mTOR
mTOR信号通路与心脏疾病
翻译 起始 因子 4 eF一 E)结 合 蛋 白 1 4 E( l 4 ( E—B 1 P)
和核 糖体 4 S小亚基 S 0 6蛋 白激 酶 … (p 0 6 。它 7 S K)
可 以整合 氨基 酸 、 量 、 能 生长 因子 所激 发的 信号 通路 ,
借 以调控 细 胞 生 长 增 生 和 细 胞 周 期 。mT R因 其 O 羧基 端与磷 脂 酰肌 醇 一3一激 酶 ( IK) P, 的催 化 结 构
活化 m O 另一方 面 活化 的 P T R, IK磷 酸 化 其 底 物 3 , 4二磷 酸磷 脂酰 肌醇 (PP ) 其 转化 为 3 4, I 使 , 5三磷 酸磷脂 酰 肌 醇 ( I, , 而 激 活 A t 蛋 白激 酶 B , PP ) 进 k( P B) K 。被 活 化 的 P, / k 可 能通 过 结 节 性 硬 化 症 IK A t
抑制 剂雷 帕 霉 素 ( aa y i) F 5 6结 合 蛋 白 1 rp m c 与 K 0 n 2 ( K P 2 形 成 的 复 合 物 便 结 合 于 该 结 构 域 , 制 F B 1) 抑
m O T R活性 。F T结构 域 由 5 0个 氨基 酸组 成 , 较 A 0 与
之小 些 的 F T A C结 构 域 存 在 于 所 有 PK I K家 族 成 员
域高 度 同源 , 属 磷 脂 酰 肌 醇 一3一激 酶 相 关 激 酶 故
( I K) 族成 员 。m O PK 家 T R的 主要 结 构 域 由氨基 端 到
蛋 白复合 物 12( S 1 2 进 一 步 激 活 其 下 游 分 子 / TC/ )
mT ( OR 间接 活 化 r OR) S 1 T C o T 。T C / S 2异 二 聚 体 与
细胞自噬过程的分子调控机制
细胞自噬过程的分子调控机制近年来,细胞自噬被认为是一种极为重要的细胞调节机制,可以对细胞内垃圾、蛋白质聚集体等进行分解。
在此过程中,一些特殊的双膜结构——自噬体,会包裹待降解的物质并将其送至溶酶体分解,这一过程对于维护细胞内标准化运转和稳态具有不可替代的作用。
自噬的调控可以从不同的层面进行,包括转录水平、翻译水平、修饰水平等多个方面。
下面将重点阐述细胞自噬过程的分子调控机制。
1. 参与自噬的原始形态——ATG自噬过程起源于酿酒酵母(Saccharomyces cerevisiae),而酿酒酵母中的autophagy基因被称为ATG基因家族,包括ATG1-ATG32等多个基因。
ATG基因家族编码的ATG蛋白是自噬过程中最先发挥作用的分子,负责自噬前的成分收集和自噬过程的执行。
在细胞自噬开始前,ATG1被活化成ATG1-P,与ATG13形成复合体,接着ATG1-ATG13结合ATG17,一旦这一复合体形成,就开始招募一般一级结构的ATG蛋白(ATG2-ATG10)。
2. mTOR信号通路抑制自噬mTOR是一种重要的代谢传感分子,属于PI3K-related kinase家族,能够对内、外界合成状况进行监测,当细胞处于富营养状态下时,mTOR会被激活,并抑制自噬的发生以促进细胞的合成过程。
而当细胞处于饥饿等压力状态下,mTOR则会被抑制,此时自噬的发生受到调控,并起到保护细胞的作用。
通过一系列的信号转导过程,mTOR可调节上述ATG基因家族的表达和自噬体的形成及其位置和作用。
3. 糖原合成酶和AMPK信号通路参与自噬当细胞缺乏能量供应时,糖原合成酶会被激活,促进细胞内存的糖元合成,进而在ATP+AMP的作用下形成高浓度的磷酸二甲酯(AMP),此时可通过AMPK信号通路的激活增加自噬过程的产生,进而增加细胞的储备,保护细胞不受饥饿的损害。
4. 固有免疫与细胞自噬的相关性固有免疫是维护机体健康不可或缺的保卫机制。
mTOR信号通路与细胞生长调控
334生物物理学报2007年的功能被发现。
mTOR信号通路与细胞的生长、分裂、存活、迁移、自我更新和细胞周期进程等生理过程密切相关。
它不仅调节细胞的生长,而且对小鼠的早期胚胎发育甚至出生后的生长都有影响。
虽然mTOR通路与哺乳动物寿命的关系还没有被揭示,但近年的研究成果已显示出TOR通路在后生动物的发育和成体代谢中起着重要的作用,TOR调节着与营养相关的生理过程。
1.2由mTOR信号通路介导的信号刺激因子在哺乳动物中mTOR与其它不同的蛋白结合,形成了两种复合体mToRCl(nlTORComplex1)和mTORC2(mTORComplex2)。
mTORCl对mp加1),cin敏感,而mTORC2不敏感【4】。
过去十几年的研究主要集中于mTORCl。
基于对mTORCl的研究,目前认为mTOR信号通路的上游刺激因子主要有四类,即生长因子与胰岛素、营养因子、能量以及压力。
生长因子和胰岛素的刺激作用通过P13K(phosphoinositide.3一kinaSe)/mTOR通路调节细胞生长。
营养因子特别是氨基酸进入细胞后直接作用于mTOR通路中的效应分子,或通过间接途径对mTOR通路起作用,能量(低能)和压力(缺氧)是细胞内的刺激因子,可通过多种方式作用于mTOR通路,进而调节细胞生长。
近年对FAK@ocalAdhesionKin邪e)的研究表明,细胞黏附斑@ocalAdllesion)的形成可以通过ⅣⅨ作用于mTOR通路进而调节细胞生长旧,所以目前可以确定mTOR信号通路至少介导了五类刺激信号的转导过程。
随着近年对mTORC2的研究逐步深入,发现它参与了细胞骨架的形成,可能还有其它的刺激信号可以通过mTOR通路转导进而引起细胞的生理反应。
2mTOR信号通路的分子组成2.1mTOR蛋白及其复合体mToRCl和mToRC2的特征在哺乳动物中只有一个mTOR基因,在人、大鼠和小鼠都编码了2549个氨基酸,蛋白分子量289kD。
mTOR总结
mTOR (Mammalian Target of Rapamycin) is a 289-kDa serine/threonine protein kinase and a member of the PIKK (Phosphatidylinositol 3-Kinase-related Kinase) family. The protein consists of a Catalytic Kinase domain, an FRB (FKBP12-Rapamycin Binding) domain, a putative Auto-inhibitory domain (Repressor domain) near the C-terminus and up to 20 tandemly repeated HEAT motifs at the Amino terminus, as well as FAT (FRAP-ATM-TRRAP) and FATC (FAT C-terminus) domains. The C-terminus of TOR is highly homologous to the catalytic domain of PI3K (Phosphatidylinositol 3-Kinase). TOR proteins are evolutionarily conserved from yeast to human in the C-domain, with human, mouse, and rat mTOR proteins sharing 95% identity at the amino acid level. The human mTOR gene encodes a protein of 2549 amino acids with 42% and 45% sequence identity to yeast TOR1 and TOR2, respectively. mTOR functions as a central element in a signaling pathway involved in the control of cell growth and proliferation (Ref.1).The mTOR pathway is regulated by a wide variety of cellular signals, including Mitogenic Growth Factors, Hormones such as Insulin, Nutrients (Amino acids, Glucose), Cellular Energy Levels, and Stress conditions. A principal pathway that signals through mTOR is the PI3K/Akt (v-Akt Murine Thymoma Viral Oncogene Homolog-1) signal transduction pathway, which is critically involved in the mediation of cell survival and proliferation. Signaling through the PI3K/Akt pathway is initiated by mitogenic stimuli from Growth factors that bind receptors in the cell membrane. These receptors include IGFR (Insulin-like Growth Factor Receptor), PDGFR (Platelet-Derived Growth Factor Receptor), EGFR (Epidermal Growth Factor Receptor), and the Her family. The signal from the activated receptors is transferred directly to the PI3K/Akt pathway, or, alternatively, it can be activated through activated Growth Factor Receptors that signal through oncogenic Ras. Ras is another central switch for signal transduction and has been shown to be a pivotal activator of the MAPK (Mitogen-Activated Protein Kinase) signal transduction pathway.PI3K/Akt pathway can also be activated by Insulin via IRS1/2 (Insulin Receptor Substrate-1/2). Insulin binding activates the IR (Insulin Receptor) tyrosine kinase, which phosphorylates IRS1 or IRS2. PI3K binds phosphorylated IRS by SH2 (Src-Homology-2) domains in the p85 regulatory subunit. This interaction activates the p110 catalytic subunit. PI3K then catalyzes the conversion of membrane-bound PIP2 (Phosphatidylinositol (4,5)-bisphosphate) to PIP3 (Phosphatidylinositol (3,4,5)-triphosphate). PIP3 then binds the pleckstrin homology domain of Akt, which results in Akt activation through dimerization and exposure of its catalytic site. Akt can also be phosphorylated and activated by PDK-1 (Phospholipid-Dependent Kinase-1). Akt phosphorylates mTOR directly. Akt may also work indirectly on mTOR through the actions of the TSC1/TSC2 (Tuberous Sclerosis Complex). The physical association of the proteins TSC1 (Hamartin) and TSC2 (Tuberin) produces a functional complex that inhibits mTOR. Recent evidence indicates that the inhibitory effect of TSC1/TSC2 is mediated through TSC2 inactivation of a Ras family small GTPase known as RHEB (Ras Homolog Enriched in Brain). TSC2 has GAP (GTPase-Activating Protein) activity toward RHEB, and it has been postulated that the TSC1/TSC2 complex inhibits mTOR signaling by stimulating GTP hydrolysis of RHEB. RHEB-GTP activates mTOR. PMA (Phorbol Myristate Acetate) can also lead to mTOR phosphorylation independently of Akt through inhibition of the TSC1/2 complex via PKC (Protein Kinase-C) and RSK1 (Ribosomal-S6 Kinase-1) as well as through activation of S6K1 by PKC. AMPK (AMP (Adenosine 5'-Monophosphate)-Activated Protein Kinase) can also modulate mTOR. AMPK functions as the key energy-sensing kinase by virtue of its exquisite sensitivity to increases in the cellular AMP (Adenosine 5'-Monophosphate) /ATP (Adenosine Triphosphate) ratio. Increases in this ratio promote AMPK phosphorylation and activation by the upstream kinase LKB1, a human tumor suppressor mutated in Peutz-Jeghers syndrome. ActivatedAMPK in turn phosphorylates TSC2 (on residues distinct from those phosphorylated by Akt), apparently promoting its activation. This in turn inhibits the action of mTOR activity (Ref.2, 3 & 5).PA (Phosphatidic Acid) can also activate mTOR. Three different enzymes generate PA: PLD (Phospholipase-D), LPAAT (Lysophosphatidic Acid Acyltransferase), and DGK (Diacylglycerol Kinase). PLD is regarded as the main contributor of PA to mTOR signaling. Nonetheless, other PA-generating enzymes can also contribute to mTOR activation; LPAAT is reported to be elevated in some tumors, and its overexpression leads to cell transformation. Serum stimulation leads to PLD activation, which correlates with increased mTOR signaling. Serum, a mixture of mitogenic agents, acts through GPCRs (G-Protein Coupled Receptors) or RTKs (Receptor Tyrosine Kinase). PLD activity increases in response to stimulation of both receptor types. Lipids such as DAG (Diacylglycerol) and PA are generated in membrane domains, where an intimate connection between distinct lipid metabolic pathways is maintained, to