Advanced Manufacturing Technology and Mangement
先进制造技术——先进制造技术概述
先进制造技术——先进制造技术概述
先进制造技术(Advanced Manufacturing Technology)是指应用现
代信息技术与自动控制技术,以提高制造质量、降低成本、提高制造效率
的先进制造技术。
先进制造技术是当今世界制造业发展的关键驱动力,它
为进行高性能、低成本、节能、环保的高端制造提供了重要基础。
计算机辅助设计(CAD)是将计算机应用于设计制造过程中,利用计
算机系统对产品尺寸、外观、性能和结构等进行精确的描述和分析,进而
实现一个从设计到制造的连续系统。
CAD设计后生成的结果可用于数控加
工等制造技术。
计算机辅助制造(CAM)是指将计算机系统用于制造设备的程序控制,实现自动化制造。
CAM可以有效地将CAD系统设计的参数传输到制造设备,改变设备的控制方式,从而提高制造质量和效率。
快速制造(Rapid Manufacturing)是指利用数字技术和数字控制技术,运用计算机控制的设备,将设计好的模型及成型模具精准快速地制造
出成品的新型制造技术。
高级制造技术(Advanced Manufacturing Technology,简称AMT)
高级制造技术(Advanced Manufacturing Technology,简称AMT)现在企业领导者的一个突出感受是技术改造/设备更新中的系统选择性太大了,而决策的原则又变得越来越模糊,与此同时,引进或开发一个现代化生产系统的造价又极为昂贵,因此导致了投资决策风险的剧增。
在这种情况下,了解现代生产技术的特性,尤其是其内含要素与关系,对于正确进行技改决策和有效调整生产系统都是十分重要和迫切的。
现在人们一般用高级制造技术(AMT)来概括由于电子和计算机技术的应用而给传统制造技术带来的种种变化与新型系统。
所以AMT 也是现代信息技术与制造技术相结合所产生的各种设备、技术、系统的总称。
按照Zeleny 在1986 年给现代技术所下的定义,AMT 是由三个部分构成的,即AMT 的硬件、软件、和脑件(Brainware)部分,它们在不同的层次起着构成、运行、和决策的作用。
1 . AMT 的硬件组成计算机辅助制造(CAM)是AMT 硬件的核心部分,它是利用计算机直接进行制造工艺的操作、控制与监视,它具体包括了:NC,CNC,DNC,机器人,CPM /CPC,MV,AGV,和AMH 等由设备为主体构成的高级制造技术,其各自的含义与特点解释如下:NC--Numerical Control Machine 数控机床:利用数字形式将加工工艺信息记录在穿孔带或卡或磁盘上,由计数机依次将代码送入计算机并转化成电脉冲控制工作机床。
CNC--Computerized Numerical Control 计算机数控:用一台微型或小型机通过程序软件对单台机床的运行进行控制,CNC 提高了NC 的适应性,改善了NC 硬件的维修困难。
DNC--Direct Numerical Control 直接数控(群控):用一台中心计算机对多台机床进行控制。
DNC 完成的仅是对多台机床的分别控制,并未对机床间的协调配合进行计划与调度。
Robot 机器人:是对可编程控制的多功能机器的总称,它可以在工作中代替人工完成各种各样的工艺操作。
Advanced Manufacturing Technology(先进制造技术)
课程名称:Advanced Manufacturing Technology(先进制造技术)专业班级:机制091学号:3090101310姓名:孙作强任课老师:钟相强成绩:Computer-aided design专业:机制093 姓名:孙作强指导老师:钟相强Abstract: Computer-aided design also known as computer-aided design and drafting (CADD), is the use of computer systems to assist in the creation, modification, analysis, or optimization of a design. Computer Aided Drafting describes the process of creating a technical drawing with the use of computer software. CADD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CADD output is often in the form of electronic files for print or machining operations. CADD software uses either vector based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects.Keywords: CAD computer technologyIntroduction:The design of geometric models for object shapes, in particular,is occasionally called computer-aided geometric design (CAGD). In CAD, many commands are available for drawing basic geometric shapes. Examples include CIRCLE, POLYGON, ARC, ELLIPSE, and more.1.1 UsesComputer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question.CAD is one part of the whole Digital Product Development (DPD) activity within the Product Lifecycle Management (PLM) processes, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:∙Computer-aided engineering (CAE) and Finite element analysis (FEA)∙Computer-aided manufacturing (CAM) including instructions to Computer Numerical Control (CNC) machines∙Photo realistic rendering∙Document management and revision control using Product Data Management (PDM).CAD is also used for the accurate creation of photo simulations that are often required in the preparation of Environmental Impact Reports, in which computer-aided designs of intended buildings are superimposed into photographs of existing environments to represent what that locale will be like were the proposed facilities allowed to be built. Potential blockage of view corridors and shadow studies are also frequently analyzed through the use of CAD.CAD has also been proven to be useful to engineers as well. Using four properties which are history, features, parameterization, and high level constraints (Zhang). The construction history can be used to look back into the model's personal features and work on the single area rather than the whole model (zhang). Parameters and constraints can be used to determine the size, shape, and the different modeling elements. The features in the CAD system can be used for the variety of tools for measurement such as tensile strength, yield strength, also its stress and strain and how the element gets affected in certain temperatures.1.2 TypesThere are several different types of CAD, each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each.There are many producers of the lower-end 2D systems, including a number of free and open source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting, since these can be adjusted as required during the creation of the final draft.3D wireframe is basically an extension of 2D drafting (not often used today). Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly added to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views.3D "dumb" solids are created in a way analogous to manipulations of real world objects (not often used today). Basic three-dimensional geometric forms (prisms, cylinders, spheres, and so on) have solid volumes added or subtracted from them, as if assembling or cutting real-world objects. Two-dimensional projected views can easily be generated from the models. Basic 3D solids don't usually include tools to easily allow motion of components, set limits to their motion, or identify interference between components.3D parametric solid modeling requires the operator to use what is referred to as "design intent". The objects and features created are adjustable. Any future modifications will be simple, difficult, or nearly impossible, depending on how the original part was created. One must think of this as being a "perfect world" representation of the component. If a feature was intended to be located from the center of the part, the operator needs to locate it from the center of the model, not, perhaps, from a more convenient edge or an arbitrary point, as he could when using "dumb" solids. Parametric solids require the operator to consider the consequences of his actions carefully.Some software packages provide the ability to edit parametric and non-parametric geometry without the need to understand or undo the design intent history of the geometry by use of direct modeling functionality. This ability may also include the additional ability to infer the correct relationships between selected geometry (e.g., tangency, concentricity) which makes the editing process less time and labor intensive while still freeing the engineer from the burden of understanding the models. These kind of non-history based systems are called Explicit Modellers or Direct CAD Modelers.Top end systems offer the capabilities to incorporate more organic, aesthetics and ergonomic features into designs. Freeform surface modeling is often combined with solids to allow the designer to create products that fit the human form and visual requirements as well as they interface with the machine.1.3 TechnologyOriginally software for Computer-Aided Design systems was developed with computer languages such as Fortran, but with the advancement of object-oriented programming methods this has radically changed. Typical modern parametric feature based modeler and freeform surface systems are built around a number of key C modules with their own APIs. A CAD system can be seen as built up from the interaction of a graphical user interface (GUI) with NURBS geometry and/or boundary representation (B-rep) data via a geometric modeling kernel. A geometry constraint engine may also be employed to manage the associative relationships between geometry, such as wireframe geometry in a sketch or components in an assembly.Unexpected capabilities of these associative relationships have led to a new form of prototyping called digital prototyping. In contrast to physical prototypes, which entail manufacturing time in the design. That said, CAD models can be generated by a computer after the physical prototype has been scanned using an industrial CT scanning machine. Depending on the nature of the business, digital or physical prototypes can be initially chosen according to specific needs.Today, CAD systems exist for all the major platforms (Windows, Linux, UNIX and Mac OS X); some packages even support multiple platforms.Right now, no special hardware is required for most CAD software. However, some CAD systems can do graphically and computationally intensive tasks, so a modern graphics card, high speed (and possibly multiple) CPUs and large amounts of RAM may be recommended.The human-machine interface is generally via a computer mouse but can also be via a pen and digitizing graphics tablet. Manipulation of the view of the modelon the screen is also sometimes done with the use of a Spacemouse/SpaceBall. Some systems also support stereoscopic glasses for viewing the 3D model.References1. Vijay Duggal. “CADD Primer”. Mailmax Publishing.2. Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. pp.3.3. Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. pp.4.4. H. Pottmann, S. Brell-Cokcan, and J. Wallner:Discrete surfaces for architectural design计算机辅助设计摘要:计算机辅助设计也称为计算机辅助设计以及制定(CADD),是利用计算机系统来协助创造、修改、分析、优化设计。
第6章++先进制造技术新概念
一、智能制造
制造智能的关键技术
3)面向制造的综合推理技术 制造过程中的推理:制造过程中的推理是不确定、不 精
确、不完整的推理问题。
研究目标:建立不确定、不精确、非完整信息的分布/混 合推理技术;研究抽象代数、计算几何、微分几何在数控 加工、自动装配、逆向工程、机器视觉、形位测量与误差 评定中的应用。
Advanced Manufacturing Technology
一、智能制造
制造智能的关键技术
2)机器学习与制造知识发现技术 机器学习:把人类的知识教给计算机
知识发现:计算机通过机器学习、知识发掘从数据和信 息中自动提炼知识并升华为制造策略。
研究目标:解决异构数据库/知识库间的冲突和一致性维 护问题,实现异构数据库/知识库间的透明访问,针对特 定的制造活动,开发工艺知识库系统,研究高效、分布、 异构数据挖掘技术与知识发现技术。
(3)特种智能制造设备
(5)智能工程机械
Advanced Manufacturing Technology
(4)智能机器人
一、智能制造
智能制造装备的关键技术
1)装备运行状态和环境的感知与识别技术 对于金属切削机床指:加工精度、温度、切削力、热变 形、应力应变、图像信息等。 研究目标:
新型传感器技术:高灵敏、高可靠、高精度的检测环境 信息;
研究目标:
实现重大技术装备的寿命测试和寿命预测,对可靠性和寿 命精确评估。
Advanced Manufacturing Technology
一、智能制造
3)智能工艺规划和智能编程技术 问 题:现有的工艺规划基本是依靠经验的派生式,现有的 编程系统主要是面向零件几何的编程,没有综合考虑机床工 装和零件材料特性,智能工艺规划和编程主要是由计算机模 拟专家处理上述情况。 研究目标: 研究工艺系统和子系统间的复杂界面行为和耦合关系,建立 工艺系统和作业环境的集成数学模型和标定方法; 建立面向典型行业的工艺数据库和工艺知识库,完善机床、 机器人、工程机械模型库,实现多目标工艺优化; 完善专家经验与计算智能的融合,建立规划与编程的智能推 理和决策方法。
(ERPMRP管理)ERP术语翻译
中文意义
企业资源计 划 制造资源计 划 物料需求计 划
定货费 定货组装 自动化仓储 系统 作业成本集 作业基准成 本法 可供销售量 美国生产与 库存管理系 统 敏捷制造 实用制造管 理系列培训 教材 先进制造技 术 预期储备
倒排计划
Backflushing billofresource(BOR) businessplan batchprocess bottleneck
businessprocessreengineering(BPR) backorder backlog billofmaterials bucketlesssystem C 字母 carryingcost closed-loopMRP costroll-up costedBOM costofstockout criticalworkcenter criticalpathmethod computer-aidedprocessplanning(CAPP)
