限时小卷:七年级数学期中测试重点题型(一)
2020-2021学年七年级数学上学期期中测试卷(沪教版)(解析版)
七年级第一学期数学期中考试(一)一、填空题(每题2分,共30分)1.“比 a 的123多 4”用代数式表示为_____ 【答案】543a + 【解析】比 a 的123多 4”用代数式表示为543a + 故填:543a +. 2.某商品原价为a 元,如果按原价的八折销售,那么售价是_____元.(用含字母a 的代数式表示).【答案】0.8a【解析】实际售价=原价×10折扣数, 某商品原价为a 元,按原价的八折销售则售价为0.8a 元,故答案为0.8a .3.一块地有a 公顷,平均每公顷产粮食m 千克;另一块地有b 公顷,平均每公顷产粮食n 千克,则这两块地平均每公顷的粮食产量为_____千克. 【答案】am bn a b ++ . 【解析】两块地的总产量:am +bn , 这两块地平均每公顷的粮食产量为:am bn a b ++, 故答案为am bn a b++. 4.如果单项式1278m n x y -与3335n x y +-的和仍是单项式,那么mn =_____. 【答案】12.【解析】∵单项式1278m n x y -与3335n x y +-的和仍是单项式, ∴m ﹣1=3,2n =n+3,解得m =4,n =3.∴mn =4×3=12.故答案为:125.化简:()()423a b a b ---=_________.【答案】2a-b .【解析】4(a-b )-(2a-3b )=4a-4b-2a+3b=2a-b .故答案为: 2a-b .6.若2,5,m n m n a a a +===则 _______________.【答案】10.【解析】2510m n m n a a a +=⋅=⨯=故答案是:10.7.计算:()()213x x +-=___________________.【答案】3522--x x【解析】()()213x x +-=2x 2+x-6x-3=2253x x --8.计算:(﹣a +2b ﹣c )2=_____.【答案】a 2﹣4ab +2ac +4b 2﹣4bc +c 2.【解析】(﹣a+2b ﹣c )2=[﹣a+(2b ﹣c )]2=(﹣a )2﹣2a (2b ﹣c )+(2b ﹣c )2=a 2﹣4ab+2ac+4b 2﹣4bc+c 2.故答案为:a 2﹣4ab+2ac+4b 2﹣4bc+c 2.9.计算:()()2211x x +--=__________.【答案】4x【解析】 ()()22221121214x x x x x x x +--=++-+-=故答案为:4x 10.把多项式43422352x x y y x y ----按照字母y 降幂排列__________.【答案】42234523y x y x y x ----【解析】把多项式43422352x x y y x y ----按照字母y 降幂排列是:42234523y x y x y x ---- 故答案为:42234523y x y x y x ----11.多项式2234a a -+是________次_____________项式.【答案】二 三【解析】试题解析:根据多项式次数及项数的定义可得:多项式2234a a -+是二次三项式. 12.因式分解:a 3﹣2a 2b+ab 2=_____.【答案】a (a ﹣b )2.【解析】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.13.因式分解:(1)22x -5xy 6y +=____________(2)()()2-242a a b b b a +-=__________________【答案】x y x y (-2)(-3);()22-2a b . 【解析】解:(1)22x -5xy 6y =x y x y +(-2)(-3)(2)()()2-242a a b b b a +-=()()2-242a a b b a b --=()()2-22a b a b -=()22-2a b14.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =____________ 【答案】5或-7【解析】解:()2x -1x 9a ++=()()22x -1x 3a ++±∴-(a+1)x=2×(±3)x 解得a=5或a=-715.已知:22x y 5,xy 11,+=+=则代数式3223x y-3x y xy +的值为________; 【答案】-70【解析】解:∵22x y 5,xy 11,+=+= ∴()222x y x y 225xy +=++=∴xy=73223x y-3x y xy +=()22xy x -3xy y +=()22xy x y -3xy + =7×(11-3×7) =-70二、单选题(每题3分,共15分)16.下列代数式2217,2,,,2,,78123x a a x y b x x m b +-+--中,单项式有( ) A .1个B .2个C .3个D .4个【答案】C【解析】所给式子中单项式有:22x y ,2-,b ,共3个.故选C .17.计算(﹣1.5)2018×(23)2019的结果是( ) A .﹣32 B .32 C .﹣23 D .23【答案】D【解析】解:(﹣1.5)2018×(23)2019 2018322233⎛⎫=⨯⨯ ⎪⎝⎭ 23= 故选:D18.下列从左边到右边的变形,是因式分解的是( )A .(3-x)(3+x)=9-x 2B .m 3-n 3=(m -n)(m 2+mn +n 2)C .(y +1)(y -3) =-(3-y)(y +1)D .4yz -2yz +z =2y(2z -yz) +z 【答案】B【解析】解:A 、是整式的乘法,故A 错误B 、把一个多项式转化成几个整式积,故B 正确C 、是乘法交换律,故C 错误D 、没把一个多项式转化成几个整式积,故D 错误故选:B19.下列各式中,能用完全平方公式进行因式分解的是( )A .24x -B .221x x --C .244x x -+D .241x x ++【答案】C【解析】解:A 、24x -,不能用完全平方公式进行因式分解;B 、221x x --,不能用完全平方公式进行因式分解;C 、()22442x x x -+=-,能用完全平方公式进行因式分解;D 、241x x ++,不能用完全平方公式进行因式分解;故选C .20.计算248-26的结果更接近( )A .248B .247C .242D .240 【答案】A【解析】 248−26=26(242−1)≈26×242=248,故选:A .三、解答题(21-28每题各6分,29小题7分)21.列式计算:如果()22x x 2-+减去某个多项式的差是122x -,求这个多项式. 【答案】252x x 62-+ 【解析】 ()⎛⎫-+--=-+-+=-+ ⎪⎝⎭2221152x x 2x 22x 2x 4x 22x x 6222 ∴这个多项式是252x x 62-+ 22.计算:()()()()()322323..a a a a a ---+--- 【答案】6a -【解析】解:原式=2366a a a a a --=662a a -=6a -23.因式分解(1)9(a +2b )2﹣4(a ﹣b )2;(2)a 5+5a 3﹣6a ;(3)x 4﹣4﹣x 2+4x ;(4)(a 2﹣3a ﹣3)(a 2﹣3a +1)﹣5.【答案】(1)原式=(5a +4b )(a +8b );(2)原式=a (a 2+6)(a +1)(a ﹣1);(3)原式=(x +2)(x ﹣1)(x 2﹣x +2);(4)原式=(a ﹣4)(a +1)(a ﹣2)(a ﹣1).【解析】(1)利用平方差公式分解即可;(2)先提取a ,然后利用十字相乘法分解即可;(3)后三项为一组,利用公式法先分解,得到x 4-(x-2)2,然后利用平方差公式分解得到(x 2+x-2)(x 2-x+2),进一步分解x 2+x-2,得到(x+2)(x-1)(x 2-x+2);(4)把a 2-3a 看成整体,整理得到(a 2-3a )2-2(a 2-3a )-8,然后利用十字相乘法分解得到(a 2-3a-4)(a 2-3a+2),进而利用十字相乘法分解得到(a-4)(a+1)(a-2)(a-1). (1)9(a+2b )2﹣4(a ﹣b )2=[3(a+2b )+2(a ﹣b )][3(a+2b )﹣2(a ﹣b )]=(5a+4b )(a+8b );(2)a 5+5a 3﹣6a=a (a 4+5a 2﹣6)=a (a 2+6)(a 2﹣1)=a (a 2+6)(a+1)(a ﹣1);(3)x 4﹣4﹣x 2+4x=x 4﹣(x ﹣2)2=(x 2+x ﹣2)(x 2﹣x+2)=(x+2)(x ﹣1)(x 2﹣x+2);(4)(a 2﹣3a ﹣3)(a 2﹣3a+1)﹣5=(a 2﹣3a )2﹣2(a 2﹣3a )﹣8=(a 2﹣3a ﹣4)(a 2﹣3a+2)=(a ﹣4)(a+1)(a ﹣2)(a ﹣1)..24.计算:()2x 23(23)(23)y x y x y ++--+--【答案】8xy+6x+12y+18【解析】解:()2x 23(23)(23)y x y x y ++--+--=2222446129449x xy y x y x xy y=8xy+6x+12y+1825.已知a 、b 、c 满足: (1)5(a+3)²+2|b −2|=0; (2)13x 2a -y 1b c +++2²a 4b+c+1是七次多项式;求多项式a²b −[a²b −(2abc −a²c −3a²b)−4a²c]−abc 的值.. 【答案】原式=3a²c -3a²b+abc ,-75 【解析】解:∵5(a+3)²+2|b−2|=0,且(a+3)²≥0,|b−2|≥0 ∴5(a+3)²=0,2|b−2|=0∵13x 2a -y 1b c +++2²a 4b+c+1是七次多项式 ∴2-a+1+b+c=7∴c=-1.a²b−[a²b−(2abc−a²c−3a²b)−4a²c]−abc=a²b−(a²b−2abc+a²c+3a²b−4a²c)−abc= a²b−(4a²b−2abc−3a²c)−abc= a²b−4a²b+2abc+3a²c−abc= 3a²c -3a²b+abc当a=-3,b=2,c=-1时原式=3×(-3)2×(-1)-3×(-3)2×2+ (-3)×2×(-1)=-75. 