produce appropriate spatio-temporal responses. PLD and DGK may operate in parallel pathways, but they may also act as DAG- and PA-generating enzymes in a single pathway. In mammalian cells, the PA generated at internal membranes, such as Golgi, is produced mainly by PLD action on PC (Phosphatidylcholine). This PA can serve either as a messenger, promoting vesicle fission, or as a substrate for Phosphatases that transform PA to DAG. Because PC is the most abundant lipid in mammalian membranes, this pathway serves as a robust supplier of DAG that could then be used as a DGK substrate (Ref.4 & 5). Thus, several mechanisms have been proposed to explain how mTOR is regulated by growth factors and cellular energy levels. However, little is known as to how mTOR is regulated by stress conditions. Two stress-induced proteins, RTP801/Redd1 and RTP801L/Redd2, potently inhibit signaling through mTOR. RTP801 and RTP801L work downstream of AKT and upstream of TSC2 to inhibit mTOR functions. Another inhibitor of mTOR is Rapamycin. When complexed with its cellular receptor, FKBP12 (FK506 Binding Protein-12), Rapamycin binds directly to TOR to inhibit downstream signaling (Ref. 6 & 7).Activation of mTOR results in phosphorylation of several downstream targets. For the protein mTOR to activate its signaling cascade, it must form the Ternary complex mTORC1 (mTOR Complex-1) and mTORC2 (mTOR Complex-2). Rapamycin-sensitive mTORC1 controls several pathways that collectively determine the mass (size) of the cell. Rapamycin-insensitive mTORC2 controls the actin cytoskeleton and thereby determines the shape of the cell. mTORC1 (and likely mTORC2) are multimeric, although are drawn as monomers. mTORC1 is a ternary complex containing mTOR, RAPTOR (Regulatory Associated Protein of mTOR) and G-BetaL (G-protein Beta-subunit-like protein). On the other hand mTORC2 complex consist of mTOR, G-BetaL and Rictor. The best-characterized effectors downstream of mTOR are 2 signaling pathways that act in parallel to control mRNA translation. Activated mTOR mediates the phosphorylation of the eIF4EBP1 (Eukaryotic Translation Initiation Factor-4E-Binding Protein-1) and the ribosomal protein p70S6K or S6K1 (S6 Kinase). 4EBP1 (also known as PHAS1 (Phosphorylated Heat-stable and Acid-Stable protein)) is a low molecular weight protein that can repress the activity of the eIF4F (eukaryotic Initiation Factor-4) complex. In its unphosphorylated state,4EBP1/PHAS1 binds tightly to eIF4E (Eukaryotic Translation Initiation Factor-4E), the mRNA cap binding subunit of the eIF4F complex, which inhibits the activity of eIF4E in the initiation of protein synthesis. Phosphorylation of 4EBP1 by mTOR reduces its affinity for eIF4E, and the 2 proteins dissociate. eIF4E is then able to associate with the other components of eIF4F, which include the large scaffolding protein, eIF4G (Eukaryotic Translation Initiation Factor-4-Gamma), the adenosine triphosphate dependent RNA helicase eIF4A (Eukaryotic Translation Initiation Factor-4A), and eIF4B (Eukaryotic Translation InitiationFactor-4B), to form an active complex. This complex facilitates cap-dependent protein translation. The net effect is an increase in the translation of the subset of mRNAs with 5´ UTRs (Untranslated Regions), which often encode proteins associated with the proliferative response and the transition from G1 to S phase in the cell cycle. Such mRNAs include those that code for c-Myc, CcnD1 (Cyclin-D1), and Ornithine Decarboxylase. Cyclin-D1 binds with CDK4 (Cyclin-Dependent Kinase-4) to form a complex required for the phosphorylation of Rb (Retinoblastoma) protein, which subsequently contributes to progression of the cell cycle and DNA replication. Growth factor deprivation or inhibition of mTOR results in the dephosphorylation of 4EBP1, followed by its reassociation with eIF4E and a subsequent reduction in cap-specific translation. mTOR may also indirectly influence the phosphorylation state of 4EBP1 by modulating the activity of PP2A (Protein Phosphatase-2A). The second principal effector downstream of mTOR is the S6K1 serine/threonine kinase. After receiving a proliferative upstream signal mediated by the PI3K/Akt pathway, mTOR phosphorylates and activates S6K1. In turn, S6K1 phosphorylates and activates the 40S ribosomal S6 protein, facilitating the recruitment of the 40S ribosomal subunit into actively translating polysomes. In particular, the translation of mRNAs with 5´TOP (5´-Terminal Oligopyrimidine) sequence is enhanced. These 5´TOP mRNAs code primarily for ribosomal proteins, elongation factors and IGF-II (Insulin-like Growth Factor-II). Dephosphorylation of S6K1 decreases the synthesis of components of the protein translation system and results in a profound decrease in protein synthesis. mTORC1 also regulates VEGF (Vascular Endothelial Growth Factor) by phosphorylatingHIF1Alpha (Hypoxia-Inducible Factor-1-Alpha Subunit) (Ref.8, 9 & 10).In addition to its effects on translation, mTOR also modulates protein synthesis through regulation of RNA Polymerase I and III, which are responsible for the transcription of ribosomal and transfer RNAs. In the presence of appropriate Growth signals such as IGF1, mTOR, together with the PI3K and MAPK pathways, modulates Pol I-directed transcription of ribosomal RNAs. There is also evidence that mTOR may exert its effects on the polymerases through regulation of the phosphorylation status of Rb by influencing the stability and expression of Cyclin-D1 and p27, both of which regulate CDKs upstream of Rb. mTORC2 may signal to the actin cytoskeleton through a small Rho-type GTPase and PKC. Furthermore, mTORC2 controls the formation of activated, GTP-bound Rac1 in agrowth-factor-dependent fashion. mTORC2 also controls the phosphorylation and activation ofPKC-Alpha (Protein Kinase-C-Alpha). mTOR as a central modulator of proliferative signal transduction is an ideal therapeutic target against cancer. Through extensive clarification of many signal transduction pathways, it has become clear that the mTOR kinase participates in critical events that integrate external signals with internal signals, coordinating cellular growth and proliferation. mTOR receives signals that indicate whether transcription and translational machinery should be upregulated, then efficiently transmits these signals to the appropriate pathways. Multiple components of pathways that signal through mTOR are dysregulated in numerous cancer types. The development of inhibitors of mTOR is a rational therapeutic strategy for malignancies that are characterized by dysregulated pathways that signal through mTOR (Ref.9 & 11).。
m-TOR通路
mTOR与生长、衰老、癌变、糖尿病
• mammalian target of rapamycin(mTOR)
• mTOR通路就是调节生长和应对饥饿的中心通路, 它的激活促进细胞生长,然而当这种生成不受控制 时,癌症衰老和新陈代谢等疾病随之出现。mTOR 信号过量表达促进癌细胞生长,过量饮食刺激 mTOR过量表达可能是糖尿病的关键病因之一。最 近研究发现mTOR通路控制衰老速度,抑制mTOR 通路是一个有前景的延长寿命的方法。
mTOR与生长因子
• Rheb 是一个对mTORC1有关键的生长因子。 • Rheb的丢失会解除生长因子和营养盐的促进作用。Rheb的过量
表达可以作为单独的促进因素激活mTORC1、生长因子可通过 PI3K-Akt轴调控mTORC1,Wnt通路对mTORC1也有影响。
mTOR与能量、应激
• 由于细胞需要稳定的能量供应,然而哺乳动物摄取能量是间断的,所 以需要能量的储存和释放,这种调节主要是胰岛素,mTOR接收胰岛 素等信号从而影响新陈代谢。
• 值得注意的是在下丘脑局部应用亮氨酸可以通过mTORC1诱导产 生饱腹感,相反用雷帕霉素抑制则增加饮食。这些作用在人体新 陈代谢有深远的影响。
mTOR与肿瘤
• mTOR肿瘤产生作用的直接证据是mTOR抑制剂相关基因的突变 可促进肿瘤形成。
• 越来越多的证据证明自噬在肿瘤中发挥非常重要的作用。研究表 明通过激活mTORC1可抑制自噬从而间接促进肿瘤形成。
感想
• 做学术虽然要有应用于现实的理想并且要写在讨论部分里,但是 当具体到某一个研究和实验时,不应太在意它的应用价值,比如 这篇综述许多科学家研究了数年却依然没有应用于临床,像我这 样的初学者更不能对自己的研究有不切实际的想法。
雷帕霉素靶蛋白(mTOR)冶疗癌症
据中国医学科学院基础医学研究所博士生
导师、生理学教授张宏冰介绍,雷帕霉素自 20
世纪 70 年代就开发出来,便经常作为免疫抑制 剂用于器官移植,以减缓器官移植手术后的免疫 排斥反应,特别是肾移植。雷帕霉素的涂层支架
君子兰的所在,偷偷地连根拔了两枝,根苗窄问题,此外,新近发现雷帕霉素相
关产品还是许多癌症的重要靶向药物的选择。 北京协和呼吸科徐凯峰教授认为,相比过去
对肿瘤的, mTOR 抑制剂在某些肿瘤的新发现的确
让医生与患者眼前一亮,尤其是对 LAM(淋巴管
肌瘤病)和 TSC(结节性硬化症)这两种罕见病 的方面效果更为明显,LAM 和 TSC 在某种程度上 也可以被认为是肿瘤性疾病。"此次论坛将为进
