数学建模模拟试题(一)

合集下载

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模试卷及参考答案一、选择题1. 已知函数 $y = 2x^3 - 5x^2 + 3x - 7$,求导数函数 $y'$ 的值。

A) $6x^2 - 10x + 3$\B) $6x - 10x^2 + 3$\C) $6x - 10x + 3$\D) $6x^2 - 10x^2 + 3$答案:A2. 设矩形的长为 $x$,宽为 $y$,满足 $x^2 + y^2 = 25$。

当矩形的面积最大时,求矩形的长和宽。

A) 长为 4,宽为 3\B) 长为 5,宽为 3\C) 长为 4,宽为 2.5\D) 长为 5,宽为 2.5答案:A3. 一条直线过点 $A(1,2)$ 和点 $B(3,-1)$,与另一条直线 $2x + y - 4 = 0$ 平行。

求该直线的方程。

A) $2x - y + 3 = 0$\B) $2x - y - 3 = 0$\C) $-2x + y - 3 = 0$\D) $2x - y - 5 = 0$答案:B4. 已知函数 $y = e^x$,求 $y$ 的微分值。

A) $e^x$\B) $e^x + C$\C) $e^x - C$\D) $C \cdot e^x$答案:A5. 一辆汽车以每小时 60 公里的速度行驶,途中经过两座相距 60 公里的城市。

假设两座城市间有一辆以每小时90 公里的速度行驶的列车,两车同时出发。

求两辆车首次相遇的时间。

A) 0.5 小时\B) 1 小时\C) 1.5 小时\D) 2 小时答案:A二、填空题6. 已知函数 $f(x) = \sin(x)$,求函数 $g(x) = f^{\prime}(x)$。

答案:$g(x) = \cos(x)$7. 若直线 $3x + ky = 2$ 与直线 $2x - y = 3$ 相垂直,则 $k$ 的值为\_\_\_。

答案:$k = 6$8. 设抛物线 $y = ax^2 - 3x + 2$ 的顶点为 $(2,1)$,则 $a$ 的值为\_\_\_。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模模拟试题

数学建模模拟试题

数学建模模拟试题一、问题描述假设你是一家餐厅的经理,你的餐厅每天都会接待大量的顾客,他们点菜、用餐的时间长短不一。

你想要优化餐厅的桌位安排,使得尽可能多的顾客得到满意的服务。

问题1:通过合理的桌位安排,如何最大化服务的顾客数量?问题2:如果顾客点餐的平均时间和用餐的平均时间不同,如何调整桌位安排,以满足更多顾客的需求?问题3:如果餐厅的座位数有限,如何在满足顾客需求的前提下最大化利润?二、模型建立为了解决上述问题,我们可以建立以下数学模型:模型1:顾客到达与点菜模型在任意给定时间段内,顾客到达的时间间隔服从某个已知的分布,如泊松分布。

假设顾客到达的间隔时间服从参数为λ的指数分布,即泊松分布的特例。

同时,顾客到达后点菜的时间也服从某个已知的分布,如均匀分布。

我们可以通过模型1来模拟顾客的到达和点菜过程。

模型2:桌位分配模型为了最大化服务的顾客数量,我们需要合理分配桌位。

在每个时刻,我们可以计算出当前空闲桌位的数量,并根据顾客到达和点菜的情况,决定是否安排顾客入座。

具体来说,当有顾客到达时,我们首先检查是否有空闲桌位,如果有,则安排该顾客入座;如果没有空闲桌位,则查看是否有早于这个顾客到达时间的顾客离开,如果有,则安排新顾客入座,同时有早于该顾客到达时间的顾客离开;如果没有,则拒绝新顾客入座。

模型3:利润最大化模型如果餐厅的座位数有限,我们需要在满足顾客需求的前提下最大化利润。

为了实现这一目标,我们可以通过制定合理的定价策略和座位调度策略。

具体来说,我们可以分析不同座位数下顾客的需求和付费能力,然后根据市场条件和餐厅的运营成本制定最佳的定价策略。

同时,我们可以通过合理的座位调度策略,如优先满足高付费能力的顾客等,来提高利润。

三、模型求解通过使用模型1、模型2和模型3,我们可以建立一个数学建模模拟系统,通过调整模型中的参数和假设,来获得最佳的桌位安排和利润最大化策略。

具体求解的步骤如下:1. 收集数据:收集顾客到达和点菜时间的统计数据,以及餐厅的座位数、市场条件和运营成本等数据。

(完整版)数学建模模拟试题及答案

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案一、填空题(每题 5 分,共 20 分)1.一个连通图能够一笔画出的充分必要条件是.2. 设银行的年利率为 0.2,则五年后的一百万元相当于现在的万元.3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n; (2)气温T 超过10o C;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .4. 如图一是一个邮路,邮递员从邮局 A 出发走遍所有 A长方形街路后再返回邮局 .若每个小长方形街路的边长横向均为 1km,纵向均为 2km,则他至少要走 km .二、分析判断题(每题 10 分,共 20 分)1. 有一大堆油腻的盘子和一盆热的洗涤剂水。

