曲线与方程-讲义
人教版【高中数学】选修2-1第二章曲线与方程的概念讲义
案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。
曲线与方程 课件 (共37张PPT)
y)=0表示的曲线C上.
(2)从方程的解的角度:若f(x0,y0)=0,则M(x0,y0)在方程f(x, y)=0所表示的曲线C上;或若M(x0,y0)不在方程f(x,y)=0表示的曲 线C上,则f(x0,y0)≠0.
类型二:曲线与方程关系的应用 【典例2】证明以原点为圆心,半径为3的圆的方程是x2+y2=9.
x2+y2=9(y≥0).
2.(改变问法)本例中方程改为x2+y2=9(xy>0),则它表示的轨迹是什 么? 【解析】以方程x2+y2=9的解为坐标的点都在以原点为圆心,以3为半 径的圆上,当满足xy>0时,说明这些点的横、纵坐标同号,即这些点 应该在第一象限或第三象限内,所以方程表示的曲线是以原点为圆心,
O
M ( x0 , y0 )
以 ( x 0 , y 0 )为 坐 标 的 点 在 直 线 上 .
x
问题2:方程 ( x a ) 2 ( y b ) 2 r 2 表示如图的圆, 2 2 2 ( x a ) ( y b ) r 图象上的点M与此方程 ,
有什么关系?
(1)圆上任一点
第二章
圆锥曲线与方程
2.1 曲线与方程
下图为卫星绕月球飞行示意图,据图回答下面问 题:假若卫星在某一时间内飞行轨迹上任意一点到月 球球心和月球表面上一定点的距离之和近似等于定值 2a,视月球为球体,半径为R,你能写出一个轨迹的方 程吗?
【探究】 曲线的方程与方程的曲线 问题 1 :在直角坐标系中,平分第一、三象限的直 线和方程x-y=0有什么关系? (1)在直线上任找一点 M ( x 0 , y 0 ),则 x 0 y 0, 即 ( x 0 , y 0) 是方程x-y=0的解; x-y=0 y (2)如果 ( x 0 , y 0 ) 是 x y 0的解,那么
曲线与方程讲课稿
40 4 2y 而k PA (x 1), k PB , 2 2x 20 2 2 y 1( x 1). 1 x 1
8
整理得x+2y-5=0(x≠1). ∵当x=1时,A、B的坐标分别为(2,0)、(0,4), ∴线段AB的中点坐标是(1,2),它满足方程x+2y-5=0. 综上所求,点M的轨迹方程是x+2y-5=0.
12
问题 1. 设 A、B 两点的坐标是 (-1,-1)、(3,7), 求线段 AB 的垂直平分线的方程.
如何求曲线的方程?
法一:运用现成的结论──直线方程的知识来求.
法二:若没有现成的结论怎么办? ──需要掌握一般性的方法
13
问题 1.设 A、B 两点的坐标是 (-1,-1)、(3,7),求线段 AB 的垂直平分线的方程. 我们的目标就是要找x与y的关系式
综上所述,线段 AB 的垂直平分线的方程是 x 2 y 7 0 . 14
第一种方法运用现成的结论当然快,但它需要你对研 究的曲线要有一定的了解;第二种方法虽然有些走弯路,但 这种方法有一般性. 求曲线的方程可以这样一般地尝试,注意其中的步骤: 求曲线的方程(轨迹方程),一般有下面几个步骤: 1.建立适当的坐标系,设曲线上任一点 M 的坐标 ( x, y ) ;
规律技巧:在平面直角坐标系中,遇到垂直问题,常利用斜率之
积等于-1解题,但需注意斜率是否存在,即往往需要讨论,如
解法1.求轨迹方程有时利用平面几何知识更为方便快捷.
9
新课导入:
二、坐标法求曲线方程的一般步骤:
1. 建系:建立适当的直角坐标系(如果已给出,本步
骤省略);
2. 设点:设曲线上任意一点的坐标(x,y);
曲线与方程讲义(一)教案
·xyM· 曲线和方程(一)教学目标教学知识点:曲线的方程、方程的曲线.能力训练要求:会用曲线与方程的概念直接比较简单的曲线和方程的关系. 德育渗透目的:渗透数形结合思想、辨证思想.教学重点:理解曲线上的点与方程的解之间的一一对应关系.领会“曲线的方程”与“方程的曲线”的含义.教学难点:对“曲线的方程”和“方程的曲线”的对应关系的理解. 教学方法:启发引导法. 教学过程(一) 情境设置:1、求第一、三象限里两轴间夹角平分线的坐标满足的关系 结论:(1)L 上点的坐标都是方程x-y=0的解(2)以方程x-y=0的解为坐标的点都在 L 上 这个方程叫做这条直线的方程,这条直线叫做这个方程的直线.这种一一对应关系完全能推广到平面直角坐标系中的曲线和方程.(二) 讲授新课:1. 实例分析: (1)方程()()222r b y a x =-+-表示如图的圆,图像上的点M 与此方程()()222r b y a x =-+- 有什么关系?满足关系:1)如果),(00y x M 是圆上的点,那么),(00y x M 一定()()222r b y a x =-+-是这个方程的解 2)如果),(00y x M 是()()222r b y a x =-+-的解,那么以它为坐标的点一定在圆上。
(2)函数)0(2>=a ax y 的图象是关于y 轴对称的抛物线,这条抛物线是所有以方程2ax y =的解为坐标的点组成的.由此可知(1) 如果点M(x 0,y 0)在抛物线上,则一定有y 0=ax 02,即(x 0,y 0)一定是方程2ax y =的解.(2) 如果(x 0,y 0)是方程2ax y =的解,即200ax y =,则点(x 0,y 0)一定在这条抛物线上.(3)、说明过A (2,0)平行于y 轴的直线与方程︱x ︱=2的关系①、直线上的点的坐标都满足方程︱x ︱=2②、满足方程︱x ︱=2的点不一定在直线上结论:过A (2,0)平行于y 轴的直线的方程不是︱x ︱=2 2.曲线的方程和方程的曲线的关系:综上可知,一般地,在直角坐标系中,如果某曲线C (包括直线)(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立如下的关系:(1) 曲线上的点的坐标都是这个方程的解. (2) 以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.由曲线的方程的定义可知:如果曲线C 的方程是f(x,y)=0,那么点P 0(x 0,y 0)在曲线C 上的充要条件是f(x 0,y 0)=0.