26.已知:213a b -=,513b c -=,2221a b c ++=,求ab bc ca ++的值. 【答案】1013【解析】213a b -=,① 513b c -=,② 由①+②,得a ﹣c 713=,③ ∵(a ﹣b )2+(b ﹣c )2+(a ﹣c )24254978616916916916913=++==, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )613=, ∵a 2+b 2+c 2=1,∴2﹣2(ab +bc +ca )613=, ∴ab +bc +ca =1013. 27.先化简,再求值:(32)()(35)()x y x y x y x y -+-+-,其中x=2020,y=13 【答案】220193;.3xy y -+-22222(32)()(35)(),33223355,3.x y x y x y x y x xy xy y x xy xy y xy y -+-+-=+---+-+=-+把x =2020,y =13代入上式可得, 原式=2020133-+, =20193-. 28.如图,将边长为2的小正方形和边长为x 的大正方形放在一起.(1)用x 表示阴影部分的面积;(2)计算当x=5时,阴影部分的面积.【答案】(1)12x 2+x+2;(2)19.5 【解析】试题解析: (1)由题意可知()22111222222S x x x x =+⨯+=++; (2)当5x =时,原式2155219.5.2=⨯++= 29.问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成:(a+b )2或 a 2+2ab+b 2∴(a+b )2 =a 2+2ab+b 2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)【答案】(1)见解析;(2)62,推证过程见解析;(3)[12n(n+1)]2【解析】分析:(1)类比解决:如图:边长为a,b的两个正方形,边保持平行,从大正方形中剪去小正方形,剩下的图形可以分割成2个长方形并拼成一个大长方形.根据第一个图形的阴影部分的面积是a2﹣b2,第二个图形的阴影部分的面积是(a+b)(a﹣b),可以验证平方差公式;(2)尝试解决:如图,A表示一个1×1的正方形,B、C、D表示2个2×2的正方形,E、F、G表示3个3×3的正方形,而A、B、C、D、E、F、G恰好可以拼成一个边长为(1+2+3)的大正方形,根据大正方形面积的两种表示方法,可以得出13+23+33=62;(3)问题拓广:由上面表示几何图形的面积探究知,13+23+33+…+n3=(1+2+3+…+n)2,进一步化简即可.解:(1)∵如图,左图的阴影部分的面积是a2﹣b2,右图的阴影部分的面积是(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b),这就验证了平方差公式;(2)如图,A表示1个1×1的正方形,即1×1×1=13;B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23;G与H,E与F和I可以表示3个3×3的正方形,即3×3×3=33;而整个图形恰好可以拼成一个(1+2+3)×(1+2+3)的大正方形,由此可得:13+23+33=(1+2+3)2=62;故答案为:62;(3)由上面表示几何图形的面积探究可知,13+23+33+…+n3=(1+2+3+…+n)2,又∵1+2+3+…+n=12n(n+1),∴13+23+33+…+n3=[12n(n+1)]2.故答案为:[12n(n+1)]2.。
七年级上册数学期中必考题型
七年级上册数学期中必考题型一、选择题:1.一个正小数的平方根是()A.负数B.正数C.大于0小于1D.会受正小数的大小而定B.正数二、判断题:2. 两角相等,则它们对应的边也相等()A. 对B. 错A.对三、填空题:3. 一个锐角三角形,其两个直角边长分别为5cm和12cm,它的斜边长是______cm。
四、计算题:4. 已知三个数:6、9、15,求这三个数的最小公倍数五、证明题:5. 证明:任意三个整数a,b,c(a≤b≤c)都可以写成三个整数的和,且最多只有一种不同的分解方法。
证明过程:设有三个整数a,b,c,满足a≤b≤c,假设能够满足a+b+c=d的三种不同的分解方式(d为任意整数),则有方式①:a+b+c;方式②:a+b+c;方式③:a+b+c;可以知道该三个整数有一种共同的特性,那就是a+b+c的三个解都是等式的左右两边相等,根据这一特性,有a+b+c=d据已知a≤b≤c,故有a+b≤a+c≤b+c(1)若右式大于d,则左式大于d,右式等于d,则左式等于d,右式小于d,则左式小于d。
又a+b+c=d,故a+b=d−c,由(1)知a+b有三种可能的结果,即等于d,小于d或大于d,吨Case1:a+b=d若a+b=d,则有a=d−b,由a≤b得d−b≤b,于是d≤2b,记作d=2b−k (k≥0)由此,有a+b+c=d⇒a+(2b−k)+c=2b−k⇒(a+b)+c=2b可见a+b+c已被完全分解Case2:a+b<d若a+b<d,则有a+b+c<d+c,记作d+c=2b+k(k≥0)同理,有a+b+c=d+c⇒a+(2b−k)+c=2b+k⇒(a+b)+c=2b可见a+b+c已被完全分解Case3:a+b>d若a+b>d,则有a+b+c>d+c,记作d+c=2b−k(k≥0)同理,有a+b+c=d+c⇒a+(2b−k)+c=2b−k⇒(a+b)+c=2b可见a+b+c已被完全分解由上面可知,不论何种情况,三个整数都可以写成三个整数的和,且最多只有一种不同的分解方法,即a+b+c=d,故任意三个整数a,b,c(a≤b≤c)都可以写成三个整数的和,且最多只有一种不同的分解方法。
人教版数学七年级上册期中测试(一)(含答案)
人教版数学七年级上册期中测试(一)(含答案)人教版七年级上册期中学业质量检测姓名班级题号一二三四五六总分得分(满分:120分考试时间120分钟)得分评卷人单项选择题(每小题2分,共12分)1.在数轴上若点A到原点的距离为3个单位长度,则到点A的距离为5个单位长度且位于点A右侧的点表示什么数?()A、-2或8B、2或-8C、-2或-8D、2或82.下列说法正确的个数是( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A、1B、2C、3D、43.下列关于单项式-xy2的说法正确的是()A、系数是,次数是2.B、系数是,次数是3.C、系数是-,次数是2D、系数是-,次数是34.下列各式是同列项的是()A、3x2y与-y2xB、a2b2与2a-2b-2C、x2y3与-5y3x2D、2a3b2与3a2b35.我国拟设计建造的长江三峡电站,估计总装机容量将达16780000千瓦,用科学记数法表示总装机容量是()A、1678×104B、16.78×106C、0.1678×107D、1.678×1076.(2023,资阳)若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则的值为()A、B、99! C、9900 D、2!得分评卷人二、填空题(每题3分,共24分)7.写出介于-2和3之间的负整数:______.8.若a、b互为相反数,c、d互为倒数,则+cd= .9.若-xay2+2x3yb=x3y2,则(-b)a = .10.多项式2x2y+3xy3-2xy是次,项式.11.若|a|=1,|b|=3,且,则_____________.12.若ab≠0,则的取值可能是.13.已知:a2+ab=5,b2+ab=2则a2+2ab+b2=14.观察算式:…按规律填空:____________.得分评卷人三、解答题(每题5分,共20分)15.计算:-54×2÷(-4)×16.计算:17.化简:18.已知a、b、c在数轴上的位置如下图.化简:1.|a+b|+|b-c|-|a+c|.2.|2a-b|+|a-3c|-|b+3c|.得分评卷人四、解答题(每题7分,共28分)19.先化简,再求值.其中.20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆-1 +3 -2 +4 +7 -5 -10⑴生产量最多的一天比生产量最少的一天多生产多少辆?⑴本周总的生产量是多少辆?21.有一艘货轮,在一段流域航行,已知船的航速是x/km,水的流速是y/km船顺水的航速是a/km,逆水的航速是b/km.⑴请用字母表示出顺水航行和逆水航行时的航速与船速、水速的关系⑴如果货轮顺水航行了0.5h,逆水航行了2h,求货轮的航行距离⑴如果货轮的航行距离是Q,其在静水中的航行时间是2h,顺水航行0.5h,求逆水航行的时间.22.两种移动电话记费方式表(1)一个月内本地通话多少分钟时,两种通讯方式的费用相同?(2)若某人预计一个月内使用本地通话费180元,则应该选择哪种通讯方式较合算?全球通神州行月租费50元/分0本地通话费0.40元/分0.60元/分得分评卷人五、解答题(每题8分,共16分)23.如图是南宁冬季某一天的气温随时间变化的情况图,请你来观察:(1)当天什么时间气温最低,最低气温是多少?(2)当天什么时间气温最高,最高气温是多少?(3)这一天的温差是多少?(结果都取整数)24.如图是一个数表,现用一个矩形在数表中任意框出4个数则(1)当a+b+c+d=32时,a=__________(a为最小数字)(2)请求出四个数字和的范围得分评卷人六、解答题(每题10分,共20分)25.如果有理数a,b满足⑴ab-2⑴+⑴1-b⑴=0试求+…+的值26.观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、-15、45、…的第4项是_________.(2)如果一列数a1:a2:a3:a4是等比数列,且公比为q.那么有a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5= .(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比答案一、单选题1、D2、B3、D4、C5、D6、C二、填空题7、-1 8、0 9、-8 10、4次;3项11、0或-312、-2、0、2 13、7 14、2500三、解答题15、-6 16、-30 17、22b18、⑴2b-2c ⑴2b-a四、解答题19、3x+4y-8;-19 20、⑴多17辆;⑴696辆21、⑴顺水:x+y=a;逆水:x-y=b;⑴0.5a+2b⑴22、23、(1)当天4时气温最低,最低气温是约零下1⑴;(2)当天16时气温最高,最高气温是约10⑴;(3)这一天的温差是约11⑴。