为尽量图一多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。

2. 某种疾病每年新发生 1000 例,患者中有一半当年可治愈 .若 2000 年底时有1200 个病人,到 2005 年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向 2000 人,但不会达到 2000 人,试判断这个说法的正确性 .三、计算题(每题 20 分,共 40 分)1. 某工厂计划用两种原材料A, B 生产甲、乙两种产品,两种原材料的最高供应量依次为 22 和 20 个单位;每单位产品甲需用两种原材料依次为 1 、1 个单位,产值为 3 (百元);乙的需要量依次为 3、1 个单位,产值为 9 (百元);又根据市场预测,产品乙的市场需求量最多为 6 个单位,而甲、乙两种产品的需求比不超过 5: 2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由 .(2) 原材料的利用情况 .2. 两个水厂A1 , A2将自来水供应三个小区B1 , B2 , B3 , 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表 .试安排供水方案,使总供水费最小?四、 综合应用题(本题 20 分)某水库建有 10 个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入 水库.为了防洪,须调节泄洪速度 .经测算,若打开一个泄洪闸, 30 个小时水位降至安全线, 若打开两个泄洪闸, 10 个小时水位降落至安全线 .现在,抗洪指挥部要求在 3 个小时内将水 位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决 .注:本题要求按照五步建模法给出全过程 .小区 单价/元水厂A1A供应量 / t170B34B11 07 1B26数学建模 06 春试题模拟试题参考解答一、填空题(每题 5 分,共 20 分)1. 奇数顶点个数是 0 或 2;2. 约 40.1876 ;3. N = Kn(T10) / p, (T > 10 0 C), K 是比例常数; 4. 42.二、分析判断题(每题 10 分,共 20 分)1. 解: 问题与盘子、水和温度等因素直接相关,故有相关因素:盘子的油腻程度,盘子的温度,盘子的尺寸大小;洗涤剂水的温度、浓度; 刷洗地点 的温度等.注:列出的因素不足四个,每缺一个扣 2.5 分。

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案一、填空题(每题5分,共20分) 1. 若,,x z z y ∝∝则y 与x 的函数关系是.2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.二、分析判断题(每小题15分,满分30分)1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)m l /m g (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为t t kC t C t t C ∆−=−∆+)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.二、分析判断题(每小题15分,满分30分)1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C −=其通解是,e)0()(ktC t C −=而)0(C 就是所求量.由题设可知,40)5(,56)3(==C C 故有56e )0(3=−k C 和 ,40e )0(5=−k C由此解得.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x,303221≤+x x ,805821≤+x x目标函数满足 ,680580max 21x x z += 合在一起便是所求线性规划模型:,680580max 21x x z +=⎪⎪⎩⎪⎪⎨⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:最优解为,)740,745(T*=X 目标值为753300max =z (万元).(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:其次对方案进行最优性检验:λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,故上述方案已是最优方案,即总运费最低的调运方案为:21503310223021160231701,,,,B A B A B A B A B A ⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).。

2020年数学建模国赛题目

2020年数学建模国赛题目

2020年数学建模国赛题目
以下是2020年数学建模国赛题目:
题目一:某县遭受水灾,县领导需要带领有关部门负责人到全县各乡(镇)、村巡视,以考察灾情、组织自救。

假设巡视人员在各乡(镇)停留时间T=2小时,在各村停留时间t=1小时,汽车行驶速度V=35公里/小时。

要求在24小时内完成巡视。

请回答以下问题:
1. 要在24小时内完成巡视,至少应分几组?给出这种分组下你认为最佳的巡视路线。

2. 假定巡视人员足够多,完成巡视的最短时间是多少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。

3. 改变对最佳巡视路线的影响。

题目二:一家电子商务公司需要对交易数据进行深入分析,以便预测未来的销售额和用户行为,从而制定相应的经营策略。

请构建一个数学模型,以分析历史交易数据并预测未来的销售额和用户行为。

题目三:某燃煤发电厂需要进行烟气脱硫处理,以减少二氧化硫的排放。

请建立一个数学模型,以找出最佳的脱硫工艺和操作参数。

题目四:网络流量优化问题:请通过调整网络拓扑结构和设置合适的流量控制策略,优化网络中的流量分布,并提高网络的传输效率。

题目五:地铁运行优化问题:通过对城市地铁线路的时空数据进行分析,优化地铁列车的发车间隔和运行速度,以提高乘客满意度和运行效率。

以上题目仅供参考,具体赛题及要求以数学建模国赛官网为准。

数学建模模拟试题及参考答案

数学建模模拟试题及参考答案

《数学建模》模拟试题一、(02')人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。

二、(02')雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。

三、(03')要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。

将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论;(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量(2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030,0==θθ时的总淋雨量。

(3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为∂,如图2建立总淋雨量与速度v 及参数∂,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。

