浙教版八年级数学上册课件:3.3 一元一次不等式(2)
2019年秋浙教版八年级上册数学课件:3.3 第3课时
3
• 【典例】某城市的一种出租车起步价是8元(即行程在3 km以内都需付8 元车费),超过3 km后,每增加1 km,加价1.5元(不足1 km的部分按1 km计算).现在某人乘这种出租车从甲地到乙地,支付车费18.5元.从 甲地到乙地的路程大约是多少千米?
• 分析:此题的车费分两部分,即起步价8元和超过3 km后的费用.不 等关系为“起步价+超过3 km后的费用≤18.5元”.
• (2)根据题意,得2x≤80-3x.解得x≤16.由(1),知x≥14,则14≤x≤16.又 ∵x是正整数,∴x=14,15,16.故有三种购买方案:方案一:购买甲种 电冰箱28台,乙种电冰箱14台,丙种电冰箱38台;方案二:购买甲种 电冰箱30台,乙种电冰箱15台,丙种电冰箱35台;方案三:购买甲种 电冰箱32台,乙种电冰箱16台,丙种电冰箱32台.
种型号节能灯 450 只.
14
思维训练
• 9.为响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、 丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱 台数的2倍,购买三种电冰箱的全部金额不超过132 000元.已知甲、 乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元 /台.
• (1)求每辆大客车和每辆小客车的座位数;
• (2)经学校统计,实际参加活动的人数增加了40人,学校决定调整租车 方案,在保持租用车辆总数不变的情况下,为使所有参加活动的师生 均有座位,最多租用小客车多少辆?
11
解:(1)设每辆小客车的座位数是 x 个,每辆大客车的座位数是 y 个.根据题意, 得y4-y+x=6x1=5, 310, 解得xy==4205., 故每辆大客车的座位数是 40 个,每辆小客车的座 位数是 25 个.
8年级-上册-数学-第3章《一元一次不等式》3.3一元一次不等式(1)一元一次不等式的概念
浙教版-8年级-上册-数学-第3章《一元一次不等式》3.3一元一次不等式(1)一元一次不等式的概念--每日好题挑选【例1】一元一次不等式2x+1≥3的最小整数解为。
【例2】若关于x 的一元一次方程x-m+2=0的解是负数,则m 的取值范围是。
【例3】将关于x 的不等式-x+a≥2的解表示在数轴上如图所示,则a 的值是。
【例4】已知关于x 的不等式(a-1)x>2的解为x<2a-1a 的取值范围是。
【例5】已知不等式5x-2<6x+1的最小整数解是关于x 的方程2x-ax=4的解,则a=。
【例6】对一个实数x 按图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,那么x 的取值范围是。
【例7】设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,有下列结论:其中正确的是(填序号)。
①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是1;④存在实数x,使[x)-x=0.5成立.【例8】解不等式:7x-2≤9x+3.圆圆同学的求解过程如下:解:移项,得7x-9x≤3-2,合并同类项,得-2x≤1,两边都除以-2,得x≤-12。
请你判断圆圆的求解过程是否正确,若不正确,请你写出正确的求解过程。
【例9】如果关于x 的方程x+2m-3=3x+7的解是不大于2的实数,求m 的取值范围。
【例10】当a取何值时,关于x的方程2(x-2)=4a+6的解比关于x的方程13(x+1)=3-a的解小?【例11】当k取什么值时,关于x的方程3(x-2)+6k=0的解是正数?【例12】已知不等式x≤a的正整数解为1,2,3,4.(1)当a为整数时,求a的值;(2)当a为实数时,求a的取值范围。
【例13】已知关于x的方程x-x+a3=2的解是不等式2x+a<2的一个解,求a的取值范围。
【例14】已知关于x,y的方程组当m为何值时,x>y?【例15】若关于x,y的解满足x+y>1,求k的取值范围.【例16】成都市某超市从生产基地购进200千克水果,每千克进价为2元,运输过程中质量损失5%,假设不计超市其他费用。
3.3 一元一次不等式(第2课时,应用)(课件)八年级数学上册(浙教版)
.
≥
解得 x ≥ 0.5
答:导火索的长度至少取0.5米
巩固练习
2. 把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的每名
同学分5本,那么最后一人就分不到3本.这些图书有(
B.24本
C.25本
D.26本
解:设共有x名学生,则图书共有(3x+8)本,
由题意得, 0 < 3x+8-5(x-1) < 3,
解得:5< x <6.5,
∵x 为非负整数,
∴x = 6.
