第4课时:分式乘除法
15.2分式的运算(第4课时)课件ppt2013年新人教版八年级上
运用分式的加减法法则
问题1 甲工程队完成一项工程需n 天,乙工程队要 比甲队多用3天才能完成这项工程,两队共同工作一天 完成这项工程的几分之几?
1 1 n+ 3 n + = + 解: n n+3 (n+3) (n+3) n n 2 n+ 3 = . (n+3) n
问题1 甲工程队完成一项工程需n 天,乙工程队要 比甲队多用3天才能完成这项工程,两队共同工作一天 完成这项工程的几分之几? (1)甲工程队一天完成这项工程的几分之几? (2)乙工程队一天完成这项工程的几分之几? (3)甲乙两队共同工作一天完成这项工程的几分之几?
感受学习分式加减法的必要性
问题2 2009年、2010年、2011年某地的森林面积 (单位:km2)分别是S1,S2,S3,2011年与2010年相 比,森林面积增长率提高了多少? (1)什么是增长率? (2)2010年、2011年的森林面积增长率分别是多少? (3)2011年与2010年相比,森林面积增长率提高了多 少?
2 2
运用分式的加减法法则
问题2 2009年、2010年、2011年某地的森林面积 (单位:km2)分别是S1,S2,S3,2011年与2010年相 比,森林面积增长率提高了多少?
解: 即2011年与2010年相比,森林面积增长率提
S1S3 -S 2 2 . 高了 S1S 2
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎么引出分式加减法法则的? (3)在进行分式的加减运算时要注意哪些问题?
布置作业
教科书习题15.2第4、5题.
例 计算: 5 x+ 3 y 2x () 2 2 - 2 2 ; 1 x -y x -y
中考数学一轮总复习 第4课时 分式(无答案) 苏科版
第4课时:分式【课前预习】(一)知识梳理1、分式的有关概念:①定义;②分式有意义的条件;③分式的值为0的条件.2、分式的基本性质:①约分;②最简分式;③通分;④最简公分母.3、分式的运算:①分式的乘除;②分式的加减;③分式的混合运算.(二)课前练习1. 下列有理式: x 1,()12x y +,y x y x --22,π2,3-x x ,1394y x +,212-+x x 中,分式是____ _______________.2、当x 时,分式x x -2有意义,当x 为 时,分式3212-++x x x 的值为零. 3、不改变分式的值,把分式b a b a 212.031+-的分子和分母各项系数化为整数,结果是__ ______.4、约分:222axy y ax =_ ____ ,32)()(x y y x --=___ __, 11222-+-x x x =____ ___. 5、分式245a b c ,2310c a b 与252b ac -的最简公分母为_________;分式11,122-+x x x 的最简公分母为_________. 6、计算① xx x x x x x +-⋅-+÷+--111112122= ; ② 1111--+x x = .【解题指导】例1 计算: (1)112---x x x (2) x x x x x x 11132-⋅⎪⎭⎫ ⎝⎛+-- (3) )212(112a a a a a a +-+÷--例2 化简求值:①(x 2+4x -4)÷ x 2-4 x 2+2x ,其中x =-1, ②222(1)(1)(1)121x x x x x x x --÷+---+,其中210x x +-=.③先化简211()1122x x x x -÷-+-,1-中选取一个你认为合适..的数作为x 的值代入求值.例3、已知22)2(2)2(3-+-=-+x B x A x x ,则A= ,B= .【巩固练习】 1.要使分式212x x x -+-的值为零,则x 的取值为 ( ) A.x =1 B. x =-1 C. x ≠1且x ≠-2 D.无任何实数2.将分式y x xy -中的y x ,都扩大2倍,分式的值 ( ) A.扩大4倍 B.扩大2倍 C.不变 D.缩小23、计算:(1))3()42()(-62322b a b a ab -÷-⋅ (2)222+-+y y y (3))11(122b a b a b a -++÷-4、 先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x【课后作业】 班级 姓名一、必做题: 1.要使分式11x +有意义,则x 应满足的条件是( )A .1x ≠B .1x ≠-C .0x ≠D .1x >2.若分式33x x -+的值为零,则x 的值是( ) A .3 B .3- C .3± D .03.化简222a b a ab -+的结果为( )A .b a -B .a ba - C .a ba + D .b -4.化简22422b a a b b a +--的结果是( )A .2a b --B .2b a -C .2a b -D .2b a +5.计算22()ab a b -的结果是( )A .aB .bC .1D .-b6.分式111(1)a a a +++的计算结果是( )A .11a +B .1a a +C .1aD .1a a +7.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x xx x x x x x x x +-++-=-=-==++-+++.其中正确的是( )A .小明B .小亮C .小芳D .没有正确的8、当x 时,分式12x -无意义;若分式22221x x x x --++的值为0,则x 的值等于 .9、化简: 22a aa += ;=---b a bb a a _____________.10、计算:①(12-a )÷(1a 1-) ②2228224a a a a a a +-⎛⎫+÷ ⎪--⎝⎭11、先化简aa a a a -+-÷--2244)111( ,再选取一个适当的a 的值代入求值.二.选做题:1、 a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 2、某单位全体员工在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务(用含a 的代数式表示).3、设0a b >>,2260a b ab +-=,则a b b a+-的值等于 . 4、(1)若3a b +=0,求22222124b a ab b a b a b ++⎛⎫-÷ ⎪+-⎝⎭; (2已知x 2-3x -1=0,求x 2+1x 2的值.5、观察下列格式:111122=-⨯,1112323=-⨯,1113434=-⨯,… (1)计算111111223344556++++=⨯⨯⨯⨯⨯__________; (2)探究()11111223341n n ++++=⨯⨯⨯+…__________;(用含有n 的式子表示) (3)若()()111117133557212135n n ++++=⨯⨯⨯-+…,求n 的值.。
第4课 分式及其运算
x -3 -3 时,分式 (2)当x=________ 的值为0. x-3 解析:当|x|-3=0,|x|=3,x=±3,
而x-3≠0,x≠3,故x=-3. (3)若分式 A.1
x-2 的值为0,则x的值为( D ) 2 x -1 B.-1 C.±1 D.2
解析:当x-2=0,x=2时,x2-1≠0,故选D.
3.分式的运算法则:
(1)符号法则:分子、分母与分式本身的符号,改变其中 任何两个,分式的值不变. 用式子表示为:a =- a = -a =- -a , b -b -b b - a = a = -a . b -b b (2)分式的加减法: a b a± b ± = 同分母加减法: c c ; c b d bc± ad ± = 异分母加减法: a c ac .
x-2 的值为0. x+2 解析:当x-2=0,x=2时,分母x+2=4,分式的值是0.
2 时,分式 (2)(2011· 泉州)当x=_______
知能迁移1
x 有意义的x的取值范围是________. x≠2 2x-4 解析:当2x-4≠0,x≠2时,分式有意义,
(1)使分式
故x的取值范围是x≠2.
A.x=-2 C.x=1
2x-5 3 = 的解是( C ) 2-x x-2 B.x=2
D.x=1或x=2
1-5= -3=3, 解析:当x=1时,方程左边= 2× 1-2 -1 右边= 3 =3,∴x=1是原方程的解. 2-1
题型分类 深度剖析
题型一 分式的概念,求字母的取值范围 1 【例1】 (1)当x=_______ 时,分式 2 无意义; x-1 解析:当x-1=0,x=1时,分式无意义.
