)2-(0.875-156+34)×24 【答案】(1)3;(2)6【解析】【分析】(1)根据实数的运算法则,先乘除后加减;(2)根据实数的运算法则,先乘除后加减.【详解】(1)原式=-1+6×12+199⨯ =-1+3+1=3(2)原式=1711342424244864⎛⎫⨯-⨯-⨯+⨯ ⎪⎝⎭=1214418-+-=6【点睛】此题主要考查实数的运算,熟练掌握运算法则,即可解题.83是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为121的小数部分.请解答下列问题: 的整数部分是__________,小数部分是__________.(2)3的整数部分为a ,小数部分为b ,求1a b --的值.(3)已知9x y =+,其中x 是整数,且01y <<.则求x y +的平方根的值.【答案】(13;(2)4-;(3)±3【解析】【分析】(1的范围,即可得出答案;(23的范围,求出a 、b 的值,再代入求出即可;(3x 、y 的值,再代入求出即可.【详解】(1)∵<4,的整数部分是3-3;(2)∵,∴3<5,∴3-1,∴1a b --(3)∵,∴,∴,∴x=7,∴x y +=9,∴x y +的平方根是3±.【点睛】3、题的关键.84.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==,因为1021024=,所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________.(2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫ ⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 【答案】(1)1;5;(2)①3.807,0.807;②12p +;4p -.【解析】【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解. 【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807;故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+;3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.85.把下列各数填在相应的横线上:﹣2.7,0.11,1113-,03π 非正数: ;正分数: ;自然数: ;无理数: ;正有理数: .【答案】﹣2.7,1113-,0;0.11,1.414;3π;0.111.414.【解析】【分析】 根据非正数,正分数,自然数,无理数,正有理数的定义,可得答案.【详解】解:非正数:﹣2.7,1113-,0; 正分数:0.11,1.414; 自然数:0;3π; 正有理数:0.11,1.414.故答案为:﹣2.7,1113-,0;0.11,1.414;03π;0.11,1.414. 【点睛】本题考查实数,掌握实数的分类是解题关键.86.若0<x <1,比较x 2,x 1x,这四个数的大小:_____.【答案】x 2<x 1x< 【解析】【分析】用特殊值法,根据实数大小的比较法则(实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.)依次计算即可.【详解】解:取特殊值x =0.01,x2=0.0001,x =0.01=0.1,1x=10, 0.0001<0.01<0.1<10,则x 2<x 1x<.故答案为:x 2<x 1x <. 【点睛】本题考查实数大小比较的法则,解题的关键是牢记法则.87.先阅读内容,然后解答问题:因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… =1﹣111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 【答案】(1)1120152016-,1140284032-;(2)20192020. 【解析】【分析】 (1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∵a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∵1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+-…… =1﹣12020=20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.88.阅读下列材料:小亮为了计算2201720182019122222+++⋅⋅⋅+++的值,采用以下方法:设2201720182019122222S =+++⋅⋅⋅+++①则232018201920202222222 S =+++⋅⋅⋅+++②②①-得()()2320182019202022017201820192222222122222S S -=+++⋅⋅⋅+++-+++⋅⋅⋅+++232018201920202201720182019222222122222S ∴=+++⋅⋅⋅+++----⋅⋅⋅--- 202021S ∴=-2201720182010920212222212∴=+++⋅⋅⋅++-+请仿照小亮的方法.......解决以下问题: (1)291012222+++⋅⋅⋅++=______;(2)2991333+++⋅⋅⋅+=______;(3)求21n a a a +++⋅⋅⋅+的值(0a >,n 是正整数,请写出计算过程).【答案】(1)1121- ;(2)100312-; (3)当1a =时,1S n =+当1a ≠时,n 11a 1S a +--= 【解析】【分析】(1)根据题意可知291012222S =+++++ ,左右两边同时乘以2,得到23910112222222S =++++++,两式相减即可求出答案.(2)根据题意可知2991333S =++++,左右两边同时乘以3,得到2399100333333S =+++++,两式相减即可求出答案.(3)根据题意可知21n S a a a =+++⋅⋅⋅+,左右两边同时乘以a ,得231n n aS a a a a a +=+++⋅⋅⋅++,两式相减即可求出答案.【详解】(1)设291012222S =+++++① 则23910112222222S =++++++②②-①得1121S =- (2)设2991333S =++++① 则2399100333333S =+++++②100231S =-100312S -∴= (3)设21n S a a a =+++⋅⋅⋅+①则231n n aS a a a a a +=+++⋅⋅⋅++②②-①得1(1)1n a S a +-=-当1a =时,1S n =+当1a ≠时,n 11a 1S a +--= 【点睛】本题主要考查了错位相减法求一组规律数的和,掌握题目中给出的信息,找到规律是解题的关键.89.对于有理数a ,b ,定义一种新运算“”.规定:a b a b a b =++-.例如121212=++- 31=+4= (1)计算()24-的值; (2)若a ,b 在数轴上的位置如图所示,化简a b .【答案】(1)8;(2)2a -【解析】(1)根据新定义计算可得出答案;(2)由数轴可知,a b 的正负,从而判断出,a b a b +-的正负,再利用绝对值的性质化简即可.【详解】(1)()2(4)2(24)2684=+-+--=+-=(2)由数轴可知0,0a b <>,且a b >∴0,0a b a b +<-<()()2a b a b a b a b a b a b a b a ∴=++-=-+--=---+=-【点睛】本题主要结合绝对值的性质考查了新运算,掌握绝对值的性质是解题的关键. 90.计算(1)5-(-13)+(﹣29)(22(3)-12019-|-4|+(-5)2× 25【答案】(1)-11;(2)-10;(3)5.【解析】【分析】(1)根据有理数加减运算法则计算即可;(2)先去括号,再根据有理数的加减运算法则计算即可;(3)先算乘方、去绝对值,再进行乘法的运算,最后进行有理数的加减运算即可.【详解】(1)解:原式=5+13-29=18-29=-11.(2)解:原式=4+2-16=-10.(3)解:原式=-1-4+25×25=-5+10=5.【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质进行化简.。
人教版七年级数学下册第六章第三节实数试题一(含答案) (29)
人教版七年级数学下册第六章第三节实数复习试题一(含答案)(1)用“<”,“>”,“=”(2)由上可知:①|1|= ;②= ;(3)计算:|1|+…﹣(结果保留根号) 【答案】(1)<,<;(2)﹣1,;(3 1【解析】【分析】(1)根据被开方数越大,则算术平方根越大解答;(2)根据绝对值的性质,正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0解答;(3)先根据绝对值的性质去掉绝对值号,然后进行加减即可得解.【详解】解:(1)∵1<2<3,<<;(2)①∵1<0,∴|1|﹣1,0,∴||;(3)|1…﹣+…1.故答案为:(1)<,<;(2)﹣1,;(31.【点睛】此题考查绝对值的性质与实数的运算,熟记绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0是解题的关键.82.画一条数轴,把﹣112,0,2,π各数(或近似值)和这些数的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接【答案】﹣π<﹣2<﹣112<0<112<2<π,见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数和它的相反数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数和它的相反数由小到大用“<”号连接起来即可.【详解】解:, ﹣π<﹣2<﹣112<0<112<2<π. 【点睛】此题考查了实数大小比较的方法,在数轴上表示数的方法,解题关键在于掌握数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.83.计算:()()20192112-+--- 【答案】8-【解析】【分析】先根据乘方的意义、绝对值的意义、立方根的意义逐项化简,再算加减即可.【详解】原式=1142--+-=8-.故答案为:8-.【点睛】本题考查了实数的混合运算,熟练掌握绝对值的意义、立方根的意义是解答本题的关键.84.规定两数a ,b 之间的一种运算,记作(a ,b );如果a c =b ,那么(a ,b )=c ,例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,81)= ,(﹣15,﹣1125)= ,(2,(2,256))= ;(2)若(3,4)+(3,6)=(3,x ),求x 的值;(3)证明:(2,3)+(2,5)=(8,3375).【答案】(1)4,3,3;(2)x =24;(3)证明见解析.【解析】【分析】(1)由题意分别可得34=81,(-15)3=-1125,28=256;(2)设(3,4)=a,(3,6)=b,(3,x)=c,由题意可得3a•3b=3a+b=3c;(3)设(2,3)=a,(2,5)=b,(8,3375)=c,先求出2a+b=2a•2b=15,再由8c=23c=3375=153,可得2c=15,即有2a+b=2c.【详解】(1)因为34=81,所以(3,81)=4.因为(﹣15)3=﹣1125,所以(﹣15,﹣1125)=3.因为28=256,所以(2,256)=8.又(2,8)=3∴(2,(2,256))=3,故答案为:4,3,3.(2)由题意得,设(3,4)=a,(3,6)=b,(3,x)=c,∵(3,4)+(3,6)=(3,x),∴a+b=c,由题意可得:3a=4,3b=6,3c=x,∴3a•3b=3a+b=3c,∴x=24,(3)设(2,3)=a,(2,5)=b,(8,3375)=c,∴2a =3,2b =5,∴2a +b =2a •2b =15,∵8c =23c =3375=153,∴2c =15,∴2a +b =2c ,∴(2,3)+(2,5)=(8,3375).【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.85.计算:(1)(﹣1)101+(π﹣3)0+(12)﹣1.(2)213()2---. 【答案】(1)3;(21.【解析】【分析】(1)原式分别计算有理数的乘方、零次幂、负整数指数幂以及根据二次根式的性质进行化简,最后再进行加减运算即可;(2)原式分别计算负整数指数幂,二次根式的化简以及去绝对值符号,再合并同类二次根式即可.【详解】(1)(﹣1)101+(π﹣3)0+(12)﹣1. =-1+1+2-|1=-1+1+2+1=3;(2)213()2---+ =34-+1.【点睛】此题考查了实数的混合运算,熟练掌握运算法则是解题的关键.86.计算与化简:(1)5(2)(8)(2)⨯-+-÷-;(2)21212(3)3-+÷-⨯; (3)22131516b a a b +--;(4)()22432121233x x x x ⎛⎫----+ ⎪⎝⎭. 【答案】(1)-6;(2)153-;(3)62b a -;(4)-5. 【解析】【分析】(1)可先计算乘除,最后计算加减;(2)可先计算乘方,再计算乘除,最后计算加减;(3)直接合并同类项即可;(4)可先去括号后,再合并同类项即可.【详解】解:(1)原式=−10+4=−6;(2)原式=−4−4×13=-4-43=153-; (3)原式=22161315b b a a -+-=62b a -;(4)原式=22643246x x x x ---+-=-5.【点睛】此题考查了有理数的混合运算,整式的加减混合运算,难度一般.87.(1)计算:232163327(2)已知2(1)9x -=,求x 的值.【答案】(1);(2)x=4或-2【解析】【分析】(1)原式第一项利用负指数幂法则计算,第二项利用平方根定义计算,第三项化简绝对值,最后一项利用立方根定义计算,然后合并同类二次根式即可得到结果;(2)方程利用平方根定义开方即可求出x 的值.【详解】 解:(1)原式=44333=(2)∵()219x -= ∴13x -=±∴4x =或-2.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.88.计算(1)0(2009)|2|π-(2)1)-【答案】(1)3+(2)13-【解析】【分析】(1)根据零指数幂的性质,二次根式的计算法则,和绝对值的性质计算即可.(2)根据平方差公式和实数运算法则计算即可.【详解】(1)0(2009)2|π-+12=+3=+(2)1)-1861=-13=-【点睛】本题综合考查了实数范围内的运算,熟练掌握各个运算性质是解答的关键.89.对于任意的有理数,a b ,定义关于“⊗”的一种运算如下:2a b a b ⊗=+,例如232237⊗=⨯+=(1)求1125⎛⎫-⊗ ⎪⎝⎭的值 (2)若(5),36x x ⊗-=求x 的值 【答案】(1)45-;(2)10x = 【解析】【分析】(1)根据题目给出的新运算,将对应的数据代入即可得出结果.(2)根据题目给出的新运算,把等式左边用含x 的代数式表示出来,然后就是一个一元一次方程,解这个一元一次方程即可.【详解】解:(1)11114225255⎛⎫⎛⎫-⊗=⨯-+=- ⎪ ⎪⎝⎭⎝⎭ (2)()2536x x ⨯+-= 253615210x x x x -=== 检验:将x=10代入方程,方程左边等于右边,所以x=10是原方程的解.【点睛】本题主要考查的是对新运算的理解以及一元一次方程的解法,正确理解新运算的公式是解题的关键.90.已知 ab224()b a +-的值是__.【答案】1.【解析】【分析】的取值范围,得出a b ,的值,进而求出答案.【详解】4175<<,∴=,a4b∴=,4222222∴+-=+-=-=.(4)44)441b a故答案为:1.【点睛】本题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.。