四、(03')建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

参考答案一、人、猫、鸡、米分别记为4,3,2,1=i ,当i 在此岸时记1=i x ,否则记0=i x ,则此岸的状态可用()4321,,,x x x x s =表示。

数学建模模拟试题

数学建模模拟试题

数学建模模拟试题模拟题1模拟题2模拟题3模拟题4模拟题5模拟题6模拟题1一、简答题(20分*2)1.试举出两个实例说明建立数学模型的必要性。

包括实际问题的背景。

建模的目的,需要大体上什么样的模型以及怎样应用这种模型等。

2.从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个),建立何种数学模型:“一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决”。

二、综合应用题(60分)试建立方桌问题在四条腿脚呈长方形情形时的数学模型,以说明方桌能否在地面上放稳的问题。

(提示:要求按照五步建模法进行建模工作,本题至少应给出前四个步骤。

)模拟题21.管道包扎问题管道需要包扎,以便对管道起保护作用,包扎时用很长的带子缠绕在管道外部,为了节省材料,如何进行包扎才能使带子完全包住管道且带子不发生重叠.2.传染病模型假设为易受传染者注射预防针,注射的覆盖率同这类人数与传染者人数的平方之积成正比:00002|,|i n s s i i i l i s k dtdii s i s k dt dst t -===-=--===λ a )求上述方程的轨线;b )当疾病被消灭后还有易受传染者吗?3. 湖水污染问题若流入湖水的污染物浓度为)(t P I ,试构造模型,求t 时刻湖水中污染物的浓度。

4. 三级运载火箭问题a) 求三级火箭各级的最优质量分配;b) 证明n 级火箭的最优质量比是n 的单调下降函数,且当∞→n 时趋于uv e)1(λ-。

5. 生产销售存贮模型建立不允许缺货的生产销售存贮模型。

设生产速率为常数k ,销售速率为常数r ,k r <。

在每个生产周期T 内,开始一段时间(00T t ≤≤)边生产边销售,后一段时间(T t T ≤≤0)只销售不生产,存贮量)(t q 的变化如图所示。

设每次生产开工费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<的情况。

数学建模题目及答案数学建模100题

数学建模题目及答案数学建模100题

09 级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地 ,放不稳,然后稍微挪动几 次,就可以使四只脚同时着地 ,放稳了.试作合理的假设并建立数学模型说明这个现象。

(15分) 解:对于此题,如果不用任何假设很难证明 ,结果很可能是否定的。

因此对这个问题我们假设 : (1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言 ,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角 坐标系如图所示,方桌的四条腿分别在 A 、 B 、C 、D 处, A 、B,C 、D 的初始位置在与 x 轴平行, 再假设有一条在 x 轴上的线a b ,则a b 也与 A 、B,C 、D 平行。

当方桌绕中心 0 旋转时,对角线 ab 与 x 轴的夹角记为9 .容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定 的。

为消除这一不确定性,令 f(9) 为 A 、B 离地距离之和,g(9) 为 C 、D 离地距离之和, 它们的值由9 唯一确定。

由假设(1), f(9) , g(9) 均为9 的连续函数.又由假设(3) ,三条腿总能同时着地, 故 f(9) g(9)=0 必成立( A 9 )。

不妨设 f(0) = 0, g(0) > 0g (若 g(0)也为 0,则初始时刻已四条腿着地 ,不必再旋转) ,于 是问题归结为:已知 f(9) ,g(9)均为9 的连续函数, f(0) = 0, g(0) > 0且对任意9 有 f(90)g(90 ) = 0 ,求证存在某一90 ,使 f(90 )g(90 ) = 0。

证明:当θ=π时, AB 与 CD 互换位置 ,故 f(u) > 0,g(u) = 0.作 h(9) = f(9) g(9) ,显然, h(9)也是9 的连续函数, h(0) = f(0)g(0) < 0 而 h(u) = f(u) g(u) > 0 ,由连续函数的取零值定理,存在90 , 0 < 90 < u ,使得h(90 ) = 0 ,即 f(90 ) = g(90 ) 。

2023全国大学生数学建模竞赛模拟题

2023全国大学生数学建模竞赛模拟题

2023全国大学生数学建模竞赛模拟题第一部分:问题描述在2023年全国大学生数学建模竞赛中,我们将考虑以下问题:问题一:某大学计划对校园内的停车管理进行优化。

假设校园内有N个停车位(N为正整数),每个停车位只能停放一辆车。

现在需要设计一个停车系统,使得所有车辆能够尽可能高效地停放在停车位上。

请你们给出一个数学模型,以及相应的优化策略,以满足停车位利用效率最大化的要求。

问题二:某电商公司为了提高货物的配送效率,需要选址一些配送中心,以覆盖尽可能多的用户。

假设已知用户的分布情况和需求量,在这些信息的基础上,请你们设计一个数学模型,并给出选址策略,以最大化用户的满意度,同时尽量减少配送的时间和成本。

第二部分:问题分析与数学模型建立问题一:停车管理优化我们首先定义问题的目标函数,即停车位利用效率的优化目标。

假设停车场内每个停车位的编号为i(i=1,2,...,N),对于每个停车位,我们引入二进制变量x_i,表示该停车位是否被使用,其中x_i=1表示被占用,x_i=0表示空闲。