这种变形叫做分式的通分,通分的根据是分式的基本性
分式的乘除法教案
分式的乘除法教案一、教学目标:1. 让学生理解分式的乘法和除法运算规则。
2. 培养学生运用分式的乘除法解决实际问题的能力。
3. 提高学生对分式运算的兴趣和自信心。
二、教学内容:1. 分式的乘法运算:分子乘分子,分母乘分母;2. 分式的除法运算:将除法转化为乘法,即乘以倒数;3. 特殊情况的处理:分式的值为0和不存在的情况。
三、教学重点与难点:1. 教学重点:分式的乘法运算规则和除法运算规则;2. 教学难点:特殊情况下分式的处理和实际应用。
四、教学方法:1. 采用直观演示法,通过例题展示分式的乘除法运算过程;2. 采用归纳法,引导学生总结分式的乘除法运算规则;3. 采用小组讨论法,让学生合作解决实际问题。
五、教学准备:1. 教案、PPT、黑板;2. 练习题;3. 教学工具:多媒体设备。
【教学环节】1. 导入:通过生活实例引入分式的乘除法运算,激发学生兴趣。
2. 新课讲解:讲解分式的乘法运算规则,举例说明,让学生跟随老师一起动手操作。
3. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
4. 讲解分式的除法运算:讲解除法转化为乘法的原理,举例说明。
5. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
6. 特殊情况处理:讲解分式的值为0和不存在的情况,举例说明。
7. 课堂练习:布置练习题,让学生独立完成,巩固新知识。
8. 总结:让学生总结分式的乘除法运算规则,加深印象。
9. 课堂小测:进行课堂小测,了解学生掌握情况。
10. 课后作业:布置课后作业,让学生巩固所学知识。
六、教学评估:1. 通过课堂练习和小测,评估学生对分式乘除法的理解和应用能力。
2. 观察学生在小组讨论中的表现,了解他们的合作能力和解决问题的策略。
3. 收集学生的课后作业,分析他们的错误类型和解决问题的思路。
七、教学反思:1. 反思教学过程中的有效性和学生的参与度,考虑如何改进教学方法以提高学生的学习兴趣。
2. 分析学生的学习困难,针对性地调整教学内容和策略。
初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思
分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。
2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。
c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。
三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。
分式的乘除法说课稿
课题:分式的乘除法一、教材结构分析:分式的乘除法是八年级数学第16章第2节第1课时的内容,是初中数学的重要内容之一。
一方面是在学生学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面又为学习分式加减法和分式方程等知识奠定了基础。
因此,本节课起着承前启后的作用。
二、学习目标设置:1.知道分式乘除法的运算法则。
2.会利用分式乘除法则进行运算。
三、教学目标设置1、理解并掌握分式的乘除法法则,能进行简单的分式乘除法运算,及分式的乘方运算,能解决一些与分式乘除有关的实际问题;2、让学生经历从分数的乘除法运算到分式的乘除法运算的过程,培养学生类比的探究能力,加深对特殊到一般及转化等数学思想的认识,培养学生的数感、符号意识,数学运算能力。
3、学生在主动探索、合作交流中渗透类比、转化的思想,使学生在学习知识的同时感受探索的乐趣和成功的体验。
四、学情分析:已有的知识水平:1、学生在小学阶段已经学习了分数的乘除法运算,理解了算理算法;2、本章的前一节已经学习了分式的基本性质,并会用分式的基本性质进行约分。
已有的方法经验:学生在前面的学习中已经积累了用类比的方法学习整式乘除法的经验。
五、四基三点:基础知识:1.分式乘除法的运算法则。
2.会利用分式乘除法则进行运算。
基本技能:能进行简单的分式乘除法运算。
基本思想:类比思想、转化思想、特殊到一般基本活动经验:让学生经历分式乘除法法则的探究过程,积累用类比的方法探究数学运算法则的经验。
重点:应用法则正确的进行分式乘除法运算。
难点:理解分式乘除法的法则和应用。
易错点:分子、分母是多项式的乘除法运算,由于对因式分解和分式的约分的前经验不足,造成运算错误。
六、重难点处理方法:本节课是运算课,理解算理是难点,掌握算法是重点。
采取以学生自主探究为主的学习方式,类比分数的乘除法运算,学习分式的乘除法运算,以问题导学,递进式展开,应用分式的乘法法则研究分式的乘方运算。
中考数学复习方案(苏科版)第4课时 分式
│ 归类示例 归类示例
► 类型之一 分式的有关概念
命题角度: 1.分式的概念 2.使分式有(无)意义、值为 0(正或负)的条件
1 (1)若分式 有意义,则实数 x 的取值范围是 x-5 ________ x≠5 . 3x2-27 (2)[2011· 内江] 如果分式 的值为 0, 则 x 的值应 x-3 -3 . 为_____运算 1.分式的加减
a b (1)同分母的分式相加减,分母不变,把分子相加减,即 ± = c c a± b ________. c (2)异分母的分式相加减,先通分,变为同分母的分式,然后相 bc ad a c ad± bc bd bd 加减,即 ± = ________± ________= . b d bd 2.分式的乘除 分式乘分式,用分子的积做积的分子,分母的积做积的分母;分 a c 式除以分式, 把除式的分子、 分母颠倒位置后, 与被除式相乘. 即 × b d d ac a a c ad c bd b = ________ , ÷ = ________ × ________= .(b≠ 0, c≠ 0, d≠ 0) b d bc
│ 分式
·江苏科技版
│ 考点聚焦 考点聚焦
考点1 分式
A 字母 , 分式的概念: 形如 (A、 B 是整式, 且 B 中含有________ B B≠ 0)的式子叫做分式. A [辨析] (1)分式 有意义的条件:___________. B≠0 B A (2)分式 的值为 0 的条件:__________________. A=0 且 B≠0 B
·江苏科技版
► 类型之二
分式的基本性质的运用
命题角度: 1.利用分式的基本性质进行通分 2.利用分式的基本性质进行约分
5.2分式的乘除法 课件 30张PPT 北师大版 八年级数学下册
B.xy5
的结果是( A )
C.x2y5
D.x2y6
3.下列计算正确的是( B )
A.a÷ =1
C.a÷a·=a
B. · =
D.
−
��
=-a3b6
4.计算:
+
(1) · = −
−
(2) −
=
(1)
=
=
− 2
(2)(
)=
(3)
· =
;
.
;
基础巩固
1.计算 ÷ 的结果是(
A.
B.
D)
C.2xy
D.
2.(2023·河北)化简x3·
A.xy6
·
(1)解:原式=- =- .
·
−
(2)
· .
−+
· + −
(2)解:原式=
− ·
+
= .
−
例2
计算:
(1) ÷ ;
·
(1)解:原式= · =
+
答:甲的单价是乙的单价的 倍.
−
).