新人教版初中数学七年级下册第六章《实数》检测试题(含答案)
人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1.若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B.1C.0或1 D.0或±12.下列各式成立的是( C )A. =-1B. =±1C. =-1D. =±13.与最接近的整数是( B )A.0 B.2 C.4 D.54..若x-3是4的平方根,则x的值为( C )A.2 B.±2 C.1或5 D.165.下列说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个 B.2个 C.3个 D.4个B.的平方根是±4A.6.69 B.6.7 C.6.70 D.±6.708.一个底面是正方形的水池,容积是11.52m3,池深2m,则水池底边长是( C )A.9.25m B.13.52m C.2.4m D.4.2m9. 比较2, , 的大小,正确的是(C )A. 2<<B. 2<<C.<2<D.<<210.如果一个实数的算术平方根等于它的立方根,那么满足条件的实数有(C) A .0个 B .1个om] C .2个D .3个二、填空题11.3的算术平方根是____3____.12.(1)一个正方体的体积是216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示_______9_____的立方根;13.已知a ,b 为两个连续整数,且a<15<b ,则a +b 的值为 7 . 14.已知一个有理数的平方根和立方根相同,则这个数是______0______.15.实数1-216.写出39到23之间的所有整数:____3,4 15.0________. 三、解答题17.求下列各数的平方根和算术平方根:(1)1.44;解:1.44的平方根是± 1.44=±1.2,算术平方根是 1.44=1.2. (2)169289; 解:169289的平方根是±169289=±1317,算术平方根是169289=1317.(3)(-911)2.解:(-911)2的平方根是±(-911)2=±911,算术平方根是(-911)2=911.[]18.已知一个正数x的两个平方根分别是3-5m和m-7,求这个正数x的立方根.由已知得(3-5m)+(m-7)=0,-4m-4=0,解得:m=-1.所以3-5m=8,m-7=-8.所以x=(±8)2=64.所以x的立方根是4.19.计算:(1)2+3 2-5 2;(2)2(7-1)+7;(3)0.36×4121÷318;(4)|3-2|+|3-2|-|2-1|;(5)1-0.64-3-8+425-|7-3|.解:(1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7=2 7-2+7=3 7-2.(3)原式=0.6×211÷12人教版初中数学七年级下册第六章《实数》检测卷一、选择题(每题3分,共30分)1. 下列各数中,没有平方根的是( )A. |-4|B. -(-4)C. (-4)2D. -422. 1的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间3. 下列说法中,错误的是( )A. ±2B. 是无理数C.是有理数 D. 4. 下列说法中,错误的是 ( )A. -4是16的一个平方根B. 17是(-17)2的算术平方根C.164的算术平方根是18D. 0.9的算术平方根是0.03 5. 下列语句写成式子正确的是 ( )A. 4是16的算术平方根,即±4B. 4是(-4)2 4C. ±4是16的平方根,即 4D. ±4是16±46. 如图,数轴上点 N 表示的数可能是 ( )A. 10B. 5C. 3D. 27. 在实数0,π,227( ) A. 1个 B. 2个 C. 3个 D. 4个 8. a ,b ,c 在数轴上的对应点如图所示,则|a -b |+|b +c |-|a +c |的值为 ( )A. 2b +2cB. b +cC. 0D. a +b +c 9. 下列四个结论中,正确的是 ( )A.32<52 B. 54<32C.32<2<2 D. 1<2<5410. 一个自然数的算术平方根是a ,则下一个自然数的平方根是 ( ) A. a 2+1 B. ±(a 2+1) C. a 2+1 D. ±a 2+1二、填空题(每题3分,共24分)11.的算术平方根为 ,(-3)2的平方根是 .12. -338的立方根是 ,的立方根是 . 13. 在-5,- 3,0,π,6中,最大的一个数是 .14. =9,则x = ;若x 2=9,则x = .15. 若a <b 且a ,b 为连续正整数,则a 2+b 2的平方根为 .16. 5.70618.044= .17. =3,|b |=5,且ab <0,则a +b 的算术平方根为 .18. 请你辨别:下图依次是面积为1,2,3,4,5,6,7,8,9的正方形,其中边长是有理数的正方形有 个,边长是无理数的正方形有 个.三、解答题(共66分)19. (8分)计算下列各题.(1) |3-|2;(2)20. (8分)求下列各式中的x的值.(1)(x+2)3+27=0;(2)2(2x+1)2-12=0.21. (9分)已知3既是x-1的算术平方根,又是x-2y+1的立方根,求x2-y2人教版七年级数学下册第六章实数复习检测试题一、选择题(每小题3分,共30分)1.下列各数中最大的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平方根B.只有正数有算术平方根C.0和正数都有算术平方根D.负数有算术平方根3.下列语句中,正确的是( )A.无理数都是无限小数B.无限小数都是无理数C.带根号的数都是无理数D.不带根号的数都是无理数4.的立方根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多一个2),3.14这些数中,无理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点一一对应;②不含根号的数一定是有理数;③负数没有平方根;④是17的平方根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所示,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表示数﹣1,1,2,3,则表示2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上二、填空题(每小题3分,共24分)1.按键顺序是“,,则计算器上显示的数是.2.一个数的平方根和它的立方根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平方根为a+3和2a-15,则这个数是.5.比较大小:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下面给出关于这种运算的几种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.6.(8分)设的整数部分和小数部分分别是x,y,试求x,y的值与x﹣1的算术平方根.参考答案与解析一、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A二、填空题11.4 12.0 13.1 14. 49 15.<>16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36.2。
人教版数学七年级下册第六章实数检测题测试卷(含答案)
人教版七年级下册第六章实数检测题测试卷(含答案)一、选择题(每题3分,共30分) 1.下列各数中为无理数的是( )A.9B .3.14C .πD .02.在实数-13,-1,0,3中,最小的实数是( )A .-1B .0C .-13D. 33.116的平方根是( )A .±12B .±14C.14 D.12 4.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间6.下列等式正确的是( )A.22=2B.33=3C.44=4D.55=57.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 8.制作一个表面积为30 cm 2的无盖正方体纸盒,则这个正方体纸盒的棱长是( ) A. 6 cmB. 5 cmC.30 cmD .±5 cm9.已知x -1的立方根是1,2y +2的算术平方根是4,则x +y 的平方根是( )A .9B .±9C .±3D .310.已知实数a ,b 在数轴上对应的点的位置如图所示,则下列式子正确的是( )(第10题)A.ab>0 B.a+b<0 C.|a|<|b| D.a-b>0二、填空题(每题3分,共24分)11.4的算术平方根是_______,9的平方根是_______,-8的立方根是_______.12.已知a为实数,若-a2有意义,则-a2=________.13.计算:|2-3|+2=________.14.一个正数的平方根分别是x+1和x-5,则x=________.15.实数28-2的整数部分是________.16.如图,数轴上A,B两点之间表示整数的点有________个.(第16题)17.已知 2 019≈44.93,201.9≈14.21,那么20.19≈__________.18.一个数值转换器,原理如图所示.当输入x为512时,输出y的值是________.(第18题)三、解答题(19题16分,20,22题每题8分,21,23题每题10分,24题14分,共66分)19.计算:(1)0.09+38-14;(2) 33-2(3-1);(3)|3-32|-32-(-5)2;(4)214-(-2)4+31-1927-(-1)2 019.20.求下列各式中x的值:(1)(x+2)3+1=7 8;(2)25(x2-1)=24.21.已知|2a+b|与3b+12互为相反数.(1)求2a-3b的平方根;(2)解关于x的方程ax2+4b-2=0.22.座钟的摆摆动一个来回所需的时间称为一个周期,其计算公式为T=2πl g,其中T表示周期(单位:s),l表示摆长(单位:m),g≈9.8 m/s2.假如一台座钟的摆长为0.5 m,它每摆动一个来回发出一次滴答声,那么在一分钟内,该座钟大约发出多少次滴答声(可利用计算器计算,其中π≈3.14)?23.如图,一只蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,点A表示-2,设点B所表示的数为m.(1)求m的值;(2)求|m-1|+(m+2)2的值.(第23题)24.你能找出规律吗?(1)计算:9×16=________,9×16=________;25×36=________,25×36=________.(2)请按找到的规律计算:①5×125;②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.答案一、1. C 2. A 3. A 4. D 5. C 6. A7.A8. A9. C10.D点拨:根据a,b在数轴上对应的点的位置可知1<a<2,-1<b <0,∴ab<0,a+b>0,|a|>|b|,a-b>0.故选D.二、11. 2;±3;-212. 013. 314.215. 316. 417. 4.4918. 3 2三、19.解:(1)原式=0.3+2-12=1.8;(2)原式=33-23+2=3+2;(3)原式=32-3-32-5=-8;(4)原式=94-16+3827-(-1)=32-4+23+1=-56.20.解:(1)(x+2)3=-18,x+2=-12,x=-52;(2)x2-1=2425,x2=4925,x=±75.21.解:由题意,得2a+b=0,3b+12=0,解得b=-4,a=2.(1)2a-3b=2×2-3×(-4)=16,所以2a-3b的平方根为±4.(2)把b=-4,a=2代入方程,得2x2+4×(-4)-2=0,即x2=9,解得x=±3.22.解:由题意知l=0.5 m,g≈9.8 m/s2,∴T=2πlg≈2×3.14×0.59.8≈1.42(s).∴在一分钟内,该座钟大约发出601.42≈42(次)滴答声.23.解:(1)∵蚂蚁从点A沿数轴向右直爬2个单位长度到达点B,∴点B所表示的数比点A表示的数大2.∵点A表示-2,点B表示m,∴m=-2+2.(2)|m-1|+(m+2)2=|-2+2-1|+(-2+2+2)2=|-2+1|+4=2-1+4=2+3.24.解:(1)12;12;30;30(2)①原式=5×125=625=25;②原式=53×485=16=4.(3)40=2×2×10=2×2×10=a2b。
人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)