接着,我们需要确定约束条件。

显然,每个停车位只能被一辆车使用,即∑x_i ≤ 1 (i=1,2,...,N)其中,∑表示求和。

为了使停车位利用效率最大化,我们可以引入一个系数p_i,表示第i个停车位的利用效率,取值范围为[0,1]。

利用效率越高,则p_i越接近1,反之越接近0。

我们可以根据停车位距离出入口的远近、停车位所在区域的拥挤程度等因素来确定p_i的取值。

然后,我们可以构建目标函数:Maximize ∑p_i*x_i (i=1,2,...,N)最后,我们将目标函数和约束条件整合,形成一个数学模型。

问题二:配送中心选址对于问题二,我们可以将用户的需求量作为权重,即需求量越高的用户对配送中心的选择影响越大。

假设有M个可能的配送中心位置(M为正整数),每个位置编号为j(j=1,2,...,M),我们引入二进制变量y_j,表示第j个位置是否选址为配送中心,其中y_j=1表示选址,y_j=0表示不选址。

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案练习1 matlab练习一、矩阵及数组操作1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记y1=2x+5;y2=x^2-3x+1,并且用legend标注。

6.画出下列函数的曲面及等高线z=sinxcosyexp(-sqrt(x^2+y^2)). 7.在同一个图形中绘制一行三列的子图,分别画出向量x=[1 5 8 10 12 5 3]的三维饼图、柱状图、条形图。

三、程序设计8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。

11.试找出100以内的所有素数。

12.当时,四、数据处理与拟合初步1随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。

14.通过测量得到一组数据t 1 2 3 4 5 6 7 8 9 10 y 842 362 754 368 169 038 034 016 012 005 分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。

15.计算下列定积分16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

数学建模试题(带答案)

数学建模试题(带答案)

数学建模试题(带答案)第一章4.在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。

试构造模型并求解。

答:相邻两椅脚与地面距离之和分别定义为)()(a g a f 和。

f 和g 都是连续函数。

椅子在任何位置至少有三只脚着地,所以对于任意的a ,)()(a g a f 和中至少有一个不为零。

不妨设0)0(,0)0(g >=f 。

当椅子旋转90°后,对角线互换,0π/2)(,0)π/2(>=g f 。

这样,改变椅子的位置使四只脚同时着地。

就归结为证明如下的数学命题:已知a a g a f 是和)()(的连续函数,对任意0)π/2()0(,0)()(,===⋅f g a g a f a 且,0)π/2(,0)0(>>g f 。

证明存在0a ,使0)()(00==a g a f证:令0)π/2(0)0(),()()(<>-=h h a g a f a h 和则, 由g f 和的连续性知h 也是连续函数。

根据连续函数的基本性质,必存在0a (0<0a <π/2)使0)(0=a h ,即0)()(00==a g a f 因为0)()(00=•a g a f ,所以0)()(00==a g a f8第二章7.10.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便有效的排列方法,使加工出尽可能多的圆盘。

第三章5.根据最优定价模型 考虑成本随着销售量的增加而减少,则设kx q x q -=0)( (1)k 是产量增加一个单位时成本的降低 ,销售量x 与价格p 呈线性关系0,,>-=b a bp a x (2) 收入等于销售量乘以价格p :px x f =)( (3) 利润)()()(x q x f x r -= (4) 将(1)(2)(3)代入(4)求出ka q kbp pa bp x r --++-=02)(当k q b a ,,,0给定后容易求出使利润达到最大的定价*p 为bakb ka q p 2220*+--=6.根据最优定价模型 px x f =)( x 是销售量 p 是价格,成本q 随着时间增长,ββ,0t q q +=为增长率,0q 为边际成本(单位成本)。

数学建模试题样卷及解答1

数学建模试题样卷及解答1

东华大学数学建模试题(样卷及解答要点) 班级 姓名 学号 得分 一、(15分)篮球队8名队员身高及擅长位置见下表队员1 2 3 4 5 6 7 8 身高1.92 1.90 1.88 1.86 1.85 1.83 1.80 1.78 位置 中锋 中锋 前锋 前锋 前锋 后卫 后卫 后卫 出场阵容应满足以下条件(1)只能有一名中锋上场;(2)至少有一名后卫;(3)如1号和4号均上场,则6号不能出场;(4)2号和8号至少有一名不上场。

问应当选择哪5名队员上场,才能使出场队员平均身高最高。

试建立线性整数规划模型,不必求解。

解:设 x i =1(队员i 上场)或0(队员i 不上场). 用a i 表示队员i 身高。

(5分) 0-1规划模型81126781462881max 112101i ii i ia x x x x x x x x x x x x ==+≤⎧⎪++≥⎪⎪++≤⎪+≤⎨⎪⎪⎪⎪=⎩∑∑或(10分)二、(15分)考虑甲肝在一个封闭的人群中流行传播。