− + = ,
= −,
八年级三维参考答案
八年级三维参考答案第1课时从分数到分式【基础巩固】1.B2.A 点拨:根据分式的概念知的分母都含有字母,所以它们是分式.故选A.此题易把当作分式,而π是一个常数,不是字母,所以是整式.注意分式定义包含两点:①在中,B中含有字母;②B不能为零.3.B 点拨:分式值为零的条件是:①分子为0,②分母不为0.由分子x2-1=0,得x=±1,由分母x+1≠0,得x ≠-1,∴当x=1时,分式值为零.4.(1)a=0 (2)a=(3)a<且a≠0 (4)a>5.6.解: (1)当x+3≠0,即x≠-3时,分式有意义;(2)当x+3≠0且2x2-18=0,即x=3时,分式的值为零.点拨:求使分式的值等于零的数,可令分子等于零,但是求出的值要代入分母验证,看分母是否为零,使分母为零的值不是原分式方程的解.【能力提升】1.A2.C3.D4.A 点拨:分式的值为正数的条件为分子、分母同号,即1-4x<0,所以x>.5.6.(1)≠3 (2)2 (3)-37.6 点拨:当x=2时,分式无意义,即分母x2-5x+a=0,将x=2代入即可求出a=6.8.解: (1)环;(2)总的盐重为(m+5)克,而溶液的总质量为(m+n+5)克,所以盐水的含盐量为×100%.点拨:在计算平均值时,要谨防出现的错误;在应用题中,部分学生不太注重计算,经常会出现“=m+n”的错误.9.解:因为分式的值为负数,所以或解得.第2课时分式的基本性质【基础巩固】1.B 点拨:分式的符号法则是:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.2.B 点拨:约分是将分子与分母中的公因式约去.约分的方法和步骤包括:①当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的最大公因数的积;②当分子、分母是多项式时,应先将多项式分解因式,约去公因式.3.B4.(1)10a2b2c (2)xy2(a-b) (3)3x(x+2)(x-2)5.解:6.解:点拨:分式约分时要注意分子、分母是多项式时一定要分解因式,转化为整式乘积的形式,这样才能确定公因式.确定公因式的方法:①找分子、分母的系数的最大公因数;②找分子、分母中相同的字母或因式(是多项式时一定要分解因式);③相同的字母或因式取次数最低的.此外,在约分的过程中还要注意对分子、分母的符号进行处理.7.解: (1)∵最简公分母为24x3y3z2,(2)∵2-2x=2(1-x)=-2(x-1),x2-2x+1=(x-1)2,∴最简公分母是2(x-1)2,点拨:通分的关键是确定最简公分母,最简公分母确定的方法:①最简公分母的系数取各分母系数的最小公倍数;②最简公分母的字母因式,取各分母所有不同字母及因式的最高次幂的积.【能力提升】1.B2.C3.D4.C5.C6.A7.D 点拨:因为,所以,所以|a|=-a,所以a<0且a-1≠0,所以a<0. 8.9.解: (1)原式=,当x=5时,原式=9;(2)原式=,当x=110,y=10时,原式=.10.解:分两种情况讨论:当a=±3时,分母a2-9=0,所以分式无意义.当a≠±3时,要使分式的值为正整数,3-a应为6的正因数,所以3-a=1或3-a=2或3-a=3或3-a=6.所以a=2或a=1或a=0或a=-3.由于a≠-3,所以a=2或a=1或a=0.点拨:此题需经过约分化简之后再求满足条件的a的值,要注意所求的a的值要满足使分式有意义.11.解:显然x≠0,则第3课时分式的乘除【基础巩固】1.C2.B3.4.1.55.6.解:当m=6时,原式=.点拨:注意本题所选取的m的值应该使原式有意义.如m的值不能选取-1、1、-2.7.解: (1)当x=2时,原式=1;(2)当x=-3时,原式=1.【能力提升】1.B2.C3.C4.C 点拨:5.6.点拨:7.x≠3且x≠4且x≠-2 点拨:需考虑分式化简前后分式有意义的条件.8.-4021 点拨:应先进行分式化简再代入.9.解: (1)(2)10.解:与x的值无关(除0和±1外).∴当x=2010或2001时,原式的值都为0.11.解:设则x=2k,y=3k,z=4k,第4课时分式的乘方及乘除混合运算【基础巩固】1.D2.C3.±14.解:点拨:分式的乘方应对分式的分子、分母中每个因式分别乘方,包括系数.特别地,当系数为负数时,计算时先确定结果的符号.乘方与乘除法的混合运算中,应先算乘方,后算乘除.5.解:由,得解得【能力提升】1.B2.A3.C4.5.9 点拨:先对进行化简.6.7.解:第5课时分式的加减【基础巩固】1.D2.B3.B4.C5.1 点拨:6.x(x+2)(x-2)7.8.解:点拨:异分母分式的加减法一定要先通分,再加减.分母是多项式的异分母分式相加减,要先将分母分解因式,确定最简公分母再通分.【能力提升】1.A2.A3.(1)-1 (2)14.(1)B (2)不正确漏掉了分母(3)5.解:6.解:当a=2011,b=2012时,原式=4b=8048.7.解:解不等式组得-5≤x<6.当x=-4时,原式=.(选取的数不为5,-5即可,答案不唯一)第6课时分式的混合运算【基础巩固】1.B2.D3.解:4.解:,当x=3时,原式=4.点拨:这是一道分式混合运算的题,首先算括号里的,即通分;再进行分式的除法运算;最后代入使原式有意义的x的值,再求值.5.解:当6.解:又由x+4>0解得x>-4,由2x+5<1解得x<-2,∴不等式组的解集为-4<x<-2,其整数解为x=-3.【能力提升】1.B2.D3.B4.B 点拨:5.a6.a-17.8.9.解:∵x是整数,∴x=3.当x=3时,原式=;∵,且x为整数,∴若使分式有意义,x只能取-1和1.当x=1时,原式=.当x=-1时,原式=1.第7课时整数指数幂【基础巩固】1.A 点拨:2.C3.A4.8×10-8m 点拨:根据把一个小于1的数用科学记数法表示的规定可得.5.点拨:6.解:(3)原式=3-1+4-1=5.7.解:光纤的横截面积为1×π×÷(400×103)=4π×10-9(平方米),∴10-4÷(4π×10-9)≈7.962×103.答:1平方厘米是这种光纤横截面积的7.962×103倍.【能力提升】1.D2.D3.9.63×10-54.(1)2 (2)2 (3)-15.解:左边=(52)2m÷52m-1=54m÷52m-1=52m+1,右边=53,∴52m+1=53,解得m=1.6.解:根据题意,得a+b=0,cd=1,x=±1,y=±2,∴(±1)0=1,(±2)2=4,∴原式=1+(-1)1999-4=-4.精彩一题(2)解:方法一:∵(x+x-1)2=x2+x-2+2=9,∴x2+x-2=7,∴x3+x-3=(x+x-1)(x2+x-2)-(x+x-1)=3×7-3=18,∴x5+x-5=(x2+x-2)(x3+x-3)-(x+x-1)=7×18-3=123.方法二:∵(x+x-1)2=x2+x-2+2=9,∴x2+x-2=7,∴x3+x-3=(x+x-1)·(x2+x-2)-(x+x-1)=3×7-3=18,∴x4+x-4=(x2+x-2)2-2=49-2=47,∴x5+x-5=(x+x-1)·(x4+x-4)-(x3+x-3)=123.第8课时分式方程【基础巩固】1.D2.B 点拨:根据分式方程的定义可知,是分式方程的有3.D4.x=2 点拨:去分母,得x=2x-2.解得x=2.经检验可知x=2是原方程的解.5.-2 点拨:去分母,解方程,得x=5+m.∵原方程无解,∴x=5+m不是原分式方程的解,∴m+5=3,∴m=-2.6.解:(1)方程两边都乘最简公分母(2x-1)(x-2),得2x(x-2)+x(2x-1)=2(2x-1)(x-2).解得x=.检验:把x=代入最简公分母(2x-1)(x-2)=≠0,∴x=是原方程的解;(2)原方程变形得.方程两边都乘x(x+1)(x-1),得7(x-1)+3(x+1)=6x,解得x=1.检验:把x=1代入最简公分母x(x-1)(x+1)=0.∴原方程无解.7.解:方程两边同乘(x-4)(x+k),得3(x+k)=4(x-4),解得x=3k+16.∵方程有正根,且x≠4,x≠-k,解得k>且k≠-4.【能力提升】1.D2.C 点拨:去分母,得3(x-1)=2x,解得x=3.经检验x=3是原方程的解.3.B 点拨:去分母,得x-1=m,∴x=m+1.∵分式方程无解,∴m+1=4,∴m=3.4.B5.6.57.18.m>2且m≠3 点拨:原分式方程两边都乘(x-1)得m-3=x-1,即x=m-2.因为x>0且x≠1,所以m-2>0且m-2≠1,即m>2且m≠3.9.解: (1)x=1; (2)方程两边同乘(x-1)(x+1),得2(x-1)-x=0,解得 x=2.检验:当x=2时,(x-1)(x+1)≠0,∴x=2是原方程的根; (3)方程两边同乘x(x+3)(x-1),得5(x-1)-(x+3)=0,解得 x=2.检验:当x=2时,x(x+3)(x-1)≠0,∴x=2是原方程的解.10.解:根据题意得,解得x=1,经检验,x=1是原方程的根,所以当x=1时,分式的值比分式的值大3.11.解:解分式方程得x=-m-2.∵x≠±2,∴-m-2≠±2,∴m≠-4且m≠0.解不等式组得x≤-2,∴-m-2≤-2,∴m≥0.∵m≠0,∴m>0.第9课时分式方程的应用【基础巩固】1.C2.C3.点拨:轮船顺水航行40千米所需要的时间为小时,逆水航行30千米所需要的时间为小时.4.