第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。
人教版数学七年级下册第6章《实数》综合测评(附答案)
人教版版七年级下册第6章《实数》综合测评满分120分检测时间100分钟班级________姓名________座号______成绩________一.选择题(共10小题,满分30分)1.下列各数中最小的是()A.0B.1C.﹣D.﹣π2.在,3.1415926,(π﹣2)0,﹣3,,﹣,0这些数中,无理数有()A.2个B.3个C.4个D.5个3.已知,则的值是()A.1B.2C.3D.44.下列说法不正确的是()A.﹣2是负数B.﹣2是负数,也是有理数C.﹣2是负数,是有理数,但不是实数D.﹣2是负数,是有理数,也是实数5.实数m、n在数轴上的位置如图所示,化简|n﹣m|﹣m的结果为()A.n﹣2m B.﹣n﹣2m C.n D.﹣n6.如果≈1.333,≈2.872,那么约等于()A.28.72B.0.2872C.13.33D.0.1333 7.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5B.2.6C.2.8D.2.98.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种9.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.110.已知min{,x2,x}表示取三个数中最小的那个数,例如:当x=9,min{,x2,x}=min{,92,9}=3﹒当min{,x2,x}=时,则x的值为()A.B.C.D.二.填空题(共6小题,满分24分)11.5的平方根是,算术平方根是.12.若的平方根为±3,则a=.13.正方形的面积为5m2,则它的周长为m.14.﹣3的相反数是.15.一次数学游戏活动时,有7个同学藏在大木牌后面,男同学的木牌前写的是正数,女同学的木牌前写的是负数,7个木牌如下所示,则男生有人.16.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)三.解答题(共8小题,满分66分)17.(6分)计算:18.(6分)已知一个正数的平方根为2a﹣1和﹣a+2,求这个正数.19.(8分)求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6420.(8分)把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{ };负分数集合:{ };正数集合:{ };无理数集合:{ }.21.(8分)有一张面积为256cm2的正方形贺卡,另有一个长方形信封,长宽之比为3:2,面积为420cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.22.(10分)某地气象资料表明:某地雷雨持续的时间t(h)可以用下面的公式来估计:,其中d(km)是雷雨区域的直径.(1)雷雨区域的直径为8km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了2h,那么这场雷雨区域的直径大约是多少?23.(10分)观察下表后回答问题:a0.00010.011100100000.01x1y100(1)表格中x=,y=;(2)由上表你发现什么规律?;(3)根据你发现的规律填空:①已知≈1.732,则≈,≈;②已知=0.056,则=.24.(10分)课堂上,老师出了一道题,比较与的大小.小明的解法如下:解:﹣==,因为42=16<19,所以>4,所以﹣4>0.所以>0,所以>,我们把这种比较大小的方法称为作差法.(1)根据上述材料填空(在横线上填“>”“=”或“<”):①若a﹣b>0,则a b;②若a﹣b=0,则a b;③若a﹣b<0,则a b.(2)利用上述方法比较实数与的大小.参考答案一.选择题(共10小题)1.【解答】解:﹣π<﹣<0<1.则最小的数是﹣π.故选:D.2.【解答】解:无理数有,,共2个,故选:A.3.【解答】解:∵,∴1﹣a=﹣8,a=9,∴==3,故选:C.4.【解答】解:A、﹣2小于零,是负数,故A正确;B、﹣2小于零是负数,是整数,也是有理数,故B正确;C、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故C错误;D、﹣2小于零是负数,是整数,也是有理数,有理数属于实数,故D正确.故选:C.5.【解答】解:由实数m、n在数轴上的位置可知,n﹣m<0,所以|n﹣m|﹣m=m﹣n﹣m=﹣n,故选:D.6.【解答】解:∵≈1.333,∴=≈1.333×10=13.33.故选:C.7.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.8.【解答】解:①当a>0,b>0,c>0时,原式=1+1+1=3;②当a>0,b>0,c<0时,原式=1+1﹣1=1;③当a>0,b<0,c>0时,原式=1﹣1+1=1;④当a>0,b<0,c<0时,原式=1﹣1﹣1=﹣1;⑤当a<0,b>0,c>0时,原式=﹣1+1+1=1;⑥当a<0,b>0,c<0时,原式=﹣1+1﹣1=﹣1;⑦当a<0,b<0,c>0时,原式=﹣1﹣1+1=﹣1;⑧当a<0,b<0,c<0时,原式=﹣1﹣1﹣1=﹣3.∴的不同的取值共有4种.故选:C.9.【解答】解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.10.【解答】解:当=时,x=,x<,不合题意;当x2=时,x=±,当x=﹣时,x<x2,不合题意;当x=时,=,x2<x <,符合题意;当x=时,x2=,x2<x,不合题意,故选:C.二.填空题(共6小题)11.【解答】解:5的平方根是±,算术平方根是.12.【解答】解:∵的平方根为±3,∴=9,解得:a=81,故答案为:8113.【解答】解:设正方形的边长为xm,则x2=5,所以x=或x=﹣(舍),即正方形的边长为m,所以周长为4cm故答案为:4.14.【解答】解:﹣3的相反数是3﹣,故答案为:3﹣.15.【解答】解:∵=,=1,﹣(﹣3.5)=3.5∴正数有:,,,﹣(﹣3.5)四个,∵男同学的木牌前写的是正数,∴有4个男同学,故答案为4.16.【解答】解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.三.解答题(共8小题)17.【解答】解:原式==.18.【解答】解:∵一个正数的平方根为2a﹣1和﹣a+2,∴2a﹣1﹣a+2=0,解得:a=﹣1,则2a﹣1=﹣3,故这个正数是:(﹣3)2=9.19.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;∴x1=2,x2=﹣2.(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.20.【解答】解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.21.【解答】解:放不进去;理由:正方形贺卡面积为256cm2,∴贺卡边长为16cm,∵长方形信封,长宽之比为3:2,面积为420cm2,∴信封长3cm,宽为2cm,∵3>16,∴放不进去.22.【解答】解:(1)根据,其中d=8(km),∴t2=,∵t>0,∴t=(h),答:这场雷雨大约能持续h;(2)根据,其中t=2h,∴d2=3600,∵d>0,∴d=60(km),答:这场雷雨区域的直径大约是60km.23.【解答】解:(1)x=0.1,y=10;故答案为:0.1,10;(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;故答案为:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;①=17.32,=0.1732,故答案为:17.32,0.1732;②=560,故答案为:560.24.【解答】解:(1)①若a﹣b>0,则a>b;②若a﹣b=0,则a=b;③若a﹣b<0,则a<b.故答案为:>,=,<;(2)﹣===,∵192=361>198,∴19>,∴19﹣>0.∴>0,∴>.。
人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
人教版数学七年级下册-第六章《实数》单元测试(含答案)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
七年级数学(下)第六章《实数》单元测试题含答案
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根
人教版初中数学七年级下册《实数》测试题(含答案)
第六章《题一、单选题(每小题只有一个 1.25的平方根是() A .±5B .﹣5C .5D .25 2.下列式子中,正确的是() A .3838B .3.60.6C . (3)3D .36623.要使代数式x 2有意x 的取是()A .x ≠2B .x ≥2C .x>2D .x ≤2 4.下列说法正确的是() A .一个数的平方根有两个,它们互为相反数 B .一个数的立方根不是正数就是负数 C .负数没有立方根 D.如果一个数的立方根是这个,那么这个数一定是-1或0或15.在下列各数322 2,3,8,,,36,0.1010010001 3(两个1之间,依次增 加1个0),其中无理数有() A .6个B .5个C .4个D .3个 6.下列说法正确的是() A .正有理数和负有理数统称为有理数 B .符号不同的两个数互为相反数 C.绝对值等于它的相反数的正数 D .两数相加,和一定大于任何一个加数 7.下列各组数中互为相反数的是() A .-2与(-2)2B .-2与38C .2与(-2) 2D .|-2|与2 8.估计56﹣24的值应在() A .5和6之间B .6和7之间C .7和8之间D .8和9之间 9.如图,若A 是实数a 在数轴上对应的点,则关于a ,a ,1的大小关系表示 正确的是()A .a1aB .aa1C .1aaD .1aa10.一个正数的两个平方根分别是2a 1与a 为() A .-1B .1C .-2D .2 11.比较2,5,37的大小,正确的是() A .3725B .2537 C .2375D .5372 12.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形 ABCD 绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;按此规 律继续翻转下去,则数轴上数2020所对应的点是() A .点AB .点BC .点CD .点D二、填空题13.计算:(3)2=________;364 125=________. 14.52的相反数是__________,-36的绝对值是__________. 15.若x +x 有意义,则x +1___________. 16.已知a 、b为两个连续的整数,且a 11b ,则ab__________. 17.已知913与913的小数部分分别是a 和b ,则a b_____________。
精选人教版初中数学七年级下册第六章《实数》单元综合练习题(含答案解析)
人教版七年级数学下册能力提升卷:第六课实数一.选择题(共10小题) 1.下列计算错误的是( ) A .-3+2=-1B .(-0.5)×3×(-2)=3C .232⎛⎫- ⎪⎝⎭=-3D -1.12 ) A .8B .-8C .2D .-23.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a4.-125 ) A .-2B .4C .-8D .-2或-85.小明在作业本上做了4=-5;②=4=-6,他做对的题有( ) A .1道B .2道C .3道D .4道6.数轴上A 、B 两点表示的数分别是-3和3.则表示的点位于A 、B 两点之间的是( )A .πB .-4CD .1037.实数a ,b 在数轴上的位量如图所示,则下列结论正确的是( ) A .|a+b|=a-bB .|a-b|=a-bC .|a+b|=-a-bD .|a-b|=b-a8.在数3,(---中,大小在-1和2之间的数是( )A .-3B .-(-2)C .0D 9.下列各数中:是无理数的有( )A .1个B .2个C .3个D .4个10.已知a,b为两个连续整数,且,<<则a+b的值为()a bA.9 B.8 C.7 D.6二.填空题(共6小题)11.64的平方根是,立方根是,算术平方根是.12.若30.3670=30.7160, 3.670=1.542,则3367== .13.若m的立方根,则m+3=14.|4|-=15.写出一个比4大且比5小的无理数:.161的值在两个整数a与a+1之间,则a= .三.解答题(共8小题)17.求出下列x的值(1)4(x-1)2-36=0(2)27(x+1)3=-6418.(1+.(2|119.已知一个正数的两个平方根分别为a和3a-8 (1)求a的值,并求这个正数;(2)求217a-的立方根.20.把下列各数的序号填在相应的大括号内:①-17;②π;③8||;5--④31;-⑤1;36⑥-0.92;⑦23;-+⑧-;⑨1.2020020002;正实数{ }负有理数{ }无理数{ }从以上9个数中选取2个有理数,2个无理数,用“+、-、×、÷”中的3种不同的运算符号将选出的4个数进行运算(可以用括号),使得计算结果为正整数,列出式子并计算.22.已知2a-1的平方根是±3,已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,求a+b+c的平方根.23.如图,面积为30的长方形OABC 的边OA 在数轴上,O 为原点,OC=5,将长方形OABC 沿数轴水平移动,O,A,B,C 移动后的对应点分别记为1111,,,,O A B C 移动后的长方形1111O A B C 与原长方形OABC 重叠部分的面积记为S . (1)当S 恰好等于人教版七年级数学下册第六章 实数 能力检测卷一.选择题(共10小题) 1.16的平方根是( ) A .4B .-4C .16或-16D .4或-42.下列各等式中计算正确的是( )A ±4B C =-3 D = 323.若方程2(4)x -=19的两根为a 和b ,且a>b,则下列结论中正确的是( ) A .a 是19的算术平方根 B .b 是19的平方根 C .a-4是19的算术平方根D .b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平) A .0个B .1个C .2个D .3个5.