人群分为三类:易感染类(健康者)记作A; 感染者(带菌的病人)记作B ;移出类(病愈免疫、与易感染类隔离、病死)记作C 。

流行病是由易感染类和感染者的相互接触而传播。

试作适当假设,建立甲肝流行的数学模型。

解:假设(1)每个B 类人每天有效接触人数λ, 当B 类人有效接触A 类人, 则使之成为B 类人; (2) B 类人日移出率(含病愈, 隔离, 死亡)为μ; (3)总人数N=A+B+C. (5分)那么在[t, t+dt]内,A(t+dt)-A(t)= - λAB/NdtB(t+dt)-B(t)= (λAB/N-μB)dt (5分)微分方程模型dA AB dt NdB AB B dt NA B C Nλλμ=−=−++= (5分) 注: 将A, B,C 理解为比例, 从而设A+B+C=1也可以.三、(15分)考虑有人类捕猎行为的被食者x — 捕食者y 系统模型fy exy dy dtdy cx bxy ax dt dx −+−=−−= (1)说出参数a, b, c, d, e, f (均为非负数)的含义;(2)由模型说明:人类适当地捕猎行为将有利于被食者,但过度捕猎会导致动物灭绝;(3)为了可持续发展,求人类捕猎参数允许范围。

小学数学建模试题及答案

小学数学建模试题及答案

小学数学建模试题及答案
一、选择题
1. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是多少平方厘米?
A. 50
B. 100
C. 150
D. 200
答案:B
2. 一个班级有40名学生,其中男生人数是女生人数的两倍,那么这个班级有多少名男生?
A. 16
B. 20
C. 24
D. 28
答案:C
二、填空题
3. 如果一个数乘以3后再加上5等于22,那么这个数是______。

答案:5
4. 一个数的一半加上3等于9,那么这个数是______。

答案:12
三、解答题
5. 一个水池,每天注入水量是前一天的两倍,第一天注入了1升水。

请问第五天注入了多少升水?
答案:第五天注入了32升水。

6. 小明有若干个苹果,他给小华一半,然后又给小华两个,最后自己剩下3个。

问小明最初有多少个苹果?
答案:小明最初有10个苹果。

四、应用题
7. 一个农场有鸡和兔子共35只,脚的总数是94只。

问农场上有多少只鸡和多少只兔子?
答案:农场上有23只鸡和12只兔子。

8. 一个水果店早上卖出了苹果和橘子共100个,其中苹果的数量是橘子的两倍。

问水果店早上卖出了多少个苹果和橘子?
答案:水果店早上卖出了66个苹果和34个橘子。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目
题目一:城市交通优化方案
某城市的交通状况日益拥堵,为了解决交通问题,需要制定一个交通优化方案。

假设该城市的道路网络呈现网状结构,拥有多个交叉口和道路,每个交叉口都有多个入口和出口道路。

现在需要你们设计一个算法,以找到最优的交通优化方案,使得城市的车辆数最小化,同时满足交通流量平衡和道路容量约束。

题目二:无人机配送路径规划
某公司使用无人机进行货物配送,无人机需要从指定的起点出发,依次经过多个目标点进行货物的投放,最后返回起点。

每个目标点有不同的货物量和不同的时间窗限制。

现在需要你们设计一个路径规划算法,以最小化无人机在配送过程中的总飞行距离,同时满足货物量和时间窗的要求。

题目三:自然灾害预测与应急响应
某地区常常受到洪水的威胁,为了及时应对洪水灾害,需要建立一个洪水预测和应急响应系统。

现有该地区多个监测站点,能够实时测量水位、降雨量等数据,并预测洪水的发生时间和范围。

现在需要你们设计一个预测模型,以准确预测洪水的发生时间和范围,并制定相应的应急响应措施,以最大程度地减少洪灾对人民生命和财产的威胁。

题目四:物流中心选址与配送路径规划
某公司计划在某区域新建一个物流中心,以提高货物配送的效率。

现在需要你们选取一个最佳的物流中心位置,并设计一个配送路径规划算法,以最小化货物配送的总距离和成本。

同时,
由于该区域存在不同的道路类型和限制条件,需要考虑不同道路类型的通行能力和限制,以确保货物配送的顺利进行。

数学建模模拟试题

数学建模模拟试题

一、根除埃博拉病毒世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。

建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。

除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。

二、饮酒驾车据报载,2003年全国道路交通事故死亡人数为10.4372万,其中因饮酒驾车造成的占有相当的比例。

针对这种严重的道路交通情况,国家质量监督检验检疫局2004年5月31号发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫升),血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车(原标准是大于或等于100毫克/百毫升)。