理解: (1)“曲线上的点的坐标都是这个方程的解”阐明了曲线上没有坐标不满足方程的点,也就是说曲线上的所有点都符合这个条件而毫无例外(纯粹性).(2)“以这个方程的解为坐标的点都在曲线上”阐明了符合条件的所有点都在曲线上而毫无遗漏(完备性).同时具备上述两个性质,才能称为“曲线的方程”和“方程的曲线”,阐明了曲线与方程的一一对应关系.思考:1、判断下列结论的正误并说明理由(1)过点A (3,0)且垂直于x 轴的直线为x=3 (2)到x 轴距离为2的点的轨迹方程为y=2(3)到两坐标轴距离乘积等于1的点的轨迹方程为xy=12、下列各题中,图3表示的曲线方程是所列出的方程吗?如果不是,不符合定义中的关系①还是关系②?(1)曲线C 为过点A(1,1),B(-1,1)的折线,方程为(x-y)(x+y)=0;(2)曲线C 是顶点在原点的抛物线,方程为x+y =0;(3)曲线C 是Ⅰ, Ⅱ象限内到X 轴,Y 轴的距离乘积为1的点集,方程为y=x1典型例题分析:【例1】如果曲线C 上的点满足方程F(x,y)=0,则以下说法正确的是( )A . 曲线C 的方程是F(x,y)=0B . 方程F(x,y)=0的曲线是C1 0xy -110 xy -1 1 -2 21 0 xy -1 1 -2 21C. 坐标满足方程F(x,y)=0的点都在曲线C 上D. 坐标不满足方程F(x,y)=0的点不在C 上分析:由已知条件,只能说明具备纯粹性,但不一定具备完备性,故选D.【例2】证明圆心为坐标原点半径为5的圆的方程是x 2+y 2=25,并判断点M 1(3,-4)、M 2)2,52(-是否在这个圆上.证明:(1)设M(x 0,y 0)是圆上任意一点,因点M 到原点的距离等于5,所以52020=+y x ,即x 02+y 02=25.可知(x 0,y 0)是方程x 2+y 2=25的解.(2)设M(x 0,y 0)是方程x 2+y 2=25的解,则x 02+y 02=25,得52020=+y x ,可知点M(x 0,y 0)到原点的距离为5,所以点M(x 0,y 0)是这个圆上的点. 由(1)、(2)可知x 2+y 2=25是圆心为坐标原点半径为5的圆的方程. ∵32+(-4)2=25,∴点M 1(3,-4)在圆上.又 25242)52(22≠=+-,∴点M 2)2,52(-不在圆上.练习:证明与两坐标轴的距离的积是常数 k(k>0)的点的轨迹方程是K xy ±=归纳:证明已知曲线的方程的方法和步骤第一步,设M (x0,y0)是曲线C 上任一点,证明(x0,y0)是f(x,y)=0的解; 第二步,设(x0,y0)是f(x,y)=0的解,证明点M (x0,y0)在曲线C 上(三)课时小结:在轨迹的基础上将轨迹和条件化为曲线和方程,当说某方程是曲线的方程或某曲线是方程的曲线时就意味着具备上述两个条件,只有具备上述两个方面的要求,才能将曲线的研究化为方程的研究,几何问题化为代数问题,以数助形正是解析几何的思想,本节课正是这一思想的基础。
高中数学知识讲解 曲线与方程
曲线与方程【学习目标】1.了解曲线与方程的对应关系;2.进一步体会数形结合的基本思想;3.掌握求曲线方程的基本方法(直接法),了解求曲线方程的其他方法(待定系数法、定义法、转化法、参数法等)【学习策略】借助于实例去体会曲线的方程和方程的曲线的意义;理解求曲线方程的实质,求曲线方程的关键在于把曲线上任一点所满足的几何条件(或其坐标满足的条件)转化为任一点坐标满足的等量关系,要注意方程中量x (或y )的取值范围.【要点梳理】要点一、曲线与方程概念的理解一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程,0f x y =()的实数解建立了如下的关系:(1)曲线C 上所有点的坐标都是方程,0f x y =()的解;(2)以方程,0f x y =()的解为坐标的点都在曲线C 上.那么,方程,0f x y =()叫做曲线C 的方程;曲线C 叫做方程,0f x y =()的曲线.要点诠释:(1)如果曲线C 的方程为,0f x y =(),那么点00(,)P x y 在曲线C 上的充要条件为00,0f x y =(); (2)曲线C 可看成是平面上满足一定条件的点的集合,而,0f x y =()正是这一定条件的解析表示.因此我们可以用集合的符号表示曲线C :{(,)|,0}C x y f x y ==().(3)曲线C 也称为满足条件,0f x y =()的点的轨迹.定义中的条件(1)叫轨迹纯粹性,即不满足方程,0f x y =()的解的点不在曲线C 上;条件(2)叫做轨迹的完备性,即符合条件的所有点都在曲线上.“纯粹性”和“完备性”是针对曲线C 是否为满足方程,0f x y =()的点的轨迹而言. (4)区别轨迹和轨迹方程两个不同的概念,轨迹是“形”,轨迹方程是“数”.要点二、坐标法与解析几何解析几何是在坐标系的基础上,用代数的方法研究几何问题的一门数学学科.解析几何的两个基本问题:1.根据已知条件,求出表示平面曲线的方程;2.通过方程,研究平面曲线的性质.根据曲线与方程的关系可知,曲线与方程是同一关系下的两种不同的表现形式.曲线的性质完全反映在它的方程上,而方程的的性质也完全反映在它的曲线上,这正好说明了几何问题与代数问题可以互相转化,这就是解析几何的基本思想方法,也就是数形结合,形与数达到了完美的统一.我们把这种借助坐标系研究几何图形的方法叫做坐标法,又称解析法.定义:在直角坐标系中,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(x ,y )所满足的方程(,)0f x y =表示曲线,通过研究方程的性质间接地来研究曲线的性质.这就是坐标法.要点三、用直接法求曲线方程的步骤坐标法求曲线方程的一般步骤:①建立适当的直角坐标系,并设动点P(x,y).②写出动点P 满足的几何条件.③把几何条件坐标化,得方程F(x, y)=0.④化方程F(x, y)=0为最简形式,特殊情况,予以补充说明,删去增加的或者补上丢失的解。
高中个性化培训讲义曲线与方程