minimumbalance managementbyexception modularBOM
measureofvelocity
maintenance,repair,andoperationsupplies materialmanagement materialreviewboard materialmanager materialavailable ModernMaterialsHandling
P 字母
policyandprocedure plannedorderreceipts plannedorder plannedcapacity programevaluationresearchtechnology(PERT) planninghorizon plannedtimefence(PTF) plannedorderreleases planningBOM proposedcost pickinglist parentitem ParetoPrinciple productioncycle
机械制造技术
第5章先进制造技术简介5.1 概述先进制造技术AMT(Advanced Manufacturing Technology)是近20多年来国际上提出的新概念,受到世界各国尤其是工业发达国家的政府、企业界和学术界的高度重视。
先进制造技术是以提高企业的综合效益为目的,以人为主体,以计算机技术为支柱,并综合应用信息、材料、能源、环保等新技术和现代管理技术来研究和改造传统的制造系统,作用于产品整个寿命周期的所有适用新技术的总称。
其内容包括了工程设计、加工制造、生产管理、物流及贮存等新技术,如数控技术(NC)、计算机集成技术(CIM/CIMS)、并行工程(CE)、精益生产(LP)、智能制造(IMS)、敏捷制造(AM)、虚拟制造、快速原型制造和清洁化生产……等。
先进制造技术是在计算机技术和管理技术飞速发展的拉动下诞生和发展的,它促使制造业在产品结构、生产模式和生产过程发生了巨大的变化。
①产品结构正朝着先进、实用、高速、轻小、节能和环保型方向发展;②生产模式朝着多品种、小批量、柔性化、生产周期短方向发展;③生产过程朝着高速、精密、自动化、节能环保和少切削无切削方向发展,产品质量追求“零缺陷”。
先进制造技术在发展中是动态的,不是一成不变的,而是不断吸收各种新技术成果。
它不限于加工制造过程本身,还包络市场调研、产品设计、工艺设计、加工制造、售前售后服务等产品寿命周期的所有内容。
它并不摒弃传统技术,而是强调运用计算机技术、信息技术和现代管理技术等各种新科技成果去改造和充实它,但也十分强调人的主体作用,强调人、技术和管理三者有机结合。
现代制造技术还强调环境保护、追求绿色产品和清洁化生产技术,要求对资源、动力的消耗最少,对环境的污染最小,对人体危害最小,产品报废后便于回收利用。
为了赢得激烈的市场竞争,必须不断用新技术去改造制造业,使制造的产品功能适用(Function)、交货期限短(Time to Market)、质量好(Quality)、价格低(cost),并且服务优良(Service)。
先进制造技术及其发展趋势
产品开发特征
先进制造技术
1 现代制造业市场的特征 现代制造业市场特征 多 变 性 市 场 新 兴 产 品 市 场
买 方 市 场
国 际 化 市 场
虚 拟 市 场
先进制造技术
买方市场。这是科学技术与生产力发展的必然结果, 1 买方市场。这是科学技术与生产力发展的必然结果,“卖 方市场”已成为过去。 方市场”已成为过去。 多变性市场。由于科技发展快,技术更新快,产品换代快, 2 多变性市场。由于科技发展快,技术更新快,产品换代快, 产品非大量化、分散化、个性化的生产越来越强, 产品非大量化、分散化、个性化的生产越来越强,市场越 来越大,市场变化很快。 来越大,市场变化很快。 国际化市场。市场打破国界,走向区域化、国际化, 3 国际化市场。市场打破国界,走向区域化、国际化,WTO 与各种区域经济组织应运而生而兴。 与各种区域经济组织应运而生而兴。 新兴产品市场。 4 新兴产品市场。对传统产品用高新技术加以改造与发展而 成的产品及前所未有的新类型的“产品” 从而导致技术、 成的产品及前所未有的新类型的“产品”,从而导致技术、 软件、环保等产业的出现,特别在第三产业中更是如此。 软件、环保等产业的出现,特别在第三产业中更是如此。 虚拟市场。信息化的进一步是网络化,网上的产品广告、 5 虚拟市场。信息化的进一步是网络化,网上的产品广告、 商品展示、商品交易、客户关系等均属于虚拟市场。 商品展示、商品交易、客户关系等均属于虚拟市场。
先进制造技术
2 现代企业的特征 现代制造业企业特征 满 足 客 户 要 求 对 市 场 反 应 本 竞 争 与 合 作 土 化 国 际 化 应 用 虚 拟 技 术 企 业 人 文 建 设
先进制造技术
满足“客户化”要求,这是最根本的,这是“ 1 满足“客户化”要求,这是最根本的,这是“买方市 必然导致的结果。 场”必然导致的结果。 对市场的快速响应,对生产的快速重组, 2 对市场的快速响应,对生产的快速重组,从而要求生 产模式必需有高度柔性,有足够敏捷性。 产模式必需有高度柔性,有足够敏捷性。 既竞争、又合作地参与市场,走向“双赢” 3 既竞争、又合作地参与市场,走向“双赢”、“多 网络化为此提供了更有利的条件。 赢”,网络化为此提供了更有利的条件。 本土化与国际化交互,走向全球化,既竞争,又合作, 4 本土化与国际化交互,走向全球化,既竞争,又合作, 自然导致朝这一方向发展。 自然导致朝这一方向发展。 应用虚拟技术,以加快企业有关活动的节奏, 5 应用虚拟技术,以加快企业有关活动的节奏,提高产 品质量,节约成本。 品质量,节约成本。 以人为本” 加强企业人文文化建设,应该说, 6 “以人为本”,加强企业人文文化建设,应该说,这是 以人为本 现代企业成败要害之所在。 现代企业成败要害之所在。
机械加工专业毕业设计外文资料翻译--高速切削加工的发展及需求
本科毕业设计(论文)外文资料翻译外文翻译英文原文High-speed machining and demand for the development of High-speed machining is contemporary advanced manufacturing technology an important component of the high-efficiency, High-precision and high surface quality, and other features. This article presents the technical definition of the current state of development of China's application fields and the demand situation.High-speed machining is oriented to the 21st century a new high-tech, high-efficiency, High-precision and high surface quality as a basic feature, in the automobile industry, aerospace, Die Manufacturing and instrumentation industries gained increasingly widespread application, and has made significant technical and economic benefits. contemporary advanced manufacturing technology an important component part.HSC is to achieve high efficiency of the core technology manufacturers, intensive processes and equipment packaged so that it has a high production efficiency. It can be said that the high-speed machining is an increase in the quantity of equipment significantly improve processing efficiency essential to the technology. High-speed machining is the major advantages : improve production efficiency, improve accuracy and reduce the processing of cutting resistance.The high-speed machining of meaning, at present there is no uniform understanding, there are generally several points as follows : high cutting speed. usually faster than that of their normal cutting 5 -10 times; machine tool spindle speed high, generally spindle speed in -20000r/min above 10,000 for high-speed cutting; Feed at high velocity, usually 15 -50m/min up to 90m/min; For different cutting materials and the wiring used the tool material, high-speed cutting the meaning is not necessarily the same; Cutting process, bladed through frequency (Tooth Passing Frequency) closer to the "machine-tool - Workpiece "system the dominant natural frequency (Dominant Natural Frequency), can be considered to be high-speed cutting. Visibility high-speed machining is a comprehensive concept.1992. Germany, the Darmstadt University of Technology, Professor H. Schulz in the 52th on the increase of high-speed cutting for the concept and the scope, as shown in Figure 1. Think different cutting targets, shown in the figure of the transition area (Transition), to be what is commonly called the high-speed cutting, This is also the timeof metal cutting process related to the technical staff