如果-b 是a 的立方根,则下列结论正确的是( ) A .3b -=aB .-b=3aC .b=3aD .3b =a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是( ) A .-2B .2C .3D .47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是( ) A .9,10B .10,11C .11,12D .12,138 ) A .线段AB 上B .线段BC 上C .线段CD 上D .线段DE 上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c 的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a 与b 就叫做“差商等数对”,记为(a,b).例如: 4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版七年级数学下册第六章实数单元检测题一、选择题(每题3分,共30分)1.-3的绝对值是( ) A.33 B .-33 C. 3 D.132.下列实数中无理数是( )A. 1.21B.3-8 C.3-32 D.2273. 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A.0个B.1个C.2个D.3个4.下列说法正确的是 ()A.无限小数是无理数B.不循环小数是无理数C.无理数的相反数还是无理数D.两个无理数的和还是无理数5.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20B.x20=2C.x±20=20D.x3=±206.下列选项中正确的是()A.27的立方根是±3B.的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.下列四个数中的负数是()A.﹣22 B.2)1( C.(﹣2)2 D.|﹣2|8无理数一定是无限不循环小数②算术平方根最小的数是零③﹣6是(﹣6)2的一个算术平方根④﹣=其中正确的是()A.①②③B.②③④C.①②④D.①③④9. 已知3≈1.732,30≈5.477,那么300 000≈()A.173.2 B.±173.2 C.547.7 D.±547.7二、填空题(本大题共8小题,共32分)1.比较大小:(填写“<”或“>”)2.观察分析下列数据,寻找规律:0,3,6,3,12,15,18,…,那么第13个数据是________.3.已知实数m满足+=,则m=.4.已知,a 23 <b ,且a 、b 是两个连续的整数,则|a+b|= . 5.若的值在两个整数a 与a +1之间,则a= .6.如图,正方形ABCD 被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm 2和2cm 2,那么两个长方形的面积和为 cm 2. 7.请写出一个大于8而小于10的无理数: .8.数轴上有A 、B 、C 三个点,B 点表示的数是1,C 点表示的数是,且AB=BC ,则A 点表示的数是 .三、解答题(38分)1.(6分)已知实数a ,b 满足a -14+|2b +1|=0,求b a 的值.2.(6分)已知,求的算术平方根.3.(6分)计算: (1)9×(﹣32)+4+|﹣3|(2).4.(本题8分)将下列各数填在相应的集合里.π,3.141 592 6,-0.456,3.030 030 003…(每两个3之间依次多1个0).有理数集合:{…};无理数集合:{…};正实数集合:{…};整数集合:{…}.5.(12分)数学活动课上,张老师说:“2是无理数,无理数就是无限不循环小数,同学们,你能把2的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用(2-1)表示它的小数部分.”张老师说:“晶晶同学的说法是正确的,因为1<2<4,所以1<2<2,所以2的整数部分是1,将这个数减去其整数部分,差就是小数部分.”亮亮说:“既然如此,因为2<5<3,所以5的小数部分就是(5-2)了.”张老师说:“亮亮真的很聪明.”接着,张老师出示了一道练习题:已知8+3=x+y,其中x是一个整数,且0<y<1,请你求出2x+(3-y)2 019的值.参考答案:。
人教版七年级下册数学第六章《实数》单元练习题(含答案)
人教版七年级下册数学第六章《实数》单元练习题(含答案)一、单选题1.在实数130.210.7010728π-,,,,中,其中无理数的个数为( ) A .1 B .2 C .3 D .4 2.下列各数中,无理数是( )A .36B .7 C .227 D .3.1415926534 3.在实数:﹣,3.14159,,π,1.010010001 (4),中,无理数有( ) A .3个 B .4个 C .5个 D .6个4.在 -12,3,-1,0这四个实数中,最大的数是( ) A .3B .-12C .-1D .0 5.在3-,41-,0,2-四个数中,最小的数是( ) A .3- B .41- C .0 D .2- 6.计算|12||23||23|-+-+-的结果是( ) A .0 B .1 C .2 D .31-7.若2≈1.414,a ≈14.14,则整数a 的值为( )A .20B .2 000C .200D .20 0008.数轴上的,,,A B C D 四个点中,离表示2-的点最接近的是( )A .点AB .点BC .点CD .点D9.36的平方根是( ).A .6±B .36C . 6-D .6±10.规定:对任意有理数对(a ,b )=a 2+2b +1.例如:有理数对(-5,-2)=(-5)2+2×(-2)+1=22.若有理数对(-2,1)=n ,则有理数对(n ,-1)的值为( )A .36B .38C .46D .4811.2(0.7)-的平方根是( )A .-0.7B .±0.7C .0.7D .0.4912.下列各式中正确的是( )A .164=±B .382=C .93-=-D .49397±=二、填空题13.如图,点A ,B 在数轴上,以AB 为边作正方形,该正方形的面积是10,若点A 对应的数是-1,则点B 对应的数是________.14.比较大小:51-_______13(填“>”、“<”或“=”). 15.若2316,2a b =-=-,则+a b 的值是__________.16.(1)若一个数的算术平方根是7,那么这个数是______;(2)9的算术平方根是______;(3)22()3的算术平方根是______; (4)若22m +=,则2(2)m +=______;(5)16的算术平方根是______.17.A .如图,正六边形ABCDEF 内接于圆O ,半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为________.B .用科学计算器计算:31002tan 36-︒≈________(精确到0.01).18.49的算术平方根是 .19.有一种运算法则用公式表示为a c b d =ad ﹣bc ,依此法则计算4286--=_____.20.若21m +和5m +是一个正数的两个平方根,则这个正数是__________.三、解答题21.计算:2+22.求满足下列各式的未知数x :(1) (x+1)2=4 (2)3x 3 =2723.计算:03tan6012(2012π)---24.()()2201202012113.14323π-⎛⎫⎛⎫--+⨯- ⎪ ⎪⎝⎭⎝⎭25.求下列各等式中x 的值(1)4(x ﹣1)2=9(2)3(1﹣x )3﹣81=026+(1-y)2=0.(1)求x,y的值;(2)求1xy+()()1x1y1+++()()1x2y2+++…+()()1x2016y2016++的值.27.计算:101tan602()(2)3π-︒++-+28.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定(a,b)※(c,d)=bc-ad例如:(1,2)※(3,4)=2×3-1×4=2根据上述规定解决下列问题:(1)有理数对(4,-3)※(3,-2)=_______(2)若有理数对(-3,2x-1)※(1,x+1)=7,则x=______(3)当满足等式(-3,2x-1)※(k,x+k)=5+2k的x是非零整数时,求整数k的值.29.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i4= ,i5= .(2)计算:①(4+i)(4﹣i);②(3+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请利用以前学习的有关知识将22ii+-化简成a+bi的形式.参考答案1.B2.B3.A4.A5.A.6.B7.C8.B9.A.10.D11.B12.B13.14.>15.12或416.2316 217.4π318.719.-820.921.922.(1)x=1或-3;(2)39x. 23.1.24.-225.(1)x=52或x=﹣12;(2)x=﹣2.26.(1)21xy=⎧⎨=⎩;(2)2017201827.428.(1)-1;(2)1;(3)k=1,-1,-2,-429.(1) 1 I (2) 17 8+6i (3)x=3 y=-1 (4)2 1-3i。
人教版七年级数学下册第六章第三节实数复习试题一(含答案) (47)
人教版七年级数学下册第六章第三节实数复习试题一(含答案)对于一个实数m(m≥0),规定其整数部分为a,小数部分为b,如:当m=3 时,则a=3,b=0;当m=4.5 时,则a=4,b=0.5.(1)当m=π时,b=;当m=时,a=;(2)当m=9 时,求a-b 的值;(3)若a-b1,则m=.【答案】(1)π-3,3;(2)3;(3)11-【解析】【分析】正确估算无理数的大小即可求解.【详解】解:(1)当m=π时<<∵3π4∴a=3,b=π-3当m=时<<∵91116<<∴34<<∴a=3,-3(2)当m=9 时<<∵479<∴23<<∴32-<<-∴93992-<-∴697<<∴a 6,b 963===∴(a b 633-=-=(3) ∵ a -b 1∴()()a 11b 1-+-∴a-11的整数部分,1-b 1的小数部分.∵253036<<<<∴56<<∴51161-<<-∴45<<∴a-1=4 145--=∴a=5,b=6∴m a b 5611=+=+=-【点睛】本题考查了估算无理数的大小的应用,解此题的关键是求出各无理数的范围.62.计算:(1(2)|1【答案】(1)4;14【解析】【分析】(1)先利用乘法分配律,再根据二次根式的性质求解即可. (2)根据绝对值的性质和二次根式的化简即可求解.【详解】解:(1=3+1=4(2)|1-514+14【点睛】此题主要考查实数的混合运算,熟练掌握运算法则是解题关键.63.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.(1)图2中A、B两点表示的数分别为,;(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形.①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.①3的点,(图中标出必要线段长)【答案】(1)11(2)①详见解析;①详见解析【解析】【分析】(1)依据点A1,点A在原点左侧,即可得到点A表示的实数为1B到原点的距离为:1,点B在原点右侧,即可得到点A表示的实数为1+(2)依据所拼正方形的面积为5的长度;(3)依据(23的点.【详解】解:(1)由图可得,点A1,点A在原点左侧,∴点A表示的实数为1,由图可得,点B到原点的距离为:1B在原点右侧,∴点B表示的实数为1故答案为:11+(2)如图所示:(33的点如图所示:【点睛】本题主要考查了实数与数轴,任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.64.计算(1)3﹣(﹣8)+(﹣5)+6;(2)﹣12020+2422133⎛⎫⨯-⎪⎝⎭.【答案】(1)12;(2)6.【解析】【分析】(1)首先写成省略括号的形式,再计算加减即可;(2)先算乘方、开方,再算乘除,后算加减即可.【详解】解:(1)原式=3+8﹣5+6=12;(2)原式=﹣1+24÷3﹣9×19=﹣1+8﹣1=6.【点睛】此题主要考查了实数运算,正确化简各数,掌握计算顺序是解题关键.65.计算:242|- 【答案】11-+【解析】【分析】根据平方根、立方根以及绝对值的性质即可解答.【详解】解:242|- =164(3)(2-+---=1232-+-+=11-+【点睛】本题考查了实数的运算,解题的关键是掌握基本的运算法则.66.现有一块长为7.5dm 、宽为5dm 的木板,能否在这块木板上截出两个面积是28dm 和218dm 的正方形木板?【答案】能截出两个面积是28dm和218dm的正方形木板.【解析】【分析】根据正方形的面积可以分别求得两个正方形的边长是显然只需比较两个正方形的边长的和与7.5的大小即可.【详解】∵两个面积是28dm和218dm的正方形木板的边长是=;1.5,∴ 1.5.55=7⨯;答:能够在这块木板上截出两个分别是8dm2和18dm2的正方形木板.【点睛】此题考查了算术平方根和估算无理数的大小,能够正确求得每个正方形的边长,然后再进行比较是本题的关键67.在实数的计算过程中去发现规律.(1)5>2,而15<12,规律:若a>b>0,那么1a与1b的大小关系是:1a1b .(2)对于很小的数0.1、0.001、0.00001,它们的倒数10.1=;10.001=;10.00001=.规律:当正实数x无限小(无限接近于0),那么它的倒数1x.(3)填空:若实数x的范围是0<x<2,写出1x的范围.【答案】(1)<;(2)10;1000;100000;无穷大;(3)1x >12【解析】【分析】(1)两个正实数,这个数越大,则它的倒数越小,判断出1a 与1b的大小关系即可;(2)首先求出0.1、0.001、0.00001的倒数各是多少;然后判断出当正实数x无限小(无限接近于0),那么它的倒数1x无穷大;(3)根据:0<x<2,可得:1x >12.【详解】解:(1)5>2,而15<12,规律:若a>b>0,那么1a与1b的大小关系是:1 a <1b,故答案为:<;(2)对于很小的数0.1、0.001、0.00001,它们的倒数10.1=10;10.001=1000;10.00001=100000.规律:当正实数x无限小(无限接近于0),那么它的倒数1x无穷大,故答案为:10;1000;100000;无穷大;(3)∵0<x<2,∴1x>12.故答案为:1x >12.【点睛】本题考查了正实数的倒数的大小比较以及规律,注意探究发现规律是解题的关键.68.计算:02021|3(4)2tan 60(1)π-+--+-︒.【答案】3-【解析】【分析】根据负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质进行化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=3121+-=3-【点睛】本题主要考查了负指数幂、零指数幂、绝对值、特殊角的三角函数值及二次根式的性质在实数混合计算中的综合运,难度适中.属于中考常考的基础题.69.计算:(1)321(2)()2-(22【答案】(1)-36;(2)7-【解析】【分析】 (1)先求算术平方根,立方根和平方运算,再进行加减运算,即可求解;(2)先求算术平方根,立方根和绝对值,再进行加减运算,即可求解.【详解】(1)原式=41(8)4(4)3-⨯+-⨯- =(32)(1)3-+--=36-;(2)原式=94(2-+-=7-.【点睛】本题主要考查实数的混合运算,掌握算术平方根,立方根以的概念及求绝对值的法则,是解题的关键.70.计算:(1)30(1)1)-+-(2)210(42)π-+-⨯-(3)))2221- 【答案】(1;(2)7;(3)3--【解析】【分析】本题涉及零指数幂、负整数指数幂、绝对值、二次根式的化简以及乘法公式六个考点.在计算时,需要针对每个考点分别计算,然后根据实数的运算法则求得计算结果.【详解】解:(1)原式= 11-+=(2)原式=16412+⨯-=7(3)原式=5431---=3--【点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、二次根式的化简以及乘法公式,特别注意运用乘法公式简化计算.。