∴书的数量为:3×6+8=26 .
D
)
A.23本
*
巩固练习
例4 甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案
:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购
物超过50元后,超出50元的部分按95%收费,设王老师在同一商场累计购物x元,其
中x>100.
(1)根据题意,填写下表(单位:元):
累计购
130
290
…
x
在甲商场
127
271
…
0.9x+10
在乙商场
126
278
…
实际花费
*
巩固练习
(2)当x取何值时,王老师在甲、乙两商场的实际花费相同?
解:根据题意得:
∴小明家每月用水超过5立方米,
则超出(x-5)立方米,按每立方米2元收费,
列出不等式为:5×1.8+(x-5)×2≥15,
解不等式得:x≥8.
*
答:小明家每月用水量至少是8立方米.
3.3 一元一次不等式八年级上册数学浙教版
移项,得 . 移项要变号
合并同类项,得 .
两边都除以 ,得 . 同除以一个负数,不等号的方向要改变
不等式的解表示在数轴上如图所示.
知识点4 一元一次不等式的实际应用 重点
有些实际问题中存在不等关系,用不等式来表示这样的关系,就能把实际问题转化为数学问题,从而通过解不等式解决实际问题.
33
解析: 设该中学购买篮球 个,
根据题意得, ,解得 . 是整数, 的最大值是33.
例题点拨解决此类问题的关键是找到数量关系和不等关系,抓住“至少”“超过”“至多”等关键词来列不等式.
本节知识归纳
中考常考考点
难度
常考题型
考点1:一元一次不等式的解法,主要考查解一元一次不等式并在数轴上表示不等式的解集,以及求一元一次不等式的特殊解.
(2) “粤菜师傅”工程开展以来,已累计带动33.6万人次创业就业.据报道,经过“粤菜师傅”项目培训的人员工资稳定提升,已知李某去年的年工资收入为9.6万元,预计李某今年的年工资收入不低于12.48万元,则李某的年工资收入增长率至少要达到多少?
(2)设李某的年工资收入增长率为 ,依题意,得 ,解得 .答:李某的年工资收入增长率至少要达到 .
考点2 一元一次不等式的实际应用
典例6 [2021·广州中考] 民生无小事,枝叶总关情,广东在“我为群众办实事”实践活动中推出“粤菜师傅”“广东技工”“南粤家政”三项培训工程,今年计划新增加培训共100万人次.
(1) 若“广东技工”今年计划新增加培训31万人次,“粤菜师傅”今年计划新增加培训人次是“南粤家政”的2倍,求“南粤家政”今年计划新增加的培训人次.
第3章 一元一次不等式
浙教版八年级数学上册:3.3-一元一次不等式
解的 情况
一般只有一。个解
一般解集含有无数个解
2、某单位计划在新年期间组织员工到某地旅游,参如旅游的 的人数估计为10~25人,甲、乙两家旅行社的服务质量相 同,且报价都是每人200元,经过协商,甲旅行社表示可 给予每位游客七五折优惠;乙旅行社表示可先免去一位游 客的旅游费用,其余游客八折优惠,该单位选择哪一家旅 行社,支付的旅游费用较少?
浙教版八年级数学上册 精品课件
根据已学过的知识,你能解下列一元一次 方程吗?
把等号改成不等号,你会解吗?
(1)5x => 3(x-2)+2; (2)2m-3 =<
7m+3 2
解一元一次不等式的步骤是什么?
步骤
根据
1 去分母
不等式的基本性质3
2 去括号
单项式乘以多项式法则
3 移项
不等式的基本性质2
感谢喧嚣 把你高高卷起 砸向这一处静逸 惊翻了我的万卷 和其中的一字一句 幸遇只因这一次
被你拥抱过,览了 被你默诵过,懂了 被你翻开又合起 被你动了奶酪和心思
不舍你的过往 和过往的你 记挂你的现今 和现今的你 遐想你的将来 和将来的你 难了难了 相思可以这一世
---------------------------------- 谢谢喜欢 ----------------------------------
1
5
解得 m>2
解法比较
一元一次方程
一元一次不等式
解 (1)去分母
(1)去分母
(2)去括号
(2)去括号
法 (3)移项
(3)移项
(4)合并同类项
(4)合并同类项
步 (5)系数化为1
(5)系数化为1
浙教版初中数学八年级 上册 3.3 一元一次不等式(2) 课件 教学课件
其数学表达式 10x-5(20-x)
据题意,小明最后得分要求: 超过90分
用数学表达式表示为: 10x-5(20-x)>90
拓展提高
解:设小明答对x道题,则他答错或者不答的题数为 (20-x),根据题意,得:
10x-5(20-x)>90
解这个不等式,得
10x-100+5x>90 15x>190 x > 12 2
、
_________、 _________四种常见最简不等式.
例3 解不等式 10.5x0.1x0.2
0.2 0.3
还记得它吗
10.5x0.1x0.2
0.2
0.3
例3 解不等式 10.5x0.1x0.2
0.2 0.3
解法一
解法二 你会选择哪种解法?
1 5x 1 10x 2
2
3
0.6 3(0.5x 0.1) 2( x 0.2)
数轴上表示出来. 2
3
解下列不等式,并把解在数轴上表示出来.
(1)5x313x; (2)1y11y;
3
2
(3 )3 ( 1 3 x ) 2 (4 2 x ) 0 ;
(4)1(2m)3m;
6
10
1.解一元一次不等式和解
的思路和步骤类似.
2.解一元一次不等式的基本思路是:把原不等式变形成_________、
作业(5)系数化为1
骤
两边知同数时的除 系书以数上未 P1作01业作在乘本(以业把(1;题不)或,等与除号(以方5))向这负改两数变步,若要
解的 情况
一般只有一。个解
一般解集含有无数个解
当你的才华还撑不起你的野心时,你就该努力。心有猛虎,细嗅蔷薇。我TM竟然以为我竭尽全力了。能力是练出来的,潜能是逼出来的,习惯是养成的,我的 成功是一步步走出来的。不要因为希望去坚持,要坚持的看到希望。最怕自己平庸碌碌还安慰自己平凡可贵。
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)
浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。
学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。
但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。
同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。
三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。
2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.重难点:一元一次不等式的概念和性质。
2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。
五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。
3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。
2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。
3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。
七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。
2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。
3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)
浙教版数学八年级上册3.3《一元一次不等式》说课稿(2)一. 教材分析浙教版数学八年级上册3.3《一元一次不等式》是学生在学习了有理数、方程等知识的基础上,进一步引导学生探讨不等式的性质和运用。
这一节内容的重要性在于,它不仅巩固了学生对一元一次方程的理解,而且为学生今后学习更复杂的不等式打下基础。
教材通过具体的例子引入一元一次不等式,并引导学生通过观察、分析、归纳来理解不等式的概念和性质。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和探究能力,对一元一次方程有了初步的了解。
但在学习本节内容时,学生可能会对不等式的概念和性质产生混淆。
因此,在教学过程中,需要关注学生的认知差异,针对性地进行引导和帮助。
三. 说教学目标1.知识与技能:让学生掌握一元一次不等式的概念,理解不等式的性质,并能运用不等式解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生自主学习的能力和合作意识。
3.情感态度与价值观:激发学生对数学学科的兴趣,培养学生的耐心和毅力,使学生在解决实际问题的过程中,体验到数学的魅力。
四. 说教学重难点1.教学重点:一元一次不等式的概念、性质和运用。
2.教学难点:不等式的性质,如何引导学生从具体例子中归纳出一般性规律。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作学习。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入新课:通过一个实际问题,引入一元一次不等式的概念,激发学生的兴趣。
2.自主学习:让学生独立思考,尝试解这个问题,感受不等式的存在。
3.小组讨论:学生分组讨论,总结解不等式的方法和步骤。
4.师生互动:教师引导学生归纳总结不等式的性质,并通过举例验证。
5.练习巩固:布置一些练习题,让学生运用所学知识解决实际问题。
6.课堂小结:对本节课的内容进行总结,强调重点和难点。
浙教版八年级数学上册3.4一元一次不等式组课件(共21张PPT)
定义: 一般地,由几个同一未知数的一元一次不等 式所组成的一组不等式,叫做一元一次不等式组.
下列式子中,哪些是一元一次不等式组?
x 1 (1) x 3
√
2 x x 1 (2) x 8 4x 1
√
x y 0 (3) 不是 2 x y 1
练一练:
1.解下列各一元一次不等式组
2 x 1 x 1 (1) x 8 4 x 1
5 x 23( x 1) (2) 1 3 x 1 7 x 2 2
2.求出问题3中宽是多少。
例3. 求下列不等式组的解集:
x 3, (1) x 7.
x3
x 1, (4) x 4.