are looking forward to, or is expected to achieve the cutting speed.High-speed machining of machine tools, knives and cutting process, and other aspects specific requirements. Several were from the following aspects : high-speed machining technology development status and trends.At this stage, in order to achieve high-speed machining, general wiring with high flexibility of high-speed CNC machine tools, machining centers, By using a dedicated high-speed milling, drilling. These equipment in common is : We must also have high-speed and high-speed spindle system feeding system, Cutting can be achieved in high-speed process. High-speed cutting with the traditional cutting the biggest difference is that "Machine-tool-workpiece" the dynamic characteristics of cutting performance is stronger influence. In the system, the machine spindle stiffness, grip or form, a long knife set, spindle Broach, torque tool set, Performance high-speed impact are important factors.In the high-speed cutting, material removal rate (Metal Removal Rate, MRR), unit time that the material was removed volume, usually based on the "machine-tool-workpiece" whether Processing System "chatter." Therefore, in order to satisfy the high-speed machining needs, we must first improve the static and dynamic stiffness of machine spindle is particularly the stiffness characteristics. HSC reason at this stage to be successful, a very crucial factor is the dynamic characteristics of the master and processing capability.In order to better describe the machine spindle stiffness characteristics of the project presented new dimensionless parameter - DN value, used for the evaluation of the machine tool spindle structure on the high-speed machining of adaptability. DN value of the so-called "axis diameter per minute speed with the product." The newly developed spindle machining center DN values have been great over one million. To reduce the weight bearing, but also with an array of steel products than to the much more light ceramic ball bearings; Bearing Lubrication most impressive manner mixed with oil lubrication methods. In the field of high-speed machining. have air bearings and the development of magnetic bearings and magnetic bearings and air bearings combined constitute the magnetic gas / air mixing spindle.Feed the machine sector, high-speed machining used in the feed drive is usually larger lead, multiple high-speed ball screw and ball array of small-diameter silicon nitride (Si3N4) ceramic ball, to reduce its centrifugal and gyroscopic torque; By usinghollow-cooling technology to reduce operating at high speed ball screw as temperature generated by the friction between the lead screw and thermal deformation.In recent years, the use of linear motor-driven high-speed system of up to'' Such feed system has removed the motor from workstations to Slide in the middle of all mechanical transmission links, Implementation of Machine Tool Feed System of zero transmission. Because no linear motor rotating components, from the role of centrifugal force, can greatly increase the feed rate. Linear Motor Another major advantage of the trip is unrestricted. The linear motor is a very time for a continuous machine shop in possession of the bed. Resurfacing of the very meeting where a very early stage movement can go, but the whole system of up to the stiffness without any influence. By using high-speed screw, or linear motor can greatly enhance machine system of up to the rapid response. The maximum acceleration linear motors up to 2-10G (G for the acceleration of gravity), the largest feed rate of up to 60 -200m/min or higher.2002 world-renowned Shanghai Pudong maglev train project of maglev track steel processing, Using the Shenyang Machine Tool Group Holdings Limited McNair friendship company production plants into extra-long high-speed system for large-scale processing centers achieve . The machine feeding system for the linear guide and rack gear drive, the largest table feed rate of 60 m / min, Quick trip of 100 m / min, 2 g acceleration, maximum speed spindle 20000 r / min, the main motor power 80 kW. X-axis distance of up to 30 m, 25 m cutting long maglev track steel error is less than 0.15 mm. Maglev trains for the smooth completion of the project provided a strong guarantee for technologyIn addition, the campaign machine performance will also directly affect the processing efficiency and accuracy of processing. Mold and the free surface of high-speed machining, the main wiring with small cut deep into methods for processing. Machine requirements in the feed rate conditions, should have high-precision positioning functions and high-precision interpolation function, especially high-precision arc interpolation. Arc processing is to adopt legislation or thread milling cutter mold or machining parts, the essential processing methods.Cutting Tools Tool Material developmenthigh-speed cutting and technological development of the history, tool material is continuous progress of history. The representation of high-speed cutting tool material is cubic boron