第六讲曲线与方程教学目标:了解方程的曲线与曲线的方程的对应关系一、知识回顾课前热身知识点1.曲线与方程一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.曲线可以看作是符合某条件的点的集合,也可看作是满足某种条件的动点的轨迹,因此,此类问题也叫轨迹问题.知识点2.求曲线方程的基本步骤知识点3.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.例题辨析推陈出新例1已知动点P(x,y)与两定点M(-1,0),N(1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P的轨迹C的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.[自主解答] (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点、焦点在x 轴上的双曲线(除去顶点); ②当-1<λ<0时,轨迹C 为中心在原点、焦点在x 轴上的椭圆(除去长轴两个端点); ③当λ=-1时,轨迹C 为以原点为圆心、1为半径的圆(除去点(-1,0),(1,0)); ④当λ<-1时,轨迹C 为中心在原点、焦点在y 轴上的椭圆(除去短轴的两个端点).变式练习1.已知点A (-2,0),B (3,0),若动点P 满足PA ·PB=2,则动点P 的轨迹方程为________.解析:设P 的坐标为(x ,y )则PA=(-2-x ,-y ,) PB =(3-x ,-y ).由PA ·PB =2,得(-2-x )(3-x )+y 2=2,即x 2+y 2-x -8=0.答案:x 2+y 2-x -8=0例2已知定点A (0,-1),点B 在圆F :x 2+(y -1)2=16上运动,F 为圆心,线段AB 的垂直平分线交BF 于P .(1)求动点P 的轨迹E 的方程;(2)若曲线Q :x 2-2ax +y 2+a 2=1被轨迹E 包围着,求实数a 的最小值. [自主解答] (1)由题意得|P A |=|PB |. 则|P A |+|PF |=|PB |+|PF |=4>|AF |=2,所以动点P 的轨迹E 是以A 、F 为焦点的椭圆. 设该椭圆的方程为y 2a 2+x 2b2=1(a >b >0),则2a =4,2c =2,即a =2,c =1,故b 2=a 2-c 2=3. 所以动点P 的轨迹E 的方程为y 24+x 23=1.(2)x 2-2ax +y 2+a 2=1即(x -a )2+y 2=1, 则曲线Q 是圆心为(a,0),半径为1的圆.而轨迹E 为焦点在y 轴上的椭圆,其左、右顶点分别为(-3,0),(3,0). 若曲线Q 被轨迹E 包围着,则-3+1≤a ≤3-1,故a的最小值为-3+1.变式练习2.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是什么?解:由题意知|AC|=13,|BC|=15,|AB|=14,又∵|AF|+|AC|=|BF|+|BC|,∴|AF|-|BF|=|BC|-|AC|=2,故点F的轨迹是以A,B为焦点,实轴长为2的双曲线的下支.又c=7,a=1,b2=48,故点F的轨迹方程为y2-x248=1(y≤-1).3.点P(-3,0)是圆C:x2+y2-6x-55=0内一定点,动圆M与已知圆相内切且过P点,求圆心M的轨迹方程.解:已知圆为(x-3)2+y2=64,其圆心C(3,0),半径为8,由于动圆M过P点,所以|MP|等于动圆的半径r,即|MP|=r.又圆M与已知圆C相内切,所以圆心距等于半径之差即|MC|=8-r.从而有|MC|=8-|MP|,即|MC|+|MP|=8.根据椭圆的定义,动点M到两定点C,P的距离之和为定值8>6=|CP|,所以动点M的轨迹是椭圆,并且2a=8,a=4;2c=6,c=3;b2=16-9=7,因此M点的轨迹方程为x216+y27=1.例3(2012·辽宁高考)如图所示,椭圆C0:x2a2+y2b2=1(a>b>0,a,b为常数),动圆C1:x2+y2=t21,b<t1<a.点A1,A2分别为C0的左,右顶点.C1与C0相交于A,B,C,D四点.(1)求直线AA1与直线A2B交点M的轨迹方程;(2)设动圆C2:x2+y2=t22与C0相交于A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD 与矩形A′B′C′D′的面积相等.证明:t21+t22为定值.[自主解答](1)设A(x1,y1),B(x1,-y1),又知A1(-a,0),A2(a,0),则直线A1A的方程为y=y1x1+a(x+a),①直线A2B的方程为y=-y1x1-a(x-a),②由①②得y 2=-y 21x 21-a2(x 2-a 2).③ 由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b2=1.从而y 21=b2⎝⎛⎭⎫1-x 21a 2,代入③得x 2a 2-y 2b2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2||y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以 b 2x 21⎝⎛⎭⎫1-x 21a 2=b 2x 22⎝⎛⎭⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2. 从而y 21+y 22=b 2,因此t 21+t 22=a 2+b 2为定值.变式练习4.已知圆C 的方程为x 2+y 2=4.(1)直线l 过点P (1,2),且与圆C 交于A ,B 两点,若|AB |=23,求直线l 的方程;(2)过圆C 上一动点M (不在x 轴上)作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ =OM +ON,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.解:(1)当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),两交点距离为23,满足题意.若直线l 不垂直于x 轴,设其方程为y -2=k (x -1), 即kx -y -k +2=0.设圆心到此直线的距离为d ,则23=24-d 2, 得d =1.所以|-k +2|k 2+1=1,解得k =34,故所求直线方程为3x -4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1.