君子兰的所在,偷偷地连根拔了两枝,根苗还小,把它藏
还能使医务人员感觉到工作有方向感。无形地实
现产学研相结合的"关口前移",从而共同促进国
内该领域科研和产业的发展,以达到将科学发现 以最快的速度用用到临床,造福广大患者的目的。
"其实,我觉得此次论坛更是一个转化医学
的论坛。雷帕霉素在 LAM 的应用从科学发现到临
床应用仅有短短的数年时间,可谓是转化医学研 究的一个成功范例。这当中既有医学家和科学家 的努力,也有来自患者和病友协会的不可估量的
君子兰的所在,偷偷地连根拔了两枝,根苗还小,把它藏
贡献。而要想真正地实现转化医学离不开创新与
合作,创新是转化医学的精髓,合作是转化医学
的基础,此外,还需要多方面的共同合作将科学 发现以最快的速度用到临床。"赵玉沛说。
君子兰的所在,偷偷地连根拔了两枝,根苗还小,把它藏
一步研究了解细胞信号转导通路,并提高恶性肿
mTOR通道
研究显示mTOR基因在肝癌组织中的过度表达高于癌旁组织(p<0.05),两组差异有统计学意义,表明处于活化状态的DREAM可能在肝癌的发生、发展过程中发挥重要作用。
TOR蛋白最初在酵母的突变株中被鉴定,随后在哺乳动物细胞内发现了这种结构和功能高度保守的TOR蛋白,称之为哺乳动物mTOR,又称FK506结合蛋白(FKBPl2)、FRAP、RAFTl、RAPTl或SEP,是一种进化上高度保守的丝氨酸/苏氨酸蛋白激酶。
现已证实,mTOR是一种分子量为289 X100的蛋白激酶,是3一磷脂酰肌醇激酶相关激酶家族(P13Ks)中FK50合蛋白的相关蛋白。
mTOR也被称为FRAP(FKBPpamycin—associated protein),属于磷酸肌醇激酶3一相关激酶(PIKKs)家族的一员,是P13K/Akt的下游底可通过改变翻译调节因子4E-BPI(真核细胞启动因子4E结合蛋白)、eIF 一4GI(真核细胞翻译起始因子4G和p70s6k的磷酸化状态启动翻译过程。
进一步研究结果显示,mTOR作为P13K/Akt(磷脂酰肌醇酶/蛋白激酶B,PKB)信号通路下游的一个效应分子,在调节细胞生长、细胞周期进程、蛋白质合成与降解、参与膜蛋白转运、蛋白激酶C信号转导等生理和病理过程中发挥作用,可以被看作是细胞生长的中心调节因子P13K的下游效应蛋白Akt,在人癌中经常处于高度激活状态。
mTOR作为Akt下游的重要效应子在肿瘤发生中扮演重要角色。
在P13K二Akt/mTOR这条{号通路中,Akt 所产生的效应受到两个肿瘤抑制基因、的负调控:PTEN,处于Akt的上游;TSCl/TSC2AKT的下游和mTOR的上游。
现已发现,许多肿瘤都伴有mTOR信号通路的调控异常。
与肿瘤发生密切相关的多种生理过程如细胞生长增殖、细胞周期调控。
细胞迁移等都受到mTOR的调控;Cyclin D、c-myc等多种癌基因的表达在翻译水平上也受到mTOR调控矗在肿瘤发生中,mTOR通路相关受体组成性激活、P13I瞪的催化亚基PllO扩增、Akt扩增、PTEN功能缺失:TSC1—TSC2突变缺失、elF4E和S6K扩增或过表达现象频频出现。
mTOR总结
mTOR (Mammalian Target of Rapamycin) is a 289-kDa serine/threonine protein kinase and a member of the PIKK (Phosphatidylinositol 3-Kinase-related Kinase) family. The protein consists of a Catalytic Kinase domain, an FRB (FKBP12-Rapamycin Binding) domain, a putative Auto-inhibitory domain (Repressor domain) near the C-terminus and up to 20 tandemly repeated HEAT motifs at the Amino terminus, as well as FAT (FRAP-ATM-TRRAP) and FATC (FAT C-terminus) domains. The C-terminus of TOR is highly homologous to the catalytic domain of PI3K (Phosphatidylinositol 3-Kinase). TOR proteins are evolutionarily conserved from yeast to human in the C-domain, with human, mouse, and rat mTOR proteins sharing 95% identity at the amino acid level. The human mTOR gene encodes a protein of 2549 amino acids with 42% and 45% sequence identity to yeast TOR1 and TOR2, respectively. mTOR functions as a central element in a signaling pathway involved in the control of cell growth and proliferation (Ref.1).The mTOR pathway is regulated by a wide variety of cellular signals, including Mitogenic Growth Factors, Hormones such as Insulin, Nutrients (Amino acids, Glucose), Cellular Energy Levels, and Stress conditions. A principal pathway that signals through mTOR is the PI3K/Akt (v-Akt Murine Thymoma Viral Oncogene Homolog-1) signal transduction pathway, which is critically involved in the mediation of cell survival and proliferation. Signaling through the PI3K/Akt pathway is initiated by mitogenic stimuli from Growth factors that bind receptors in the cell membrane. These receptors include IGFR (Insulin-like Growth Factor Receptor), PDGFR (Platelet-Derived Growth Factor Receptor), EGFR (Epidermal Growth Factor Receptor), and the Her family. The signal from the activated receptors is transferred directly to the PI3K/Akt pathway, or, alternatively, it can be activated through activated Growth Factor Receptors that signal through oncogenic Ras. Ras is another central switch for signal transduction and has been shown to be a pivotal activator of the MAPK (Mitogen-Activated Protein Kinase) signal transduction pathway.PI3K/Akt pathway can also be activated by Insulin via IRS1/2 (Insulin Receptor Substrate-1/2). Insulin binding activates the IR (Insulin Receptor) tyrosine kinase, which phosphorylates IRS1 or IRS2. PI3K binds phosphorylated IRS by SH2 (Src-Homology-2) domains in the p85 regulatory subunit. This interaction activates the p110 catalytic subunit. PI3K then catalyzes the conversion of membrane-bound PIP2 (Phosphatidylinositol (4,5)-bisphosphate) to PIP3 (Phosphatidylinositol (3,4,5)-triphosphate). PIP3 then binds the pleckstrin homology domain of Akt, which results in Akt activation through dimerization and exposure of its catalytic site. Akt can also be phosphorylated and activated by PDK-1 (Phospholipid-Dependent Kinase-1). Akt phosphorylates mTOR directly. Akt may also work indirectly on mTOR through the actions of the TSC1/TSC2 (Tuberous Sclerosis Complex). The physical association of the proteins TSC1 (Hamartin) and TSC2 (Tuberin) produces a functional complex that inhibits mTOR. Recent evidence indicates that the inhibitory effect of TSC1/TSC2 is mediated through TSC2 inactivation of a Ras family small GTPase known as RHEB (Ras Homolog Enriched in Brain). TSC2 has GAP (GTPase-Activating Protein) activity toward RHEB, and it has been postulated that the TSC1/TSC2 complex inhibits mTOR signaling by stimulating GTP hydrolysis of RHEB. RHEB-GTP activates mTOR. PMA (Phorbol Myristate Acetate) can also lead to mTOR phosphorylation independently of Akt through inhibition of the TSC1/2 complex via PKC (Protein Kinase-C) and RSK1 (Ribosomal-S6 Kinase-1) as well as through activation of S6K1 by PKC. AMPK (AMP (Adenosine 5'-Monophosphate)-Activated Protein Kinase) can also modulate mTOR. AMPK functions as the key energy-sensing kinase by virtue of its exquisite sensitivity to increases in the cellular AMP (Adenosine 5'-Monophosphate) /ATP (Adenosine Triphosphate) ratio. Increases in this ratio promote AMPK phosphorylation and activation by the upstream kinase LKB1, a human tumor suppressor mutated in Peutz-Jeghers syndrome. ActivatedAMPK in turn phosphorylates TSC2 (on residues distinct from those phosphorylated by Akt), apparently promoting its activation. This in turn inhibits the action of mTOR activity (Ref.2, 3 & 5).PA (Phosphatidic Acid) can also activate mTOR. Three different enzymes generate PA: PLD (Phospholipase-D), LPAAT (Lysophosphatidic Acid Acyltransferase), and DGK (Diacylglycerol Kinase). PLD is regarded as the main contributor of PA to mTOR signaling. Nonetheless, other PA-generating enzymes can also contribute to mTOR activation; LPAAT is reported to be elevated in some tumors, and its overexpression leads to cell transformation. Serum stimulation leads to PLD activation, which correlates with increased mTOR signaling. Serum, a mixture of mitogenic agents, acts through GPCRs (G-Protein Coupled Receptors) or RTKs (Receptor Tyrosine Kinase). PLD activity increases in response to stimulation of both receptor types. Lipids such as DAG (Diacylglycerol) and PA are generated in membrane domains, where an intimate connection between distinct lipid metabolic pathways is maintained, to produce appropriate spatio-temporal responses. PLD and DGK may operate in parallel pathways, but they may also act as DAG- and PA-generating enzymes in a single pathway. In mammalian cells, the PA generated at internal membranes, such as Golgi, is produced mainly by PLD action on PC (Phosphatidylcholine). This PA can serve either as a messenger, promoting vesicle fission, or as a substrate for Phosphatases that transform PA to DAG. Because PC is the most abundant lipid in mammalian membranes, this pathway serves as a robust supplier of DAG that could then be used as a DGK substrate (Ref.4 & 5). Thus, several mechanisms have been proposed to explain how mTOR is regulated by growth factors and cellular energy levels. However, little is known as to how mTOR is regulated by stress conditions. Two stress-induced proteins, RTP801/Redd1 and RTP801L/Redd2, potently inhibit signaling through mTOR. RTP801 and RTP801L work downstream of AKT and upstream of TSC2 to inhibit mTOR functions. Another inhibitor of mTOR is Rapamycin. When complexed with its cellular receptor, FKBP12 (FK506 Binding Protein-12), Rapamycin binds directly to TOR to inhibit downstream signaling (Ref. 6 & 7).Activation of mTOR results in phosphorylation of several downstream targets. For the protein mTOR to activate its signaling cascade, it must form the Ternary complex mTORC1 (mTOR Complex-1) and mTORC2 (mTOR Complex-2). Rapamycin-sensitive mTORC1 controls several pathways that collectively determine the mass (size) of the cell. Rapamycin-insensitive mTORC2 controls the actin cytoskeleton and thereby determines the shape of the cell. mTORC1 (and likely mTORC2) are multimeric, although are drawn as monomers. mTORC1 is a ternary complex containing mTOR, RAPTOR (Regulatory Associated Protein of mTOR) and G-BetaL (G-protein Beta-subunit-like protein). On the other hand mTORC2 complex consist of mTOR, G-BetaL and Rictor. The best-characterized effectors downstream of mTOR are 2 signaling pathways that act in parallel to control mRNA translation. Activated mTOR mediates the phosphorylation of the eIF4EBP1 (Eukaryotic Translation Initiation Factor-4E-Binding Protein-1) and the ribosomal protein p70S6K or S6K1 (S6 Kinase). 