七年级数学下册期中试题
七年级数学下册期中试题七年级数学下册期中试题无论是身处学校还是步入社会,我们会经常接触并使用试题,试题可以帮助参考者清楚地认识自己的知识掌握程度。
你知道什么样的试题才是规范的吗?下面是店铺精心整理的七年级数学下册期中试题,欢迎大家分享。
七年级数学下册期中试题篇1第1卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列各图中,∠1与∠2互为余角的是()2.下列计算正确的是()A.(xy)3=xy3B.x5÷x5=xC.3x25x3=15x5D.5x2y3+2x2y3=10x4y93.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短;⑤同角或等角的余角相等;⑥经过直线外一点,有且只有一条直线与这条直线平行,其中假命题有()A.1个B.2个C.3个D.4个4.已知是二元一次方程组的解,则的值是()A.B.C.D.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°第5题图6.如图,AB∥CD,下列结论中错误的是()A.B.C.D.7.下列计算中,运算正确的是()A.(a﹣b)(a﹣b)=a2﹣b2B.(x+2)(x﹣2)=x2﹣2C.(2x+1)(2x﹣1)=2x2﹣1D.(﹣3x+2)(﹣3x﹣2)=9x2﹣48.下列运算中,运算错误的有()①(2x+y)2=4x2+y2,②(a-3b)2= a2-9b2 ,③(-x-y)2=x2-2xy+y2 ,④(x- )2=x2-2x+ ,A.1个B.2个C.3个D.4个9.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x斤,乙种药材y斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A .B.C.D.10.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y 匹,那么可列方程组为()A.B.C.D.11.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°12.观察下列各式及其展开式……请你猜想的展开式第三项的系数是()A.35B.45C.55D.66第2卷(非选择题共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在题中横线上.)13.甲型H1N1流感球形病毒细胞的直径约为0.00000156 m,这个数用科学记数法表示是_____ ___.14.如果是二元一次方程,那么a = .b = .15.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;•而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y•千米/时,列出的二元一次方程组为 .16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是 .(填序号)能够得到AB∥CD的条件是 .(填序号)第16 题图17.若a>0且 , ,则的值为___ .的值为___ .18.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,这两个角的度数分别是 .三、解答题(本大题共10个小题.共78分.解答应写出文字说明、证明过程或演算步骤.)19.计算(每小题3分,共12分)(1)(2)20.解方程组(每小题3分,共6分)(1)解方程组:(2)解方程组:21.化简求值(每小题4分,共8分)(1) .其中(2) .其中22.尺规作图(本小题满分4分)如图,过点A作BC的平行线EF(说明:只允许尺规作图,不写作法,保留作图痕迹,要写结论.)23.填空,将本题补充完整.(本小题满分7分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.解:∵EF∥AD(已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴AB∥GD()∴∠BAC+=180°()∵∠BAC=70°(已知)∴∠AGD=° 第23题图24.列二元一次方程组解应用题(本小题满分7分)某工厂去年的总收入比总支出多50万元,今年的总收入比去年增加10%,总支出节约20%,因而总收入比总支出多100万元.求去年的总收入和总支出.25.列二元一次方程组解应用题(本小题满分8分)已知一个两位数,它的十位上的.数字与个位上的数字的和为12,•若对调个位与十位上的数字,得到的新数比原数小18,求原来的两位数。
人教版七年级上学期期中考试数学试卷及答案(共7套)
人教版七年级上学期期中考试数学试卷(一)时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.a 的相反数是( )A .|a | B.1a C .-a D .以上都不对2.计算-3+(-1)的结果是( ) A .2 B .-2 C .4 D .-43.在1,-2,0,53这四个数中,最大的数是( )A .-2B .0 C.53D .14.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( ) A .0 B .1 C .7 D .-15.长方形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是( )A .2a 2-πb 2B .2a 2-π2b 2C .2ab -πb 2D .2ab -π2b 2第5题图 第6题图6.如图,将一张等边三角形纸片沿各边中点剪成4个小三角形,称为第一次操作;然后将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;……,根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50二、填空题(本大题共6小题,每小题3分,共18分)7.-0.5的绝对值是________,相反数是________,倒数是________.8.请你写出一个只含有字母m 、n ,且它的系数为-2、次数为3的单项式________. 9.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为________.10.若关于a ,b 的多项式3(a 2-2ab -b 2)-(a 2+mab +2b 2)中不含有ab 项,则m =________.11.已知|x |=2,|y |=5,且x >y ,则x +y =________.12.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是________(用含a 的代数式表示).三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-20-(-14)-|-18|-13;(2)-23-(1+0.5)÷13×(-3).14.化简:(1)3a 2+2a -4a 2-7a; (2)13(9x -3)+2(x +1).15.已知a 、b 互为相反数,c 、d 互为倒数,|m |=2,求代数式2m -(a +b -1)+3cd 的值.16.先化简,再求值:-a2b+(3ab2-a2b)-2(2ab2-a2b),其中a=-1,b=-2.17.有理数a,b,c在数轴上的位置如图所示,化简:|b-a|-|c-b|+|a+b|.四、(本大题共3小题,每小题8分,共24分)18.如果两个关于x、y的单项式2mx a y3与-4nx3a-6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m-2n-1)2017的值.19.如图所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a >0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.邮递员骑车从邮局O出发,先向西骑行2km到达A村,继续向西骑行3km到达B 村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示2km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?五、(本大题共2小题,每小题9分,共18分)21.操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为11(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.22.“十一”黄金周期间,淮安动物园在7天假期中每天接待的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数),把9月30日的游客人数记为a万人.(1)请用含a的代数式表示10月2日的游客人数;(2)请判断七天内游客人数最多的是哪天,有多少人?(3)若9月30日的游客人数为2万人,门票每人10元,问黄金周期间淮安动物园门票收入是多少元?六、(本大题共12分)23.探索规律,观察下面算式,解答问题. 1+3=4=22; 1+3+5=9=32; 1+3+5+7=16=42; 1+3+5+7+9=25=52; …(1)请猜想:1+3+5+7+9+…+19=________;(2)请猜想:1+3+5+7+9+…+(2n -1)+(2n +1)+(2n +3)=________; (3)试计算:101+103+…+197+199.