解:设原计划x天完成任务,根据题意,得.解得x=14.经检验:x=14是原方程的解.答:原计划14天完成任务.5.解:设B车间每天能加工x件,则A车间每天能加工1.2x件,由题意,得解得x=320.经检验x=320是原分式方程的解.∴1.2×320=384(件).答:A车间每天能加工384件,B车间每天能加工320件.点拨:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,再列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答,必须严格按照这5步进行解题,规范解题步骤,另外还要注意完整性.由题意可得等量关系:A、B车间生产4400件所用的时间+B车间生产4400件所用的时间=20天,由等量关系可列出方程.6.解:(1)设第一批购进书包的单价是x元,则,解得x=80.经检验,x=80是原方程的解. 答:第一批购进书包的单价是80元;(2)×(120-80)+×(120-84)=1000+2700=3700(元).答:商店共盈利3700元.【能力提升】1.A2.A3.B4.5.点拨:乙每天的工作效率为,甲每天的工作效率为,根据“工作量=工作效率×工作时间”列方程.6.67.解:设甲车间每天加工零件x个,则乙车间每天加工零件1.5x个.根据题意,得经检验,x=60是方程的解,符合题意.1.5x=90.答:甲、乙两车间每天加工零件分别为60个、90个.8.解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意,得,解得 x=2.5.经检验,x=2.5是原方程的解,且符合题意.∴甲同学所用时间为+6=26(秒).乙同学所用时间为=24(秒).∵26>24,∴乙同学获胜.9.解: (1)设第一次每个书包的进价是x元.根据题意,得解得x=50.经检验,x=50是原方程的根.答:第一次每个书包的进价是50元;(2)设最低可打m折,则解得m≥8.答:最低可打8折.10.解: (1)设甲种玩具的进价为x元/件,则乙种玩具的进价为(40-x)元/件.根据题意,得,解得x=15.经检验,x=15是原方程的解.∴40-x=40-15=25.答:甲、乙两种玩具的进价分别为15元/件、25元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48-y)件.根据题意,得解得20≤y<24.∵y是整数,∴y取20、21、22、23.答:商场共有4种进货方案.精彩一题解: (1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要天.根据题意,得解得x=90.经检验:x=90是原方程的解.∴90=60.∴甲、乙两队单独完成这项工程分别需要60天和90天;(2)甲、乙两队合作完成这项工程需要的天数为1÷=36(天).需要施工费用:36×(0.84+0.56)=50.4(万元).∵50.4>50,∴工程预算的施工费用不够用,需追加预算0.4万元.第10课时复习课【综合复习】1.C2.D3.D4.B5.3.5×10-56.x≠0且x≠17.18.13 点拨:分式无意义,则2x-a=0;分式的值为0,则5x+3b=0且2x-a≠0.拨:10.解:去分母,得1=3x-1+4,解得.经检验:是原方程的解.11.解:=(a-2)(a+1)=a2-a-2.由a2-a=0,得原式=0-2=-2.12.解:化简原式=0, 因此只要保证x能使原式有意义,结果均正确.13.解:设甲单独用x天完成任务,乙单独用y天完成任务.根据题意,得解得所以即甲单独用18天完成任务,乙单独用9天完成任务.14.解:(1)设货物总量为单位“1”,由题意可得甲每次运吨,乙每次运吨.∵,∴乙车每次运的货物量是甲车每次运的货物量的2倍;(2)设货物共有x吨,那么甲每次运吨,乙每次运吨,甲运180吨时运了(次),乙运270吨时运了270÷=(次).由题意,得(x-180)÷=(x-270)÷,∵a≠0,x≠0,∴,解得x=540.∵甲车运180吨时,丙车运540-180=360(吨),∴丙车每次的运货量也是甲车运货量的2倍.所以甲车主应得运费:540×20×=2160(元),乙、丙两车主各得运费:2160×2=4320(元).即甲车主应得运费2160元,乙、丙两车主各得运费4320元.【聚焦中考】1.A2.A 点拨:A.,故本选项错误;B.,故本选项正确;C.,故本选项正确;D.,故本选项正确.3.C 点拨:方程的两边同乘(x+3)(x-3),得12-2(x+3)=x-3,解得x=3.检验:把x=3代入(x+3)(x-3)=0,即x=3不是原分式方程的解.故原方程无解.4.x+5 点拨:5.3 点拨:由题意,得-1=0,解得x=3,经检验,x=3是原方程的根.6.点拨:7.点拨:8.解:9.解: (1)去分母,得3(5x-4)+x-3=6x+5,解得x=2.检验:当x=2时,3(x-3)≠0,∴原方程的解为x=2;(2)方程两边同乘(x+2)(x-2),得x(x+2)-(x+2)(x-2)=8.解得x=2.检验:当x=2时,(x+2)(x-2)=0,∴原分式方程无解.10.解:∵a=1,-3<b<且b为整数,∴b=-2或0.∴当a=1,b=-2时,原式=1-(-2)=3;当a=1,b=0时,原式=1-0=1;∵x2-1≠0且x2-x≠0且x2-2x+1≠0,∴x≠±1且x≠0.又∵-1≤x≤3,且x为整数,∴x=2或3.当x=2时,原式=;当x=3时,原式=.11.解: (1)设第一次每支铅笔进价为x元,根据题意,得解得x=4.经检验,x=4是原分式方程的解.答:第一次每支铅笔的进价为4元;(2)设每支铅笔的售价为y元,根据题意,得解得y≥6.答:每支铅笔的售价至少是6元.12.解: (1)设李明步行的速度为x米/分,则骑自行车的速度为3x米/分,根据题意,得解得x=70.经检验,x=70是原方程的解.答:李明步行的速度是70米/分;(2)李明总共需要的时间为∴李明能在联欢会开始前赶到.13.解: (1)由题意,得,解得x=4.∴x2-1=16-1=15.答:乙车床单独加工完成这种零件所需的时间是15小时;(2)不能相同.理由如下:若乙车床的工作效率与丙车床的工作效率相同,由题意,得解得x=1.经检验x=1不是原方程的解,∴原方程无解.答:乙车床的工作效率与丙车床的工作效率不能相同.。
《分式乘法和除法》教学设计
分式的乘法和除法分式的乘除法教学目标1 通过类比得出分式的乘除法则,并会进行分式乘除运算。
2 了解约分、最简分式的概念,会对分式的结果约分。
3 培养学生自主学习能力,类比学习能力,培养学生的创新意识和应用数学的意识。
重点、难点重点:分式乘除法则及运用分式乘除法则进行计算难点:分式乘除法的计算教学过程一创设情境,导入新课1 分数的乘除法复习 计算:;158********)1(=⨯⨯=⨯;631097259275)2(=⨯⨯=⨯;651210435245325432)3(==⨯⨯=⨯=÷.1445279529759275)4(=⨯⨯=⨯=÷ 分数乘法、除法运算的法则是什么?2 类比:把上面的分数改为分式:()(1),2f u f u g v g v⨯÷()怎样计算呢? 这节课我们来学习----分式的乘除法(板书课题)二 合作交流,探究新知1 分式的乘除法则()(1),2(0)f u f u f u f v f v u g v g v g v g u g u⋅⋅⨯=÷=⋅=≠⋅⋅ 你能用语言表达分式的乘除法则吗?分式乘分式,把分子乘分子,分母乘分母,分别作为积的分子、分母,然后约去分子、分母的公因式。
分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2 分式乘除法则的初步应用及分式的约分和最简分式的概念例1 计算: ()()22232321;2511x y x x y x x x ⋅÷-- 学生独立完成,教师点评 点评:(1)分式的乘法,可以先把分子、分母分别相乘再约去分子、分母的公因式,这叫约分。
分子、分母没有公因式的分式叫最简分式。
(2)分式的除法运算实际上是转化为分式的乘法运算,这里体现了“转化”的思想。
例2 计算:;1421)1(22-⋅+x x x x .12128)2(22+÷++x x x x x 点评:如果分子、分母含有多项式因式,因先分解因式,然后按法则计算。
2014年 苏版 全品 数学 中考 复习 第1单元 数与式 第4课时 分式
考点聚焦 归类探究 回归教材
通分 最简公分 母
第4课时┃考点聚焦
考点3 分式的运算
a±b a b ± = ________ ; c c c ad bc ad±bc a c ± = ________± ________ bd = bd bd b d
考点聚焦
归类探究
回归教材
第4课时┃归类探究
探究四、分式的创新应用
命题角度: 1.探究分式中的规律问题; 2.有条件的分式化简.
1 例 4、[2012· 凉山州] 对于正数 x,规定 f(x)= ,例如:f(4) 1+ x 1 1 1 1 4 = = , f = = , 则 f(2012)+ f(2011)+„+f(2)+ f(1) 1 5 1+ 4 5 4 1+ 4
零时分式无意义. (2)分式的值为零的条件是:分式的分子为零,分母不为 零. (3)分式的值为正的条件是:分子与分母同号;分式的值为
负的条件是:分子与分母异号.分式的值为正(负)经常与
不等式组结合考查.