大李在中午12点喝了一瓶啤酒,下午6点检查时符合新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为了保险起见他呆到凌晨2点才驾车回家,又一次遭遇检查时却被定为饮酒驾车,这让他既懊恼又困惑,为什么喝同样多的酒,两次检查结果会不一样呢?请你参考下面给出的数据(或自己收集资料)建立饮酒后血液中酒精含量的数学模型,并讨论以下问题:1.对大李碰到的情况做出解释;2.在喝了3瓶啤酒或者半斤低度白酒后多长时间内驾车就会违反上述标准,在以下情况下回答:1)酒是在很短时间内喝的;2)酒是在较长一段时间(比如2小时)内喝的。

3.怎样估计血液中的酒精含量在什么时间最高。

4.根据你的模型论证:如果天天喝酒,是否还能开车?5.根据你做的模型并结合新的国家标准写一篇短文,给想喝一点酒的司机如何驾车提出忠告。

数学建模例题题

数学建模例题题

数学建模例题题数学建模试题⼀、传染病模型医学科学的发展已经能够有效地预防和控制许多传染病,但是仍然有⼀些传染病暴发或流⾏,危害⼈们的健康和⽣命。

社会、经济、⽂化、风俗习惯等因素都会影响传染病的传播,⽽最直接的因素是:传染者的数量及其在⼈群中的分布、被传染者的数量、传播形式、传播能⼒、免疫能⼒等。

⼀般把传染病流⾏范围内的⼈群分成三类:S类,易感者(Susceptible),指未得病者,但缺乏免疫能⼒,与感染者接触后容易受到感染;I类,感病者(Infective),指染上传染病的⼈,它可以传播给S类成员;R类,移出者(Removal),指被隔离或因病愈⽽具有免疫⼒的⼈。

要求:请建⽴传染病模型,并分析被传染的⼈数与哪些因素有关?如何预报传染病⾼潮的到来?为什么同⼀地区⼀种传染病每次流⾏时,被传染的⼈数⼤致不变?⼆、线性规划模型—销售计划问题某商店拟制定某种商品7—12⽉的进货、售货计划,已知商店仓库最⼤容量为1500件,6⽉底已存货300件,年底的库存以不少于300件为宜,以后每⽉初进货⼀次,假设各⽉份该商品买进、售出单价如下表。

要求:若每件每⽉的库存费⽤为0.5元,问各⽉进货、售货各为多少件,才能使净收益最多?建⽴数学模型,并⽤软件求解。

【注】线性规划在MATLAB的库函数为:linprog。

语法为:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval,exitflag,output,lambda] = linprog(...)例如:线性规划⽬标函数的系数:f = [-5; -4; -6]约束⽅程的系数及右端项:A = [1 -1 13 2 43 2 0];b = [20; 42; 30];lb = zeros(3,1);调⽤线性规划程序linprog求解,得:[x,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb);x= 0.000015.00003.0000三、⼀阶常微分⽅程模型—⼈⼝模型与预测下表列出了中国1982-1998年的⼈⼝统计数据,取1982年为起始年(0=t ),1016540=N 万⼈,200000=m N 万⼈。

数学建模模拟试题(一)

数学建模模拟试题(一)