参考答案与解析1.C 2.D 3.C 4.B 5.D6.B 解析:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7(个);第三次操作后,三角形共有4+3+3=10(个)……∴第n 次操作后,三角形共有4+3(n -1)=(3n +1)(个).当3n +1=100时,解得n =33.故选B.7.0.5 0.5 -2 8.-2m 2n (答案不唯一) 9.1.09×105 10.-6 11.-3或-712.a 解析:由图②知小长方形的长为宽的2倍,设大长方形的宽为b ,小长方形的宽为x ,长为2x ,由图②得2x +x +x =a ,则4x =a .图①中阴影部分的周长为2b +2(a -2x )+2x ×2=2a +2b ,图②中阴影部分的周长为2(a +b -2x )=2a +2b -4x ,∴图①中阴影部分的周长与图②中阴影部分的周长之差为(2a +2b )-(2a +2b -4x )=4x =a .13.解:(1)原式=-6-18-13=-37.(3分)(2)原式=-8-1.5÷13×(-3)=-8-4.5×(-3)=-8+13.5=5.5.(6分)14.解:(1)原式=-a 2-5a .(3分)(2)原式=5x +1.(6分)15.解:根据题意得a +b =0,cd =1,m =2或-2.(2分)当m =2时,原式=4-(-1)+3=4+1+3=8;(4分)当m =-2时,原式=-4-(-1)+3=-4+1+3=0.(6分)16.解:原式=-a 2b +3ab 2-a 2b -4ab 2+2a 2b =-ab 2,(3分)当a =-1,b =-2时,原式=4.(6分)17.解:由数轴可知:c <b <0<a ,|a |>|b |,∴b -a <0,c -b <0,a +b >0,(2分)∴原式=-(b -a )+(c -b )+(a +b )=-b +a +c -b +a +b =2a -b +c .(6分)18.解:(1)依题意,得a =3a -6,解得a =3.(4分)(2)∵2mx 3y 3+(-4nx 3y 3)=0,故m -2n =0,∴(m -2n -1)2017=(-1)2017=-1.(8分) 19.解:(1)阴影部分的面积为12b 2+12a (a +b ).(4分)(2)当a =3,b =5时,12b 2+12a (a +b )=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分) 20.解:(1)如图所示:(3分)(2)C 、A 两村的距离为3-(-2)=5(km). 答:C 村距离A 村5km.(5分) (3)|-2|+|-3|+|+8|+|-3|=16(km). 答:邮递员共骑行了16km.(8分) 21.解:(1)3(3分) (2)①-3(6分)②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.(9分)22.解:(1)10月2日的游客人数为(a +2.4)万人.(2分) (2)10月3日游客人数最多,人数为(a +2.8)万人.(4分)(3)(a +1.6)+(a +2.4)+(a +2.8)+(a +2.4)+(a +1.6)+(a +1.8)+(a +0.6)=7a +13.2.(6分)当a =2时,(7×2+13.2)×10=272(万元).(8分)答:黄金周期间淮安动物园门票收入是272万元.(9分) 23.解:(1)102(3分) (2)(n +2)2(6分)(3)原式=(1+3+5+…+197+199)-(1+3+…+97+99)=1002-502=7500.(12分)人教版七年级上学期期中考试数学试卷(二)时量:120分钟 满分:120分一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分) 1.-2的相反数是( ) A .21-B .2-C .21D .2 2. 在数轴上距离原点2个单位长度的点所表示的数是 ( ) A .2 B .2- C .2或2- D .1或1- 3.下列计算正确的是 ( ) A .xy y x 532=+ B .532222a a a =+ C .13422=-a a D .b a b a ba 2222-=+- 4.下列式子中,成立的是( )A .33)2(2-=-B .222)2(-=-C .223232=⎪⎭⎫ ⎝⎛- D .2332⨯= 5.用四舍五入按要求对06019.0分别取近似值,其中错误的是 ( ) A .0.1 (精确到0.1) B. 0.06 (精确到千分位) C .0.06 (精确到百分位) D .0.0602 (精确到0.0001)6.下列各组中,不是同类项的是 ( ) A .与 B .ab 2与ba 21C .与D .32 和23 7.小华作业本中有四道计算题:①5)5(0-=--; ②12)9()3(-=-+-; ③234932-=⎪⎭⎫ ⎝⎛-⨯; ④4)9()36(-=-÷-. y x 2-22yx n m 2-221mn其中他做对的题的个数是 ( ) A .1个 B .2个 C .3个 D .4个 8.一件衣服的进价为a 元,在进价的基础上增加20%定为标价,则标价可表示为 ( ) A .()a %201- B.20%a C.()a %201+ D.a +20%9.下面四个整式中,不能..表示图中阴影部分面积的是A .x x x 2)2)(3(-++B .6)3(++x xC .2)2(3x x ++ D .x x 52+10.若12++x x 的值是8,则9442++x x 的值是 ( ) A .37 B .25 C .32 D .011.下列说法正确的是 ( ) A .单项式22R π-的次数是3,系数是2-B .单项式5322y x -的系数是3,次数是4C .3ba +不是多项式 D .多项式26534222---y y x x 是四次四项式 12. 已知b a ,在数轴上的位置如图所示, 则化简a b a ++-是( )A .a 2B .a 2-C . 0D .b 2二.填空题(本题共6个小题,每小题3分,共18分) 13.用式子表示“a 的平方与1的差”: .14. 比较大小:30- 40-(用“>”“=”或“<”表示).15.长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 米.第9题16.若一个数的倒数等于311-,则这个数是 .17.若单项式y mx 2与单项式y x n5的和是y x 23-,则=+n m ___________. 18. 按下列程序输入一个数x ,若输入的数0=x ,则输出结果为 .三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题8分,第23、24题每小题9分,第25、26每小题10分,共66分,解答应写出必要的文字说明或演算步骤.) 19.计算:3.7)7.13()3.7(7.25+-+-+20.计算:2201611(2)5(1)122-⨯--+÷21.先化简,再求值:23(2)(61)a a a ---,其中1a =-22.小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知b a ,互为相反数,d c ,互为倒数,2=m ,则cd m mba -+++1的值为多少?23.如果一个多项式与222n m -的和是13522+-n m ,求这个多项式。
初中数学七年级上期中测试卷(含答案解析)(1)
一、选择题1.计算:1252-50×125+252=( )A.100B.150C.10000D.225002.81x>0.8x,所以在乙超市购买合算.故选B.【点睛】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.3.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.94.有理数 a,b 在数轴上的点的位置如图所示,则正确的结论是()A.a<﹣4B.a+ b>0C.|a|>|b|D.ab>05.小王利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出 (1)225310417526…那么,当输入数据8时,输出的数据是()A.861B.863C.865D.8676.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2 7.按如图所示的运算程序,能使输出结果为10的是()A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x=12,y=38.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.9.将一副三角板如图摆放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,则∠MON的度数为()A.60°B.45°C.65.5°D.52.5°10.如图,从左面看该几何体得到的形状是()A .B .C .D .11.-2的倒数是( ) A .-2B .12-C .12D .212.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A .厉B .害C .了D .我 13.若代数式x +2的值为1,则x 等于( )A .1B .-1C .3D .-3 14.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣915.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0二、填空题16.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=2221-,5=2232-).已知“智慧数”按从小到大顺序构成如下数列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….则第2020个“智慧数”是____________.17.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.18.如图,半径为1个单位长度的圆从点A 沿数轴向右滚动(无滑动)一周到达点B ,若点A 对应的数是-1,则点B 对应的数是______.19.