4EBP1 (also known as PHAS1 (Phosphorylated Heat-stable and Acid-Stable protein)) is a low molecular weight protein that can repress the activity of the eIF4F (eukaryotic Initiation Factor-4) complex. In its unphosphorylated state,4EBP1/PHAS1 binds tightly to eIF4E (Eukaryotic Translation Initiation Factor-4E), the mRNA cap binding subunit of the eIF4F complex, which inhibits the activity of eIF4E in the initiation of protein synthesis. Phosphorylation of 4EBP1 by mTOR reduces its affinity for eIF4E, and the 2 proteins dissociate. eIF4E is then able to associate with the other components of eIF4F, which include the large scaffolding protein, eIF4G (Eukaryotic Translation Initiation Factor-4-Gamma), the adenosine triphosphate dependent RNA helicase eIF4A (Eukaryotic Translation Initiation Factor-4A), and eIF4B (Eukaryotic Translation InitiationFactor-4B), to form an active complex. This complex facilitates cap-dependent protein translation. The net effect is an increase in the translation of the subset of mRNAs with 5´ UTRs (Untranslated Regions), which often encode proteins associated with the proliferative response and the transition from G1 to S phase in the cell cycle. Such mRNAs include those that code for c-Myc, CcnD1 (Cyclin-D1), and Ornithine Decarboxylase. Cyclin-D1 binds with CDK4 (Cyclin-Dependent Kinase-4) to form a complex required for the phosphorylation of Rb (Retinoblastoma) protein, which subsequently contributes to progression of the cell cycle and DNA replication. Growth factor deprivation or inhibition of mTOR results in the dephosphorylation of 4EBP1, followed by its reassociation with eIF4E and a subsequent reduction in cap-specific translation. mTOR may also indirectly influence the phosphorylation state of 4EBP1 by modulating the activity of PP2A (Protein Phosphatase-2A). The second principal effector downstream of mTOR is the S6K1 serine/threonine kinase. After receiving a proliferative upstream signal mediated by the PI3K/Akt pathway, mTOR phosphorylates and activates S6K1. In turn, S6K1 phosphorylates and activates the 40S ribosomal S6 protein, facilitating the recruitment of the 40S ribosomal subunit into actively translating polysomes. In particular, the translation of mRNAs with 5´TOP (5´-Terminal Oligopyrimidine) sequence is enhanced. These 5´TOP mRNAs code primarily for ribosomal proteins, elongation factors and IGF-II (Insulin-like Growth Factor-II). Dephosphorylation of S6K1 decreases the synthesis of components of the protein translation system and results in a profound decrease in protein synthesis. mTORC1 also regulates VEGF (Vascular Endothelial Growth Factor) by phosphorylatingHIF1Alpha (Hypoxia-Inducible Factor-1-Alpha Subunit) (Ref.8, 9 & 10).In addition to its effects on translation, mTOR also modulates protein synthesis through regulation of RNA Polymerase I and III, which are responsible for the transcription of ribosomal and transfer RNAs. In the presence of appropriate Growth signals such as IGF1, mTOR, together with the PI3K and MAPK pathways, modulates Pol I-directed transcription of ribosomal RNAs. There is also evidence that mTOR may exert its effects on the polymerases through regulation of the phosphorylation status of Rb by influencing the stability and expression of Cyclin-D1 and p27, both of which regulate CDKs upstream of Rb. mTORC2 may signal to the actin cytoskeleton through a small Rho-type GTPase and PKC. Furthermore, mTORC2 controls the formation of activated, GTP-bound Rac1 in agrowth-factor-dependent fashion. mTORC2 also controls the phosphorylation and activation ofPKC-Alpha (Protein Kinase-C-Alpha). mTOR as a central modulator of proliferative signal transduction is an ideal therapeutic target against cancer. Through extensive clarification of many signal transduction pathways, it has become clear that the mTOR kinase participates in critical events that integrate external signals with internal signals, coordinating cellular growth and proliferation. mTOR receives signals that indicate whether transcription and translational machinery should be upregulated, then efficiently transmits these signals to the appropriate pathways. Multiple components of pathways that signal through mTOR are dysregulated in numerous cancer types. The development of inhibitors of mTOR is a rational therapeutic strategy for malignancies that are characterized by dysregulated pathways that signal through mTOR (Ref.9 & 11).。
mTOR抑制剂的研究进展
mTOR抑制剂的研究进展1 mTOR概述mTOR(哺乳动物雷帕霉素靶蛋白)是蛋白激酶家族中新的一员,这类蛋白激酶又属于磷酯酰肌醇激酶相关激酶(PIKK)[1-3]。
mTOR是在研究免疫抑制剂雷帕霉素的过程中发现的,科学家在研究中发现结构相似的免疫抑制剂FK506和雷帕霉素能够与相同的靶蛋白FKBP12 (FK506结合蛋白)结合发挥其免疫抑制作用,但是它却与FK506的免疫抑制机制不同,雷帕霉素与FKBP12结合形成的复合物不能与钙调素结合,并且雷帕霉素也不能抑制T细胞的早期激活或直接减少细胞因子的合成,它是通过不同的细胞因子受体阻断信号传导,阻断T淋巴细胞及其它细胞由G1期至S期的进程,而FK506则是抑制T淋巴细胞由G0期至G1期的增殖[4]。
由于mTOR在细胞增殖、分化、转移和存活中的重要地位,mTOR已经成为癌症治疗中的一个新靶点。
mTOR抑制剂的抗癌机制都是通过首先与FKBP-12蛋白生成复合物,此复合物再与mTOR的FRB区域结合由此抑制mTOR的功能,从而抑制了下游的相关因子的功能,将肿瘤细胞阻滞于G1期(前DNA合成期)从而使肿瘤细胞的生长受抑制并最终阻滞细胞的增殖甚至使细胞凋亡。
2 mTOR抑制剂2.1 雷帕霉素及其衍生物雷帕霉素(Rapamycin,Sirolimus,RAPA,1)属大环内酯类抗生素,与FK506结构相似。
早在1975年,从们已从吸水链霉菌(Steoptomyces hyproscopicus)的代谢产物中分离出雷帕霉素,但由于其过低的抗菌活性而遭冷遇,直至1977年由于其结构与免疫抑制剂FK506相似而被发现同样具有免疫抑制活性,但令人惊奇的是雷帕霉素与FK506却有着非常不同的免疫抑制机制,这也加深了人们对T细胞活化的理解。
1989年雷帕霉素作为抗移植的排斥反应的新药进入临床,现已上市。
在上世纪90年代中期,由于雷帕霉素对T淋巴细胞增殖的抑制又引导人们将其用于抗肿瘤细胞治疗,并发现其同样具有较好的抗肿瘤活性,此药作为抗癌药已由美国惠氏公司开发即将进入临床[5]。
mTOR信号通路在缺血性脑损伤中的作用及机制
mTOR信号通路在缺血性脑损伤中的作用及机制哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是细胞内重要的信号分子,在各种刺激因素下激活后,通过mTORC1和mTORC2两种复合物介导下游,广泛调节生理活动,如细胞生长、新陈代谢、蛋白质合成与细胞存活等。
近年来,mTOR信号通路在中枢神经系统中的作用引起极大关注[1]。
目前已发现mTOR信号通路具有多种功能,包括阻止神经细胞凋亡、抑制自噬性细胞死亡、促进神经细胞再生及促进血管再生等,提示其具有防止缺血神经细胞死亡与促进组织修复的功能。
在缺氧缺血性脑损伤过程中,伴随着能量消耗、氧化应激、细胞因子和细胞程序性死亡等多种病理生理过程[2],研究显示,mTOR 信号通路与这些病理生理过程存在紧密联系。
1 mTOR信号通路mTOR是一种进化上高度保守的丝氨酸/苏氨酸蛋白激酶,属于磷脂酰肌醇激酶相关激酶(the phosphatidylinositol kinase-related kinase,PIKK)家族成员之一。
mTOR的初级结构由几个保守的结构域构成,包括FRB区、FAT域和串联的重复HEAT单位[3]。
生理状态下,mTOR与多种蛋白结合形成两种结构和功能不尽相同的大分子复合物:mTORC1(mTOR,raptor和MLST8)和mTORC2(mTOR,rictor和MLST8),二者活性主要通过其羧基末端特异性底物磷酸化调节,主要活化位点分别位于丝氨酸2448位点及丝氨酸2481位点[4]。
在氧化应激、低能量状态(AMP/ATP比值增加)、营养物质(如葡萄糖、氨基酸)缺乏和生长因子释放等因素刺激下,mTOR信号通路被激活。
mTOR上游有几种重要的信号分子,如磷脂酰肌醇3-羟基激酶(PI3K)、蛋白激酶B(Akt)、丝氨酸/苏氨酸激酶肝激酶B1(LKB1)、AMP活化的蛋白激酶(AMPK)等。
目前已知脑组织中存在多条mTOR信号通路,其中最重要的是PI3K-Akt-mTOR信号通路[5]和LKB1-AMPK-mTOR信号通路[6]。
mTOR通路激活在动脉粥样硬化发生中的作用
程 中可能起 重要作 用 [6。此外 , -] 4 炎症 可能 与脂代 谢
ห้องสมุดไป่ตู้
紊乱协 同致 病 。R a ] un等_ 研 究 表 明 , 症 能 够 破 8 炎 坏细胞脂质稳 态 , 导 脂质 从血 液 循环 向组织 、 织 诱 组 之 间或胞浆 内 向亚 细胞 结构 重 新分 布 , 导致 组 织 、 细
方面 的功 能 : 一方 面 , 酸 化其 下游 区的效 应子 核 糖 磷 体蛋 白 S 6激 酶 1 S K1 和 真 核 细 胞 翻 译 起 始 因 子 (6 )
4 E结 合蛋 白(E P )从 而 启 动 翻译 过程 , 进 细 胞 4 B 1, 促 生 长 。生理条件 下 ,6 1和 4 B 1 真核 细胞 启动 8K EP 与
1 rT o OR 的 概 况
1 1 mTOR 的 基 因 结 构 和 功 能 .