解:原不等式组的解集为 -3 -2 -1 0
1
2 3 4 5
x 1
小小取小
例3. 求下列不等式组的解集:
x 3, (5) x 7.
解:原不等式组的解集为
0
1 2 3 4 5 6 7 8 9
3 x7
x 1, (6) x 4.
1 解: 解不等式①,得 X< 2 12 解不等式②,得 X> 5
3X 2 X 2.5 4 2
②
把① ,②两个不等式的解表示在数轴上 所以原不等式组无解
-3 -2 -1 0 1 2 3 4 5 6
解一元一次不等式组的步骤: (1)分别求出各不等式的解 (2)将它们的解表示在同一数轴上 (3)求原不等式组的解(即为它们解的公共部分).
(5)2-x<x≤6-2x
x2 x 2 (4) 不是 x 1 0
√
浙教版八年级数学上册全册PPT课件
第3章 一元一次不等式
浙教版八年级数学上册全册PPT课 件
浙教版八年级数学上册全册PPT课 件
2.3等腰三角形的判定定理
浙教版八年级数学上册全册PPT课 件
2.4逆命题和逆定理
浙教版八年级数学上册全册PPT课 件
2.5直角三角形
浙教版八年级数学上册全册PPT课 件
2.6直角三角形全等的判定
第PT课 件
1.1认识三角形
浙教版八年级数学上册全册PPT课 件
1.2定义与命题
浙教版八年级数学上册全册PPT课 件
1.3证明
浙教版八年级数学上册全册PPT 课件目录
0002页 0054页 0091页 0131页 0211页 0243页 0273页 0313页 0336页 0377页 0408页 0433页 0466页 0505页 0557页
第1章 三角形的初步认识 1.2定义与命题 1.4全等三角形 1.6尺规作图 2.1图形的轴对称 2.3等腰三角形的判定定理 2.5直角三角形 第3章 一元一次不等式 3.2不等式的基本性质 3.4一元一次不等式组 4.1平面直角坐标系 4.3探索确定位置的方法 5.1常量与变量 5.3一次函数 5.5一次函数的简单应用
第2章 特殊三角形
浙教版八年级数学上册全册PPT课 件
2.1图形的轴对称
浙教版八年级数学上册全册PPT课 件
2.2等腰三角形的性质定理
浙教版八年级数学上册全册PPT课 件
1.4全等三角形
浙教版八年级数学上册全册PPT课 件
1.5三角形全等的判定
浙教版八年级数学上册全册PPT课 件
1.6尺规作图
浙教版八年级数学上册全册PPT课 件
八年级数学上册-第3章 一元一次不等式 复习课件-浙教版
不等式的性质
不 等 式
1.加减不改变 2.乘除正不变 3.乘除负改变 4.对称性 5.同向传递性
一元一次 不等式
解一元一次不等式 解一元一次不等式组
在数轴上表示 不等式的解
根据下列数量关系列不等式:
⑴a不是正数。
a0
⑵x与y的一半的差大于-3。
x 1 y 3 2
( 4 a<6 )
4.若不等式2x+k<5-x没有正数解则k的范围是( K 5 )
5.同时满足-3x大于或等于0与4x+7>0的整数是( 0 ,-)1
6.不等式(a-1)x<a-1的解集为x>1则a的范围是( a<1 )
7.不等式组 6x-1>3x-4 的整数解为( 0,1 ) -1/3≤x 2/3
5
2
并把它的解集表示的数轴上。
x
20 3
其解集在数轴上表示如右图
4.解不等式 y 1 y 1 y 1 32 6
并把它的解集在数轴上表示出来。
2( y 1) 3( y 1) y 1 y 3
解集在数轴上表示如右图
一元一次不等式组的解集及记忆方法
图形
数学语言
文字记忆
ba ba ba ba
a
X>a
条件是__m__<___5____。
5.已知不等式3x-m≤0有4个正整数解,则m的取值范
围是_1_2__≤_m__≤_1_5_。
x>a+2
6.若不等式组
无解,
x<3a-2
则a的取值范围是____a_≤_2__。 7.若(a 2)xa23 8 2a是关于x的一元一次不等式则a的
值____-_2_____。
浙教版数学八年级上第五章 5.4 一元一次不等式组(2)课件
要求共生产 100 (张 ) (张 ) x 3x ቤተ መጻሕፍቲ ባይዱx
(个 )
(个)
100-x 4(100-x) 100-x
合计(张)
现有纸板 (张 )
3x+4(100-x) 2x+100-x
351
151
⑷解:设生产横式盒x个,则竖式盒(100-x)个,
得
3x+4(100-x) ≤351 2x+100-x≤151
⑹答
在上题的方案( 1 )中横式的包装盒生产 49 个,竖式的生产 51个,其中需要长方形纸板351张,正方形纸板149张。
如果甲工人专门生产长方形纸板,每天可做30张;乙工人专
门生产正方形纸板,每天可做 20 张,那么,至少需要几天才能 按方案(1)生产出所需的包装盒的数量。 解:设至少需要y天才能按方案(1)生产出所需的包 装盒的数量,由题意,得
答:共有三种生产方案:横式盒、竖式盒分别为①49个、51个②50个,50个③51 个、49个.其中①方案原材料的面积利用率最高,应选①方案.