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号).20.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.21.观察下列运算并填空. 1×2×3×4+1=24+1=25=52;2×3×4×5+1=120+1=121=112; 3×4×5×6+1=360+1=361=192; 4×5×6×7+1=840+1=841=292; 7×8×9×10+1=5040+1=5041=712; ……试猜想:(n +1)(n +2)(n +3)(n +4)+1=________2.22.正整数按如图的规律排列,请写出第10行,第10列的数字_____.23.将从1开始的连续自然数按以下规律排列: 第1行1第2行2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行252423222120191817…则2018在第_____行.24.点,A B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:①0b a -<;②0a b +>;③a b <;④0ab >.其中正确的是____________.(填序号)25.已知3x =是关于x 方程810mx -=的解,则m =__________.三、解答题26.如图,在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、b 满足|a+2|+(c ﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数 表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB= ,AC= ,BC= .(用含t 的代数式表示) (4)请问:3BC ﹣2AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值. 27.解下列方程:(1)x-7=10 - 4(x+0.5) ; (2)132123x x-+-=. 28.已知关于x 的方程23x m m x -=+与12x +=3x ﹣2的解互为倒数,求m 的值. 29.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
七年级期中考试卷数学重点
一、数与代数1. 有理数的概念及运算- 有理数的分类:整数、分数- 有理数的加、减、乘、除法运算- 有理数的乘方、开方运算- 有理数的大小比较- 有理数的相反数、绝对值2. 整式的概念及运算- 整式的定义:由数和字母通过加减乘除及乘方运算得到的式子- 单项式、多项式的概念及运算- 整式的乘法运算- 整式的除法运算- 整式的因式分解3. 分式的概念及运算- 分式的定义:形如 $\frac{A}{B}$ 的式子,其中 $A$ 和 $B$ 都是整式,$B$ 不为零- 分式的加减法运算- 分式的乘除法运算- 分式的通分、约分- 分式方程的解法二、几何图形1. 点、线、面的概念及性质- 点、线、面的定义- 线段、射线、直线的性质- 平面、平面的性质2. 平行线与相交线- 平行线的定义及性质- 相交线的定义及性质- 平行公理及推论- 相交线公理及推论3. 角的概念及性质- 角的定义及分类- 角的度量- 角的平分线、高、中线、垂线的性质4. 三角形- 三角形的分类:锐角三角形、直角三角形、钝角三角形 - 三角形的性质:三角形的内角和定理、三角形的面积公式 - 三角形的相似与全等- 解三角形三、统计与概率1. 统计数据的收集与整理- 统计数据的来源- 统计数据的整理方法:列表法、条形图、折线图、扇形图2. 平均数、中位数、众数的概念及计算方法- 平均数的定义及计算方法- 中位数的定义及计算方法- 众数的定义及计算方法3. 概率的概念及计算方法- 概率的定义- 概率的计算方法:频率、频率分布表、频率分布直方图 - 概率问题中的应用四、实际应用问题1. 经济应用问题- 利润、成本、售价的计算- 折扣、利息的计算2. 生活应用问题- 面积、体积的计算- 时间、速度、距离的计算3. 科学应用问题- 科学实验中的误差分析- 科学计算中的近似值计算在复习过程中,要注意以下几点:1. 理解概念,掌握公式2. 练习各种题型,提高解题能力3. 分析题目,寻找解题思路4. 查漏补缺,巩固知识点5. 做好笔记,整理错题希望以上解析能帮助同学们在期中考试中取得好成绩!。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
人教版七年级数学上册期中复习题重点题型(含答案)
人教版七年级数学上册期中复习题重点题型一.选择题(共5小题)1.代数式3x 2﹣4x +6的值为3,则x 2−43x +6的值为( )A .7B .18C .5D .9 2.如果a ﹣b =3,m +n =﹣4,那么代数式(a ﹣2m )﹣(b +2n )的值为( )A .﹣5B .11C .5D .﹣10 3.如果2x 3n y m +4与−23x 9y 2n 是同类项,那么m 、n 的值分别为( )A .m =﹣2,n =3B .m =2,n =3C .m =﹣3,n =2D .m =3,n =2 4.已知12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为( )A .2019B .﹣2019C .1D .﹣1 5.代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,则k 的值是( )A .13B .16C .19D .0二.填空题(共7小题)6.已知23x 3m y 2与−14x 6y 2n 是同类项,则5m +3n = . 7.若−35x m y 2与2x 4y 2n 是同类项,那么m = ,n = .8.若12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为 .9.已知单项式﹣3a m ﹣1b 6与15ab 2n 是同类项,则m +n 的值是 . 10.若关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,则k 的值是 .11.若单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,则这两个单项式的和为 .12.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |﹣|a ﹣b |+|b ﹣c |= .三.解答题(共14小题)13.计算:(1)25−|−125|−(+214)−(−2.25);(2)−12021−223×|(−12)2−1|+3÷2×12.14.求多项式2x 2﹣5x +x 2+4x ﹣3x 2﹣2的值,其中x =12.15.(1)计算:2(x 2﹣2xy )﹣3(y 2﹣3xy );(2)先化简,再求值:12x ﹣2(x −13y 2)+(−32x +13y 2),其中x =﹣2,y =23. 16.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a =﹣2,b =2017时,求(3a 2b ﹣2ab 2+4a )﹣2(2a 2b ﹣3a )+2(ab 2+12a 2b )﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b =2017是多余的,这道题不给b 的值,照样可以求出结果来.”同桌不相信她的话.亲爱的同学们,你相信盈盈的说法吗?说说你的理由.17.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题化简求值:3a 2b ﹣★(2a 2b ﹣3a )﹣1.其中★为不等于零的任意数,a =﹣1,b =2019.(1)令★=1,求原式的值.(2)老师补充说:“若给的条件b =2019是多余的,这道题不给b 的值,照样可以求出结果来.”亲爱的同学,你们能算出★值吗?说明你的理由.18.化简并求值:2(x 2﹣2xy )+[(y 2﹣3xy )﹣(x 2+y 2)],其中x 、y 的取值如图所示.19.如图,数轴上有点a ,b ,c 三点(1)用“<”将a ,b ,c 连接起来.(2)b ﹣a 1(填“<”“>”,“=”)(3)化简|c ﹣b |﹣|c ﹣a +1|+|a ﹣1|(4)用含a ,b 的式子表示下列的最小值:①|x ﹣a |+|x ﹣b |的最小值为 ;②|x ﹣a |+|x ﹣b |+|x +1|的最小值为 ;③|x ﹣a |+|x ﹣b |+|x ﹣c |的最小值为 .20.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最大的负整数,且a 、c 满足|a +3|+(c﹣4)2=0(1)a=;b=;c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=,AC=,BC=,(用含t的代数式表示)(4)在(3)的条件下,请问:5BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.21.贵州省某服装厂生产一种外衣和领带,外衣每套定价500元,领带每条定价40元,厂方在开展促销活动中,向客户提供两种优惠方案:方案一:买一套外衣送一条领带:方案二:外衣和领带都按定价的8折付款.现某客户要到该服装厂购买外衣30套,领带x条(x>30)(1)若该客户按方案一购买,需付款元(用含x的代数式表示),若该客户按方案二购买,需付款元(用含x的代数式表示);(2)若x=50,通过计算说明此时按哪种方案购买较为合算.22.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.23.将连续的偶数2,4,6,8…排列成如下的数表用十字框框出5个数(如图).(1)十字框框出5个数的和与框子正中间的数20有什么关系?(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数之和能等于2000吗?能等于2020吗?能等于2055吗?