(2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ),则N 点坐标是(0,y 0).因为OQ =OM+ON ,所以(x ,y )=(x 0,2y 0)即x 0=x ,y 0=y2.又因为M 是圆C 上一点,所以x 20+y 20=4,即x 2+y 24=4(y ≠0).所以Q 点的轨迹方程是x 24+y 216=1(y ≠0),这说明轨迹是中心在原点,焦点在y 轴上,长轴为8、短轴为4且除去短轴端点的椭圆.三、归纳总结 方法在握归纳1个主题——坐标法求轨迹方程通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题,也是高考的热点之一.3种方法——求轨迹方程的三种常用方法 明确求轨迹方程的适用条件是求轨迹方程的关键.(1)直接法:如果动点满足的几何条件本身是一些几何量(如距离与角等)的等量关系,或这些几何条件简单明了且易于表达,就可运用直接法求轨迹方程.在运用直接法求轨迹方程时要注意:化简方程的过程中有时破坏了方程的同解性,此时要补上遗漏点或删除多余的点,这是不可忽视的.(2)定义法:求轨迹方程时,应尽量利用几何条件探求轨迹的类型,应用定义法,这样可以减少运算量,提高解题速度.(3)代入法(相关点法):当所求动点M 是随着另一动点P (称之为相关点)而运动,且相关点P 满足一曲线方程时,就可用代入法求轨迹方程.此时应注意:代入法求轨迹方程是将x ′,y ′表示成x ,y 的式子,同时要注意x ′,y ′的限制条件.四、拓展延伸 能力升华(2011·湖北高考)平面内与两定点A 1(-a,0)、A 2(a,0)(a >0)连线的斜率之积等于非零常数m 的点的轨迹,加上A 1、A 2两点所成的曲线C 可以是圆、椭圆或双曲线.(1)求曲线C 的方程,并讨论C 的形状与m 值的关系;(2)当m =-1时,对应的曲线为C 1;对给定的m ∈(-1,0)∪(0,+∞),对应的曲线为C 2.设F 1,F 2是C 2的两个焦点,试问:在C 1上,是否存在点N ,使得△F 1NF 2的面积S =|m |a 2.若存在,求tan ∠F 1NF 2的值;若不存在,请说明理由.[解] (1)设动点为M ,其坐标为(x ,y ),当x ≠±a 时,由条件可得kMA 1·kMA 2=y x +a ·y x -a =y 2x 2-a 2=m ,即mx 2-y 2=ma 2(x ≠±a ). 又A 1(-a,0),A 2(a,0)的坐标满足mx 2-y 2=ma 2, 故依题意,曲线C 的方程为mx 2-y 2=ma 2.当m <-1时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在y 轴上的椭圆;当m =-1时,曲线C 的方程为x 2+y 2=a 2,C 是圆心在原点的圆;当-1 <m <0时,曲线C 的方程为x 2a 2+y 2-ma 2=1,C 是焦点在x 轴上的椭圆;当m >0时,曲线C 的方程为x 2a 2-y 2ma 2=1,C 是焦点在x 轴上的双曲线.(2)由(1)知,当m =-1时,C 1的方程为x 2+y 2=a 2;当m ∈(-1,0)∪(0,+∞)时,C 2的两个焦点分别为F 1(-a 1+m ,0),F 2(a 1+m ,0).对于给定的m ∈(-1,0)∪(0,+∞),C 1上存在点N (x 0,y 0)(y 0≠0)使得△F 1NF 2的面积S =|m |a 2的充要条件是⎩⎪⎨⎪⎧x 20+y 20=a 2,y 0≠0, ①12·2a 1+m |y 0|=|m |a 2. ② 由①得0<|y 0|≤a ,由②得|y 0|=|m |a1+m. 当0<|m |a1+m≤a ,即1-52≤m <0或0<m ≤1+52时,存在点N ,使S =|m |a 2; 当|m |a1+m>a ,即-1<m <1-52或m >1+52时,不存在满足条件的点N .当m ∈⎣⎢⎡⎭⎪⎫1-52,0∪⎝ ⎛⎦⎥⎤0,1+52时,由NF 1=(-a 1+m -x 0,-y 0),NF 2=(a 1+m -x 0,-y 0),可得NF 1·NF 2=x 20-(1+m )a 2+y 20=-ma 2, 设|NF 1|=r 1,|NF2|=r 2,∠F 1NF 2=θ,则由NF 1·NF 2=r 1r 2cos θ=-ma 2,可得r 1r 2=-ma 2cos θ,从而S =12r 1r 2sin θ=-ma 2sin θ2cos θ=-12ma 2tan θ,于是由S =|m |a 2,可得-12ma 2tan θ=|m |a 2,即tan θ=-2|m |m .综上可得, 当m ∈⎣⎢⎡⎭⎪⎫1-52,0时,在C 1上,存在点N ,使得S =|m |a 2,且tan ∠F 1NF 2=2;当m ∈⎝⎛⎦⎥⎤0,1+52时,在C 1上,存在点N ,使得S =|m |a 2,且tan ∠F 1NF 2=-2;当m ∈⎝ ⎛⎭⎪⎫-1,1-52∪⎝ ⎛⎭⎪⎫1+52,+∞时,在C 1上,不存在满足条件的点N .变式练习设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标.解:设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1), 可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |.①因为点A 在单位圆上运动,所以x 20+y 20=1.②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0);当m >1时,曲线C 是焦点在y 轴上的椭圆,两焦点坐标分别为(0,-m 2-1),(0,m 2-1).五、课后作业 巩固提高一、选择题(本大题共6小题,每小题5分,共30分) 1.方程(x -y )2+(xy -1)2=0的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C (x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.2.