人教版七年级下学期数学《第6章 实数》 单元练习卷 包含答案
第6章实数一.选择题(共10小题)1.|1﹣|=()A.1﹣B.﹣1C.1+D.﹣1﹣2.已知+=0,则a2的值为()A.4B.1C.0D.﹣43.估计的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间4.对于﹣2,下列说法中正确的是()A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为+25.下列各组数中,互为相反数的一组是()A.与B.与C.与D.与6.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣57.若|x+2|+=0,则的值为()A.5B.﹣6C.6D.368.若|a|=4,,且a+b<0,则a﹣b的值是()A.1,7B.﹣1,7C.1,﹣7D.﹣1,﹣7 9.已知﹣1<x<0,那么在x、2x、、﹣x2中最小的数是()A.﹣x2B.2x C.D.x10.实数a满足,则a的值不可能是()A.3B.C.2.8D.2二.填空题(共4小题)11.若x2=144,则x=,若y3=﹣64,则y=.12.已知m是的整数部分,n是的小数部分,则m2﹣n=.13.已知+=0,则x+2=.14.如图,数轴上表示1、的对应点分别为点A、点B,若点A是BC的中点,则点C表示的数为.三.解答题(共6小题)15.把下列各数填入表示它所在的数集的大括号:﹣2.4,π,2.008,﹣,﹣0.,0,﹣10,﹣1.1010010001….整数集合:{…};负分数集合:{…};正数集合:{…};无理数集合:{…}.16.在数轴上表示下列各数:,π,(﹣1)2017,的平方根,﹣|﹣3|,,并将其中的无理数用“<”连接.17.已知实数a,b,c满足:b=+4,c的平方根等于它本身.求的值.18.如图,是一个数值转换器,原理如图所示.(1)当输入的x值为16时,求输出的y值;(2)是否存在输入的x值后,始终输不出y值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由.(3)输入一个两位数x,恰好经过两次取算术平方根才能输出无理数,则x=.19.给出定义如下:若一对实数(a,b)满足a﹣b=ab+4,则称它们为一对“相关数”,如:,故是一对“相关数”.(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是;(2)若数对(x,﹣3)是“相关数”,求x的值;(3)是否存在有理数数m,n,使数对(m,n)和(n,m)都是“相关数”,若存在,求出一对m,n的值,若不存在,说明理由.20.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?参考答案一.选择题(共10小题)1.B.2.A.3.B.4.A.5.C.6.B.7.C.8.D.9.B.10.A.二.填空题(共4小题)11.±12,﹣4.12.12﹣.13.5.14.2﹣.三.解答题(共6小题)15.解:整数集合:{0,﹣10,…};负分数集合:{﹣2.4,﹣,﹣0.,…};正数集合:{π,2.008,…};无理数集合{π,﹣1.1010010001…,…}.16.解:如图所示:将其中的无理数用“<”连接为<π.17.解:∵﹣(a﹣3)2≥0,∴a=3把a代入b=+4得:∴b=4∵c的平方根等于它本身,∴c=0∴=.18.解:(1)=4,=2,则y=;(2)x=0或1时.始终输不出y值;(3)答案不唯一.x=[()2]2=25或x=[()2]2=25或x=[()2]2=49或x =[()2]2=64.故答案是:25或36或49或64.19.解:(1)∵1﹣1≠1×1+4,因此一对实数(1,1)不是“相关数”,∵﹣2﹣(﹣6)≠(﹣2)×(﹣6)+4,因此一对实数(﹣2,﹣6)不是“相关数”,∵0﹣(﹣4)=0×(﹣4)+4,因此一对实数(0,﹣4)是“相关数”,故答案为:(0,﹣4);(2)由“相关数”的意义得,x﹣(﹣3)=﹣3x+4解得,x=答:x=;(3)不存在.若(m,n)是“相关数”,则,m﹣n=mn+4,若(n,m)是“相关数”,则,n﹣m=nm+4,若(m,n)和(n,m)都是“相关数”,则有m=n,而m=n时,m﹣n=0≠mn+4,因此不存在.20.(1)解:由已知AB2=1,则AB=1,由勾股定理,AC=;或根据AC2=1,可得AC=,故答案为:(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.;故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12∴解得x=∴长方形长边为3>4∴他不能裁出.。
人教版七年级数学下册第六章第三节实数复习试题一(含答案) (89)
人教版七年级数学下册第六章第三节实数复习试题一(含答案) 一般情况下2424m n m n ++=+不成立,但有些数可以使得它成立,例如0m n ==.我们称使得2424m n m n ++=+成立的一对数m ,n 为“相伴数对”,记为(m ,n ).(1)试说明(1,-4)是相伴数对;(2)若(x ,4)是相伴数对,求x 的值.【答案】(1)见详解;(2)x=-1【解析】【分析】(1)根据定义即可判断;(2)根据定义列出方程即可求出答案.【详解】解:(1)由题意可知:m=1,n=-4,141242-∴+=- ; ∴(1,-4)是相伴数对;(2)由题意可知:4+4246x x += 解得:x=-1.【点睛】本题考查等式的性质,解题的关键是正确理解相伴数对的定义,本题属于基础题型.82.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【答案】(1)202021-;(2)2020312-;(3)201101554-. 【解析】【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-, ∴201514S -= 即:20123200511555 (54)-+++++= 同理可求⸫10123100511555 (54)-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.83.阅读下列材料:小明为了计算1+2+22+……+22018+22019的值,采用以下方法:设S=1+2+22+……+22018+22019①则2S=2+22+……+22019+22020②②-①得,2S-S=S=22020-1请仿照小明的方法解决以下问题:(1)1+2+22+……+29=;(2)3+32+……+310=;(3)求1+a+a 2+……+a n 的和(a >0,n 是正整数,请写出计算过程).【答案】(1)S=210-1;(2)11332-;(3)111n a a +--,见解析 【解析】【分析】(1)利用题中的方法设S=1+2+22+…+29,两边乘以2得到2S=2+22+…+210,然后把两式相减计算出S即可;(2)利用题中的方法设S=3+32+33+34+…+310,两边乘以3得到3S=3+32+33+34+35+…+311,然后把两式相减计算出S即可;(3)利用(2)的方法计算.【详解】解:(1)令S=1+2+22+……+29①,则2S=2+22+……+210②,②-①得,2S-S=S=210﹣1,即S=210-1.故答案为:210﹣1.(2)令S=3+32+……+310,①则3S=32+33+……+311,②②-①得,3S﹣S=2S=311﹣3,∴S=11 33 2-故答案为:11332-(3)令S=1+a+a2+……+a n,①则aS=a+a2+……+a n+1,②②-①得,aS﹣S=(a﹣1)S=a n+1﹣1,∴S=111naa+--.即1+a+a2+……+a n=111naa+--.【点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.84.计算:))0-+--.2131【答案】【解析】【分析】根据二次根式、绝对值和零指数幂的性质化简,然后再进行计算.【详解】解:原式231=-+-=.【点睛】本题考查了实数的混合运算,熟练掌握二次根式、绝对值和零指数幂的性质是解题关键.85.观察下列等式:12×231=132×21,13×341=143×3123×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×=×25②×396=693×;(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明;(3)若(2)中a ,b 表示一个两位数,例如a =11,b =22,则1122×223311=113322×2211,请写出表示这类“数字对称等式”一般规律的式子(含a ,b ),并写出a +b 的取值范围.【答案】(1)①275,572;②63,36;(2)(10a +b )•[100b +10(a +b )+a ]=[100a +10(a +b )+b ]•(10b +a ),证明见解析;(3)22≤a +b ≤99【解析】【分析】(1)观察几行等式发现规律,根据规律求解即可;(2)根据两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数、个位上的数、十位上的数,即可写出等式;(3)通过观察可知,a 、b 都是个位与十位数字相等的两位数,且c a b +=,则ab bca acb ba =,由此规律写出只含a 、b 的规律的式子,再由2299c ≤≤得+a b 的取值范围.【详解】解:(1)观察可知:若两位数的个位数字、十位数字、个位数与十位数之和分别是三位数的百位上的数字、个位上的数字、十位上的数字,这样的两位数与三位数的积,则等于这个三位数与两位数各自交换个位数字与十位数字所得的三位数与两位数的积,∴①5227557225⨯⨯=②6339669336⨯⨯=.故答案为:①275、572;②63、36.(2)()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦ 验证:等式左边()()()()=1011011111010a b b a a b b a ++=++等式右边()()()()=1101110111010a b b a a b b a ++=++左边=右边.答:表示“数字对称等式”一般规律的式子为:()()()()1010010=1001010a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦;(3)规律:若11a m =,11b n =,(m 、n 均为1至8的自然数),且2299a b ≤+≤,则()()()()10010000100=10000100100a b b a b a a a b b b a ++++++++⎡⎤⎡⎤⎣⎦⎣⎦.+a b 的取值范围为:2299a b ≤+≤.【点睛】本题考查数字变化规律问题,能观察多组数据找出数字间的运算规律是解题关键,从特殊到一般总结出普遍规律是解题难点.86.计算:|﹣4|﹣2cos60°+)0﹣(﹣3)2.【答案】-5【解析】【分析】先将各项化简,再把各项相加即可.【详解】原式4119=-+-5=-【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.87.计算:20191--【答案】-1【解析】【分析】根据实数的计算对原式进行化简即可求解.【详解】 解:原式1=-+1=-.【点睛】本题主要考查了实数的计算,熟练掌握二次根式的化简,绝对值的计算以及有理数的乘方计算是解决本题的关键.88.若一个四位自然数满足个位与百位相同,十位与千位相同,我们称这个数为“双子数”.将“双子数”m 的百位、千位上的数字交换位置,个位、十位上的数字也交换位置,得到个新的双子数m ',记22()1111m m F m '+=为“双子数”m 的“双11数”.例如,1313m =,3131m '=,则2131323131(1313)81111F ⨯+⨯==. (1)计算2424的“双11数”(2424)F =______;(2)若“双子数”m 的“双11数”的()F m 是一个完全平方数,求()F m 的值;(3)已知两个“双子数”p 、q ,其中p abab =,q cdcd =(其中19a b ≤<≤,19c ≤≤,19d ≤≤,c d ≠且a 、b 、c 、d 都为整数,若p 的“双11数”()F p 能被17整除,且p 、q 的“双11数”满足()2()(432)0F p F q a b d c +-+++=,令(,)101p q G p q -=,求(,)G p q 的值. 