若能,分别写出十字框框住的5个数,并填入框图中;若不能,请说明理由.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=﹣2,b=2018,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.小明做完后对同桌说:“老师给的条件b=2018是多余的,这道题不给b的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?25.观察等式找规律:a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;…(1)写出表示a4,a5的等式;(2)写出表示a n的等式(用含有n的式子表示)(3)求1a1+1a2+1a3+⋯+1a2014的值.26.观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③(1)第①行数的第7个数是;(2)第②行数的第n个数是,第③行数的第n个数是;(3)取每行的第k个数,若三个数的和等于255,求k的值.期中复习题参考答案与试题解析一.选择题(共5小题)1.代数式3x2﹣4x+6的值为3,则x2−43x+6的值为()A.7B.18C.5D.9【分析】由代数式3x2﹣4x+6的值为3,变形得出x2−43x=﹣1,再整体代入x2−43x+6计算即可.【解答】解:∵代数式3x2﹣4x+6的值为3,∴3x2﹣4x+6=3,∴3x2﹣4x=﹣3,∴x2−43x=﹣1,∴x2−43x+6=﹣1+6=5.故选:C.【点评】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键.2.如果a﹣b=3,m+n=﹣4,那么代数式(a﹣2m)﹣(b+2n)的值为()A.﹣5B.11C.5D.﹣10【分析】所求式子去括号整理后,将a﹣b与m+n的值代入计算即可求出值.【解答】解:∵a﹣b=3,m+n=﹣4,∴(a﹣2m)﹣(b+2n)=a﹣2m﹣b﹣2n=(a﹣b)﹣2(m+n)=3+8=11.故选:B.【点评】此题考查了整式的加减﹣化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.3.如果2x3n y m+4与−23x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=2【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵2x 3n y m +4与−23x 9y 2n 是同类项,∴3n =9,m +4=2n ,解得n =3,m =2.故选:B .【点评】本题考查了同类项,熟记同类项的定义是解答本题的关键.4.已知12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为( )A .2019B .﹣2019C .1D .﹣1 【分析】根据同类项的定义求出m 、n 的值,代入计算即可.【解答】解:根据同类项的定义可得:n ﹣2m =3,2n =4,解得m =﹣0.5,n =2,所以(﹣0.5×2)2019=(﹣1)2019=﹣1.故选:D .【点评】本题考查了同类项的定义,解决本题的关键是熟记同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,几个常数项也是同类项.5.代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,则k 的值是( )A .13B .16C .19D .0【分析】先合并同类项,然后再依据含xy 的项的系数为0求解即可.【解答】解:x 2﹣3kxy ﹣3y 2+13xy ﹣8=x 2﹣3y 2+(13−3k )xy ﹣8. ∵代数式x 2﹣3kxy ﹣3y 2+13xy ﹣8中不含xy 项,∴13−3k =0. 解得:k =19.故选:C .【点评】本题主要考查的是多项式,明确多项式中不含xy 的项是解题的关键.二.填空题(共7小题)6.已知23x 3m y 2与−14x 6y 2n 是同类项,则5m +3n = 13 . 【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得出m 和n 的值,代入即可得出5m +3n 的值.【解答】解:∵23x 3m y 2与−14x 6y 2n 是同类项, ∴3m =6,2n =2,∴m =2,n =1,∴5m +3n =5×2+3×1=13,故答案为:13.【点评】此题考查了同类项的定义,解答本题的关键是掌握同类项两个“相同”的含义,属于基础题,难度一般.7.若−35x m y 2与2x 4y 2n 是同类项,那么m = 4 ,n = 2 .【分析】根据同类项的定义求解即可,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵−35x m y 2与2x 4y 2n 是同类项,∴m =4,2n =2,解得m =4,n =2.故答案为:4;2.【点评】本题考查了同类项,熟记同类项的定义是解答本题的关键.8.若12x n﹣2m y 4与﹣x 3y 2n 是同类项,则(mn )2019的值为 ﹣1 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n =4,n ﹣2m =3,求出n ,m 的值,再代入代数式计算即可.【解答】解:∵单项式12x n ﹣2m y 4与﹣x 3y 2n 是同类项, ∴{2n =4n −2m =3, 解得{m =−12n =2, ∴(mn )2019=(−12×2)2019=﹣1,故答案为:﹣1.【点评】本题考查同类项的定义.同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.9.已知单项式﹣3a m ﹣1b 6与15ab 2n 是同类项,则m +n 的值是 5 . 【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m 、n 的值,再代入所求式子计算即可.【解答】解:∵单项式﹣3a m ﹣1b 6与15ab 2n 是同类项, ∴m ﹣1=1,2n =6,解得m =2,n =3,∴m +n =2+3=5.故答案为:5.【点评】本题考查了同类项,同类项是字母相同,且相同的字母的指数也相同.10.若关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,则k 的值是 −112 .【分析】直接合并同类项,进而得出xy 项的系数为零,进而得出答案.【解答】解:∵关于x ,y 的多项式x 2﹣4kxy ﹣3y 2−13xy ﹣8中不含xy 项,∴x 2﹣4kxy ﹣3y 2−13xy ﹣8=x 2+(﹣4k −13)xy ﹣3y 2﹣8,﹣4k −13=0,解得:k =−112.故答案为:−112. 【点评】此题主要考查了合并同类项以及多项式,正确合并同类项是解题关键.11.若单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,则这两个单项式的和为 −16a 2b 3 . 【分析】直接利用合并同类项法则结合二元一次方程组的解法得出x ,y 的值,进而得出答案.【解答】解:∵单项式−12a 2b x +1与13a x b y﹣1的和仍是单项式,∴两单项式是同类项,∴{2=x x +1=y −1, 解得:{x =2y =4, ∴单项式−12a 2b x +1与13a xb y﹣1的和为:−16a 2b 3.故答案为:−16a 2b 3.【点评】此题主要考查了合并同类项,正确得出各对应字母次数相等是解题关键.12.有理数a ,b ,c 在数轴上的位置如图所示,则|a +c |﹣|a ﹣b |+|b ﹣c |= ﹣2c .【分析】根据数轴可确定a 、b 、c 的符号与绝对值的大小,从而可以去掉绝对值符号进行化简.【解答】解:由题意得,c <a <0<b ,且|c |>|a |>|b |,∴a +c <0,a ﹣b <0,b ﹣c >0,∴|a +c |﹣|a ﹣b |+|b ﹣c |=﹣(a +c )﹣[﹣(a ﹣b )]+b ﹣c=﹣a ﹣c +a ﹣b +b ﹣c=﹣2c ,故答案为:﹣2c .【点评】此题考查了利用数轴解决绝对值化简能力的问题,关键是能数形结合,判断出绝对值符号里面式子的符号,并进行正确化简.三.解答题(共14小题)13.计算:(1)25−|−125|−(+214)−(−2.25); (2)−12021−223×|(−12)2−1|+3÷2×12. 【分析】(1)原式利用绝对值的代数意义及减法法则变形,计算即可得到结果;(2)原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【解答】解:(1)原式=25−75−94+94=﹣1;(2)原式=﹣1−43×|14−1|+3×12×12 =﹣1−43×34+34=﹣1﹣1+34=−54.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.求多项式2x 2﹣5x +x 2+4x ﹣3x 2﹣2的值,其中x =12.【分析】原式合并同类项进行化简,然后代入求值.【解答】解:原式=2x 2+x 2﹣3x 2﹣5x +4x ﹣2=﹣x ﹣2,当x =12时,原式=−12−2=−52.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.15.(1)计算:2(x 2﹣2xy )﹣3(y 2﹣3xy );(2)先化简,再求值:12x ﹣2(x −13y 2)+(−32x +13y 2),其中x =﹣2,y =23. 【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:(1)原式=2x 2﹣4xy ﹣3y 2+9xy=2x 2﹣3y 2+5xy ;(2)原式=12x ﹣2x +23y 2−32x +13y 2=﹣3x +y 2,当x =﹣2,y =23时,原式=﹣3×(﹣2)+(23)2 =6+49=649. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.16.