nitride (CBN). Face Milling Cutter use of CBN, its cutting speed can be as high as 5000 m / min, mainly for the gray cast iron machining. Polycrystalline diamond(PCD) has been described as a tool of the 21st century tool, It is particularly applicable to the cutting aluminum alloy containing silica material, which is light weight metal materials, high strength, widely used in the automobile, motorcycle engine, electronic devices shell, the base, and so on. At present, the use of polycrystalline diamond cutter Face Milling alloy, 5000m/min the cutting speed has reached a practical level. In addition ceramic tool also applies to gray iron of high-speed machining;Tool Coating : CBN and diamond cutter, despite good high-speed performance, but the cost is relatively high. Using the coating technology to make cutting tool is the low price, with excellent mechanical properties, which can effectively reduce the cost. Now high-speed processing of milling cutter, with most of the wiring between the Ti-A1-N composite technology for the way of multi-processing, If present in the non-ferrous metal or alloy material dry cutting, DLC (Diamond Like Carbon) coating on the cutter was of great concern. It is expected that the market outlook is very significant;Tool clamping system : Tool clamping system to support high-speed cutting is an important technology, Currently the most widely used is a two-faced tool clamping system. Has been formally invested as a commodity market at the same clamping tool system are : HSK, KM, Bigplus. NC5, AHO systems.In the high-speed machining, tool and fixture rotary performance of the balance not only affects the precision machining and tool life. it will also affect the life of machine tools. So, the choice of tool system, it should be a balanced selection of good products.Process ParametersCutting speed of high-speed processing of conventional shear velocity of about 10 times. For every tooth cutter feed rate remained basically unchanged, to guarantee parts machining precision, surface quality and durability of the tool, Feed volume will also be a corresponding increase about 10 times, reaching 60 m / min, Some even as high as 120 m / min. Therefore, high-speed machining is usually preclude the use of high-speed, feed and depth of cut small cutting parameters. Due to the high-speed machining cutting cushion tend to be small, the formation of very thin chip light, Cutting put the heat away quickly; If the wiring using a new thermal stability better tool materials and coatings, Using the dry cutting process for high-speed machining is the ideal technology program.High-speed machining field of applicationFlexible efficient production lineTo adapt to the needs of new models, auto body panel molds and resin-prevention block the forming die. must shorten the production cycle and reduce the cost ofproduction and, therefore, we must make great efforts to promote the production of high-speed die in the process. SAIC affiliated with the company that : Compared to the past, finishing, further precision; the same time, the surface roughness must be met, the bending of precision, this should be subject to appropriate intensive manual processing. Due to the extremely high cutting speed, and the last finishing processes, the processing cycle should be greatly reduced.To play for machining centers and boring and milling machining center category represented by the high-speed machining technology and automatic tool change function of distinctions Potential to improve processing efficiency, the processing of complex parts used to be concentrated as much as possible the wiring process, that is a fixture in achieving multiple processes centralized processing and dilute the traditional cars, milling, boring, Thread processing different cutting the limits of technology, equipment and give full play to the high-speed cutting tool function, NC is currently raising machine efficiency and speed up product development in an effective way. Therefore, the proposed multi-purpose tool of the new requirements call for a tool to complete different parts of the machining processes, ATC reduce the number of ATC to save time, to reduce the quantity and tool inventory, and management to reduce production costs. More commonly used in a multifunctional Tool, milling, boring and milling, drilling milling, drilling-milling thread-range tool. At the same time, mass production line, against the use of technology requires the development of special tools, tool or a smart composite tool, improve processing efficiency and accuracy and reduced investment. In the high-speed cutting conditions, and some special tools can be part of the processing time to the original 1 / 10 below, results are quite remarkable.HSC has a lot of advantages such as : a large number of materials required resection of the workpiece with ultrafine, thin structure of the workpiece, Traditionally, the need to spend very long hours for processing mobile workpiece and the design of rapid change, short product life cycle of the workpiece, able to demonstrate high-speed cutting brought advantages.中文译文高速切削加工的发展及需求高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。