【答案】(1)12;(2)4或16或36;;(3)51或17.【解析】【分析】(1)直接根据“双子数”m 的“双11数”的计算方法即可得出结论;(2)设出四位数,进而得出F (m )=2(x +y ),再求出0<x +y ≤18,再根据F (m )是一个完全平方数,求出x +y ,即可得出结论;(3)先根据“双11数”F (p )能被17整除,进而判断出p 为8989,求出F (q )=2(c +d ),再根据F (p )+2F (q )﹣(4a +3b +2d +c )=0,得出d 2532c -=,进而求出c ,d ,即可得出结论.【详解】(1)由题意知,2424的“双11数”F (2424)()224244242224242424211111111+⨯+⨯===12. 故答案为:12;(2)设“双子数”m 的个位数字和十位数字分别为x ,y ,(0≤x ≤9,0<y ≤9)则数字m 为1000y +100x +10y +x =1010y +101x ,∴“双子数”m '为1010x +101y ,∴F (m )()()()210101012101010121111111111111111y x x y x y ++++===2(x +y ).∵0≤x ≤9,0<y ≤9,∴0<x +y ≤18.∵F (m )是一个完全平方数,∴2(x +y )是一个完全平方数,∴x+y=2或x+y=8或x+y=18,∴F(m)=2×2=4或16或36,即:F(m)的值为4或16或36;(3)∵“双子数”p,p abab=,∴F(p)=2(a+b).∵“双11数”F(p)能被17整除,∴a+b是17的倍数.∵1≤a<b≤9,∴3≤a+b<18,∴a+b=17,∴a=8,b=9,∴“双子数”p为8989,F(p)=34.∵“双子数”q,q cdcd=,∴F(q)=2(c+d).∵F(p)+2F(q)﹣(4a+3b+2d+c)=0,∴34+2×2(c+d)﹣(4×8+3×9+2d+c)=0,∴3c+2d=25,∴d2532c-=,∵1≤c≤9,1≤d≤9,c≠d,c、d都为整数,∴c为奇数,1≤c<9,当c=1时,d=11,不符合题意,舍去,当c=3时,d=8,∴“双子数”q 为3838,∴G (p ,q )898938385151101101101p q --====51, 当c =5时,d =5,不符合题意,舍去,当c =7时,d =2,∴“双子数”q 为7272,∴G (p ,q )898972721717101101101p q --====17, ∴G (p ,q )的值为51或17.【点睛】本题是新定义题目,主要考查了完全平方数,整除问题,理解和运用新定义是解答本题的关键.89.已知,x y 为有理数,定义一种新运算∆,其意义是x ∆()1y xy x y =++-,试根据这种运算完成下列各题(1)求①2∆3;②(4∆3)∆(-2)(2)任意选择两个有理数,分别代替x 与y ,并比较y x 和y x 两个运算的结果,你有何发现;(3)根据以上方法,探索()b c a b a c a ++与的关系,并用等式把它们表示出来.【答案】(1)①10;②-21;(2)x △y=y △x ;(3)a △b+a △c -a △(b+c) =a -1【解析】【分析】(1)①根据新运算法则计算即可;②先算4∆3的结果,再用结果和-2进行计算.(2)将x,y代入新运算计算即可.(3)分别对两个式子进行计算,得出结果作差即可.【详解】(1)①2∆3=2×3+(2+3)-1=10;②4∆3=4×3+(4+3)-1=18,18∆(-2)=18⋅(-2 )+(18-2)-1=-21.(2)因为x△y=xy +(x+y)-1,y△x=yx +(y+x)-1,发现有x△y=y△x(3)因为a△b+a△c= ab + (a +b) -1+ac + (a +c) -1 = ab +ac+2a +a +b +c - 2 ,a△(b+c) = a(b +c) +a + (b +c) -1 = ab +ac +a +b +c -1所以有a△b+a△c-a△(b+c) =a-1【点睛】本题考查新定义的运算下的代数计算,关键在于理解题意,熟练运用代数计算方法.9020082009-⨯(0.25)4【答案】6-【解析】【分析】先利用乘法结合律计算乘法,最后算减法即可.【详解】原式20082008(0.25)44-⨯⨯2008⨯-⨯)4][(0.2542008-⨯(1)4--⨯=214=6-【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法结合律是解题的关键.。
七年级数学下册第六章【实数】复习题(含答案)
一、选择题1.下列命题中,①81的平方根是9;②16的平方根是±2;③−0.003没有立方根;④−64的立方根为±4;⑤5,其中正确的个数有( ) A .1B .2C .3D .42.在实数﹣34,0,9,215中,是无理数的是( ) A .﹣34B .0C .9D .2153.下列各数中无理数共有( ) ①–0.21211211121111,②3π,③227,④8,⑤39.A .1个B .2个C .3个D .4个4.下列说法中,正确的是 ( ) A .64的平方根是8 B .16的平方根是4和-4 C .()23-没有平方根D .4的平方根是2和-25.下列说法正确的是( ) A .2的平方根是2 B .(﹣4)2的算术平方根是4 C .近似数35万精确到个位 D .无理数21的整数部分是56.如图,直径为1个单位长度的圆从A 点沿数轴向右滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .1π-B .21π-C .2πD .21π+7.已知实数a 的一个平方根是2-,则此实数的算术平方根是( ) A .2±B .2-C .2D .48.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 139.下列计算正确的是( ) A 11-=-B 2(3)3-=-C 42=±D 31182-=-10.和数轴上的点一一对应的数是( ) A .自然数B .有理数C .无理数D .实数11.下列计算正确的是( )A .21155⎛⎫-= ⎪⎝⎭B .()239-=C 42=±D .()515-=-二、填空题12.计算: (13168-. (2)()23540.255(4)8⨯--⨯⨯-.13.计算:(1)(23)(41)----; (2)1111115()13()3()555-⨯-+⨯--⨯-; (3)23(2)|21|27-+;(4)311()()(2)424-⨯-÷-.14.求满足条件的x 值:(1)()23112x -= (2)235x -=15.解方程:(1)24(1)90--=x (2)31(1)7x +-=-16.若一个正数的平方根是3m +和215m -,n 的立方根是2-,则2n m -+的算术平方根是______.17.把下列各数填在相应的集合里: 4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0)正分数集合{ …} 负有理数集合{ …} 非负整数集合{ …} 无理数集合{ …}.18.27-的立方根是___________;81的平方根是___________;| 3.14|π-的绝对值是___________. 19.求下列各式中的x : (1)2940x -=;(2)3(1)8x -=20.已知21a -的平方根是17±,31a b +-的算术平方根是6,求4a b +的平方根. 21.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.三、解答题22.已知31a +的算数平方根是4,421c b +-的立方根是3,c 1322a b c +-的平方根.23.已知1,25x a y a =-=-.(1)已知x 的算术平方根为3,求a 的值; (2)如果x y ,都是同一个数的平方根,求这个数.24.计算:()23143282--⨯--() 25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.一、选择题1.16的算术平方根是( ) A .2 B .4C .2±D .-42.-18的平方的立方根是( ) A .4 B .14C .18D .1643.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2B .4C .8D .64.如图,数轴上表示实数5的点可能是( )A .点PB .点QC .点RD .点S581 ) A .3B .﹣3C .±3D .66.下列选项中,属于无理数的是( ) A .πB .227-C 4D .0764 ) A .8B .8-C .22D .22±8.在 -1.414216π,3 3.212212221…,227,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .59.下列说法正确的有( ) (1)带根号的数都是无理数; (2)立方根等于本身的数是0和1; (3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数. A .1个B .2个C .3个D .4个10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个11.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1B .-5或5C .11或7D .-11或﹣7二、填空题12.计算下列各题(1)﹣2;(2)﹣(结果保留2位有效数字). 13.对于结论:当a +b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成是b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两数也互为相反数”. (1)试举一个例子来判断上述结论的猜测是否成立?(21-的值. 14.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.15.在实数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b 时,a*b=b 2,当a<b时,a*b=a ,则当时,()()1*-3*=x x x ______16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.17.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.)18.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+=()4344313-=⨯-=(1)请你想一想:a b = ;(2)若ab ,那么ab ba (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.19.如图,一只蚂蚁从点A 沿数轴向右爬了2个单位长度到达点B ,点A 表示2-,设点B 所表示的数为m .(1)求11m m ++-的值;(2)在数轴上还有C 、D 两点分别表示实数c 和d ,且有2c d +4d +求23c d -的平方根.20.对于有理数x 、y ,当x ≥y 时,规定x ※y =y x ;而当x <y 时,规定x ※y =y -x ,那么4※(-2)=_______;如果[(-1)※1]※m=36,则m 的值为______.21.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡=⎣,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2⎤⎦=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.三、解答题22.把下列各数在数轴上表示出来,并把它们按从小到大的顺序用“<”连接:1.5-380,134-23.求x 的值:(1)2(3)40x +-= (2)33(21)240x ++=24.求下列各式中x 的值 (1)21(1)64x +-=;(2)3(1)125x -=.25.已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分. (1)求a ,b ,c 的值; (2)求3a b c -+的平方根.一、选择题1.27(7)0y z ++-=,则x y z -+的平方根为( ) A .±2B .4C .2D .±42.下列命题是真命题的是( ) A .两个无理数的和仍是无理数 B .有理数与数轴上的点一一对应 C .垂线段最短D .如果两个实数的绝对值相等,那么这两个实数相等 3.下列实数中,是无理数的为( )A .3.14B .13C D 4.各个数位上数字的立方和等于其本身的三位数叫做“水仙花数”.例如153是“水仙花数”,因为333153153++=.以下四个数中是“水仙花数”的是( ) A .135B .220C .345D .4075.下列说法中,正确的是( ) A .正数的算术平方根一定是正数 B .如果a 表示一个实数,那么-a 一定是负数 C .和数轴上的点一一对应的数是有理数 D .1的平方根是16.1的值( ) A .在7和8之间 B .在6和7之间 C .在5和6之间D .在4和5之间7.对任意两个正实数a ,b ,定义新运算a ★b 为:若a b ≥,则a ★ab b;若a b <,则a ★bba.则下列说法中正确的有( ) ①=a b b a ★★;②()()1a b b a =★★;③a ★b 12a b+<★ A .① B .②C .①②D .①②③8.下列实数31,7π-,3.14,1.010010001…(从左到右,每两个1之间依次增加一个0)中,其中无理数有( ) A .5个B .4个C .3个D .2个9.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .10.设,A B 均为实数,且A B ==,A B 的大小关系是( )A .AB >B .A B =C .A B <D .A B ≥11.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( ) A .7个B .6个C .5个D .4个二、填空题12.解方程:(1)24(1)90--=x (2)31(1)7x +-=-13.对于有理数,a b ,我们规定*a b b ab =- (1)求(2)*1-的值.(2)若有理数x 满足(2)*36x -=,求x 的值.14.定义新运算:对于任意实数a ,b ,都有()1a b a a b ⊕=-+,等式右边是通常的加法、减法及乘法运算,比如:252(25)12(3)1615⊕=⨯-+=⨯-+=-+=-,则(2)3-⊕=________.15.一个正方体的木块的体积是3343cm ,现将它锯成8块同样大小的小正方体木块,则每个小正方体木块的表面积是________.16.<x 的所有整数x 的和是_____.17.计算:(1)(1)|2|3-⨯-+ (2)2111(3)2⎛⎫-+--- ⎪⎝⎭18. 1.414≈,于是我们说:的整数部分为1,小数部分则可记为1”.则:(11的整数部分是__________,小数部分可以表示为__________; (22的小数部分是a,7-b ,那么a b +=__________;(3x的小数部分为y,求1(x y --的平方根. 19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.21.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题22.计算:(1)﹣12﹣(﹣2)(21)+2| 23.1 24.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324) (1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.25.求下列各式中x 的值: (1)()214x -=; (2)3381x =-.。