已知点O (0,0),A (1,2),动点P 满足|OP +AP|=2,则P 点的轨迹方程是( )A .4x 2+4y 2-4x -8y +1=0B .4x 2+4y 2-4x -8y -1=0C .8x 2+8y 2+2x +4y -5=0D .8x 2+8y 2-2x +4y -5=0解析:选A 设P 点的坐标为(x ,y ),则OP =(x ,y ),AP =(x -1,y -2),OP +AP=(2x -1,2y-2).所以(2x -1)2+(2y -2)2=4,整理得4x 2+4y 2-4x -8y +1=0.3.下列各点在方程x 2-xy +2y +1=0表示的曲线上的是( ) A .(0,0)B .(1,1)C .(1,-1)D .(1,-2)解析:选D 验证法,点(0,0)显然不满足方程x 2-xy +2y +1=0,当x =1时,方程变为1-y +2y +1=0,解得y =-2,则(1,-2)点在曲线上.4.(2013·长春模拟)设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( )A.4x 221-4y 225=1 B.4x 221+4y 225=1 C.4x 225-4y 221=1 D.4x 225+4y 221=1 解析:选D ∵M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆.∴a =52,c =1,则b 2=a 2-c 2=214,∴椭圆的标准方程为4x 225+4y 221=1.5.已知A ⎝⎛⎭⎫x -2,y 2,B ⎝⎛⎭⎫0,y 2,C (x ,y ),若AC ⊥BC ,则动点C 的轨迹方程为( )A .y 2=8xB .y 2=-8xC .y 2=8(x -2)D .y 2=-8(x -2)解析:选B AC =⎝⎛⎭⎫2,y 2,BC =⎝⎛⎭⎫x ,y 2,则AC ⊥BC 得2x +y 24=0,即y 2=-8x .6.(2013·洛阳模拟)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q与点P 关于y 轴对称,O 为坐标原点.若BP =2PA ,且OQ ·AB=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP =2PA ,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ ·AB=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a ,b 代入上式得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).二、填空题(本大题共3小题,每小题5分,共15分)7.(2013·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝⎛⎭⎫-a 2,0,C ⎝⎛⎭⎫a2,0(a >0),且满足条件sinC -sin B =12sin A ,则动点A 的轨迹方程是________.解析:由正弦定理:|AB |2R -|AC |2R =12×|BC |2R ,即|AB |-|AC |=12|BC |,且为双曲线右支.答案:16x 2a 2-16y 23a2=1(x >0且y ≠0)8.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程__________.解析:设直线x a +y 2-a =1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x =a2,y =1-a2,消去a ,得x +y =1,∵a ≠0,a ≠2,∴x ≠0,x ≠1. 答案:x +y =1(x ≠0,x ≠1)9.设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且AB 中点为M ,则点M 的轨迹方程是________.解析:F (1,0),设A (x 1,y 1),B (x 2,y 2),M (x ,y ),则x 1+x 2=2x ,y 1+y 2=2y ,y 21=4x 1,y 22=4x 2,后两式相减并将前两式代入得(y 1-y 2)y =2(x 1-x 2),当x 1≠x 2时,y 1-y 2x 1-x 2×y =2.又A 、B 、M 、F 四点共线,y 1-y 2x 1-x 2=yx -1,代入得y 2=2(x -1),当x 1=x 2时,M (1,0)也适合这个方程,即y 2=2(x -1)是所求的轨迹方程. 答案:y 2=2(x -1)三、解答题(本大题共3小题,每小题12分,共36分)10.过双曲线x 2-y 2=1上一点M 作直线x +y =2的垂线,垂足为N ,求线段MN 的中点P 的轨迹方程.解:设动点P 的坐标为(x ,y )点M 的坐标为(x 0,y 0), 则N (2x -x 0,2y -y 0).由N 在直线x +y =2上,得2x -x 0+2y -y 0=2.① 由PM 垂直于直线x +y =2,得y -y 0x -x 0=1,即x -y -x 0+y 0=0.②由①②得x 0=32x +12y -1,y 0=12x +32y -1,代入双曲线方程得⎝⎛⎭⎫32x +12y -12-⎝⎛⎭⎫12x +32y -12=1,整理得2x 2-2y 2-2x +2y -1=0.即点P 的轨迹方程2x 2-2y 2-2x +2y -1=0.11.已知动圆P 过点F ⎝⎛⎭⎫0,14且与直线y =-14相切. (1)求圆心P 的轨迹C 的方程;(2)过点F 作一条直线交轨迹C 于A ,B 两点,轨迹C 在A ,B 两点处的切线相交于N ,M 为线段AB 的中点,求证:MN ⊥x 轴.解:(1)由已知,点P 到点F ⎝⎛⎭⎫0,14的距离等于到直线y =-14的距离,根据抛物线的定义,可得动圆圆心P 的轨迹C 为抛物线,其方程为x 2=y .(2)证明:设A (x 1,x 21),B (x 2,x 22).∵y =x 2,∴y ′=2x .∴AN ,BN 的斜率分别为2x 1,2x 2. 故AN 的方程为y -x 21=2x 1(x -x 1), BN 的方程为y -x 22=2x 2(x -x 2),即⎩⎪⎨⎪⎧y =2x 1x -x 21,y =2x 2x -x 22. 