发生机制 中的作用 , 近年来 受到更 多 的关 注l 。现认 _ 1 ]
为 , S是 一种慢 性 免 疫一 症 性 疾 病_ 。在 一些 AS A 炎 2 ] 的患者 , 血清炎症 标 志物 如 C反 应蛋 白、 清 淀粉 样 血 蛋 白 A、 白细 胞 介 素 (L)1 I_ 、 瘤 坏 死 因 子 a I 一 、L 6 肿
同作 用 。 该 文 主 要 从 mT OR通 路 的 组 成 及 生 理 调 控 机 制 , 症 、 代 谢 紊 乱 对 mT 炎 脂 OR通 路
激 活的影 响 , 以及 rT R激 活在 炎症 、 代谢 紊乱促 泡沫细胞 形成 中的作 用等 几个 方 面加 o O 脂 以综述 , 旨在 对 mT R在 AS中作 用机制 的 了解 , 临床 上防治 A O 为 S提供 新思路 。 【 关键 词】 动脉 粥样硬 化 ; 炎症 ; 雷帕霉 素靶 蛋 白 ; 脂代 谢 紊乱
蛋白分子量mtor
蛋白分子量mtor
mTOR(mammalian target of rapamycin)是一种蛋白激酶,它在细胞生长、代谢和增殖中起着重要作用。
mTOR蛋白的分子量约为约289 kDa。
mTOR蛋白是一个大型蛋白,由约2549个氨基酸残基组成。
它属于蛋白激酶家族,包括mTOR复合物1(mTORC1)和mTOR复合物2(mTORC2),这些复合物在细胞信号传导通路中扮演关键角色。
mTOR是一种高度保守的蛋白,在哺乳动物中高度表达,其功能受到多种调控因子的影响。
mTOR通过调节细胞的代谢、增殖、存活和凋亡等生命活动,对细胞的生理和病理过程具有重要影响。
除了其在正常细胞生理活动中的作用外,mTOR也与多种疾病如癌症、糖尿病、自身免疫性疾病等密切相关。
因此,mTOR及其调控通路成为当前生物医学领域研究的热点之一。
总的来说,mTOR蛋白分子量大约为289 kDa,它在细胞生理和病理过程中发挥着重要作用,对于理解细胞信号传导和疾病发生发展具有重要意义。
mtor信号通路相关基因_概述及解释说明
mtor信号通路相关基因概述及解释说明引言1.1 概述当前,细胞信号通路的研究备受关注,其中mTOR(哺乳动物雷帕霉素靶蛋白)信号通路作为一个重要的调控机制,在细胞生长、代谢和增殖等方面发挥着重要的作用。
mTOR信号通路参与许多细胞功能的调节,并且与多种人类疾病的发生和发展密切相关。
1.2 文章结构本文旨在对mTOR信号通路相关基因进行概述,并详细解释说明这些基因在mTOR信号通路中扮演的角色。
文章将分为五个主要部分:引言、mTOR信号通路相关基因概述、解释说明相关基因对mTOR信号通路的调控作用、其他可能影响mTOR信号通路调控的因素讨论以及结论。
1.3 目的通过对mTOR信号通路相关基因的概述及解释说明,旨在深入了解这些基因在细胞活动中所扮演的角色,为进一步研究和治疗与mTOR信号通路有关的人类疾病提供理论依据和科学指导。
通过阐明这些基因在不同条件下对mTOR信号通路的调控作用,希望揭示细胞环境、营养状态和疾病状态等因素对mTOR信号通路的影响,为未来的研究提供新的思路和方向。
2. mTOR信号通路相关基因概述2.1 mTOR信号通路的背景介绍mTOR(机械靶向雷帕霉素+六环素实相接位蛋白)是一种关键的信号通路,参与调控细胞生长、增殖、代谢和应激等重要生物过程。
mTOR信号通路通过蛋白质复合体的形成和活化来传递外界刺激,包括药物、营养物质和细胞环境等,并将这些刺激转化为细胞内的生理或病理反应。
2.2 mTOR信号通路的组成和功能mTOR信号通路主要由两个复合体组成:mTORC1和mTORC2。
mTORC1复合体主要参与调控细胞生长、代谢和自噬等过程;而mTORC2复合体则在细胞内特定区域发挥其作用。
这两个复合体共同参与调控mTOR信号通路,实现对外界因子的感知并进行下游效应的调节。
2.3 mTOR信号通路与人类疾病的关系许多研究表明,mTOR信号通路异常活化或抑制会导致多种人类疾病的发生和发展。
mtorc1基因名称
mtorc1基因名称
mTORC1基因的全称是"mechanistic target of rapamycin complex 1",它是编码了mTORC1蛋白质的基因。
mTORC1是一种重要的蛋白复合物,在细胞生长、代谢和存活中发挥着关键的调控作用。
mTORC1基因在哺乳动物的基因组中被发现,它对细胞的生长、增殖和代谢过程具有重要的调节作用。
mTORC1基因的发现和研究对于理解细胞生物学、肿瘤生长和代谢疾病等方面具有重要意义。
在研究和治疗相关疾病的过程中,对mTORC1基因的研究也具有重要的意义。
总的来说,mTORC1基因在细胞生物学和相关疾病研究中具有重要的作用,对其进行深入的研究有助于我们更好地理解细胞的生长和代谢调控机制。
mTOR抑制剂在癌症治疗中的研究和应用
mTOR抑制剂在癌症治疗中的研究和应用标题:mTOR抑制剂在癌症治疗中的研究与应用:定量分析与模型构建摘要:癌症一直是全球卫生领域的主要挑战之一。
mTOR(哺乳动物雷帕霉素靶蛋白)作为一个广泛参与调控细胞增殖、生长和代谢的信号通路,在癌症治疗中表现出潜在的应用价值。
本研究旨在通过定量分析和模型构建,评估mTOR抑制剂在癌症治疗中的研究进展,并探讨其在临床应用中的潜在效果。
1. 研究主题:mTOR作为一个关键信号通路,在细胞增殖、生长和代谢调节中发挥重要作用。
近年来,mTOR抑制剂作为一类新型的抗肿瘤药物受到了广泛关注。
本研究的主题是探索mTOR抑制剂在癌症治疗中的研究和应用,旨在评估其在癌症治疗中的潜在效果。
2. 研究方法:2.1 文献回顾:通过数据库检索和筛选等方法,回顾与mTOR抑制剂在癌症治疗中相关的研究文献。
2.2 数据整合与分析:对所选文献进行定性和定量分析,总结mTOR抑制剂在不同癌种中的应用研究进展,并构建评估模型。
3. 数据分析与结果呈现:3.1 研究进展:通过文献回顾,发现mTOR抑制剂在乳腺癌、肾细胞癌、胃肠道肿瘤等多种癌症治疗中显示出良好的效果。
定性分析表明mTOR抑制剂能够抑制肿瘤细胞增殖、促进细胞凋亡,并调节肿瘤微环境。
定量分析结果则显示mTOR抑制剂在不同癌种中的疗效存在差异性,具体表现为治疗有效率和生存率的提高。
通过比较mTOR抑制剂与传统化疗药物的联合应用,发现其能够提高化疗的疗效,并减少毒副作用。
3.2 模型构建:基于以上定量分析结果,我们构建了一种评估模型,利用mTOR抑制剂的用药剂量、治疗周期等参数,对不同癌种的治疗效果进行预测和比较。
该模型可帮助医生和研究者更好地了解mTOR抑制剂在癌症治疗中的潜在效果,为临床决策提供依据。
4. 结论:本研究通过定量分析和模型构建的方法,评估了mTOR抑制剂在癌症治疗中的研究进展。
结果显示mTOR抑制剂在不同癌种中具有抗肿瘤效果,并且与传统化疗药物的联合应用具有协同作用。
细胞自噬信号通路的调控机制
细胞自噬信号通路的调控机制细胞自噬是一种对自身垃圾淘汰和修复的保护性机制,调节自噬的信号通路至关重要。
目前,有两种不同的自噬通路被发现,即微观自噬和粘附(或膜融合)自噬,其中微观自噬是应对细胞压力和细胞死亡的主要机制。
微观自噬过程的起始阶段是前自噬体的形成,进一步转化为自噬体,最后自噬体与膜囊泡融合成为自噬溶酶体。
调节微观自噬的信号通路包括多个蛋白质,例如mTOR,AMPK,PI3K等。
其中mTOR信号通路是最为重要的调节因子。
mTOR,即靶向罗莫司(rapamycin)的调节因子(mammalian target of rapamycin),是一种高度保守的蛋白质,与ATP结合并调节多个细胞信号通路。
mTOR被多种外部信号激活,例如热休克、氧化应激、氨基酸和葡萄糖缺乏等。
这些信号都能够通过调节mTOR与其下游的信号通路相互作用来影响微观自噬的进程。
AMPK(AMP-activated protein kinase)是另一个调节微观自噬的信号通路,其通过ATP和AMP浓度的比例调节mTOR的活性。
AMPK被当做细胞的能量传感器,即当ATP模拟时,AMPK的活性增强,进而抑制mTOR的活性,从而促进微观自噬的进程。
PI3K(磷酸肌醇3-激酶)是细胞表面的另一个重要信号通路,能够调节微观自噬进程中的p110a和BECN1的相互作用。
此外,PI3K分子也能够触发磷酸化和解除表面PI3K的抑制功能。
通过调节p110a和BECN1的相互作用和解除表面PI3K的抑制功能,PI3K信号通路能够影响微观自噬的进程和细胞生长、增殖和分化等生物过程。
此外,微观自噬的进程中,很强度的信号通路活性才能够确保正常的自噬进程。
除了mTOR、AMPK和PI3K信号通路外,还有很多细胞内外部分子参与调节自噬进程。
例如,P21,因素21是CDK9抑制剂,基因敲除实验证明其对微观自噬至关重要,有可能是抑制自噬相关蛋白的调控因子。
另外,Ras家族成员RAB5和RAB7通过调节微观自噬相关蛋白的下游蛋白从而影响微观自噬进程。
mTOR信号通路的表达及意义的开题报告
肾透明细胞癌组织中AKT/mTOR信号通路的表达及意义的开题报告一、研究背景肾脏透明细胞癌是一种常见的恶性肿瘤,占据了所有肾脏恶性肿瘤的60-70%以上。
其治疗存在一定的困难,因此,寻求新的治疗策略变得越来越重要。
AKT/mTOR信号通路被广泛应用于多种肿瘤的研究,包括肾透明细胞癌。
AKT/mTOR信号通路参与了调节细胞的生长、增殖、存活和代谢等生物过程,对于肿瘤的发生和发展起着重要的作用。
为了更好地了解肾透明细胞癌组织中AKT/mTOR信号通路的表达情况,探究其在肾透明细胞癌发生和发展中的作用,开展该项研究具有重要的临床意义。
二、研究目的本研究的目的是探究肾透明细胞癌组织中AKT/mTOR信号通路的表达情况,以及其在肾透明细胞癌发生和发展中的作用,为肾透明细胞癌的诊断、治疗提供理论依据。
三、研究内容和方法1. 研究内容(1)收集肾透明细胞癌组织样本和相应的癌旁组织样本,通过免疫组化、Western blot等技术检测肾透明细胞癌组织中AKT/mTOR信号通路相关蛋白的表达情况。
(2)分析肾透明细胞癌组织中AKT/mTOR信号通路相关蛋白表达与患者临床病理特征的关系(如年龄、性别、肿瘤分期、组织分级等)。
(3)通过体外细胞实验,验证AKT/mTOR信号通路对肾透明细胞癌细胞增殖、凋亡、侵袭等生物学行为的影响。
2. 研究方法(1)收集肾透明细胞癌组织样本和相应的癌旁组织样本,利用免疫组织化学、Western blot等方法检测肾透明细胞癌组织中AKT/mTOR信号通路的表达情况。
(2)分析AKT/mTOR信号通路相关蛋白的表达与患者临床病理特征的关系,比较不同组间不同指标的差异。
(3)利用肾透明细胞癌细胞系Caki-1、786-O,对AKT/mTOR信号通路进行体外实验验证。
四、论文结构1. 绪论(1) 研究背景与意义(2) 国内外研究现状(3) 研究现状2. 材料与方法(1) 实验材料(2) 免疫组化、Western blot等方法(3) 统计学分析3. 结果(1) AKT/mTOR信号通路相关蛋白在肾透明细胞癌组织中的表达情况(2) 肾透明细胞癌组织中AKT/mTOR信号通路相关蛋白表达与临床病理特征的关系分析(3) AKT/mTOR信号通路在肾透明细胞癌细胞中的功能验证4. 讨论(1) AKT/mTOR信号通路在肾透明细胞癌中的作用及其可能机制(2) AKT/mTOR信号通路作为潜在的治疗目标5. 结论6. 参考文献。
mTOR信号通路与创伤愈合的相关性研究的开题报告
mTOR信号通路与创伤愈合的相关性研究的开题报
告
题目:mTOR信号通路与创伤愈合的相关性研究
背景和意义
创伤是对组织和器官造成的机械性或化学性损伤。
创伤愈合是一个
复杂的生物学过程,涉及细胞增殖、细胞移动、基质重构和血管生成等
多个生物学过程。
在这些过程中,mTOR信号通路起着重要的调节作用。
mTOR信号通路是一个高度保守的营养传感信号通路,可以促进蛋白质
合成、细胞增殖和细胞存活等生物学过程。
最近的研究表明,mTOR信
号通路在创伤愈合中也发挥着重要的作用。
研究目的
本研究的目的是探讨mTOR信号通路在创伤愈合中的作用机制,揭
示其调节、调控的分子和生物学过程,并为深入研究创伤愈合提供新的
思路和方法。
研究内容和方法
1. 研究不同创伤模型下mTOR信号通路的表达变化。
2. 确定mTOR信号通路调节的关键基因和蛋白质,比如PI3K、Akt、4E-BP1和S6K等。
3. 分析mTOR信号通路在创伤愈合过程中的生物学功能,比如细胞增殖、基质重构、血管生成和细胞存活等。
4. 建立不同创伤模型下的小鼠模型,观察mTOR信号通路调节的生物学效应。
5. 应用生物信息学方法对mTOR信号通路的调节和调控进行系统性分析。
预期结果和意义
通过研究mTOR信号通路在创伤愈合中的作用机制,本研究将有助于深入理解创伤愈合的生物学过程和调节机制。
同时,研究结果将为设计更有效的治疗方法、药物和干预策略提供重要的依据。
此外,研究结果还有助于揭示mTOR信号通路在整个生命过程中的生物学功能,有助于深入理解疾病的发生和发展。