考点聚焦
归类探究
回归教材
第4课时┃归类探究
探究二、分式的基本性质的运用
命题角度: 1.利用分式的基本性质进行通分; 2.利用分式的基本性质进行约分. 例2.[2012•义乌] 下列计算错误的是( A )
考点聚焦
归类探究
回归教材
第4课时┃回归教材
解
析
x-x2- 12 ( x- 1) 2 · 2 原式= 1- 1 - x x - x+ 1
= 1-(x2-x+ 1)=-x2+x.
12 1 1 4 当 x=- 时,原式=-- - =- . 3 3 9 3
八年级上册数学分式的乘除
在八年级上册的数学课程中,我们学习了一个重要的主题——分式的乘除。
分式是一种特殊的数学表达式,它包含了一个或多个字母,这些字母表示未知数。
分式的乘除运算与整数和小数的乘除运算有所不同,需要遵循一定的规则。
首先,我们来学习分式的乘法。
分式的乘法是将两个分式相乘,得到一个新的分式。
在进行乘法运算时,我们需要先将分子与分子相乘,然后将分母与分母相乘。
例如,计算2/3乘以4/5,我们可以得到(2*4)/(3*5)=8/15。
接下来,我们来学习分式的除法。
分式的除法是将一个分式除以另一个分式,得到一个新的分式。
在进行除法运算时,我们需要先将被除数的倒数乘以除数,然后进行乘法运算。
例如,计算2/3除以4/5,我们可以得到(2*5)/(3*4)=10/12=5/6。
在学习分式的乘除时,我们需要掌握一些基本的技巧和规律。
例如,我们可以将复杂的分式化简为最简形式,这样可以简化计算过程。
此外,我们还需要注意约分和通分的概念,这对于解决实际问题非常重要。
人教版八年级上册数学教案15.2 分式的运算(5课时)
15.2 分式的运算 15.2.1 分式的乘除 第1课时 分式的乘除一、基本目标 【知识与技能】理解分式乘除法的运算法则,并能正确进行计算. 【过程与方法】经历分析、对比的过程,类比分数的乘除法法则得出分式的乘除法法则,利用分式的乘除法法则进行计算,增强对法则的理解与掌握.【情感态度与价值观】通过探索分式的乘除法法则的过程,提高对比、归纳的能力,培养从已学知识中推导新知识的习惯.二、重难点目标 【教学重点】 分式的乘除法法则. 【教学难点】运用分式的乘除法法则进行计算并解决实际问题.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P135~P137的内容,完成下面练习. 【3 min 反馈】1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为a b ·c d =a ·c b ·d.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为a b ÷c d =a b ·d c =a ·db ·c.3.分式的乘除法运算,运算结果应化为最简分式.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)c 2ab ·a 2b 2c ; (2)y 7x ÷⎝⎛⎭⎫-2x . 【互动探索】(引发学生思考)利用分式的乘除法法则进行计算时,需要注意什么? 【解答】(1)原式=a 2b 2c 2abc =abc .(2)原式=y 7x ·⎝⎛⎭⎫-x 2=-xy 14x =-y 14. 【互动总结】(学生总结,老师点评)利用分式乘除法法则进行计算,运算结果应化为最简分式.活动2 巩固练习(学生独学)1.计算a 2-1(a +1)2÷a -1a ,结果正确的是( D )A.12 B .a +1a +2C .a +1aD .a a +12.计算: (1)x 2y x 3·⎝⎛⎭⎫-1y ; (2)a 2-4b 23ab 2·ab a -2b ;(3)x 2-x x -1÷(4-x ); (4)42(x 2-y 2)x ·-x 235(y -x )3.解:(1)原式=-x 2y x 3y =-1x.(2)原式=(a +2b )(a -2b )3ab 2·ab a -2b =a +2b3b .(3)原式=x (x -1)x -1·14-x =x4-x.(4)原式=42(x +y )(x -y )x ·x 235(x -y )3=6x (x +y )5(x -y )2.活动3 拓展延伸(学生对学)【例2】已知(a +b -2)2+||1-a =0,求4a 2-ab 16a 2-8ab +b 2·2a的值. 【互动探索】利用已知等式求出a 、b 的值→计算分式的乘法,化简所求式子→代入a 、b 值进行计算.【解答】∵(a +b -2)2+||1-a =0,∴⎩⎪⎨⎪⎧ a +b -2=0,1-a =0.解得⎩⎪⎨⎪⎧a =1,b =1.4a 2-ab16a 2-8ab +b 2·2a =a (4a -b )(4a -b )2·2a =24a -b. 将a =1,b =1代入上式,得原式=24a -b =24-1=23.【互动总结】(学生总结,老师点评)根据非负数的性质求出a 、b 的值后,要代入化简后的式子进行计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第2课时 分式的乘方及乘除混合运算一、基本目标 【知识与技能】理解分式的乘方法则,掌握分式乘方与乘除混合运算的运算顺序. 【过程与方法】经历计算、思考、归纳的过程,归纳出分式的乘法法则,通过分式的乘除混合运算和乘方运算,加深对分式乘除法法则和乘方法则的记忆,并了解乘方与乘除法混合运算的运算顺序.【情感态度与价值观】通过归纳分式乘方法则的过程,养成归纳意识,通过运用分式的乘除法法则和乘方法则进行混合运算,提高计算能力.二、重难点目标 【教学重点】分式的乘方法则和混合运算顺序. 【教学难点】运用分式的乘除法法则和乘方法则正确计算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P138~P139的内容,完成下面练习. 【3 min 反馈】1.教材第138页“思考”:⎝⎛⎭⎫a b 2=a 2b 2;⎝⎛⎭⎫a b 3=a 3b 3;⎝⎛⎭⎫a b 10=a10b 10.2.分式的乘方法则:分式乘方要把分子、分母分别乘方.用字母表示:⎝⎛⎭⎫a b n =a nb n . 3.分式的乘除法和乘方的混合运算,先算乘方,再算乘除法. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:2x -64-4x +x 2÷(x +3)·(x +3)(x -2)3-x. 【互动探索】(引发学生思考)类比整式的乘除混合运算顺序进行分式混合运算. 【解答】原式=2x -64-4x +x 2·1x +3·(x +3)(x -2)3-x =2(x -3)(2-x )2·1x +3·(x +3)(x -2)3-x =2(x -3)(x -2)2·1x +3·(x +3)(x -2)-(x -3)=-2x -2【互动总结】(学生总结,老师点评)计算分式的乘除混合运算时,先统一为乘法运算,再依次进行计算.【例2】计算:(1)⎝⎛⎭⎫-2b 2a 33; (2)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2·⎝⎛⎭⎫c a 4. 【互动探索】(引发学生思考)利用分式的乘方法则进行计算时应该注意什么?当式子里同时有乘除法和乘方时,运算顺序是怎样的?【解答】(1)原式=(-2b 2)3(a 3)3=-8b 6a 9.(2)原式=c 6a 4b 2÷c 8a 6b 2·c 4a 4=c 6a 4b 2·a 6b 2c 8·c 4a 4 =c 2a2. 【互动总结】(学生总结,老师点评)分式乘方时,注意分子、分母分别乘方,式子中有乘除法与乘方时,先算乘方,再算乘除法.活动2 巩固练习(学生独学)1.已知⎝⎛⎭⎫x 3y 22÷⎝⎛⎭⎫-x y 32=6,则x 4y 2的值是( A ) A .6 B .36 C .12 D .32.计算:(1)3ab 22x 3y ·⎝⎛⎭⎫-8xy 9a 2b ÷3x (-4b ); (2)3(x -y )2(y -x )3·(x -y )4÷9y -x ; (3)⎝⎛⎭⎫c 3a 2b 2÷⎝⎛⎭⎫c 4a 3b 2÷⎝⎛⎭⎫a c 4; (4)⎝⎛⎭⎫a -b ab 2·⎝ ⎛⎭⎪⎫-a b -a 3·(a 2-b 2). 解:(1)16b 29ax 3.(2)(x -y )43.(3)c 2a 2. (4)a (a +b )b 2.活动3 拓展延伸(学生对学)【例3】许老师讲完了分式的乘除一节后,给同学们出了这样一道题,若x =-2018,求代数式x 2-4x 2+x +1÷x 2-2x x 3+x 2+x ·1x +2的值.