两式相减,得x N =x 1+x 22,又x M =x 1+x 22,所以M ,N 的横坐标相等,于是MN ⊥x 轴.12.(2012·湖南高考)在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.解:(1)法一:设M 的坐标为(x ,y ),由已知得|x +2|=(x -5)2+y 2-3.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以(x -5)2+y 2=x +5. 化简得曲线C 1的方程为y 2=20x .法二:由题设知,曲线C 1上任意一点M 到圆心C 2(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)证明:当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0),又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.于是|5k +y 0+4k |k 2+1=3.整理得72k 2+18y 0k +y 20-9=0.①设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根,故 k 1+k 2=-18y 072=-y 04.②衡阳个性化教育倡导者由⎩⎪⎨⎪⎧k 1x -y +y 0+4k 1=0,y 2=20x 得 k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以y 1y 2=20(y 0+4k 1)k 1.④ 同理可得y 3y 4=20(y 0+4k 2)k 2.⑤ 于是由②,④,⑤三式得y 1y 2y 3y 4=400(y 0+4k 1)(y 0+4k 2)k 1k 2=400[y 20+4(k 1+k 2)y 0+16k 1k 2]k 1k 2=400(y 20-y 20+16k 1k 2)k 1k 2=6 400. 所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.。
曲线与方程教学讲义
曲线与方程教学讲义ZHI SHI SHU LI知识梳理1.曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线___的方程;这条曲线叫做__方程___的曲线.2.求动点的轨迹方程的基本步骤ZHONG YAO JIE LUN重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.SHUANG JI ZI CE双基自测1.到两定点A(0,0),B(3,4)距离之和为5的点的轨迹是(C)A.椭圆B.AB所在的直线C.线段AB D.无轨迹[解析]∵|AB|=5,∴到A、B两点距离之和为5的点的轨迹是线段AB.2.(2019·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线[解析] 由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .3.(2019·太原模考)设A 、B 是x 轴上的两点,点P 的横坐标为3,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( D ) A .x +y -5=0 B .2x -y -1=0 C .x -2y +4=0D .x +y -7=0[解析] 由|P A |=|PB |知点P 在AB 的垂直平分线上.由点P 的横坐标为3,且P A 的方程为x -y +1=0,得P (3,4).直线P A 、PB 关于直线x =3对称,直线P A 上的点(0,1)关于直线x =3的对称点(6,1)在直线PB 上,∴直线PB 的方程为x +y -7=0.4.(2019·人大附中模拟)在平面直角坐标系xOy 中,设点P (x ,y ),M (x ,-4),以线段PM 为直径的圆经过原点O .则动点P 的轨迹方程为__x 2=4y ___.[解析] 由题意可得OP ⊥OM ,所以OP →·OM →=0,所以(x ,y )·(x ,-4)=0,即x 2-4y =0,所以动点P 的轨迹方程为x 2=4y .5.设抛物线C 1的方程为y =120x 2,它的焦点F 关于原点的对称点为E .若曲线C 2上的点到E 、F 的距离之差的绝对值等于6,则曲线C 2的标准方程为__y 29-x 216=1___.[解析] 方程y =120x 2可化为x 2=20y ,它的焦点为F (0,5),所以点E 的坐标为(0,-5),根据题意,知曲线C 2是焦点在y 轴上的双曲线,设方程为y 2a 2-x 2b 2=1(a >0,b >0),则2a =6,a=3,又c =5,b 2=c 2-a 2=16,所以曲线C 2的标准方程为y 29-x 216=1.6.(2019·豫北名校联考)已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3.则顶点A 的轨迹方程为__(x -10)2+y 2=36(y ≠0)___.[解析] 设A (x ,y ),由题意可知D (x 2,y 2).又∵|CD |=3,∴(x 2-5)2+(y2)2=9,即(x -10)2+y 2=36,由于A 、B 、C 三点不共线,∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).考点1 定义法求轨迹——自主练透例1 (1)(2019·沈阳模拟)若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P 的轨迹方程为( C ) A .y 2=8x B .y 2=-8x C .x 2=8yD .x 2=-8y(2)(2019·福州模拟)已知圆M :(x +5)2+y 2=36,定点N (5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y 24=1B .x 236+y 231=1C .x 29-y 24=1D .x 236-y 231=1(3)(2019·大庆模拟)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M的轨迹方程为__x 2-y 28=1(x ≤-1)___. [解析] (1)由题意知P 到F (0,2)的距离比它到y +4=0的距离小2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,所以P 的轨迹方程为x 2=8y .