人教版七年级数学第六章第3节《实数》单元训练题 (9)(含答案解析)
第六章第3节《实数》单元训练题 (9)一、单选题1.下列各组数中都是无理数的为( )A .0.07,23,π; B .0.7•,π;C ,π;D .0.1010101……101,π21的值在( ) A .5~6之间B .6~7之间C .7~8之间D .8~9之间3.下列各数中,无理数有( )3.14125127,0.321,π,2.32232223(相邻两个3之间的2的个数逐次增加1)A .0个B .1个C .2个D .3个4.观察下列各等式:231-+= -5-6+7+8=4-10-l1-12+13+14+15=9-17-18-19-20+21+22+23+24=16……根据以上规律可知第11行左起第11个数是( ) A .-130B .-131C .-132D .-1335.在实数-3.14,0,π中,无理数有( ) A .1个B .2个C .3个D .4个6.下列说法中错误的有( ) ①实数和数轴上的点是一一对应的; ②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±7=±. A .0个B .1个C .2个D .3个7.下列说法中,正确的是( ) A .无理数包括正无理数、零和负无理数B .无限小数都是无理数C .无理数都是无限不循环小数D .无理数加上无理数一定还是无理数8.观察下列运算:81=8,82=64,83=512,84=4 096,85=32 768,86=262 144,…,则81+82+83+84+…+82 017的和的个位数字是( ) A .2B .4C .6D .89.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( ) A .2 B .4C .8D .6二、填空题10______0.5. 11.如图,把正方形的四个角折起来成为阴影的小正方形,四个顶点都落在点M 处,画了如图的三个圆,与数轴的交点为A ,B ,C ,D ,E ,F ,则表示数11点分别是________(填相应的字母,注意顺序).12.《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数——“纯数”.定义:对于自然数n ,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.那么,小于100的自然数中,“纯数”的个数为___________个. 13.如图,在数轴上点A 和点B 之间表示整数的点共有_____个14.观察下列各数的排列规律,可知第9行的第4个数为__________.15.有若干个数,第一个数记为1a ,第二个数记为2a ,,第n 个数记为n a .若112a =,从第二个数起,每个数都等于“1与它前面那个数的差的倒数”.通过计算,由你发现的规律计算2021a =__________. 16.设12211112S =++,22211123S =++,32211134S =++,…,22111(1)n S n n =+++.设n S S =+,则S =_______(用含n 的代数式表示,其中n 为正整数).17.将按下列方式排列,若规定(,)m n 表示第m 排从左向右第n 个数,则(20,9)表示的数的相反数是___18.规定运算:()a b a b *=-,其中b a 、为实数,则4)=____三、解答题19.观察下列各式及其变形过程:11a ==-2a ==3a ==(1)按照此规律,写出第五个等式5a = ;(2)按照此规律,若123···n n S a a a a =++++,试用含n 的代数式表示n S . 20.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作a ⓝ,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:2③= ,1()2-④= ; (2)关于除方,下列说法错误的是A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1ⓝ=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算有理数的除方运算如何转化为乘方运算呢?(3)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于 ; (4)算一算: 1()3-④×1()2-③-1()3-⑧÷63.21.把下列各数写入相应的集合中:-120.1,2π0,0.1212212221...(相邻两个1之间2的个数逐次加1)(1)正数集合{ }; (2)有理数集合{ }; (3)无理数集合{ }.2215,42π-0,0.3737737773……(相邻两个3之间7的个数逐次增加1) 有理数集:______________________ 无理数集:______________________ 整数集:________________________ 分数集:________________________ 23.计算:(1)8+(14-)-5-(-0.25)(22- (3)()1314864⎛⎫-+⨯- ⎪⎝⎭(4)2232113()(2)()32-⨯---÷-24.观察下列两个等式:1122133-=⨯+,2255133-=⨯+,给出定义如下:我们称使等式a-b=ab+1成立的一对有理数a ,b 为“和谐数对”,记为(a ,b ),如:数对(2,13),(5,23)都是“和谐数对”.(1)数对(3,1),(4,35)中是“和谐数对”的是 ; (2)若(x ,y )是“和谐数对”,则(y ,x ) “和谐数对”(填“是”或“不是”); (3)若(m ,5)是“和谐数对”,求m 的值; 25.把下列各数分别填入相应的集合里: ﹣2,114,•5.2-,0,2π,3.1415926,227-,+10%,2.626 626 662……,2020正数集合 {…} 负数集合 { …} 整数集合 { …} 分数集合{…} 无理数集合{…}26.把下列各数分别填入相应的集合中 0, -54,3.14, -|-2|, 2π , 0.130********…, 0.13 (1)整数集合:{________________________…} (2)分数集合:{________________________…} (3)负有理数集合:{____________________…} (4)无理数集合:{______________________…}27.把下列各数分别填入相应的集合里:()2+-,0,0.314-, 5.0101001-(两个1间的0的个数依次多1个),()11--,227,143-,0.33333,325-. 正有理数集合:{ } 无理数集合: { } 整数集合: { } 分数集合: { }28.a ,b 为有理数,如果规定一种新的运算“⊕”,定义:21a b a ab a ⊕=-+-,请根据“⊕”的定义计算下列各题:例如:()()22522521410214115)2(01⊕-⨯-+-=--+-=++-==-.计算:(1)(3⊕4) (2)(2⊕3)⊕(-3) 29.我们知道.在计算21001333++++值时,可设21001333S =++++①则2310133333S =++++②,②-①,得101231S =-,所以101312S -= (1)试利用上述方法求220041888++++的值.(2)211111222++的值. (3)求2345111217777777-+-+-+-+的值.30.已知,x y 为有理数,现规定一种新运算*,满足*1x y xy =-,Θ(-1)x y x y =, 例如:2Θ32(3-1)224=⨯=⨯=;(-2)Θ3(-2)(3-1)(-2)2-4=⨯=⨯=, (1)求()()52*33Θ⨯--的值;(2)求()()()()Θ2Θ12*3*35⎡⎤-⎣⎦⨯--的值.【答案与解析】1.C【解析】根据无理数的定义,依次判断即可.解:A. 0.07,23是有理数,故该选项错误;B.0.7是有理数,故该选项错误;C,π都是无理数,故该选项正确;D.0.1010101……101是有理数,故该选项错误.故选:C.本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.B【解析】的取值即可得到答案.由题意得78<<,617∴<<,1介于6~7之间.故选B.3.D【解析】直接根据无理数的定义直接判断得出即可.,π,2.32232223共3个.故选D.本题考查了无理数的定义,正确把握无理数的定义:无限不循环小数是无理数进而得出是解题关键.4.C【解析】通过观察发现:每一行等式右边的数就是行数的平方,故第n行右边的数就是n的平方,而左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.解:第一行:211=; 第二行:224=; 第三行:239=; 第四行:2416=; ……第n 行:2n ;∴第11行:211121=.∵左起第一个数的绝对值比右侧的数大1,并且左边的项数是行数的2倍,前一半的符号为负,后一半的符号为正.∴第11行左起第1个数是-122,第11个数是-132. 故选:C .此题主要考查探索数与式的规律,正确找出规律是解题关键. 5.B 【解析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.=4,所给数据中无理数有:,π,共2个. 故选:B .本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式. 6.D 【解析】利用实数和数轴的关系,算术平方根,立方根及平方根定义判断即可. ①实数和数轴上的点是一一对应的,正确; ②负数有立方根,错误;③算术平方根和立方根均等于其本身的数有0和1,错误;④49的平方根是7±7=,错误. 综上,错误的个数有3个.故选:D .本题考查了实数和数轴,平方根,算术平方根及立方根,熟练掌握各自的定义是解本题的关键. 7.C 【解析】根据实数的概念和分类即可判断.A 、无理数包括正无理数和负无理数,则此项错误;B 、无限循环小数是有理数,无限不循环小数是无理数,则此项错误;C 、无理数都是无限不循环小数,则此项正确;D (0=,则此项错误; 故选:C .本题考查了实数的概念和分类,熟练掌握实数的概念是解题关键. 8.D 【解析】根据规律可得底数为8的幂的个位数字依次为8,4,2,6,以4个为周期,个位数字相加为0. 2017除以4余数是1,故得到和的个位数字是8. 解:2017÷4=504…1, 循环了504次,还有1个个位数字为8,所以81+82+83+84+…+82017的和的个位数字是504×0+8=8. 故选:D .本题主要考查了数字的变化类,尾数的特征,得到底数为8的幂的个位数字的循环规律是解决本题的突破点. 9.C 【解析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,… ∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8. 故答案是:8.本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,…. 10.> 【解析】根据无理数的估算方法,先估算,再比较大小即可.>2>,11>,12>0.5>. 故答案为:>.本题考查了实数比较大小,熟练掌握无理数的估算是解题的关键. 11.C 、F 【解析】找到三个圆的圆心与半径,结合正方形的性质得到各个点表示的数, 从而得到结果. 解:由题意可得:大正方形的边长为2,中间处的圆是以原点为圆心,阴影正方形的边长为半径,=可得:点B 表示E ,而左右两侧的圆分别以-1和1为半径,∴点A 表示1--D 表示1-点C 表示1F 表示1∴表示数11点分别C 和F , 故答案为:C 、F .本题考查了实数与数轴,解题的关键是找到各个圆的圆形与半径. 12.12 【解析】根据题意,连续的三个自然数各位数字是0,1,2,其他位的数字为0,1,2,3时不会产生进位,然后根据这个数是几位数进行分类讨论,找到所有合适的数.解:当这个数是一位自然数时,只能是0,1,2,一共3个,当这个数是两位自然数时,十位数字是1,2,3,个位数是0,1,2,一共9个,∴小于100的自然数中,“纯数”共有12个.故答案是:12.本题考查归纳总结,解题的关键是根据题意理解“纯数”的定义,总结方法找出所有小于100的“纯数”.13.4【解析】先确定之间的整数即可.21-<-<-,23<<,∴之间的整数为:-1、0、1、2,共4个.故答案为:4.本题主要考查无理数的估算能力以及数轴的意义,数形结合思想的运用是解题关键.14.【解析】根据题意可得数阵中的每个数为其序号的算术平方根,据此得出第9行的第4个数即可. 解:∵前4行共有123410+++=个数,∴前1n -行共有(1)123(1)2n n n -+++⋯+-=个数.