小明通过计算,发现题目中的x =-2018是多余的.你认为小明的发现是否正确?【互动探索】先计算分式乘除运算的值→验证分式乘除运算的结果与x 的关系. 【解答】x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2=(x +2)(x -2)x 2+x +1·x (x 2+x +1)x (x -2)·1x +2=1.∴代数式x 2-4x 2+x +1÷x 2-2xx 3+x 2+x ·1x +2的值是一个定值,与x 的取值无关.故小明的发现是正确的.【互动总结】(学生总结,老师点评)将代数式化简后,如果结果是一个常数,那么该代数式的值与其中字母的取值无关.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.2 分式的加减 第3课时 分式的加减一、基本目标 【知识与技能】1.理解分式的加减法法则,并能正确计算分式加减法. 2.掌握异分母分式加减法的计算步骤,并能正确计算. 【过程与方法】经历思考、类比、归纳的过程,理解分式的加减法法则,在掌握分式通分的基础上,掌握异分母分式加减法的计算方法.【情感态度与价值观】类比分数的加减法法则理解分式的加减法法则,养成类比思考的习惯,通过运用分式的加减法法则进行加减法运算,提高运算能力.二、重难点目标 【教学重点】 分式的加减法法则. 【教学难点】异分母分式的加减法的计算步骤.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P139~P140的内容,完成下面练习. 【3 min 反馈】 1.观察填空: (1)15+25=35; (2)15-25=-15; (3)12+13=36+26=56; (4)12-13=36-26=16. 同分母分数相加减,分母不变,把分子相加减. 异分母分数相加减,先通分,再把分子相加减. 2.类比分数的加减,你能说出分式的加减法则吗? (1)同分母分式相加减,分母不变,把分子相加减.用字母表示为a c ±b c =a ±bc.(2)异分母分式相加减,先先通分,变为同分母的分式,再加减. 用字母表示为a b ±c d =ad bd ±bc bd =ad ±bcbd .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x +3y x 2-y 2-x +2yx 2-y 2; (2)1a +3+6a 2-9; (3)m +2n n -m -n m -n +2m n -m ; (4)1x -3+1-x 6+2x -6x 2-9. 【互动探索】(引发学生思考)利用分式的加减法法则进行计算,异分母分式相加减时,应该注意什么?【解答】(1)原式=x +3y -(x +2y )x 2-y 2=5yx 2-y 2. (2)原式=a -3(a +3)(a -3)+6(a +3)(a -3)=a +3(a +3)(a -3)=1a -3. (3)原式=m +2n n -m +n n -m +2mn -m=3m +3n n -m.(4)原式=2(x +3)2(x +3)(x -3)+(1-x )(x -3)2(x +3)(x -3)-122(x +3)(x -3)=-(x 2-6x +9)2(x +3)(x -3)=-x -32x +6.【互动总结】(学生总结,老师点评)异分母分式相加减时,首先要通分,变为同分母分式再加减.活动2 巩固练习(学生独学) 1.下列运算中正确的是( C ) A.a a -b -b b -a=1 B .m a -n b =m -n a -bC.a 2a -b -b 2a -b =a +b D .b a -b +1a =1a3.计算: (1)3a +2b 5a 2b +a +b 5a 2b ;(2)b 2a -b +a 2b -a; (3)3b -a a 2-b 2-a +2b a 2-b 2-3a -4b b 2-a 2; (4)x x -y +x x +y -x 2x 2-y 2. 解:(1)4a +3b5a 2b .(2)-a -b .(3)a -3ba 2-b 2. (4)x 2(x +y )(x -y ). 活动3 拓展延伸(学生对学)【例2】已知3x +4x 2-x -2=A x -2-B x +1,其中A 、B 为常数,求4A -B 的值.【互动探索】要求4A -B 的值,需要先求出A 与B 的值.通过化简等式右边,再对比可求出A 、B 的值.【解答】Ax -2-Bx +1=A (x +1)(x +1)(x -2)-B (x -2)(x +1)(x -2)=(A -B )x +(A +2B )(x +1)(x -2).因为3x +4x 2-x -2=Ax -2-Bx +1=(A -B )x +(A +2B )(x +1)(x -2),所以⎩⎪⎨⎪⎧A -B =3,A +2B =4.解得⎩⎨⎧A =103,B =13.故4A -B =4×103-13=13.【互动总结】(学生总结,老师点评)通过对比等式中等号两边的分式,得出关于A 、B 的二元一次方程,求出A 、B 的值,从而求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!第4课时 分式的混合运算一、基本目标 【知识与技能】1.明确分式混合运算的运算顺序.2.运用分式的运算法则正确计算分式的混合运算. 【过程与方法】经历计算、对比、归纳的过程,明确分式混合运算的运算顺序,在明确运算顺序的基础上,正确计算分数的混合运算.【情感态度与价值观】类比分数的混合运算的运算顺序得出分式的混合运算顺序,养成类比思考的习惯,通过运用分式的运算法则进行混合运算,提高运算能力.二、重难点目标 【教学重点】分式混合运算的运算顺序.【教学难点】正确计算分式的混合运算.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P141~P142的内容,完成下面练习. 【3 min 反馈】1.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.2.分式运算与分数运算一样,结果必须化为最简,能约分的要约分,保证结果是最简分式或整式.活动1 小组讨论(师生互学) 【例1】计算:(1)x x -y ·y 2x +y -x 4y x 4-y 4÷x 2x 2+y 2; (2)⎝⎛⎭⎫2a b 2·1a -b -a b ÷b 4; (3)⎝⎛⎭⎪⎫x +2x 2-2x -x -1x 2-4x +4÷4-x x. 【互动探索】(引发学生思考)利用分式的混合运算运算顺序计算. 【解答】(1)原式=xx -y ·y 2x +y -x 4y(x 2+y 2)(x 2-y 2)·x 2+y 2x2=xy 2(x -y )(x +y )·-x 2yx 2-y 2=xy (y -x )(x -y )(x +y )=-xy x +y .(2)原式=4a 2b 2·1a -b -a b ÷b 4=4a 2b 2(a -b )-4a b2=4a 2-4a (a -b )b 2(a -b ) =4abb 2(a -b )=4ab (a -b ).(3)原式=[x +2x (x -2)-x -1(x -2)2]·x -(x -4) =[(x +2)(x -2)x (x -2)2-x (x -1)x (x -2)2]·x -(x -4)=x 2-4-x 2+x x (x -2)2·x -(x -4)=-1x 2-4x +4.【互动总结】(学生总结,老师点评)分式混合运算,先乘方,再乘除,最后加减,注意结果化成最简分式或整式.活动2 巩固练习(学生独学)1.若代数式⎝⎛⎭⎫A -3a -1·2a -2a +2的化简结果为2a -4,则整式A =( A ) A .a +1 B .a -1 C .-a -1 D .-a +12.计算:(1)⎝⎛⎭⎫x 2x -2+42-x ÷x +22x ; (2)⎝⎛⎭⎫a a -b -b b -a ÷⎝⎛⎭⎫1a -1b ; (3)⎝⎛⎭⎫1+y x -y ⎝⎛⎭⎫1-xx +y ;(4)⎝⎛⎭⎫x 2y 2·y 2x -x y 2·2y 2x.解:(1)2x . (2)-ab (a +b )(a -b )2. (3)xy x 2-y 2. (4)x -16y 8y.活动3 拓展延伸(学生对学)【例3】先化简⎝⎛⎭⎫1-1x -1÷x 2-4x +4x 2-1,再从不等式2x -1<6的正整数解中选择一个适当的数代入求值.【互动探索】先化简代数式→解一元一次不等式→从解集中选择一个数代入求值. 【解答】原式=x -2x -1÷(x -2)2(x +1)(x -1)=x +1x -2.由2x -1<6,得x <72.故不等式的正整数解为1,2,3.