数学建模模拟试题(一)一、填空题(每题5分,共20分)1. 1. 若若,,x z z y µµ则y 与x 的函数关系是的函数关系是 . .2. 2. 在超级市场的收银台有两条队伍可选择,在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是的条件是 . .3. 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 . .4. . 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型的方法建立了模型的方法建立了模型. .二、分析判断题(每小题15分,满分30分) 1.1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100)ml /mg (.(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t D +内酒精浓度的改变量为内酒精浓度的改变量为t t kC t C t t C D -=-D +)()()(其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的为比例常数,负号则表示了浓度随时间的推移是递减的..)三、计算题(每题25分,满分50分)1. 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;元;生产一个单位产品乙需要的三生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为9090、、30和80单位单位..试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. . (2) 原材料的利用情况原材料的利用情况. .2. 2. 三个砖厂三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖供应红砖..各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表求量以及各砖厂调运红砖到各工地的单价见表..试安排调运方案,使总费用最小?试安排调运方案,使总费用最小?工地工地单价单价//百元百元 砖厂砖厂1B2B3B供应量供应量//万块万块1A 10 6 4 170 2A 7 5 6 200 3A8 3 9 150 需求量需求量//万块万块160180180数学建模模拟试题(一)参考答案一、填空题(每题5分,共20分)1. k kx y ,=是比例常数;是比例常数;2. )()(2211t n p m t n p m +<+; 3. 3. 增长率是常数还是人口的递减函数;增长率是常数还是人口的递减函数;增长率是常数还是人口的递减函数;4. 4. 类比类比类比. .二、分析判断题(每小题15分,满分30分)1. 1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个:问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个:问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等;)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等;)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;(每个因素3分)分)2. 2. 设设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为时刻血液中酒精的浓度,则浓度递减率的模型应为,/kC C -=其通解是,e)0()(ktC t C -=而)0(C 就是所求量就是所求量. .由题设可知,40)5(,56)3(==C C 故有故有 56e )0(3=-kC 和 ,40e)0(5=-k C由此解得由此解得.94e 56)0(17.040/56e32»=Þ»Þ=k kC k可见在事故发生时,司机血液中酒精的浓度已经超出了规定可见在事故发生时,司机血液中酒精的浓度已经超出了规定. .三、计算题(每题25分,满分50分) 1. 1. 设设21,x x 表示甲、乙两种产品的产量,则有表示甲、乙两种产品的产量,则有原材料限制条件:原材料限制条件: ,902321£+x x,303221£+x x ,805821£+x x 目标函数满足目标函数满足 ,680580max 21x x z+=合在一起便是所求线性规划模型:合在一起便是所求线性规划模型:,680580max 21x x z+=ïïîïïíì=³£+£+£+.2,1,0,8058,3032,9023212121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地,从而最优方案没有可选择余地..计算知:计算知:最优解为最优解为,)740,745(T *=X目标值为目标值为 753300max =z (万元)(万元). .(2)利用图解法求解中只用到了后两个约束条件,利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,故羊毛有剩余量,将解代入可检验而知羊毛有7259单位的剩余量单位的剩余量. .2. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:首先确定初始方案:工地工地单价单价//百元百元 砖厂砖厂1B2B3B供应量供应量//万块万块1A 10´6´4 170 2A7 5 6200 3A8´ 39´ 150 需求量需求量//万块万块160180180其次对方案进行最优性检验:其次对方案进行最优性检验:30 170 150 160 10 l 11 = 10-4+6-7=5 > 0+6-7=5 > 0,, l 12 = 6-4+6-5=3 > 0+6-5=3 > 0,, l 31 = 8-7+5-3=3 > 0-7+5-3=3 > 0-7+5-3=3 > 0,, l 33 = 9-3+5-6=5 > 0+5-6=5 > 0,, 故上述方案已是最优方案,即总运费最低的调运方案为:故上述方案已是最优方案,即总运费最低的调运方案为:215015033101022303021160160231701701,,,,B A B A B A B A B A ¾®¾¾®¾¾®¾¾®¾¾®¾总费用为总费用为 2460150310630516071704=´+´+´+´+´(百元)(百元). .数学建模模拟试题(二)一、填空题(每题5分,共20分)1. 1. 设设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为简单表示为 . .2. 2. 假设假设,,21x C Y Y C S µµ则S 与x 的数学关系式为的数学关系式为 ,,其中21,C C 是常数是常数. .3. 3. 在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是为简化模型,采用的递减函数是 . .4. 4. 一次晚会花掉一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%40%,饮料起码要花,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是列出花在食品和饮料上的费用的数学模型是 . .二、分析判断题(每题15分,满分30分)1. 1. 作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?. .2. 2. 考虑在一片面积为定数的草地上进行牛的养殖问题考虑在一片面积为定数的草地上进行牛的养殖问题考虑在一片面积为定数的草地上进行牛的养殖问题..为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个.三、计算题(每题25分,满分50分)1. 1. 设某小型工厂使用设某小型工厂使用A ,B 两种原料生产甲、乙两种产品,按工艺,生产每件产品甲需要原料A ,B 依次为6、5个单位,生产每件产品乙需要原料A ,B 依次为2、10个单位,两种原料的供给量依次为18和40个单位,两种产品创造的产值分别为1万元和2万元,试建立其生产规划模型,并回答以下问题:建立其生产规划模型,并回答以下问题:(1)产值最大的生产方案是什么?最大产值是多少?方案是否有可选择余地?若有请至少再给出一个至少再给出一个. .(2)依你所给最优方案,说明原料的利用情况)依你所给最优方案,说明原料的利用情况. .2. 2. 如图一是某村镇如图一是某村镇9个自然屯(用91,,v v 表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:km ).若每km 的架设费用是定数20元/m ,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用小架设费用. .数学建模模拟试题(二)参考答案一、填空题(每题5分,共20分) 1. 0,>=k kx S ;2. kxx C C k k S ==2121,其中2121C C k k k =;3. )1()(mx x r x r -=;4. 30,4.0)/(,100³³+£+d d f f f d .二、分析判断题(每题15分,满分30分)1. 1. 令令x 表示产量,y 表示需求量,则有)(d d x y k t x-=以及,bx a y +=其中k b a ,,均为常数为常数..将后一式代入前一式即可得到将后一式代入前一式即可得到d cx tx x b a k t x +=Þ-+=d d ))1((d d2. 2. 饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、v 1 v 2 v 3 v 4 v 6 v 5 v 7 v 9 v 8 3462 54 11 3 64 2 875图一v 1 v 2 v 3 v 4 v 6 v 5 v 8 v 7 v 4 32 43 42 5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模模拟试题(一)