《mTOR信号通路对山羊骨骼肌卫星细胞增殖及分化的影响》范文
《mTOR信号通路对山羊骨骼肌卫星细胞增殖及分化的影响》篇一摘要:本文旨在探讨mTOR信号通路对山羊骨骼肌卫星细胞的增殖及分化的影响。
通过研究mTOR信号通路激活与山羊骨骼肌卫星细胞增殖、分化之间的关系,以期为山羊肌肉生长与发育的调控提供理论依据。
一、引言山羊作为重要的畜牧业动物,其肌肉生长与发育对于提高肉品质和产量具有重要意义。
骨骼肌卫星细胞作为肌肉生长和再生的关键细胞,其增殖及分化过程受到多种信号通路的调控。
mTOR(哺乳动物雷帕霉素靶蛋白)信号通路作为细胞生长和增殖的重要调控因子,在肌肉生长中发挥着重要作用。
因此,研究mTOR信号通路对山羊骨骼肌卫星细胞增殖及分化的影响,有助于揭示肌肉生长的分子机制。
二、mTOR信号通路及其作用机制mTOR是一种丝氨酸/苏氨酸蛋白激酶,是细胞生长和增殖的关键调控因子。
mTOR信号通路包括mTORC1和mTORC2两种复合物,通过调控蛋白质合成、细胞周期进程以及自噬等过程,影响细胞的生长和增殖。
在肌肉组织中,mTOR信号通路对肌肉蛋白质合成和肌肉生长具有重要作用。
三、mTOR信号通路对山羊骨骼肌卫星细胞的影响1. 增殖过程:研究表明,激活mTOR信号通路可以促进山羊骨骼肌卫星细胞的增殖。
通过添加mTOR激活剂雷帕霉素可以观察到卫星细胞的增殖速度加快,细胞周期缩短。
这表明mTOR信号通路在山羊骨骼肌卫星细胞的增殖过程中发挥了重要作用。
2. 分化过程:mTOR信号通路对山羊骨骼肌卫星细胞的分化也具有重要影响。
激活mTOR信号可以促进卫星细胞的成肌分化,提高肌纤维的数量和质量。
此外,mTOR信号还可以调控肌肉相关基因的表达,进一步促进肌肉的生长和发育。
四、研究方法及实验结果本研究采用山羊骨骼肌卫星细胞为研究对象,通过激活和抑制mTOR信号通路,观察其对卫星细胞增殖及分化的影响。
实验结果表明,激活mTOR信号通路可以促进山羊骨骼肌卫星细胞的增殖和分化,而抑制mTOR信号通路则会导致细胞增殖和分化的抑制。
细胞自噬机制
细胞自噬机制细胞自噬(autophagy)是维持细胞内稳态的重要生物学过程,通过将细胞内的有害或陈旧的组分分解并回收利用,维持细胞的生存和功能。
本文将从细胞自噬的定义、调控机制以及与疾病关联等方面进行介绍。
一、细胞自噬的定义细胞自噬最初是在20世纪50年代被发现的,其定义为细胞通过吞噬和降解自身的细胞器、蛋白质以及其他有机物质,从而维持细胞的生理功能并清除异常或损伤部分。
细胞自噬是一种高度调控的过程,能根据细胞内外环境变化的需要进行调整。
二、细胞自噬的调控机制细胞自噬的具体调控机制十分复杂,多个信号通路参与其中。
以下将介绍细胞自噬的三个主要通路。
1. mTOR通路mTOR(mammalian target of rapamycin)是自噬过程中的一个中枢调节因子。
mTOR通路在细胞膜相关器官上发挥作用,通过mTOR抑制细胞自噬的启动。
当营养充足时,活跃的mTOR通路会抑制自噬过程;而在饥饿或其他环境压力下,mTOR的活性下降,会促进细胞自噬的发生。
2. PI3K/AKT通路PI3K/AKT通路是细胞自噬的抑制因子。
当该通路活跃时,AKT会通过磷酸化的方式抑制细胞自噬的进行。
而当PI3K/AKT通路受到抑制,细胞自噬便会促进。
3. AMPK通路AMPK(AMP-activated protein kinase)是细胞内的一个能量敏感的激酶,对细胞自噬的调控至关重要。
当细胞能量水平较低时,AMPK 通路会被激活,从而促进细胞自噬的进行。
三、细胞自噬与疾病细胞自噬在很多疾病的发生和发展过程中扮演重要角色。
以下将列举几种常见疾病与细胞自噬之间的关联。
1. 癌症细胞自噬在癌症的发生和治疗中起着双重作用。
一方面,自噬能够抑制肿瘤的形成,通过清除异常蛋白质和抑制细胞的异常增殖。
另一方面,在肿瘤治疗中,抑制细胞自噬可以增加治疗的效果,使肿瘤细胞更容易被治疗方法杀死。
2. 神经性疾病细胞自噬与神经退行性疾病,如阿尔茨海默病和帕金森病等,密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PKI-179:An orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR)inhibitorAranapakam M.Venkatesan a ,*,Zecheng Chen a ,⇑,Osvaldo Dos Santos a ,Christoph Dehnhardt a ,Efren Delos Santos a ,Semiramis Ayral-Kaloustian a ,Robert Mallon b ,Irwin Hollander b ,Larry Feldberg b ,Judy Lucas b ,Ker Yu b ,Inder Chaudhary c ,Tarek S.Mansour aaChemical Sciences,PGRD,Pfizer Inc.(Legacy Wyeth Research),401N.Middletown Rd,Pearl River,NY 10965,USA bOncology Research,PGRD,Pfizer Inc.(Legacy Wyeth Research),401N.Middletown Rd,Pearl River,NY 10965,USA cDrug Metabolism,PGRD,Pfizer Inc.(Legacy Wyeth Research),401N.Middletown Rd,Pearl River,NY 10965,USAa r t i c l e i n f o Article history:Received 18May 2010Revised 21July 2010Accepted 26July 2010Available online 30July 2010Keywords:Phosphatidylinositol-3-kinase (PI3K)PI3K/Akt/mTOR pathwayDual PI3-kinase/mTOR inhibitors PKI-587PKI-179a b s t r a c tA series of mono-morpholino 1,3,5-triazine derivatives (8a –8q )bearing a 3-oxa-8-azabicyclo[3.2.1]octane were prepared and evaluated for PI3-kinase/mTOR activity.Replacement of one of the bis-morpholines in lead compound 1(PKI-587)with 3-oxa-8-azabicyclo[3.2.1]octane and reduction of the molecular weight yielded 8m (PKI-179),an orally efficacious dual PI3-kinase/mTOR inhibitor.The in vitro activity,in vivo efficacy,and PK properties of 8m are discussed.Ó2010Published by Elsevier Ltd.Phosphatidylinositol-3-kinase (PI3K)is a lipid kinase,that is,a central component in the PI3K/Akt/mTor signaling pathway.Cur-rently there are four isoforms of this enzyme known as PI3K a ,b ,c ,and d .Among these four isoforms,PI3K a especially,plays a key role in the biology of human cancer.1,2This pathway regulates cell proliferation,growth,survival,and apoptosis.1–3The deregu-lated activation of PI3K a and its downstream effectors including Akt and mTOR,has been linked to tumor initiation and mainte-nance.PI3K/Akt/mTOR pathway activation can be caused by loss of PTEN (the phosphatase that regulates PI3K signaling),over-expression,or activation of some receptor tyrosine kinases (e.g.,EGFR,HER-2),interaction with activated Ras,over expression of the PI3K-a gene (PIKC3A),or mutations in PIKC3A that cause ele-vated PI3K-a kinase activity.1–4Aberrantly elevated PI3K/Akt/mTOR pathway signaling has been implicated in poor prognosis and survival in patients with various lymphatic tumors,as well as breast,prostate,lung,brain (glioblastoma),skin (melanoma),co-lon,and ovarian cancers.1–4Additionally,PI3K/Akt/mTOR pathway activation contributes to resistance of cancer cells to both targetedanticancer therapies and conventional cytotoxic agents.5–7An effective inhibitor of the PI3K/Akt/mTOR pathway could both prevent cancer cell proliferation and induce programmed cell death (apoptosis).1,2,5Therefore,several groups 8–13including our own,14–17have embarked on projects to identify potent small mol-ecule inhibitors of the PI3K/Akt/mTOR signaling pathway.Highly mTOR selective ATP competitive compounds have also been reported recently.18,19It has been demonstrated that mTOR can also be independently activated by AmpK and LKB pathways,thus providing a strong rationale for developing dual PI3K and mTOR kinase inhibitors.A dual PI3K/mTOR inhibitor could both prevent0960-894X/$-see front matter Ó2010Published by Elsevier Ltd.doi:10.1016/j.bmcl.2010.07.104⇑Corresponding authors at present address:Pfizer Global Research &Develop-ment,445Eastern Point Rd,Groton,CT 06340,USA.Tel.:+1(860)4411047;fax:+1(860)7156437(Z.C.).E-mail addresses:venkata699@ (A.M.Venkatesan),zecheng.chen@pfi (Z.Chen).cancer cell proliferation and induce programmed cell death(apop-tosis)by fully suppressing Akt activation.In a recent Letter20we reported the design and