运用不等式(组)解应用题一般步骤:
(1)审题---发现题目中的不等关系
(2)设元---选合适的量为未知数.
(3)列不等式(组)
(4)解不等式(组)
(5) 检验---利用不等式(组)的解,写出符合题意的结果.
• 1.会列一元一次不等式组解应用题。 • 2.培养学生探索解决实际问题中的 应用的能力。 • 3.感受“化难为易”、化未知为已 知的数学思想。
思考:
若:
我们用
a 根火柴棒首尾相接围成一个等
x x
腰三角形(如图),最多能围成多少种不同 的等腰三角形?
③ ② ④ ①
浙教版八年级数学上册全册教学课件
学生应按时完成布置的作业和练 习题,以巩固所学知识和提高解
题能力。
要求学生积极参与课堂讨论和提 问,以及与同学合作完成小组活
动。
评价方式包括平时成绩、期中考 试和期末考试,以全面评估学生
的学习情况和成果。
02 第一章:代数基础
代数概念与性质
01
02
03
04
总结词:掌握基础
代数基础知识介绍:阐述代数 的基本概念和性质,包括正数 、负数、整数、有理数等。
数的分类与概念:详细介绍数 的分类方法,如整数、有理数 、实数等,并阐述相关概念。
数的性质与运算:介绍数的各 种性质,如正负数性质、绝对 值性质等,以及基本的四则运
算。
代数运算与技巧
总结词:掌握技巧
错误运算的避免:列举常见的错误运算 ,如符号错误、括号错误等,并说明避 免方法。
简化运算的方法:介绍简化运算的方法 ,如提取公因数、利用分配律等。
旋转前后的图形对应部分相等, 对应角相等。
轴对称与中心对称图形的应用实例
建筑设计
许多建筑物都利用了轴对称和中心对称的原理,以增加建筑物的 稳定性和美感。
图案设计
许多图案都利用了轴对称和中心对称的原理,以增加图案的复杂 性和美感。
数学问题
在数学问题中,轴对称和中心对称的概念经常被用来解决几何问 题,例如求图形的面积、周长等。
THANKS 感谢观看
反比例函数的图像
是两条过原点的双曲线。
反比例函数的性质
当$k>0$时,第一、三象限内为减函数;当$k<0$时,第二、四象 限内为增函数。
05 第四章:几何基础
线段、射线、直线及其性质
01
线段、射线、直线的定义
浙教版八年级数学上册3.3 一元一次不等式ppt课件(17页)
下列式子哪些是一元一次不等式?哪些不 是一元一次不等式?为什么? • 1、X > 0 √
• 2、 x > -1
1
× × √ ×
• 3、X > 2
倍 速 课 时 学 练 • 4、x+y>-3 • 5、x = -1
×
想一想:
把x=5代入不等式3x<18,不等式成立吗? 那能否说不等式的解就是x=5? 这样的值有很多
练习
0.3 x 1 0.2 x 0.4 1、解不等式 2 0.2 0.5
2、下列对各不等式的变形中,正确的是( )
x 1 x 2 1 x A. 变形为 2x-2-3x+6 > 1-x 3 2 6
倍 速 课 时 学 练
B.1-2x≤10-x变形为 -3x ≤ 11 C.3x>-9 变形为 x < -3
请同学们把它们在数轴上指出来
我们把能使不等式成立的未知数 倍 的值的全体叫做不等式的解 速
课 时 学 练
不等式的解的形式:x>a(或x≥a) x<a(或x≤a)
试一试:解下列不等式,并把解表示 在数轴上
• (1)4x<10 (2)- 3x≥1.2
5
(3) x-1>0
倍 速 课 时 学 练
把不等式中的任何一项的符号改变后,从不等号的 一边移到另一边,所得到的不等式仍成立,也就是 说在解不等式时,移项的法则同样适用.