故选C .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN |=|GP |,∴|GM |+|GN |=|MP |=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y 24=1,故选A .(3)如图所示,设动圆M 与圆C 1及圆C 2分别外切于点A 和点B ,则有|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |.又|MA |=|MB |,所以|MC 2|-|MC 1|=|BC 2|-|AC 1|=3-1=2,即动点M 到两定点C 2,C 1的距离的差是常数2,且2<|C 1C 2|=6,|MC 2|>|MC 1|,故动圆圆心M 的轨迹为以定点C 2,C 1为焦点的双曲线的左支,则2a =2,所以a =1. 又c =3,则b 2=c 2-a 2=8.设动圆圆心M 的坐标为(x ,y ),则动圆圆心M 的轨迹方程为x 2-y 28=1(x ≤-1). 名师点拨 ☞定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.考点2 直接法求轨迹——师生共研例2 已知以点C (0,1)为圆心的动圆C 与y 轴负半轴交于点A ,其弦AB 的中点D 恰好落在x 轴上.(1)求点B 的轨迹E 的方程;(2)过直线y =-1上一点P 作曲线E 的两条切线,切点分别为M ,N .求证:直线MN 过定点.[解析] (1)设B (x ,y ),y >0,则AB 的中点D (x2,0),∵C (0,1),连接DC ,∴DC →=(-x 2,1),DB →=(x 2,y ).在⊙C 中,DC ⊥DB ,∴DC →·DB →=0, ∴-x 24+y =0,即x 2=4y (y >0).∴点B 的轨迹E 的方程为x 2=4y (y >0). (2)由(1)可得曲线E 的方程为x 2=4y (y >0). 设P (t ,-1),M (x 1,y 1),N (x 2,y 2),∵y =x 24,∴y ′=x 2,∴过点M ,N 的切线方程分别为y -y 1=x 12(x -x 1),y -y 2=x 22(x -x 2),由4y 1=x 21,4y 2=x 22,上述切线方程可化为2(y +y 1)=x 1x,2(y +y 2)=x 2x , ∵点P 在这两条切线上,∴2(y 1-1)=tx 1,2(y 2-1)=tx 2, 即直线MN 的方程为2(y -1)=tx , 故直线MN 过定点C (0,1). 名师点拨 ☞直接法求曲线方程的一般步骤(1)建立合理的直角坐标系;(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程;(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.提醒:对方程化简时,只要前后方程解集相同,证明一步可以省略,必要时可说明x ,y 的取值范围. 〔变式训练1〕(2017·重庆一中月考)已知A (-2,0),B (2,0),动点P 满足k P A ·k PB =t ,其中k P A ,k PB 分别表示直线P A ,PB 的斜率,t 为常数,当t =-1时,点P 的轨迹为C 1;当t =-14时,点P 的轨迹为C 2.(1)求C 1的方程.(2)过点E (-3,0)的直线与曲线C 1,C 2顺次交于四点P 1,P 2,P 3,P 4,且P 1,P 4∈C 1,P 2,P 3∈C 2,是否存在这样的直线l ,使得|P 1P 2|,|P 2P 3|,|P 3P 4|成等差数列?若存在,求出直线l 的方程;若不存在,请说明理由. [解析] (1)设P (x ,y ),即y x +2·yx -2=-1,化简得x 2+y 2=4,此即为C 1的方程. (2)由已知条件易得C 2:x 24+y 2=1,假设存在这样的直线l :x =my -3, 则由题可知|P 1P 2|+|P 3P 4|=2|P 2P 3|,所以|P 1P 4|=3|P 2P 3|.由⎩⎪⎨⎪⎧x 2+4y 2=4,x =my -3得(m 2+4)y 2-23my -1=0,故|P 2P 3|=1+m 2·|y 1-y 2|=4(m 2+1)m 2+4,易得|P 1P 4|=24-3m 2+1=24m 2+1m 2+1, 故4m 2+1m 2+1=6(m 2+1)m 2+4. 令t =m 2+1≥1,则可得(4t -3)(t +3)2=36t 3, 令f (t )=36t 3-(4t -3)(t +3)2=32t 3-21t 2-18t +27,则f ′(t )=96t 2-42t -18>0,故f (t )≥f (1)=20>0,因此(4t -3)(t +3)2=36t 3无解,所以不存在这样的直线l 满足题意.考点3 代入法求轨迹方程——师生共研例3 (2019·泉州模拟)在直角坐标系xOy 中,长为2+1的线段的两端点C ,D 分别在x 轴,y 轴上滑动,CP →=2PD →.记点P 的轨迹为曲线E . (1)求曲线E 的方程;(2)经过点(0,1)作直线l 与曲线E 相交于A ,B 两点,OM →=OA →+OB →,当点M 在曲线E 上时,求直线l 的方程.[解析] (1)设C (m,0),D (0,n ),P (x ,y ). 由CP →=2PD →,得(x -m ,y )=2(-x ,n -y ),所以⎩⎪⎨⎪⎧ x -m =-2x ,y =2(n -y ),得⎩⎨⎧m =(2+1)x ,n =2+12y ,由|CD →|=2+1,得m 2+n 2=(2+1)2, 所以(2+1)2x 2+(2+1)22y 2=(2+1)2,整理,得曲线E 的方程为x 2+y 22=1. (2)设A (x 1,y 1),B (x 2,y 2),由OM →=OA →+OB →, 知点M 的坐标为(x 1+x 2,y 1+y 2).