synthesis of sev-eral bis-morpholino triazine based compounds as potent dual PI3K/mTOR inhibitors.It was also shown by us that PKI-587(1, structure shown in Fig.1)was highly efficacious and shrunk tu-mors in several xenograft and orthotopic models.Even though1 was found to be highly efficacious,it has to be administered intra-venously because it was found to have poor plasma levels when administered orally.This could be attributed to several factors such as poor permeability,low c log P(calculated value1.24)and high molecular weight(615).Hence efforts have been made to increase the c log P and to lower the molecular weight.This Letter describes our efforts to alter these values to obtain an orally efficacious compound.In order to increase the c log P value,one of the morpholine groups in1was substituted with a‘morpholine like’moiety.A bridged-morpholine analog such as3-oxa-8-azabicyclo[3.2.1]-octane(5)was chosen to increase the c log P.The other morpholine in1was kept as it formed a pivotal hinge region hydrogen bond interaction with Val851.14,16,18,19The urea appendage of1was also kept as a part of the design,since it is involved in vital hydrogen bond interactions with PI3K a in the solvent exposed region.14,16,18–20The molecular weight of1was reduced to below500by removing the amide portion.The1-{4-[4-morpholin-4-yl-6-(3-oxa-8-azabicyclo[3.2.1]oct-8-yl)-1,3,5-triazin-2-yl]-aryl-4-yl}urea derivatives8a–8q which are exemplified in the present Letter were prepared starting from com-mercially available cyanuric chloride2,as depicted in Scheme1. Among the three chlorine elements presented in cyanuric chloride, thefirst chlorine was replaced by using1equiv of morpholine and triethylamine atÀ20°C to yield4in almost quantitative yield.The second chlorine in compound4was replaced by3-oxa-8-azabicy-clo[3.2.1]octane(5)at room temperature in CH2Cl2to yield6in high yield.Suzuki coupling reaction of6with4-aminophenylbo-ronic acid,pinacol ester pound7was reacted with var-ious aryl isocyanates to yield8a–8e,8h,and8l.Alternatively,urea derivatives8f,8g,8i–8k,8m–8q were obtained by reacting inter-mediate7with triphosgene and followed by the respective amines. All thefinal products were purified either byflash column silica-gel chromatography or by preparative HPLC.21All thefinal compounds8a–8q were tested in vitro against PI3K a,PI3K c,and mTOR.The IC50values against PI3K a and PI3K c enzymes were determined using afluorescence polarization for-mat assay.22The corresponding mTOR inhibition for the newly synthesized compounds was determined by the protocol outlined by Yu et al.23Subsequently the most potent compounds were tested in cell proliferation assays(3days)MB-MDA-361(breast cancer cell line with PI3K mutation and Her2+ive overexpression)and PC3mm2 (prostate cancer cell line with mutated PI3K a and PTEN deletion) cells.24The enzyme and cell proliferation assay IC50values are shown in Table1.As can be seen from Table1,the initial compound8a was found to have potent PI3K a,c,and mTOR inhibitory activity;but exhib-ited moderate potency in MDA361and PC3mm2cell proliferation assays.However,these initial results encouraged us to probe struc-ture–activity relationships more systematically to further optimize enzyme and cellular potencies.Substitution of the phenyl group (R=phenyl)in8a with4-F8b,4-methyl8c and4-cyano8d groups led to a decrease in both PI3K a and c potencies.However,the cor-responding mTOR potency was retained.for compound8e, all the compounds exemplified here were found to have excellent mTOR potency,irrespective of the substituent on the R group.The structural basis for the degree of tolerance of mTOR enzyme to these structural changes is not entirely clear due to a lack of de-tailed structural information on the mTOR enzyme.Studies using a PI3K c homology model revealed16,20that the substituents at the4-position on the R group are solvent exposed.Hence com-pounds8f–8k bearing polar entities were prepared to enhance po-tency and solubility.As can be seen from Table1,these modifications led to an improvement in PI3K a enzyme potency. Analogues such as8f exhibited good enzyme and cellular poten-cies.However,poor human and nude mouse microsomal stabilities of compound8f(t1/2=12min)precluded it from further investiga-tion.In order to improve water solubility,analogues8h–8k bearing a basic nitrogen atom were prepared.The most potent compound (enzyme activity)in this category was8h,which lacked cell po-tency.Despite good potency,analogues such as8h–8k had molec-ular weights>500.Hence,compounds such as8l–8q bearing polar nitrogen atoms on the aryl group were designed and synthesized. Among the various compounds prepared,analogue8m possessed significantly increased potency against PI3K a,mTOR,and cellular potency against both MDA-361and PC3mm2cell lines.This com-pound had excellent PAMPA permeability(19.5Â10À6cm/s at pH 7.4).The solubility of8m was poor at pH7.4(3l g/mL),but im-5870 A.M.Venkatesan et al./Bioorg.Med.Chem.Lett.20(2010)5869–5873Table1In vitro enzyme inhibition and cell proliferation inhibition IC50(nM)values and calculated c log P values of analogues8a–8q aNN NN NOONH8a-qNHORA.M.Venkatesan et al./Bioorg.Med.Chem.Lett.20(2010)5869–58735871cells was determined.As can be seen from Table 2,compound 9is an active metabolite.Further studies on this active metabo-lite are in progress.25Based on its enzyme and cellular potencies and its pharmaceu-tical profile,analogue 8m was chosen for further evaluation.26First,we explored whether 8m