先进制造技术的内涵及特点
先进制造技术的内涵及特点
一、先进制造技术的内涵
先进制造技术(Advanced Manufacturing Technology,AMT),是指
集成制造系统(Integrated Manufacturing System,IMS)、自动化控制
技术、信息技术、集成电路技术、机器人技术、微机技术、自动测量技术
等先进的制造技术的统称。
二、先进制造技术的特点
1、自动化程度高:自动化是先进制造技术的基础,通过控制系统、
传感器、机器人等组成的自动化生产线,可实现智能制造,实现自动化生产,提高了制造的灵活性。
2、整体化设计:先进制造技术结合系统工程理论,采用整体化的设
计方法,将工艺流程、设备、材料、技术、财务等各方面综合考虑,以系
统的思维去面对制造问题,整体性地解决问题。
3、集成技术:集成就是把多种功能的设备、技术技术等集中一体化,比如用先进的产品设计技术实现产品设计、把自动控制技术和计算机网络
技术结合,实现制造系统的集成。
4、智能化:利用现代计算机技术,利用机器人技术等,实现自动检
测和自学习,实现自动制造。
智能控制技术能够自动控制机器人的动作,
实现复杂工作的自动化,提高制造效率,实现更高的工作精度。
5、数字化:将制造生产中的各个环节进行数字化计算和处理。
Advanced Manufacturing Technology
2. main advantages of an FMS
Reduced manufacturing times; Lower cost per unit produced; Greater labor productivity; Greater machine efficiency; Improved quality; Increased system reliability; Reduced parts inventories; Adaptability to CAD/CAM operations; Shorter lead times.
5.1.2 The main content of advanced manufacturing technologies
Flexible Manufacturing Systems (FMS) Virtual Manufacturing System (VM) Computer-Integrated Manufacturing Systems (CIMS) Reconfigurable Manufacturing System Grid Manufacturing Computer-Aided Design (CAD) Computer Aided Manufacture (CAM) Engineering Systems Materials Resource Planning Systems (MRPS) Automated Materials Handling Systems
Figures 5.3-5.5 illustrate construction of a virtual reality system, a data glove and virtual glasses.
先进制造技术 第一章 先进制造技术概论
1.2 制造业的发展与地位
传统制造业及其技术的发展
第二次工业革命:人类开始进入电气 时代,并在信息革命、资讯革命中达 到顶峰。
发电站
早期计算机
第三次工业革命:人类进入科技时 代,生物克隆技术的出现,航天科 技的出现,也即生物科技与产业革 命。
-17-
1.2 制造业的发展与地位
传统制造业及其技术的发展
大型发电和传输技术
核能技术
微电子技术
激光技术
-19-
1.2 制造业的发展与地位
现代制造业及其技术的发展
回顾制造技术的发展,从蒸汽机出现到今天,主要经历了三个发展阶段: 机器代替手工 作坊形成工厂
单件生产到大量生产
柔性化、集成化、智能化和 网络化的现代制造技术
-20-
1.2 制造业的发展与地位
现代制造业及其技术的发展
-15-
1.2 制造业的发展与地位
传制造业及其技术的发展
人类文明的发展与制造业的进步密切相关。
石器时代
在石器时代,人类利用天然 石料制作劳动工具;
青铜器、铁器时代
到青铜器、铁器时代, 人们开始采矿、冶炼铸 锻工具、织布;
第一次工业革命
直到1765年,瓦特改良蒸 汽机,纺织业、机器制造 业才取得革命性的变化, 引发了第一次工业革命
完成制造活动所需的一切手段的总和,是将原材料和其他生产要素经济合理地转 化为可直接使用的、具有较高附加值的成品/半成品和技术服务的技术群。
-14-
1.2 制造业的发展与地位
制造、制造技术和制造业的定义
3. 制造业(manufacturing industries)
所有与制造有关的企业机构的总体。是将制造资源(物料、能源、设备、工具、 资金、技术、信息和人力等),通过制造过程,转化为可供人们使用与利用的工 业品与生活消费品的行业
机械设计及其自动化专业英语翻译23到28单元
Unit 23 what is “Mechatronics”?“Mechatronics” is a term coined by the Japanese to describe the in tegration of mechanical and electronic engineering .The concept may s eem to be anything but new, since we can look around us and see a myriad of products that utilize both Mechanical and electronic discipl ines .Mechatronics , however , specially refers to a multidisciplined, i ntegrated approach to product and manufacturing system design. It rep resents the next generation of machines, robots, and smart mechanisms necessary for carrying out work in a variety of environments-primaril y, factory automation, office automation, and home automation as sho wn in Fig.23.1.译文:“机电一体化“是一个有日本人描述机械和电子集成的合成术语。
这个概念看上去不再新颖,自从我们能观察四周和看到无数那些利用机械和电子学科的产品。
机电一体化,然而,特别是涉及到许多学科,结合方法去生产和制造系统设计。
他代表下一代机械,机器人和灵巧机构必须执行工作在各种环境,首要的,工厂自动化,办公自动化,家庭自动化如图23.1所示。
先进制造技术(PPT 78页)
AMT特征
传统制造技术
仅驾驭生产过程 系统性 物质流和能量流
先进制造技术
能驾驭生产过程 物质流、信息流和能量流
仅指将原材料变为 贯穿从产品设计、加工制造到产品销售 广泛性 成品的加工工艺 的整个过程
集成性 动态性
学科专业单一、独 立,相互间界限分 明
尤里卡计划(EREKA):1988年用5亿美元资助16个欧洲
国家、600家公司的165个合作性高科技研究开发项目。
信息技术研究发展战略计划(ESPRIT):在13个成员
国向5500名研究人员提供了资助,明确设计原理、工厂自动化、 生产过程管理三大课题。
欧洲工业技术基础研究计划(BRITE):重点资助材
1.社会经济发展背景
(1)消费需求:主题化、个性化和多样化,产品寿命周期缩短。
(2)全球性产业结构调整:制造商之间既有激烈竞争,又有基 于实力的合作。
(3)快速响应市场:满足已有和潜在顾客需求,主动适应市场, 引导市场,是赢得竞争,获取最大利润的关键。
先进制造技术产生的背景
2.科学技术发展背景
(1)制造技术在向宏观(制造系统)和微观(超精密加工)两 个方向发展
5.系统性
随着微电子、信息技术的引入,先进制造技术能驾驭信息生成、 采集、传递、反馈、调整的信息流动过程。先进制造技术是可以 驾驭生产过程的物质流、能量流和信息流的系统工程。
6.动态性
不断地吸收各种高新技术成果,将其渗透到企业生产的所有领域 和产品寿命循环的全过程,实现优质、高效、低耗、清洁、灵活 的生产。
先进制造技术的体系结构及分类
先进制造技术的体系结构
专家报告:先进制造技术概论
类别
食品工业
构成比例
类别
化 工
构成比例
3.395
15.335
15.586
一般机械
8.625
纺
织
7.193
建
材
7.299
运输机械
6.424
服
装
5.018
黑色冶金
6.908
电器设备
5.125
家
具
1.542
有色冶金
2.120
电子设备
4.588
文教用品
4.292
其他制造
1.681
仪器仪表
0.998
油 加 工
上一页 下一页 返回
1.2 先进制造技术的发展
1.2.3 先进制造技术的发展趋势
制造产品:
“精”是发展的关键 “极”是发展的焦点 “文”是发展的新义 “绿”是发展的必然 “快”是发展的动力 “省”是发展的原则 “效”是发展的追求 “数”是发展的核心 “自”是发展的条件 “集”是发展的方法 “网”是发展的道路 “智”是发展的前景 上一页 下一页 返回
制造(manufacturing)是人类按照市场需求,运用主观 掌握的知识和技能,借助于手工或可以利用的客观物质工具, 采用有效的工艺方法和必要的能源,将原材料转化为最终物 质产品并投放市场的全过程。制造的概念有广义和狭义之分: 狭义的制造,是指生产车间内与物流有关的加工和装配过程; 而广义的制造,则包含市场分析、产品设计、工艺设计、生 产准备、加工装配、质量保证、生产过程管理、市场营销、 售前售后服务,以及报废后的回收处理等整个产品生命周期 内一系列相互联系的生产活动。制造是人类所有经济活动的 基石,是人类历史发展和文明进步的动力。
先进制造技术名词翻译
1.2 制造系统/Manufacturing System 制造系统是制造业的基本组成实体。
结构:是制造过程所涉及的硬件(物料、设备、工具、能 源等)、软件(制造理论、工艺、信息等)、人员所组 成的具有特定功能的有机整体。
功能:输入制造系统的资源(原材料、能源、信息、人 力...)通过制造过程输出产品
向全寿命周期设计发展 由单纯考虑技术因素转
向综合考虑技术、经济 和社会因素
5.2 先进制造技术的学科内容
2、先进制造工艺技术
精密、超精密加工技术
精密加工:精度为3~ 0.3μm Ra0.3~0.03 μm
超精密加工:精度为0.3~ 0.03μm Ra0.3~0.005 μm
纳米加工:精度高于 0.03μm Ra小于0.3~
支撑 技术群
制造基础 设施环境
5.2 先进制造技术的学科内容
1、先进设计技术
设计方法现代化
产品动态分析和设计 产品可靠性
可维护性及安全设计 产品优化设计 快速响应设计 创新设计 智能设计 仿真与虚拟设计 价值工程设计 模块化设计
设计手段计算机化
有限元法 优化设计 计算机辅助设计 反求工程技术 CAD/CAM一体化技术 工程数据库
一、美国的教训
1) 上个世纪70年代,美国不重视制造业,把制造业称为“夕阳工业”,结 果导致美国80年代的经济衰退。
2) 80年代后期,美国的一些国会议员、政府要员纷纷要求政府出面, 协调和支持制造产业的发展,1991年,布什政府期间,美国白宫 科学技术政策办公室发表了总数为22项的美国国家关键技术,其 中制造技术占4项,标志着美国科技政策的转变。