当x =3时,原式=x +1x -2=3+13-2=4.【互动总结】(学生总结,老师点评)选择x 的值时,要使每个分式都有意义. 环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!15.2.3 整数指数幂(第5课时)一、基本目标 【知识与技能】1.理解负整数指数幂的意义,掌握整数指数幂的运算性质.2.掌握利用10的负整数次幂,用科学记数法表示一些小于1的正数. 【过程与方法】经历思考、计算、对比的过程,理解负整数指数幂的意义,在此基础上,将正整数指数幂的性质推广到任意整数,从而掌握整数指数幂的性质.【情感态度与价值观】类比正整数幂的性质,结合负整数指数幂的意义,推导出整数指数幂的性质,养成类比思考的习惯,通过运用10的负整数次幂,用科学记数法表示一些小于1的正数,提高运用所学知识的能力.二、重难点目标 【教学重点】负整数指数幂的意义,整数指数幂的运算性质. 【教学难点】用科学记数法表示一些小于1的正数.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P142~P145的内容,完成下面练习. 【3 min 反馈】 一、负整数指数幂1.正整数指数幂的运算有:(a ≠0,m 、n 为正整数) (1)a m ·a n =a m +n ; (2)(a m )n =a mn ; (3)(ab )n =a n b n ; (4)a m ÷a n =a m -n ; (5)⎝⎛⎭⎫a b n =a nb n ; (6)a 0=1.2.负整数幂:一般地,当n 是正整数时,a -n =1a n(a ≠0),这就是说,a -n (a ≠0)是a n 的倒数.二、科学记数法1.绝对值大于10的数记成a ×10n 的形式,其中1≤︱a ︱<10,n 是正整数.n 等于原数的整数数位减去1.(2)用科学记数法表示:100=102;2000=2.0×103;33000=3.3×104.2.类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值小于1的数,即将它们表示成a ×10-n 的形式.(其中n 是正整数,1≤|a |<10)3.用科学记数法表示:0.01=1×10-2;0.001=1×10-3;0.0033=3.3×10-3. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)x 2y -3(x -1y )3;(2)(2ab 2c -3)-2÷(a -2b )3;(3)3a -2b ·(2ab -2)-2;(4)4xy 2z ÷(-2x -2yz -1).【互动探索】(引发学生思考)利用整数指数幂的运算性质进行计算时应该注意些什么? 【解答】(1)原式=x 2y -3x -3y 3=x -1y 0=1x .(2)原式=14a -2b -4c 6÷(a -6b 3)=14a 4b -7c 6=a 4c 64b 7.(3)原式=3a -2b ·14a -2b 4=34a -4b 5=3b 54a4.(4)原式=-2x 3yz 2.【互动总结】(学生总结,老师点评)利用整数指数幂的运算性质进行计算,结果负整数指数幂写成分数的形式.【例2】用科学记数法表示下列各数: (1)0.0000001; (2)0.00024; (3)0.0000000035.【互动探索】(引发学生思考)用科学记数法表示小于1的正数,一般形式是怎样的? 【解答】(1)0.0000001=1×10-7. (2)0.00024=2.4×10-4. (3)0.0000000035=3.5×10-9.【互动总结】(学生总结,老师点评)小于1的正数可以用科学记数法表示为a ×10-n 的形式,其中1≤a <10,n 是正整数.【例3】计算:(1)(2×10-6)2·(3×10-4);(2)(3×10-5)3÷(10-3)-2.【互动探索】(学生总结,老师点评)用科学记数法表示的数的有关计算应该注意些什么?【解答】(1)(2×10-6)2·(3×10-4)=(4×10-12)·(3×10-4)=12×10-16=1.2×10-15. (2)(3×10-5)3÷(10-3)-2=(27×10-15)÷106=27×10-21=2.7×10-20.【互动总结】(学生总结,老师点评)用科学记数法表示的数的有关计算,结果应符合科学记数法.活动2 巩固练习(学生独学)1.计算(-π )0÷⎝⎛⎭⎫-13-2的结果是( D ) A .-16B .0C .6D .192.计算:(1)(m 3n )-2·(2m -2n -3)-2;(2)(2xy -1)2·xy ÷(-2x -2y );(3)⎝⎛⎭⎫b a -2·⎝⎛⎭⎫a b 2; (4)(2m 2n -1)2÷3m 3n -5.解:(1)n 44m 2.(2)-2x 5y 2.(3)a 4b 4.(4)43mn 3.3.用科学记数法表示下列各数:(1)0.000021; (2)0.00000034; (3)0.00102. 解:(1)2.1×10-5. (2)3.4×10-7. (3)1.02×10-3.环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。
八年级数学 (分式)教案 人教新课标版 教案
2.分式的乘除法一、教学目标:1、知识与技能目标:1、分式的乘除运算法则2、会进行简单的分式的乘除法运算2、过程与方法目标:1、类比分数的乘除运算法则,探索分式的乘除运算法则。
2、能解决一些与分式有关的简单的实际问题。
3、情感态度与价值观目标:1、通过师生讨论、交流,培养学生合作探究的意识和能力。
2、培养学生的创新意识和应用意识。
二、教学重点:分式乘除法的法则三、教学难点:分式乘除法的法则四、课时安排1课时五、教具学具准备小黑板一块六、教学方法类比方法七、教学过程活动一:黑板展示1442225599⎧⎪⎨⨯÷⨯÷⎪⎩、复习小学分数乘除法法则;2255、计算下列各题:,,,3377活动二:联想猜测:黑板背面展示:a d a db c b c?,a d a cb c b d−−→÷⨯←−−?阅读课本74p至例1——例2结束(除“做一做”外),仔细观察各步运算,通过小组讨论交流,并与分数的乘除法的法则类比,总结出分式的乘除法的法则。
(分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.)活动三:当堂训练1、根据题意,列出分式,完成“做一做”2、76p随堂练习,习题3.3知识技能第1题八、课堂小结:1.分式的乘除法的法则2.分式运算的结果通常要化成最简分式或整式.3. 学会类比的数学方法九、巩固练习课本P77习题3.3第2、4题3.分式的加减法 一、教学目标:1、知识与技能目标:1、同分母的分式的加减法的运算法则及其应用;2、简单的异分母的分式的加减法的运算;2、过程与方法目标:根据学生已有的经验,通过一些问题的提出。
诱发学生积极思考,或通过合作交流,引导学生自己解决问题,从而总结出规律。
3、情感态度与价值观目标:1、经历从现实情境中提出问题,提出“用数学”的意识。
2、结合已有的教学经验,解决新问题,获得成就感以及克服困难的方法和勇气。
人教版初中八年级上册数学课件 《分式方程》分式(第4课时)
分式方程①的解应该是用含有字母s,v的式 子表示的值.
含字母的分式方程 若分式方程中除了含有表示未知数的字母外,还含有 表示已知数的字母,则该方程是含有字母的分式方程.
含字母的分式方程的解法 含字母的分式方程与一般分式方程的解法相同,需要注 意的是,要找准哪个字母表示未知数,哪个字母表示已 知数,同时还要注意题目中所给的限制条件.
即 x2 - m2 x2 - n2 2x2 - 2(m n)x 2mn ,
整理得 2(m n)x (m n)2,
因为 m ≠n,所以m+n≠0,解得x m n ,
2
经检验,x m n 是原分式方程的解. 2
随堂练习
1.已知关于x的分式方程 ax - 2 1的解与方程 x 4 3
解:方程两边同时乘以x(x-1),得6x=x+3-k(x-1). 整理得(5+k)x=3+k.
①原分式方程有解,则 x 3 k ,则 3 k 0 且 3 k ≠1,
解得k≠-3.
5k 5k 5k
②x存在,则 3 k 有意义,即k≠-5. 5k
所以k的取值范围是k≠-3且k≠-5.
课堂小结
列分式方程解决实际问题的一般步骤 审:审清题意,找出题中的相等关系,分清题中的已 知量、未知量; 设:设出恰当的未知数,注意单位和语言的完整性; 列:根据题中的相等关系,正确列出分式方程; 解:解所列分式方程; 验:既要检验所得的解是否为所列分式方程的解,又 要检验所得的解是否符合实际问题的要求; 答:写出答案.