∵11,2=3=, ∴数阵中的每个数为其序号的算术平方根,∴前8行共有981238362个数,∴第9行的第440210,故答案是:本题考查了规律型中数字的变化,解题的关键是根据数阵中的每个数为其序号的算术平方根. 15.2【解析】先根据倒数的定义分别求出1234,,,a a a a 的值,再归纳类推出一般规律,由此即可得出答案.由题意得:112a =, 211122a ⎛⎫=÷-= ⎪⎝⎭, ()31121a =÷-=-,()411112a =÷--=⎡⎤⎣⎦,归纳类推得:12,,,n a a a 是以1,2,12-循环往复的,其中n 为正整数, 因为202136732=⨯+,所以202122a a ==,故答案为:2.本题考查了倒数、有理数的除法与减法,依据题意,正确归纳类推出一般规律是解题关键.16.221n n n ++ 【解析】试题分析:先求出S n 111n n +-+,再总结出S 的表达式,从而可以得出结论. 22111(1)n S n n =+++ 222222(1)(1)(1)n n n n n n ++++=+ 222[(1)]221[(1)]n n n n n n ++++=+ 22[(1)1][(1)]n n n n ++=+, (1)111111(1)(1)1n n n n n n n n ++==+=+-+++.n S S ∴+1111111112231n n =+-++-+++-+111n n =+-+ 22(1)1211n n n n n +-+==++. 本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解.17.【解析】根据数的排列方法可知,第一排:1个数,第二排2个数.第三排3个数,第四排4个数,…第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m 排第n 个数到底是哪个数后再计算.(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+…+19+9=199个数,∵1994493÷=……,即1中第三个数故答案为此题主要考查了数字的变化规律,这类题型在中考中经常出现.对于找规律的题目找准变化是关键.18.4【解析】根据题意将原式展开,然后化简绝对值,求解即可.4)+4=4-=4故答案为4.本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键.19.(1(2)1n S =. 【解析】(1)根据上述的规律第五个等式a 5(2)根据(1)总结得到的规律,用含n 的等式表示a n ,然后计算S n ,抵消合并后,即可得到S n =1- 解:()51a =-()2用含字母n (n 为正整数)的等式表示(1)中的一般规律为n a ==123···n n S a a a a ∴=++++1?··=-+ 1=-此题考查了分母有理化,属于规律型题,根据题意找出一般性规律是解本题的关键.20.(1)12,4;(2)C ;(3)21n a -;(4)19- 【解析】(1)根据除方的定义,将原式变形求解;(2)根据除方的定义,结合有理数除法的定义逐一判断即可;(3)根据除方定义展开,然后按照乘方和有理数除法的定义即可总结通项式;(4)根据(3)中通项式将原式每一项展开,然后根据有理数混合运算的运算法则求解即可.(1)2③=2÷2÷2=12, 1()2-④=11112222⎛⎫⎛⎫⎛⎫⎛⎫-÷-÷-÷- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=12222⨯⨯⨯=4 故答案为12,4; (2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确;B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=19,4③=4÷4÷4=14则 3④≠4③; 所以选项C 错误; D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;故选C ;(3)a ⓝ=a÷a÷a…÷a=1÷a n ﹣2=21n a -.(4)由(3)得:1()3-④=421913-=⎛⎫- ⎪⎝⎭,1()2-③=321212-=-⎛⎫- ⎪⎝⎭,1()3-=6821313-=⎛⎫- ⎪⎝⎭故,原式=()66923318119⨯--÷=--=-. 本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.21.(1)0.1、2π0.1212212221...(相邻两个1之间2的个数逐次加1);(2)12-、 0.1、、0 ;(32π、0.1212212221...(相邻两个1之间2的个数逐次加1). 【解析】根据实数的分类标准进行填写即可.解:(1)正数集合{0.1、2π0.1212212221...(相邻两个1之间2的个数逐次加1)};(2)有理数集合{ -12、 0.1、0 };(3)无理数集合2π、0.1212212221...(相邻两个1之间2的个数逐次加1) }. 本题主要考查了实数的分类,掌握有理数和无理数的概念是解答本题的关键.22.有理数集:14,52-,,0π,0.3737737773……(相邻两个3之间7的个数逐次增加1);整数集:,0;分数集合:14,52-,【解析】根据有理数、无理数、整数、分数的定义逐一判断即可.解:有理数集:14,52-,,0;,π,0.3737737773……(相邻两个3之间7的个数逐次增加1);整数集:0;分数集:14,52- 本题考查实数的分类,掌握有理数、无理数、整数和分数的定义是解题的关键.23.(1)3;(2)139-;(3)-76;(4)31【解析】(1)先化简符号,写成省略加好和再计算,(2)先算立方根,算术平方根,化去绝对值,再加减即可,(3)先算乘法对加法分配律,约分后再加减,(4)先算乘方,再把除变乘,除数变它的倒数相乘,再算加减即可.(1)8+(-14)-5-(-0.25)=8-14-5+0.25 =3,(22- =-2+89-2 =139-, (3)()1314864⎛⎫-+⨯- ⎪⎝⎭=1348484864-+⨯-⨯==-48+8-36=-76, (4)2232113()(2)()32-⨯---÷-=119(8)94-⨯--÷=-1+8×4=-1+32=31. 本题考查立方根,算术平方根,绝对值,混合运算等知识,掌握这些知识,熟悉运算顺序,选择恰当方法,会用它们解决问题是关键.24.(1)(4,35);(2)是 ;(3)32m =- 【解析】(1)按等式左右分别计算,比较即可,(2)由(x ,y )是和谐数对,有等式x-y=xy+1,验证(-y ,-x )是否满足等式即可,(3)利用和谐数对等式,列出方程,解方程即可.解:(1)-3-1=-4,-3×1+1=-3+1=-2,所以(-3,1)不是和谐数对, 5-213=33,2135+1=33⨯所以(4,35)是和谐数对, 答案为:(4,35); (2)(x,y )是和谐数对,则有x-y=xy+1,-y-(-x)=x-y ,(-y )(-x )+1=xy+1,-y-(-x)= (-y )(-x )+1,(-y,-x )是和谐数对,答案为:是;(3)解:551m m -=+,得32m =-. 本题考查新定义和谐数对问题,读懂含义,抓住等式,采取验证方法即求代数式值是解决问题的关键.25.见解析.【解析】根据正数、负数、整数、分数、无理数的定义即可得.22 3.1428577-=小数点后的142857是无限循环的, 正数集合 3.1415926,10%,2.626626662,202011,,42,π⎧+⎫⎨⎬⎩⎭; 负数集合•222,,75.2,⎧-⎫--⎨⎬⎩⎭; 整数集合{}2,0,2,020-; 分数集合•5.23.14159261221,,,,10%47,⎧⎫-+⎨⎩⎭-⎬; 无理数集合 2.626626662,,2π⎧⎫⎨⎬⎩⎭. 本题考查了正数、负数、整数、分数、无理数,熟记各定义是解题关键. 26.0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********…【解析】(1)根据整数的定义选出即可;(2)根据负数和分数的定义选出即可;(3)根据负有理数的定义选出即可;(4)根据无理数的定义选出即可.22--=-,(1)整数集合:{0,2--,…}(2)分数集合:{54-,3.14,0.13,…} (3)负有理数集合:{54-,2--,…} (4)无理数集合:{2π , 0.130********…,…}故答案为:0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********…. 本题考查了实数的分类,解题的关键是明确实数包括无理数和有理数,无理数包括正无理数和负无理数,有理数包括正有理数,0,负有理数.27.见解析.【解析】先去括号、化简绝对值,再根据正有理数、无理数、整数、分数的定义即可得.22,()1111--=,22 3.1428577=小数点后142857是无限循环的,332255-=, 正有理数集合:()2211,,0.3333332,5,7⎧⎫--⎨⎬⎩⎭-; 无理数集合:{}5.0101,001-;整数集合:()(){}2,0,11,+---;分数集合:221,,4,0.33333,30.3142,735--⎧⎫-⎨⎬⎩⎭.本题考查了去括号、绝对值、正有理数、无理数、整数、分数,熟练掌握实数的分类是解题关键.28.(1)-1;(2)-4【解析】(1)根据题中的新定义a ⊕b=a 2-ab+a-1,可得a=3,b=4,代入新定义运算,根据有理数的运算法则即可得出结果;(2)先根据题中的新定义a ⊕b=a 2-ab+a-1,可得a=2,b=3,先算出1⊕3,然后再利用新定义可得出最后结果.解:(1)根据题意得:3⊕4=32-3×4+3-1=9-12+3-1=-1; (2)根据题意得:2⊕3=22-2×3+2-1=-1, 则(2⊕3)⊕(-3)=(-1)⊕(-3)=(-1)2-(-1)×(-3)+(-1)-1=1-3-1-1=-4.此题考查了有理数的混合运算,属于新定义的题型.解这种关于定义一种新运算的题目,关键是搞清楚新的运算规则,按规则解答计算.29.(1)2005817-;(2)11112-;(3)13178+ 【解析】(1)设220041888S =++++,得到8S 的值,两式相减即可得到结果; (2)设211111222S =+++,得到231211112222S =+++,两式相减即可; (3)设2345111217777777S =-+-+-+-+,得到7S ,两式相减即可; (1)设220041888S =++++,①, 23200588888S =++++,②,②-①得:2005781S =-,2005817S -=;(2)设211111222S =+++,①, 231211112222S =+++, ①-②得:12111222S =-, 11112S ∴=-; (3)设2345111217777777S =-+-+-+-+,①,234561213777777777S =-+-+-+-+,②,①+②得:13817S =+, 13178S +=. 本题主要考查了实数的规律计算,准确分析计算是解题的关键.30.(1)84;(2)-160.【解析】(1)根据定义的新运算“*、Θ”从左到右计算即可;(2)先根据新运算“*、Θ”计算即可,题目中的中括号指明运算顺序的按指明运算顺序计算. 解:(1)()()52*33Θ⨯--=()()73Θ5-⨯-=21Θ5=84;(2)()()()()Θ2Θ12*3*35⎡⎤-⎣⎦⨯--=()()()1535Θ*-⨯--=()()()116Θ5-⨯--=()80Θ1-=-160.本题考查了定义新运算的意义,结合例子明白新定义的程序是解题的关键,当题目中出现括号时要按照括号指明运算顺序计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册第六章第三节实数学生试卷复习题
(含答案)
有若干个面积为2的正方形,根据下图拼图的启示填空:
(1)____;
(2)___;
(3)____.
【答案】
【解析】
试题分析:第一个图面积为2,
第二个图面积为8,又因为第二个图的边长是由两个面积为2
的正方形的边长组成,所以第二个图的边长又可表示为
2×
=
2×
∴
(1+
(2+
(3.
故答案为:(1)
(2)(3)
82
______.
【答案】-2,-1,0,1,2,3,4
【解析】
试题分析:∵-3
5,
2,-1,0,1,2,3,4. 故答案为:-2,-1,0,1,2,3,4.
83-
+______.
【答案】
【解析】
=
故答案为:
84
_______
____=_____.
【答案】4 44 444
804444个
【解析】 试题分析:用计算器分别进行计算即可得:
4,
44,
444,
根据以上结果可以看出开方结果的位数与底数的位数相同,
804
444个⋅⋅⋅. 故答案为:4,44,444,804444
个⋅⋅⋅.
点睛:本题考查了用计算器计算算术平方根,通过计算,观察出计算结果的位数与被开方数中底数的位数相同是解决此题的关键.
85.已知a 、b 互为相反数,c 、d 互为倒数,则22
22a b a b
-+=_____________. 【答案】-1
【解析】
∵a 、b 互为相反数,
∴a+b=0,
∵c 、d 互为倒数,
∴cd=1,
∴a 2−b 2=(a+b)(a −b)=0,
∴原式=0=−1.
86.|x |<π,则整数x 为_____________.
【答案】0,±1,±2,±3
【解析】
因为|x|<π,而3<π,所以整数x 满足|x|≤3,所以x 为:0,±1,±2,±3. 故答案为:0,±1,±2,±3.
87.所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数。
(________)
【答案】错
【解析】试题解析:所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示实数.说法错误.
故答案为:错.
88.带根号的数都是无理数;(___________)
【答案】错
【解析】
说法错误.
故答案为:错.
89.不带根号的数都是有理数;(__________)
【答案】错
【解析】
试题解析:不带根号的数还可能是有理数,例如π,说法错误.
故答案为:错.
90.实数包括正实数、0、负实数;(________)
【答案】对
【解析】试题解析:根据实数的分类可知:实数包括正实数、0、负实数. 说法正确.
故答案为:对.。