来源: Bullinger
先进制造技术英语作文
先进制造技术英语作文English:In recent years, advanced manufacturing technology has played a pivotal role in shaping industries across the globe. This technology encompasses a wide range of innovations, including automation, robotics, artificial intelligence, and additive manufacturing, among others. These advancements have revolutionized traditional manufacturing processes, leading to increased efficiency, reduced costs, and enhanced product quality. One of the most significant impacts of advanced manufacturing technology is its ability to streamline production. Automation and robotics, for example, can perform repetitive tasks with high precision and speed, reducing human error and allowing workers to focus on more complex tasks. Additionally, artificial intelligence has enabled manufacturers to predict maintenance needs and optimize production schedules, minimizing downtime and maximizing productivity. Additive manufacturing, or 3D printing, has also changed the game by allowing for rapid prototyping and customized production, reducing waste and shortening time to market. Moreover, advancedmanufacturing technology has positive environmental implications. By reducing material waste and energy consumption, these technologies contribute to sustainability and lower carbon footprints. As industries continue to evolve, the importance of advanced manufacturing technology will only grow, driving innovation and fostering economic growth.中文翻译:近年来,先进制造技术在全球范围内塑造了许多行业。
先进制造技术--aps
先进制造技术advance manufacture technology焊接:激光焊接技术、自动化焊接机器人先进制造技术(Advanced Manufacturing Technology),就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。
主要包括:计算机辅助设计、计算机辅助制造、集成制造系统等。
AMT是制造业企业取得竞争优势的必要条件之一,五轴数控加工中心,它可以加工非常复杂的产品。
Welding: laser welding, automatic welding robotAdvanced Manufacturing Technology (Advanced Manufacturing Technology),Refers to the set of mechanical engineering technology, electronic technology, automation technology, information technology and other technology as one of the resulting technology, equipment and systems in general. Include: computer-aided design, computer aided manufacturing, integrated manufacturing systems. AMT is a manufacturing enterprise to obtain a necessary condition for competitive advantage,five-axis CNC machining centers, which can be processed very complex product.先进制造技术是在传统制造技术基础上不断吸收机械,电子,信息,材料、能源,以及现代管理技术得成果,将其综合应用于产品设计,加工装配,检验测试,经营管理,售后服务乃至回收的制造全过程,以实现优质,高效,低耗,清洁,灵活的生产,提高对动态多变市场的适应能力和竞争能力的制造技术的总称advance manufacture technology,add the result of machine , electric , information , material ,resource and the technology of modern management base on the traditional manufacture technology.and use them to design product, Processing and assembly, inspection and testing, operation and management, after-sales service, and recycling. In order to achieve high-quality, high efficiency, low consumption, clean, flexible manufacturing.Improve the ability to adapt dynamically changing market and competitive。
Advanced Manufacturing Technologies
Advanced Manufacturing TechnologiesAdvanced manufacturing technologies have revolutionized the way products are designed, produced, and delivered to consumers. These technologies encompass awide range of tools and processes, including 3D printing, robotics, artificial intelligence, and the Internet of Things. They have the potential to increase efficiency, reduce costs, and improve quality in manufacturing operations. However, the adoption of these technologies also poses challenges for companies, workers, and society as a whole. From a company's perspective, investing in advanced manufacturing technologies can be a daunting task. The initial costs of acquiring and implementing these technologies can be significant, and there is always a risk that the technology may quickly become outdated. Moreover, companies must also consider the impact of these technologies on their workforce. Automation, for example, can lead to job displacement and require retraining for existing employees. Despite these challenges, companies that embrace advanced manufacturing technologies can gain a competitive edge in the market by increasing productivity and innovation. For workers, the adoption of advanced manufacturing technologies can be both a blessing and a curse. On one hand, these technologies can make their jobs easier and safer by taking on repetitive or dangerous tasks. On the other hand, automation can lead to job loss and the need for new skills. Workers mayfeel anxious about the future of their careers and uncertain about how to adapt to the changing technological landscape. Companies must invest in training and upskilling programs to help their employees transition to new roles and technologies. From a societal perspective, advanced manufacturing technologies have the potential to reshape industries and economies. They can create new opportunities for growth and innovation, but they can also exacerbate income inequality and job insecurity. As companies become more efficient and productive with these technologies, they may need fewer workers, leading