exhibited activity over other PI3K isoforms in addition to PI3K a and c .The IC 50values against PI3K-b ,d and the two most common mutant forms of PI3K a (E545K and H1047R)were 24,77,14,and 11nM,respectively.In addition,8m was selective when tested against a panel of 361ki-mTORC2substrate,Akt (S473)was also significantly inhibited (shown in Fig.3).Evidence for induction of apoptosis and cell death is seen by the appearance of cleaved PARP at 4h (shown in Fig.3).Evaluation of in vivo efficacy of 8m was performed in nude mice bearing MDA-361human breast cancer pound 8m was administered @50,20,10,and 5mg/kg,po doses,daily for 40days (10mice per group;dose formulation:cci/d5w-la).In this xenograft model,compound 8m exhibited pronounced 5872A.M.Venkatesan et al./Bioorg.Med.Chem.Lett.20(2010)5869–5873AcknowledgmentsThe authors thank Wei-Guo Zhang and Lourdes Toral-Barza for mTOR assays,Dr.Joseph Marini and Angela Bretz for nude mouse microsome assays,Dr.Li Di and Susan Li for human microsome as-says,Dr.Richard Harrison,Dr.Ann Aulabaugh,Jenny Togias,and Kenneth Roberts for kinase panel assays and Rob Mahoney and Kenny Kim for in vivo assays.References and notes1.Engelman,J.A.;Luo,J.;Cantley,L.C.Nat.Rev.Genet.2006,7,606.2.Shaw,R.J.;Cantley,L.C.Nature2006,441,424.3.Kok,K.;Geering,B.;Vanhaesebroeck,B.Trends Biochem.Sci.2009,34,115.4.Vanhaesebroeck,B.;Leevers,S.J.;Ahmadi,K.;Timms,J.;Katso,R.;Driscoll,P.C.;Woscholski,R.;Parker,P.J.;Waterfield,M.D.Annu.Rev.Biochem.2001,70,535.5.Yuan,T.L.;Cantley,L.C.Oncogene2008,27,5497.6.Keniry,M.;Parsons,R.Oncogene2008,27,5477.7.Ihle,N.T.;Powis,G.Mol.Cancer Ther.2009,8,1.8.Vlahos,C.J.;Matter,W.F.;Hui,K.Y.;Brown,R.F.J.Biol.Chem.1994,269,5241.9.Yaguchi,S.;Fukui,Y.;Koshimizu,I.;Yoshimi,H.;Matsuno,T.;Gouda,H.;Hirono,S.;Yamazaki,K.;Yamori,T.J.Natl.Cancer Inst.2006,98,545.10.Kong,D.;Yamori,T.Cancer Sci.2007,98,1638.11.Folkes, A.J.;Ahmadi,K.;Alderto,W.K.;Alix,S.;Baker,S.J.;Box,G.;Chuckowree,I.S.;Clarke,P.A.;Depledge,P.;Eccles,S.A.;Friedman,L.S.;Hayes,A.;Hancox,T.C.;Kugendradas,A.;Lensun,L.;Moore,P.;Olivero,A.G.;Pang,J.;Patel,S.;Pergl-Wilson,G.H.;Raynaud,F.I.;Robson,A.;Saghir,N.;Salphati,L.;Sohal,S.;Ultsch,M.H.;Valenti,M.;Wallweber,H.J.A.;Wan,N.C.;Weismann,C.;Workman,P.;Zhyvoloup,A.;Zvelebil,M.J.;Shuttleworth,S.J.J.Med.Chem.2008,51,5522.12.Stauffer,F.;Maira,S.M.;Furet,P.;Garcia-Echeverria,C.Bioorg.Med.Chem.Lett.2008,18,1027.13.Maira,S.M.;Stauffer, F.;Brueggen,J.;Furet,P.;Schnell, C.;Fritsch, C.;Brachmann,S.;Chene,P.;De Pover,A.;Schemaker,K.;Fabbro,D.;Gabriel,D.;Simonen,M.;Murphy,L.;Finan,P.;Sellers,W.;Garcia-Echeverria, C.Mol.Cancer Ther.2008,7,1851.14.Venkatesan,A.M.;Dehnhardt,C.M.;Chen,Z.;Delos Santos,E.;Dos Santos,O.;Bursavich,M.;Gilbert,A.M.;Ellingboe,J.W.;Ayral-Kaloustian,S.;Khafizova,G.;Brooijmans,N.;Mallon,R.;Hollander,I.;Feldberg,L.;Lucas,J.;Yu,K.;Gibbons,J.;Abraham,R.;Mansour,T.S.Bioorg.Med.Chem.Lett.2010,20,653.15.Chen,Z.;Venkatesan,A.M.;Dehnhardt,C.M.;Ayral-Kaloustian,S.;Brooijmans,N.;Mallon,R.;Feldberg,L.;Hollander,I.;Lucas,J.;Yu,K.;Mansour,T.S.J.Med.Chem.2010,53,3169.16.Dehnhardt,C.M.;Venkatesan,A.M.;Delos Santos,E.;Chen,Z.;Dos Santos,O.;Ayral-Kaloustian,S.;Brooijmans,N.;Mallon,R.;Hollander,I.;Feldberg,L.;Lucas,J.;Chaudhary,I.;Yu,K.;Gibbons,J.;Abraham,R.;Mansour,T.S.J.Med.Chem.2010,53(2),798.17.Mallon,R.;Hollander,I.;Feldberg,L.;Lucas,J.;Soloveva,V.;Venkatesan,A.;Dehnhardt,C.;Delos Santos,E.;Chen,Z.;Santos,O.D.;Ayral-Kaloustian,S.;Gibbons,J.Mol.Cancer Ther.2010,9,976.18.Zask, A.;Verheijen,J. C.;Curran,K.;Kaplan,J.;Richard, D.J.;Nowak,P.;Malwitz,D.J.;Brooijmans,N.;Bard,J.;Svenson,K.;Lucas,J.;Toral-Barza,L.;Zhang,W.G.;Hollander,I.;Gibbons,J.J.;Abraham,R.T.;Ayral-Kaloustian,S.;Mansour,T.S.;Yu,K.J.Med.Chem.2009,52,5013.19.Zask,A.;Kaplan,J.;Verheijen,J.C.;Richard,D.J.;Curran,K.;Brooijmans,N.;Bennett,E.M.;Toral-Barza,L.;Hollander,I.;Ayral-Kaloustian,S.;Yu,K.J.Med.Chem.2009,52,7942.20.Venkatesan,A.M.;Dehnhardt,C.M.;Delos Santos,E.;Chen,Z.;Dos Santos,O.;Ayral-Kaloustian,S.;Khafizova,G.;Brooijmans,N.;Mallon,R.;Hollander,I.;Feldberg,L.;Lucas,J.;Yu,K.;Gibbons,J.;Abraham,R.T.;Chaudhary,I.;Mansour,T.S.J.Med.Chem.2010,53,2636.21.The purity offinal compounds was determined by analytical HPLC usingProdigy ODS3column(150mmÂ4.6mm).Conditions:ACN/H2O eluent at 1mL/minflow(containing0.05%TFA)at40°C,20min,gradient5%ACN to95% ACN,monitored by UV absorption at215nm.Allfinal compounds were found to be P95%purity unless otherwise specified.Reverse phase HPLC(preparative HPLC)purifications were performed on a Gilson preparative HPLC system controlled by UnipointÒsoftware using a Phenomenex GeminiÒ(100mmÂ30mm).22.Yang,X.;Li,P.;Feldberg,L.;Kim,S.C.;Bowman,M.;Hollander,I.;Mallon,R.;Wolf,b.Chem.High Throughput Screening2006,9,565.23.Yu,K.;Toral-Barza,L.;Discafani, C.;Zhang,W.G.;Skotnicki,J.;Frost,P.;Gibbons,J.Endocr.Relat.Cancer2001,8,249.24.Toral-Barza,L.;Zhang,W.G.;Lamison,C.;Larocque,J.;Gibbons,J.;Yu,K.mun.2005,332,304.25.Chen,Z.;Venkatesan,A.M.;Dos Santos,O.;Delos Santos,E.;Dehnhardt,C.M.;Ayral-Kaloustian,S.;Ashcroft,J.;McDonald,J.A.;Mansour,.Chem.2010,75,1643.26.Analytical data of8m:MS(ESI,m/z)489(M+H);1H NMR(DMSO-d6,400MHz)d11.39(s,1H),10.23(s,1H),8.62(d,2H,J=7.6Hz),8.32(d,2H,J=8.6Hz),7.94 (d,2H,J=7.6Hz),7.60(d,2H,J=8.6Hz),4.82(s,1H),4.63(s,1H),3.90–3.60 (m,12H),1.99–1.87(m,4H);13C NMR(DMSO-d6,75MHz)d165.7,161.5, 159.1,151.4,148.9,139.3(2C),127.8,127.1(2C),115.4(2C),110.5(2C),68.8,68.5,63.6(2C),52.3,52.0,41.1(2C),24.0(2C);HRMS calcd for C25H28N8O3(M+H)489.2357,obsd489.2353.A.M.Venkatesan et al./Bioorg.Med.Chem.Lett.20(2010)5869–58735873。