易知直线l 的斜率存在,设直线l 的方程为y =kx +1,代入 曲线E 的方程,得(k 2+2)x 2+2kx -1=0, 则x 1+x 2=-2kk 2+2,所以y 1+y 2=k (x 1+x 2)+2=4k 2+2. 由点M 在曲线E 上,知(x 1+x 2)2+(y 1+y 2)22=1, 即4k 2(k 2+2)2+8(k 2+2)2=1,解得k 2=2. 此时直线l 的方程为y =±2x +1.名师点拨 ☞代入法求轨迹方程的4个步骤(1)设出所求动点坐标P (x ,y ).(2)寻求所求动点P (x ,y )与已知动点Q (x ′,y ′)的关系. (3)建立P ,Q 两坐标间的关系,并表示出x ′,y ′. (4)将x ′,y ′代入已知曲线方程中化简求解. 〔变式训练2〕(2019·泰安质检)如图所示,动圆C 1:x 2+y 2=t 2,1<t <3,与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点,点A 1,A 2分别为C 2的左,右顶点.(1)当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积; (2)求直线AA 1与直线A 2B 交点M 的轨迹方程.[解析] (1)设A (x 0,y 0),则S 矩形ABCD =4|x 0y 0|,由x 209+y 20=1,得y 20=1-x 209, 从而x 20y 20=x 20(1-x 209)=-19(x 20-92)2+94.当x 20=92,y 20=12时,S max =6. 从而t 2=x 20+y 20=5,t =5,∴当t =5时,矩形ABCD 的面积取到最大值6. (2)由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0),由曲线的对称性及A (x 0,y 0),得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3),①直线A 2B 的方程为y =-y 0x 0-3(x -3),②由①②得y 2=-y 20x 20-9(x 2-9).③又点A(x0,y0)在椭圆C上,故y20=1-x209.④-y2=1(x<-3,y<0).将④代入③,得x29因此点M的轨迹方程为x2-y2=1(x<-3,y<0).9。
曲线与方程的概念讲课文档
曲线与方程关系的应用
已知方程 x2+(y-1)2=10. (1)判断点 P(1,-2),Q( 2,3)是否在此方程表示的曲线上; (2)若点 Mm2 ,-m在此方程表示的曲线上,求 m 的值.
【导学号:33242092】
现在十六页,总共三十一页。
[解] (1)∵12+(-2-1)2=10, ( 2)2+(3-1)2=6≠10, ∴点 P(1,-2)在方程 x2+(y-1)2=10 表示的曲线上, 点 Q( 2,3)不在方程 x2+(y-1)2=10 表示的曲线上.
现在二十三页,总共三十一页。
2.(变换条件)把方程换成“(2x+3y-5)[log2(x+2y)-3]=0”,其表示什 么曲线?
[解] 由(2x+3y-5)[log2(x+2y)-3]=0 得
2x+3y-5=0, x+2y>0,
或者 x+2y=8,也就是 2x+3y-5=0(x<10)或者 x+
2y=8,故方程表示的曲线为一条射线 2x+3y-5=0(x<10)(去除端点)和一条
现在十二页,总共三十一页。
(3)第二、四象限两轴夹角平分线上的点的坐标都满足 x+y=0;反之,以 方程 x+y=0 的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此, 第二、四象限两轴夹角平分线上的点的轨迹方程是 x+y=0.
[规律方法] 解决“曲线”与“方程”的判定这类问题(即判定方程是不是曲 线的方程或判定曲线是不是方程的曲线),只要一一检验定义中的“两性”是否 都满足,并作出相应的回答即可.判断点是否在曲线上,就是判断点的坐标是 否适合曲线的方程.
现在十七页,总共三十一页。
(2)∵点 Mm2 ,-m在方程 x2+(y-1)2=10 表示的曲线上,∴x=m2 ,y= -m 适合上述方程,
人教版选修21第二章曲线与方程的概念讲义
案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0.则过其交点的圆系方程为:x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0.典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小 答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x=0 D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线? (2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac 为半径的圆:当a=1时,P 点的轨迹是y 轴.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新知新讲
探究
一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x, y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点.
那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.
题一:设圆M的方程为(x-3)2+(y-2)2=2,直线l的方程为x+y-3=0,点P的坐标为(2,1),那么()
A.点P在直线l上,但不在圆M上
B.点P在圆M上,但不在直线l上
C.点P既在圆M上,也在直线l上
D.点P既不在圆M上,也不在直线l上
金题精讲
题一:|x|+|y|=1表示的曲线围成的图形面积为____.
讲义参考答案新知新讲
题一:C
金题精讲
题一: 2。