倍 速 课 时 学 练
3x<18
5x-3≥7x+1.
对照一元一次方程的定义给这两个式子起一个名
定义:
不等号的两边都是整式,而且只含有一个 未知数,未知数的最高次数是一次,这样 的不等式叫做一元一次不等式
《解一元一次不等式》课件2
特点: (1)不等号的两边都是整式.
(2)只含有一个未知数. (3)未知数的最高次数是1次.
认一认
下列式子哪些是一元一次不等 式?哪些不是一元一次不等式? 1、x x>0 >0 √
1 2、 1 x
3、x >2 √ 4、x x+ +y>-3 5、x x=-1 =-1
例1
1 解不等式 x+1<5,并把解集在数轴上表示出来. 2 1 x<5-1, 2
总结:用数轴表示不等式的解集的步骤:
第一步:画数轴;第二步:定界点; 第三步:定方向.
大于向右画,小于向左画;
有等号(≥ ,≤)画实心点,无等号(>,<)画空心圆.
试一试:
在数轴上表示x≥-2正确的是 ( D )
●
●
-2
A
○
-2
0 B
●
-2
0 C
-2
0 D
一元一次方程: 方程的两边都是整式,只含有一个未知数;并且 未知数的指数是一次,这样的方程叫做一元一次 方程. 特点: 1、方程的两边都是整式. 2、只有一个未知数. 3、未知数的指数是一次.
解:不等式两边都减去1,得
即
x<4.
1 两边都乘2(或除以 2 ),得
x<8.
解集在数轴上表示,如图10一3一3所示.
解不等式7x-2≤9x+3,把解表示在数轴上. 并求出不等式的负整数解. 不等式的解表示在数轴上如图所示.
5 2
4 3 2 1
012Fra bibliotek3不等式的负整数解是x=-1和x=-2.
x<a)来表示.
第二种:用数轴,标出数轴上某一区间,其中的点 对应的数值都是不等式的解.
最新浙教版八年级数学上册教学课件(所有课时)
0002页 0027页 0059页 0115页 0168页 0185页 0198页 0245页 0279页 0320页 0340页 0357页 0404页 0469页 0522页
第1章 三角形的初步认识 1.2定义与命题 1.4全等三角形 1.6尺规作图 2.1图形的轴对称 2.3等腰三角形的判定定理 2.5直角三角形 第3章 一元一次不等式 3.2不等式的基本性质 3.4一元一次不等式组 4.1平面直角坐标系 4.3探索确定位置的方法 5.1常量与变量 5.3一次函数 5.5一次函数的简单应用
第1章 三角形的初步认识
最新浙教版八年级数学上册教学课 件(所有课时)
1.1认识三形
最新浙教版八年级数学上册教学课 件(所有课时)
浙教版八年级数学上册课件:专题3一元一次不等式
(2)去分母,得3(2+x)≥2(2x-1)-12, 去括号,得6+3x≥4x-2-12, 移项、合并同类项,得-x≥-20, 两边同除以-1,得x≤20, 在数轴上表示出来为:
题型三 一元一次不等式组的解法 典例 [202X·郴州]解不等式组:
34xx+ -22> ≤23( x-x-2,1),并把解集在数轴上表示出来.
解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元, 列方程得2x+3×3x=550,解得x=50, ∴温馨提示牌的单价为50元,垃圾箱的单价为150元; (2)设购买温馨提示牌为m个,则购买垃圾箱为(100-m)个,列 不等式得50m+150(100-m)≤10 000,解得m≥50,又∵100- m≥48,∴m≤52,∵m的值为整数,∴m的取值为50,51,52, 当m=50时,100-m=50,即购买50个温馨提示牌和50个垃圾 桶,其费用为50×50+50×150=10 000元; 当m=51时,100-m=49,即购买51个温馨提示牌和49个垃圾 桶,其费用为51×50+49×150=9 900元;
变式跟进 3.(1)[202X·北京]解不等式组:
3(x+1)>x-1, x+2 9>2x.