to a concentrationof wealth and power in the hands of a few. Governments and policymakers must address these challenges by implementing regulations and policies that promote a fair and inclusive transition to a technologically advanced future. Despite the challenges and uncertainties surrounding advanced manufacturing technologies,there is no denying their transformative potential. These technologies havealready revolutionized industries such as aerospace, automotive, and healthcare, and they continue to evolve at a rapid pace. Companies that embrace these technologies and adapt to the changing landscape of manufacturing will be better positioned to succeed in the global market. By investing in research and development, training programs, and collaboration with industry partners, companies can harness the power of advanced manufacturing technologies to drive innovation and growth. In conclusion, advanced manufacturing technologies have the power to revolutionize the way products are designed, produced, and delivered. While they present challenges for companies, workers, and society as a whole, the benefits of these technologies far outweigh the risks. By embracing change, investing in training and upskilling programs, and collaborating with industry partners, companies can harness the transformative potential of advanced manufacturing technologies to drive innovation and growth. As we navigate the complexities of the Fourth Industrial Revolution, it is essential that we work together to create a future that is inclusive, sustainable, and prosperous for all.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章先进制造技术的基本概念
1.制造技术的五个发展时期:工场式生产时期;工业化规模生产时期;刚性自动化发展时期;柔性自动化发展时期;综合自动化发展时期。
2.先进制造技术定义:以人为主体,以计算机为重要工具,不断吸收机械,电子,信息,材料,环保,生物以及现代系统管理等最新科技成果,涵盖产品生产的整个生命周期的各个环节的先进工程技术的总称。
第二章现代工程设计技术
1.设计:是将来自市场的顾客需求,经过设计人员的创造性思维,规划和决策等过程,最终形成可应用于制造的各种信息。
2.CAD/CAM中常用的几何模型:线框模型,表面模型和实体模型。
3.常用的几何模型造型方法:扫描变换法;结构几何体素构造法;边界表示法。
4.CAM:计算机辅助制造(Computer Aided Manufacturing)是一项利用计算机帮助人们完成有关产品制造工作的技术。
5.CAPP-计算机辅助工艺过程设计
CAPP的类型:检索式CAPP系统;派生式CAPP系统;创成式CAPP系统
6.CAD/CAM系统集成的关键技术:产品造型技术;工程数据管理技术;数据交换接口技术;集成的执行控制程序。
7.面向X的设计(DFX)--面向制造的设计(DFM);面向装配的设计(DFA)
8.并行工程:对产品及相关过程进行并行,一体化设计的系统化方法。
9.并行设计团队:1)制造,质量,营销人员;2)顾客和供应商;3)环保人员。
10.反求工程技术:是消化吸收并改进国内外先进技术的一系列工作方法和技术的总和。
可分为应用,消化和创新三个阶段。
研究对象:实物类,软件类,影像类
研究方法:软件反求设计法;影像反求设计法;实物反求设计法。
第三章先进制造工艺
1.先进制造工艺成形方法:1)去除成形;2)受迫成形;3)堆积成形;4)生成成形。
2.激光加工设备包括—激光器,电源,光学系统和机械系统。
3.电子束加工装置由电子枪,真空系统,控制系统和电源等。
4.离子束加工主要用于离子刻蚀,离子镀膜和离子注入等。
离子刻蚀是用能量0.5—5keV的氩离子轰击工件,将工件表面的原子逐个剥离。
实质是一种原子尺度的切削加工,又称离子铣削。
离子溅射沉积是用能量为0.5—5keV的氩离子轰击某种材料制成的靶,离子将靶材原子击出后沉积在靶材附近的工件上,使工件表面镀上一层膜,是一种镀膜工艺。
离子镀也称离子溅射辅助沉积,它是用0.5—5keV的氩离子,在镀膜同时轰击靶材和工件表面。
离子注入是用5—500keV能量的离子束直接轰击工件,向工件表面直接注入离子,不受热力学的限制,可以注入任何离子,且注入量可以精确控制,注入的离子是固溶在工件材料中,含量可达10%--40%,注入深度可达1um甚至更深。
5.超精密加工:是指加工精度和表面质量达到极高程度的精密加工工艺。
超精密加工设计的技术领域:1)加工技术;2)材料技术;3)加工设备及其基础部件;4)测量及误差补偿技术;5)工作环境。
6.微型机械(Micromachine)或称微型机电系统(MEMS)或称微型系统是指可以批量制作的,集微型机构,微型传感器,微型执行器,以及信号处理和控制电路,甚至外围接口,通信电路和电源等于一体的微
型器材或系统。
微型机械加工关键技术主要有四类:1)微型系统设计技术;2)微细加工技术;3)微型机械组装和封装技术;4)微系统的表征和测试技术。
7.快速原型、零件制造技术是由CAD模型直接驱动的快速制造任意复杂形状三维实体的技术总称。
快速原型技术采用离散/堆积成型的原理。
分析题见课本74,75页
第四章制造自动化技术
1.制造自动化的内涵包括:1)物料转化加工设备自动化;2)物料运输自动化;3)检测自动化;4)制造系统自动化。
2.制造自动化技术的关键技术:1)CAD/CAM技术;2)数控技术;3)柔性制造系统;4)工业机器人技术;5)物料储运技术。
3.数控技术(NC)是用数字化信息进行控制的自动控制技术。
数控系统的分类:按装置类型不同分为硬件式NC系统和软件式CNC系统;
根据数控系统用途不同分为金属切削类数控系统,金属成形类数控系统和数控特种加工系统。
根据数控系统运动方式不同,分为点位控制系统,点位直线控制系统和轮廓控制系统。
根据控制方式不同分为开环控制系统,半闭环控制系统和闭环控制系统。
4.机器人是一个在三维空间中具有较多自由度的,并能实现诸多拟人动作的机器。
工业机器人则是在工业生产上应用的机器人,它是一种可重编程的多自由度自动控制操作机。
特点:1)可编程;2)拟人化;3)通用性;4)机电一体化。
分析题见课本95,96,97页
工业机器人的编程方法:示教再现编程,机器人语言编程和离线编程。
5.柔性制造系统(FMS):由数控加工设备,物料运储装置和计算机控制系统等组成的自动化制造系统。
分类:1)柔性制造单元(FMC);2)柔性制造系统(FMS);3)柔性制造线(FML);4)柔性制造工厂(FMF)。
典型的柔性制造系统由3个子系统,加工系统,物流系统,控制与管理系统。
分析见课本113页
第五章先进制造模式概述
1.先进制造模式:围绕企业的价值增加链,依据不同的环境通过有效的组织各种要素形成的,可以在特定环境中达到良好效果的先进的生产,制造和管理方法的集成体。
特征:1.先进制造模式的对象是生产系统
2.先进制造模式的存在和发挥作用有必要的条件
3.先进制造模式的核心是其中所蕴含的哲理
4.先进制造模式的关键是制造战略,制造组织和制造技术的协同
第六章先进制造系统的建模方法
1.模型:是人们为了研究和解决客观世界中存在的种种问题而对客观现实经过抽象思维之后,用文字,图像,符号,关系以及实体模样描述所认识的客观对象的一种简化表示。
模型的三种基本表述形式:形象模型,模拟模型,数学模型。
2.建模的基本方法:1)“演绎—归纳”建模法;2)“分解—联合”建模法;3)“人机结合”法。
IDEFO的基本组成部分说明见课本138页
3.实体:是客观世界中具有相同属性和特征的现实或抽象事物的集合。
独立实体:一个实体的每个实例都能被唯一的标识而不依赖于它与其他实体的联系。
从属实体:实体的一个实例的唯一标识依赖于实体与其他实体的联系。
属性:是用来描述实体的某种性质和特征的,实体的每个属性都必须具有一个单一且确定的值。
实体的关键字:在实体的属性中,用来唯一的标识实体的每个实例的一个属性或多个属性的组合。
如果两个实体之间存在连接联系或分类联系,那么构成父实体或一般实体主关键字的属性将被继承为子实体或分类实体的属性,这些继承属性被称为“外来关键字”。
第七章计算机集成制造
1.CIM定义:将信息技术,现代管理技术和制造技术相结合,并应用于企业全生命周期个各个阶段,通过信息集成,过程优化和资源优化,实现物质流,信息流和价值流的集成和优化运行,达到人,经营与技术三要素的集成,以改进企业新产品开发的时间(T),质量(Q),成本(C),服务(S),环境(E),从而提高企业的市场应变能力和竞争能力。
CIMS的功能结构:1)经营管理与决策分系统
2)设计自动化分系统
3)制造自动化分系统
4)质量保证分系统
5)支撑分系统,由数据库子系统和计算机通信网络子系统组成
第八章敏捷制造
1.敏捷制造的基本思想是通过把灵活的虚拟组织机构或动态联盟,先进的柔性生产技术和高素质的人员进行全面信息集成,从而使企业能够从容应付快速变化和不可预测的市场需求,获得长期经济利益。
2.从敏捷系统具有的基本特征来看,敏捷企业应该有一个RRS组织战略,即可重构性(Reconfigurability),可重用性(Reusability)和规模可调性(Scalability)。
3.敏捷性的度量1)速度;2)成本);3)鲁棒性;4)自适应的能力。
4.敏捷制造的管理方式---以团队为核心的扁平化网络结构方式。
5.敏捷制造的工作方式---并行工程和协同工作。
6.虚拟企业:是应敏捷制造的要求,为实现市场机会,而将拥有实现该机会所需资源的若干企业的相应资源集成起来所组成的一个网络化分布式动态组织。
第九章绿色制造
1.定义:在保证产品的功能,质量,成本的前提下,综合考虑环境影响和资源效率的现代制造模式。
2.绿色制造实施的主要内容:绿色设计,绿色材料,绿色工艺,绿色包装,绿色处理。
Sust吴伟版。