相同.
a1 x-1
x
所以将x=2代入含字母的分式方程,可得关于a的一个 分式方程,
分式的乘除法教学设计及教学反思
分式的乘除法教学设计及教学反思§3.2 分式的乘除法教学设计教学⽬标(⼀)教学知识点1.分式乘除法的运算法则,2.会进⾏分式的乘除法的运算.(⼆)能⼒训练要求1.类⽐分数乘除法的运算法则.探索分式乘除法的运算法则.2.在分式乘除法运算过程中,体会因式分解在分式乘除法中的作⽤,发展有条理的思考和语⾔表达能⼒.3.⽤分式的乘除法解决⽣活中的实际问题,提⾼“⽤数学”的意识.(三)情感与价值观要求1.通过师⽣共同交流、探讨,使学⽣在掌握知识的基础上,认识事物之间的内在联系,获得成就感.2.培养学⽣的创新意识和应⽤数学的意识.●教学重点让学⽣掌握分式乘除法的法则及其应⽤.●教学难点分⼦、分母是多项式的分式的乘除法的运算.●教学⽅法引导、启发、探求●教学过程Ⅰ.创设情境,引⼊新课[师]上节课,我们学习了分式的基本性质,我们可以发现它与分数的基本性质类似,那么分式的运算是否也和分数的运算类似呢?[⽣]观察上⾯运算,可知:两个分数相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母;两个分数相除,把除数的分⼦和分母颠倒位置后,再与被除数相乘.即×=;÷=×=.这⾥字母a,b,c,d都是整数,但a,c,d不为零.[师]如果让字母代表整式,那么就得到类似于分数的分式的乘除法.Ⅱ.讲授新课1.分式的乘除法法则[师⽣共析]分式的乘除法法则与分数的乘除法法则类似:两个分式相乘,把分⼦相乘的积作为积的分⼦,把分母相乘的积作为积的分母;两个分式相除,把除式的分⼦和分母颠倒位置后再与被除式相乘.2.例题讲解请同学们认真阅读课本74页例1和76页例2体会法则在解题中的运⽤.并思考下列问题:1.分式的除法运算归根结底化成了什么运算?2.当分式的分⼦、分母是多项式时应怎么办?3.当运算结果不是最简分式时,应怎么办?[例1]计算:(1)·;(2)·.分析:(1)将算式对照乘除法运算法则,进⾏运算;(2)强调运算结果如不是最简分式时,⼀定要进⾏约分,使运算结果化为最简分式.解:(1)·===;(2)·==.[例2]计算:(1)3xy2÷;(2)÷分析:(1)将算式对照分式的除法运算法则,进⾏运算;(2)当分⼦、分母是多项式时,⼀般应先分解因式,并在运算过程中约分,可以使运算简化,避免⾛弯路.解:(1)3xy2÷=3xy2·==x 2;(2)÷=×===Ⅲ.随堂练习⾃学效果反馈(⼀)⾃学效果反馈(⼆)1、计算(1)(2)(3)(a 2-a )÷(4)÷ 2、计算正确吗?⾃学效果反馈(三)做⼀做 b b a a b -+?-2239aba b a a b a b a --?+-2224( 1 ) 2 a b b a ?1计算: ( 4 ) 22234 b 8a ba ÷( 3 )b a b a 3 2÷( 2 ) xy ab b a y x 89 272322?221a a =÷=b b a 12÷()3 123222+÷+--+x x x x x 22224n m n m n m ???? ??-÷⑴⑵通常购买同⼀品种的西⽠时,西⽠的质量越⼤,花费的钱越多。
八年级-人教版-数学-上册-第4课时-分式的混合运算
a c = ad bc = ad bc .
b d bd bd
bd
问题
计算
5 8
1 3
2
1 9
4
2 3
1 4
.
解:
5 8
1 3
2
1 9
4
2 3
1 4
=
5 8
1 3
2
1 9
4
5 12
= 51 1 4 5
8 9 9 12
=55
8,运算顺序是什么?
第4课时 分式的混合运算
1.分式的乘法法则: 分式乘分式,用分子的积作为积的分子,分母的积 作为积的分母.
上述法则可以用式子表示为 a c = ac.
b d bd
2.分式的除法法则: 分式除以分式,把除式的分子、分母颠倒位置后, 与被除式相乘.
上述法则可以用式子表示为 a c = a d = ad.
2m 3m
2m
3m
= 2(m 3) = 2m 6;
例2 计算:
(1)
m
2
2
5 m
2m 4 3m
;
(2)
x x2
2 2x
x2
x 1 4x
4
x
x
4.
解:(2)
x x2
2 2x
x2
x 1 4x
4
x
x
4
=
x2 x(x 2)
x 1 (x 2)2
x
x
4
=
(x
2)(x x(x
例1
计算
2a b
2
a
1 b
a b
b.
4
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【学习课题】第4课时 分式乘除法
【学习目标】1、类比分数乘除法的运算法则.探索分式乘除法的运算法则;
2、会进行分式的乘除法的运算;
【学习重点】掌握分式乘除法的法则及其应用。
【学习难点】分子、分母是多项式的分式的乘除法的运算。
【学习过程】 学习准备: 1. 阅读教材74—76。
2. 计算
(1)
627
5
⨯
= (2)
411______22
3
⨯
= (3)
53_____9
10
÷
= (4)
42______9
3
÷
=
新知探究 3.思考:
a
b ×
c
d =?
a
b ÷
c
d =?与同伴交流总结并完成填空:
两个分式相乘,把____________作为积的分子,把_____________作为积的分母,用字母表示_____________;
两个分式相除,把_____________________________后再与____________,用字母表示_________________。
例1计算
(1)y x 34·3
2x y
; (2)2
63y xy x ÷ (3)4
2
232934m n n m ⎛⎫⎛⎫ ⎪ ⎪⎝⎭
⎝⎭ 解:
43x y
·
3
2y x
(两个分式相乘) 解:2
63y xy x
÷
解:4
2
232938m n n m ⎛⎫⎛⎫ ⎪
⎪⎝
⎭⎝⎭ =
3
234x
y y x ⋅⋅(分子相乘,分母相乘) =2
2
36x xy y
⋅
(将除变为乘) =
8
212
2
16818164m n
n m
∙
=
2
3222x
xy xy ⋅⋅(提公因式) =
2
263y
x xy ⋅ =610
4m n
=
2
32x
(约分) =
2
12
x
注意:(1)将算式对照乘除法运算法则,进行运算;(2)强调运算结果如不是最简分式时,一定要进行约分,使运算结果化为最简分式.
即时练习:计算(1)2a b b a ⋅ (2)2
233b
b a a ⎛⎫
÷- ⎪⎝⎭ (3)3
2
223b a a b ⎛⎫⎛⎫ ⎪ ⎪⎝
⎭⎝⎭
4.分子分母出现多项式的运算 根据已学可知:
a
b ×
c
d =
ac
bd ;
a
b ÷
c
d =
a
b ×
d
c =
ad
bc .
这里字母a,b,c,d 可以代表整式,但a,c,d 不为零. 例2、观察书上例题,用分式乘除法法则计算: ()2
2
3
199
b
a a
b +⋅
-- ()
()2
21
a a
a a -÷
-
由上题可知:进行分式乘法运算,当分子、分母是多项式时,一般应先分解因式,并在运算过程中约分,使运算简化。
即时练习:()
2
2
2
4
3
34332
a a a a a a --⋅
-+++ ()
2
2
114x x y
y
-+÷
反思小结
1、两个分式相乘(或相除),如果分子和分母都是单项式,可以_________________________________进行计算;如果分子
和分母都是多项式,那么先将分子和分母_______________,然后再运用分式的乘法(或除法)法则进行计算。
2、如果整式与分式相乘(或相除),可以把整式看作________________的式子进行计算,当整式是多项式时,同样要先
________________。
3、对于1a b b
÷⨯,小明是这样计算的:11a b a a b
÷⨯
=÷=,他的计算过程是正确的吗?为什么?
【达标测评】
计算下列各式:
()
42
2
4491158a b x x
a b ⋅ ()2
21222a a a a +⋅-+ ()2
2211
3444a a a a a --÷-+- 2
3
22(4)y x x y ⎛⎫
⎛⎫ ⎪ ⎪⎝⎭⎝⎭
【能力提升】
已知a 2
+3a +1=0,求 (1)a +a
1; (2)a 2+
2
1a
; (3)a 3+
3
1a
; (4)a 4+
4
1a。