解:解不等式 3(x+1)>x-1,得 x>-2; 解不等式x+2 9>2x,得 x<3. ∴原不等式组的解集为-2<x<3.
2x-1≥x-2,① (2)[2018·荆州]求不等式组x+12>2x-14② 的整数解.
变式跟进 6.某超市销售有甲、乙两种商品,甲商品每件进价 10元,售价15元;乙商品每件进价30元,售价40元. (1)若该超市一次性购进两种商品共80件,且恰好用去1 600元, 问购进甲、乙两种商品各多少件? (2)若该超市要使两种商品共80件的购进费用不超过1 640元,且 总利润(利润=售价-进价)不少于600元.请你帮助该超市设计 相应的进货方案,并指出使该超市利润最大的方案. 解:(1)设该超市购进甲商品x件,则购进乙商品(80-x)件, 根据题意,得10x+30(80-x)=1 600, 解得x=40,80-x=40, 则购进甲、乙两种商品各40件;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合并同类项 两边都除以-1
7m 3 (2) 2m 3 2 ①去分母
②去括号 ③移项
2(2m 3) 7m 3 不等式基本性质3
4m 6 7 m 3 单项式乘以多项式法则 不等式两
不等式基本性质2 合并同类项法则 不等式基本性质3
边都乘以 或除以同 一个负数 时,要改 变不等号 的方向.
小结:解一元一次不等式的步骤:
①去分母; ②去括号; ③移项; ④合并同类项; ⑤两边都除以未知数的 系数.(考虑系数的符 号)
不等式基本性质3; 单项式乘以多项式法则 不等式基本性质2 合并同类项法则 不等式基本性质3
解一元一次不等式的注意事项:
1. 去分母时应注意:(1)不能漏乘;(2)不能漏添括号。
不等式基本性质2
合并同类项 两边都除以2
2 x 4 x 2
合并同类项法则
不等式基本性质3
1 x 1 2x 1 2 3
去分母 +6 3(1+x) <2(1+2x) +1
去括号
移项
3+3x<2+4x+6
3x-4x<8-3 -x<5 使不等式成立的最大负 x > -5 整数是_______. -1
1+x 1+x 回顾:解一元一次方程 = +1 并写出每 2 3
一步所用的是什么步骤? 去分母 去括号 移项 合并同类项为 ax=b
方程两边同除以未知数的系数,从而化为x=
b a
解一元一次不等式的步骤: 步骤 ①去分母 ②去括号 ③移项 ④合并同类项 ⑤两边同除以a(a≠0) 注意 乘遍每一项、添括号 乘遍每一项、符号 变号 系数相加减 a的符号,注意负数变号
3
4
5
6
求K的值。
创新提高
4.如果不等式2 x m 0的正整数解是1, 2,3, 6m8 那么的取值范围是___________ 。
5、已知关于x的方程组
的解满足x>y,求p的取值范围。
3x 2 y p 1 4 x 3 y p 1
谈谈解一元一次不等式有哪
解不等式 3(1 - x) > 2(1 - 2x) 解:去括号,得 移项,得 3 - 3x > 2 - 4x - 3x + 4x > 2 - 3
合并同类项,得 x > - 1
(1) 5x 3( x 2) 2
去括号 5 x 3 x 6 2 单项式乘以多项式法则 移项
5 x 3x 6 2
2. 不等式两边都乘以或除以同一个负数时,要改变不
等号的方向。 3. 在数轴上表示解集应注意的问题:方向、空心 或实心。
0.2 x 0.1 1 x 1 变式训练 0.4 6
2x 1 1 x 1 4 6 去分母 ( 3 2x 1 ) ( 2 1 x) 12
将不等式化为:
去括号 6 x 3 2 2 x 12 移项
6 x 2 x 12 3 2
4 x 17
17 x 4
合并同类项
两边都除以4
拓展提高
1、当K取何值时,关于X的方程4X+3=2X+K的解大于1。
2、关于X的不等式3>3X+K的解,在数轴上 表示如下:
-2
-1
0
1
2
4m 7 m 6 3
④合并同类项
3m 9
m 3
⑤两边都除以-3
解一元一次不等式:
(1)思路: 把不等式变形成
“x>a(或x≥a)
x<a(或x≤a) (a为已知数)”的形式。
(2)步骤: 去分母 →去括号 → 移项 → 合并同类项 → “x>a(或x≥a) x<a(或x≤a)