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题“a =﹣2,b =2017时,求(3a 2b ﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.盈盈做完后对同桌说:“张老师给的条件b=2017是多余的,这道题不给b的值,照样可以求出结果来.”同桌不相信她的话.亲爱的同学们,你相信盈盈的说法吗?说说你的理由.【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:盈盈的说法是正确的,理由如下:原式=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=﹣21,化简结果中不含字母b,故最后的结果与b的取值无关,b=2017这个条件是多余的,则盈盈的说法是正确的.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.学习了整式的加减运算后,老师给同学们布置了一道课堂练习题化简求值:3a2b﹣★(2a2b﹣3a)﹣1.其中★为不等于零的任意数,a=﹣1,b=2019.(1)令★=1,求原式的值.(2)老师补充说:“若给的条件b=2019是多余的,这道题不给b的值,照样可以求出结果来.”亲爱的同学,你们能算出★值吗?说明你的理由.【分析】(1)把★=1代入原式化简,求出值即可;(2)原式去括号合并后,根据题意得到结果与b无关,确定出m的值即可.【解答】解:(1)根据题意得:原式=3a2b﹣(2a2b﹣3a)﹣1=3a2b﹣2a2b+3a﹣1=a2b+3a﹣1,当a=﹣1,b=2019时,原式=2019﹣3﹣1=2015;(2)设★=m,则有原式=3a2b﹣m(2a2b﹣3a)﹣1=(3﹣2m)a2b+3am﹣1,由结果与b的值无关,得到3﹣2m=0,解得:m=3 2.【点评】此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.18.化简并求值:2(x2﹣2xy)+[(y2﹣3xy)﹣(x2+y2)],其中x、y的取值如图所示.【分析】根据数轴可得x=2,y=﹣1,把整式去括号、合并同类项化简后,再代入计算即可.【解答】解:根据数轴可得x=2,y=﹣1,∴2(x2﹣2xy)+[(y2﹣3xy)﹣(x2+y2)]=2(x2﹣2xy)+(y2﹣3xy)﹣(x2+y2)=2x2﹣4xy+y2﹣3xy﹣x2﹣y2=x2﹣7xy,当x=2,y=﹣1时,x2﹣7xy=22﹣7×2×(﹣1)=4+14=18.【点评】本题考查了整式的加减—化简求值,把整式去括号、合并同类项正确化简是解题的关键.19.如图,数轴上有点a,b,c三点(1)用“<”将a,b,c连接起来.(2)b﹣a<1(填“<”“>”,“=”)(3)化简|c﹣b|﹣|c﹣a+1|+|a﹣1|(4)用含a,b的式子表示下列的最小值:①|x﹣a|+|x﹣b|的最小值为b﹣a;②|x﹣a|+|x﹣b|+|x+1|的最小值为b+1;③|x﹣a|+|x﹣b|+|x﹣c|的最小值为b﹣c.【分析】(1)比较有理数的大小可以利用数轴,它们从左到右的顺序,即从小到大的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);(2)先求出b﹣a的范围,再比较大小即可求解;(3)先计算绝对值,再合并同类项即可求解;(4)根据绝对值的性质以及题意即可求出答案.【解答】解:(1)根据数轴上的点得:c<a<b;(2)由题意得:b﹣a<1;(3)|c﹣b|﹣|c﹣a+1|+|a﹣1|=b﹣c﹣(a﹣c﹣1)+a﹣1=b﹣c﹣a+c+1+a﹣1=b;(4)①当x在a和b之间时,|x﹣a|+|x﹣b|有最小值,∴|x﹣a|+|x﹣b|的最小值为:x﹣a+b﹣x=b﹣a;②当x=a时,|x﹣a|+|x﹣b|+|x+1|=0+b﹣a+a﹣(﹣1)=b+1为最小值;③当x=a时,|x﹣a|+|x﹣b|+|x﹣c|=0+b﹣a+a﹣c=b﹣c为最小值.故答案为:<;b﹣a;b+1;b﹣c.【点评】考查了数轴,通过比较,可以发现借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小有直观、简捷,举重若轻的优势.20.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最大的负整数,且a、c满足|a+3|+(c ﹣4)2=0(1)a=﹣3;b=﹣1;c=4;(2)若将数轴折叠,使得A点与C点重合,则点B与数2表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒3个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,则AB=5t+2,AC=7t+7,BC=2t+5,(用含t的代数式表示)(4)在(3)的条件下,请问:5BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据题意直接求值;(2)由于数轴对折后,对折的点是两个点的中点,即可求解;(3)点A以每秒2个单位长度的速度向左运动,运动后对于的点为﹣3﹣2t;点B以每秒3个单位长度速度向右运动,运动后对于的点为﹣1+3t;点C以每秒5个单位长度速度向右运动,运动后对于的点为4+5t;AB=2+5t,AC|=7+7t,BC=2t+5;(4)5BC﹣2AB=5(2t+5)﹣2(2+5t)=21;【解答】解:(1)∵|a+3|+(c﹣4)2=0∴a=﹣3,c=4,∵b是最大的负整数,∴b=﹣1,故答案为﹣3,﹣1,4;(2)由(1)可知,A点表示﹣3,B点表示﹣1,C点表示4,∵A点与C点重合,∴对折的点为0.5,∴B对折后的点为2;故答案为2;(3)点A以每秒2个单位长度的速度向左运动,∴运动后对于的点为﹣3﹣2t,点B以每秒3个单位长度速度向右运动,∴运动后对于的点为﹣1+3t,点C以每秒5个单位长度速度向右运动,∴运动后对于的点为4+5t,∴AB=|﹣3﹣2t+1﹣3t|=2+5t,AC=|﹣3﹣2t﹣4﹣5t|=7+7t,BC=|﹣1+3t﹣4﹣5t|=2t+5,故答案为2+5t,7+7t,2t+5;(4)5BC﹣2AB=5(2t+5)﹣2(2+5t)=21,∴5BC﹣2AB的值不会随着时间t的变化而改变,该值是21;【点评】本题考查数轴上点的特点;理解数轴对折后点的特点,数轴上两点间的距离求法,绝对值的意义是解题的关键.21.贵州省某服装厂生产一种外衣和领带,外衣每套定价500元,领带每条定价40元,厂方在开展促销活动中,向客户提供两种优惠方案:方案一:买一套外衣送一条领带:方案二:外衣和领带都按定价的8折付款.现某客户要到该服装厂购买外衣30套,领带x条(x>30)(1)若该客户按方案一购买,需付款(13800+40x)元(用含x的代数式表示),若该客户按方案二购买,需付款(12000+32x)元(用含x的代数式表示);(2)若x=50,通过计算说明此时按哪种方案购买较为合算.【分析】(1)按方案一购买,需付款为30×500+40(x﹣30);若按方案二购买,需付款为30×500×0.8+x •40•0.8,然后整理即可;(2)把x=50时代入(1)中的两个代数式中计算出两代数式的值,然后比较代数式值的大小即可判断按哪种方案购买较为合算.【解答】解:(1)若该客户按方案一购买,需付款30×500+40(x﹣30)=(13800+40x)元,若该客户按方案二购买,需付款30×500×0.8+x•40•0.8=(12000+32x)元;故答案为(13800+40x),(12000+40x);(2)当x=50时,13800+40x=13800+40×50=15800(元)12000+32x=12000+32×50=13600(元),所以按方案二购买较为合算.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.也考查了求代数式的值.22.如图,大小两个正方形的边长分别为a、b.(1)用含a、b的代数式表示阴影部分的面积S;(2)如果a=6,b=4,求阴影部分的面积.【分析】(1)依据阴影部分的面积等于两个正方形的面积之和减去空白部分的面积,即可用含a、b的代数式阴影部分的面积S;(2)把a=6,b=4,代入代数式,即可求阴影部分的面积.【解答】解:(1)大小两个正方形的边长分别为a、b,∴阴影部分的面积为:S=a2+b2−12a2−12(a+b)b=12a2+12b2−12ab;(2)∵a=6,b=4,∴S=12a2+12b2−12ab=12×62+12×42−12×6×4=18+8﹣12=14.所以阴影部分的面积是14.【点评】本题考查了列代数式和求代数式的值,解题的关键是利用面积的和差关系求出阴影部分的面积.23.将连续的偶数2,4,6,8…排列成如下的数表用十字框框出5个数(如图).(1)十字框框出5个数的和与框子正中间的数20有什么关系?(2)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a的代数式表示十字框框住的5个数字之和;(3)十字框框住的5个数之和能等于2000吗?能等于2020吗?能等于2055吗?若能,分别写出十字框框住的5个数,并填入框图中;若不能,请说明理由.【分析】(1)计算5个数的和,看与正中间的数20的关系即可;(2)根据上下相邻的数相隔12,左右相邻的相隔2,得到其余四个数的代数式,相加即可.(3)根据题意,分别列方程分析求解.【解答】解:(1)8+20+32+18+22=100=20×5,十字框框出5个数的和是框子正中间的数20的5倍.(2)a的上一个数为a﹣12,下一个数为a+12,前一个数为a﹣2,后一个数为a+2,.则a﹣12+a+a+12+a﹣2+a+2=5a.(3)①十字框框住的5个数之和能等于2000,5个数填入表如图.②十字框框住的5个数之和能等于2020,5个数填入表如图.③十字框框住的5个数之和不能等于2055,因为由(2)知,此时中间的数为411,显然不成立.【点评】本题考查了列代数式的知识,有一定难度,判断出其余4个数与正中间的数的关系是解决本题的难点.24.