一、填空题(每题5分,共20分)
1. 若,,
x z z y ∝∝则y 与x 的函数关系是 .
2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .
3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 .
4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.
二、分析判断题(每小题15分,满分30分)
1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.
2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是
),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司
机是否违反了酒精含量的规定(不超过80/100)ml /mg (.
(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为
t t kC t C t t C ∆-=-∆+)()()(
其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.)
三、计算题(每题25分,满分50分)
1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:
(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.
2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?
数学建模模拟试题(一)参考答案
一、填空题(每题5分,共20分)
1. k kx y ,=是比例常数;
2. )()(2211t n p m t n p m +<+;
3. 增长率是常数还是人口的递减函数;
4. 类比.
二、分析判断题(每小题15分,满分30分)
1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件;
(每个因素3分) 2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为
,/kC C -=
其通解是,e
)0()(kt
C t C -=而)0(C 就是所求量.
由题设可知,40)5(,56)3(==C C 故有 56e )0(3=-k
C 和 ,40e )0(5=-k C
由此解得
.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k
可见在事故发生时,司机血液中酒精的浓度已经超出了规定.
三、计算题(每题25分,满分50分)
1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x ,303221≤+x x ,805821≤+x x 目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:
,680580m ax 21x x z +=
⎪⎪⎩
⎪⎪⎨
⎧=≥≤+≤+≤+.2,1,0,8058,3032,902321
2
121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:
最优解为 ,)740,745(
T
*
=X 目标值为 7
53300
max =z (万元).
(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7
2
59
单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解,
其次对方案进行最优性检验:
λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0, λ33 = 9-3+5-6=5 > 0,
故上述方案已是最优方案,即总运费最低的调运方案为:
2150
3310223021160231701,,,,B A B A B A B A B A −→−−→−−→−
−→−−→− 总费用为 2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).
数学建模模拟试题(二)
一、填空题(每题5分,共20分)
1. 设S 表示挣的钱数,x 表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为 .
2. 假设,,21x C Y Y C S ∝∝则S 与x 的数学关系式为 ,其中21,C C 是常数.
3. 在建立人口增长问题的罗捷斯蒂克模型时,假设人口增长率r 是人口数量)(t x 的递减函数,若最大人口数量记作,m x 为简化模型,采用的递减函数是 .
4. 一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用f 和d 列出花在食品和饮料上的费用的数学模型是 .
二、分析判断题(每题15分,满分30分)
1. 作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那么相应的微分方程模型是什么?.
2. 考虑在一片面积为定数的草地上进行牛的养殖问题.为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个.
三、计算题(每题25分,满分50分)
1. 设某小型工厂使用A ,B 两种原料生产甲、乙两种产品,按工艺,生产每件产品甲需要原料A ,B 依次为6、5个单位,生产每件产品乙需要原料A ,B 依次为2、10个单位,两种原料的供给量依次为18和40个单位,两种产品创造的产值分别为1万元和2万元,试建立其生产规划模型,并回答以下问题:
(1)产值最大的生产方案是什么?最大产值是多少?方案是否有可选择余地?若有请至少再给出一个.
(2)依你所给最优方案,说明原料的利用情况.
2. 如图一是某村镇9个自然屯(用91,,v v 表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:km ).若每km 的架设费用是定数20元/m ,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用.
数学建模模拟试题(二)参考答案
一、填空题(每题5分,共20分) 1. 0,>=k kx S ;
2. kx x C C k k S ==2121,其中2121C C k k k =;
3. )1()(m
x x
r x r -
=; 4. 30,4.0)/(,100≥≥+≤+d d f f f d .
二、分析判断题(每题15分,满分30分)
1. 令x 表示产量,y 表示需求量,则有)(d d x y k t
x
-=以及,bx a y +=其中k b a ,,均为常数.将后一式代入前一式即可得到
d cx t
x x b a k t x +=⇒-+=d d ))1((d d
2. 饲料来源、公羊与母羊的比例、饲料冬储、繁殖问题、羊的养殖年限、出售时机、
v 1 v 2 v 3 v 4 v 6 v 5 v 7
v 9 v 8 3 4 6 2 5 4 11 3 6 4 2 8 7 5
图一
羊制品及其深加工等.
三、计算题(每题25分,满分50分)
1. 设生产甲、乙两种产品的数量依次为,,21x x z 表示总产值,则有模型如下:
212m ax x x z +=
⎪⎩⎪
⎨⎧=≥≤+≤+.2,1,0401051826..2121j x x x x x t s j
使用图解法易得其产值最大的生产方案将有无穷多组(这是因为第二个约束条件所在直线的斜率与目标函数直线的斜率相等),其中的两个方案可以选为该直线段上的两个端点:
,)4,0(,)3,2(T 2
T
1
==X
X
最大产值均为 8=z (万元)
(2)按照上面的第一个解,原材料全部充分利用;而按照第二个解,原材料A 将有10个单位的剩余量,原材料B 将被充分利用(但产品甲不生产).
2. 由题意可知,只需求出该网络图的最小树即可.利用破圈法容易得树形图(图二):
故得架设路线为:
总架线长度为27km ,故总架设费用为 5420100027=⨯⨯(万元)
图二 v 1 v 2 v 3 v 4 v 6 v 5 v 8 v 7 v 9 4 3
2 4
3 4
2 5。

相关文档
最新文档