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当a=﹣2,b=2018,求(3a2b﹣2ab2+4a)﹣2(2a2b﹣3a)+2(ab2+12a2b)﹣1的值”.小明做完后对同桌说:“老师给的条件b=2018是多余的,这道题不给b的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?【分析】原式去括号合并得到最简结果,即可作出判断.【解答】解:(3a2b−2ab2+4a)−2(2a2b−3a)+2(ab2+12a2b)−1=3a2b﹣2ab2+4a﹣4a2b+6a+2ab2+a2b﹣1=10a﹣1,当a=﹣2时,原式=10×(﹣2)﹣1=﹣21.【点评】本题考查整式的化简求值、去括号法则、合并同类项法则等知识,解题的关键是熟练掌握整式是加减法则,属于中考常考题型.25.观察等式找规律:a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;…(1)写出表示a4,a5的等式;(2)写出表示a n的等式(用含有n的式子表示)(3)求1a1+1a2+1a3+⋯+1a2014的值.【分析】(1)根据a1,a2,a3的值,可直接得出a4和a5的值;(2)根据a1=(2×1)2﹣1=(2﹣1)×(2+1),a2=(2×2)2﹣1=(4﹣1)×(4+1),找出规律,可得出a n=(2×n)2﹣1=4n2﹣1=(2n﹣1)(2n+1);(3)根据(2)得出的规律,再找出1a1,1a2,1a3⋯的式子规律,分子不变,为1,分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1,根据这规律把数代入计算即可.【解答】解:(1)∵a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;∴a4=82﹣1=7×9;a5=102﹣1=9×11;(2)∵a1=(2×1)2﹣1=(2﹣1)×(2+1),a2=(2×2)2﹣1=(4﹣1)×(4+1),a3=(2×3)2﹣1=(6﹣1)×(6+1),…,a n=(2×n)2﹣1=4n2﹣1=(2n﹣1)(2n+1);(3)∵a1=22﹣1=1×3;a2=42﹣1=3×5;a3=62﹣1=5×7;∴1a1=1−13,1a2=13−15,1a3=15−17,∴1a1+1a2+1a3+⋯+1a2014=1−13+13−15+15−17+⋯+14027−14029=1−1 4029=40284029.【点评】此题考查了数字的变化规律,通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.26.观察下面三行数:﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③(1)第①行数的第7个数是﹣128;(2)第②行数的第n个数是(﹣1)n•2n﹣2,第③行数的第n个数是(﹣1)n+1•2n+1;(3)取每行的第k个数,若三个数的和等于255,求k的值.【分析】(1)根据题目中数字的特点,可以写出第①行数的第7个数;(2)根据题目中的数字,可以写出第②行数的第n个数和第③行数的第n个数;(3)根据题意,可以列出相应的方程,从而可以求得k的值.【解答】解:(1)∵﹣2,4,﹣8,16,﹣32,64,…;①∴这行数的第n个数为:(﹣1)n•2n,∴当n=7时,这个数为:(﹣1)7•27=﹣128,故答案为:﹣128;(2)∵﹣2,4,﹣8,16,﹣32,64,…;①﹣4,2,﹣10,14,﹣34,62,…;②3,﹣3,9,﹣15,33,﹣63,…③∴第②行中的每个数都是对应的第①行的数字减2得到的,第③的数字都是对应的第②行数字的相反数减1得到的,∴第②行数的第n个数是:(﹣1)n•2n﹣2,第③行数的第n个数是﹣[(﹣1)n•2n﹣2]﹣1=(﹣1)n+1•2n+1,故答案为:(﹣1)n•2n﹣2,(﹣1)n+1•2n+1;(3)设这三个数为:(﹣1)k•2k,(﹣1)k•2k﹣2,(﹣1)k+1•2k+1,由题意可得,(﹣1)k•2k+(﹣1)k•2k﹣2+(﹣1)k+1•2k+1=255,解得k=8,即k的值是8.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数据.。
人教版七年级上册期中考试数学试卷及详细答案解析(共5套)
人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。
初一数学期中重点题型汇总
初一数学期中重点题型汇总题目1:选择题:下列选项中,哪个是素数?A. 4B. 7C. 10D. 13题目2:填空题:请写出3的倍数的个位数规律。
题目3:判断题:11是质数。
(对/错)题目4:解答题:计算下列算式的结果:15 - 7 + 12 - 3题目5:选择题:下列选项中,哪个是偶数?A. 5B. 8C. 11D. 13题目6:填空题:请写出10以内所有偶数的和。
题目7:判断题:两个质数的和一定是偶数。
(对/错)题目8:解答题:计算下列算式的结果:24 ÷ 3题目9:选择题:下列选项中,哪个是合数?A. 4B. 9C. 11D. 13题目10:填空题:请写出10以内所有奇数的和。
题目11:判断题:一个数的倍数一定是合数。
(对/错)题目12:解答题:计算下列算式的结果:18 + 6 - 4题目13:选择题:下列选项中,哪个是质数?A. 14B. 17C. 18D. 19题目14:填空题:请写出10以内所有合数的和。
题目15:判断题:一个数的因数一定是质数。
(对/错)题目16:解答题:计算下列算式的结果:27 ÷ 3题目17:选择题:下列选项中,哪个是质数?A. 20B. 23C. 24D. 25题目18:填空题:请写出10以内所有质数的和。
题目19:判断题:一个数的倍数一定是合数。
(对/错)题目20:解答题:计算下列算式的结果:16 + 8 - 2题目21:选择题:下列选项中,哪个是合数?A. 26B. 29C. 30D. 31题目22:填空题:请写出10以内所有质数的和。
题目23:判断题:一个数的因数一定是质数。
(对/错)题目24:解答题:计算下列算式的结果:21 ÷ 3题目25:选择题:下列选项中,哪个是质数?A. 32B. 35C. 36D. 37题目26:填空题:请写出10以内所有合数的和。
题目27:判断题:一个数的倍数一定是质数。
(对/错)题目28:解答题:计算下列算式的结果:24 + 9 - 6题目29:选择题:下列选项中,哪个是合数?A. 38B. 41C. 42D. 43题目30:填空题:请写出10以内所有质数的和。
七年级数学期中必考题1
七年级数学期中必考题
七班级数学期中必考题
导语:当今尖端科学的讨论需要数学,大规模的社会化生产倚重于数学,新世纪许多重要的开展讨论都需要通过数学模型进行探索……以下是为大家精心整理的七班级数学期中必考题,欢迎大家参考!
1、-2的倒数是( )
A.2
B.-2
C.
D.
2、在实数-2,0,2,3中,最小的`实数是( )
A.-2
B.0
C.2
D.3
3、甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )
A.1℃~3℃
B.3℃~5℃
C.5℃~8℃
D.1℃~8℃
4、在数0.25,﹣,7,0,﹣3,100中,正数的个数是( )
A.1个
B.2个
C.3个
D.4个
5、实数a在数轴上的位置如图所示,则下列说法不正确的是( )
A.a的相反数大于2
B.a的相反数是2
C.|a|2
D.2a0
6、多项式2x2y3﹣5xy2﹣3的次数和项数分别是( )
A.5,3
B.5,2
C.8,3
D.3,3
7、若单项式﹣3 b与b是同类项,则常数m的值为( )
A.﹣3
B.4
C.3
D.2
8、若代数式2 +3x的值是5,则代数式4 +6x﹣9的值是( )
A.10
B.1
C.﹣4
D.﹣8
9、随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次降价20%,现售价为b元,则原售价为( )
A.( )元
B.( )元
C.( )元
D.( )元。
浙教版七年级数学下册期中常考题精选01(解析版)
………订………___________考号:______……○……………………浙江省七年级第二学期数学期中常考题精选01考试时间:90分钟;满分:100学校:___________姓名:___________班级:___________考号:___________ 注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共30分)1.(本题3分)(2021·浙江丽水·七年级期末)如图,下列各角与A ∠是同位角的是( )A .1∠B .2∠C .3∠D .4∠【答案】C 【解析】 【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.据此解答即可. 【详解】直线AB ,DE 被直线AC 所截而成的角中,∠A 与∠3在两直线的同侧,并且在截线的同旁,所以∠A 的同位角是∠3. 故选:C . 【点睛】本题主要考查了同位角的识别,解题时注意:同位角的边构成“F “形,内错角的边构成“Z“形,同旁内角的边构成“U ”形.2.(本题3分)(2021·浙江丽水·七年级期末)已知21x y =⎧⎨=⎩是方程3ax y -=,则a 的值为( )【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数a 的一元一次方程,从而可以求出a 的值. 【详解】把21x y =⎧⎨=⎩代入方程3ax y -=,得2a -1=3, 解得a =2. 故选 A . 【点睛】解题关键是把方程的解代入原方程,使原方程转化为以系数a 为未知数的方程.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.3.(本题3分)(2021·浙江嘉兴·七年级期末)计算x •x 2,结果正确的是( ) A .x 2 B .x 3C .x 4D .x 5【答案】B 【解析】 【分析】根据同底数幂的乘法法则,即可求解. 【详解】 解:x •x 2= x 1+2= x 3, 故选B . 【点睛】本题主要考查同底数幂的乘法法则,掌握同底数幂相乘,底数不变指数相加,是解题的关键.4.(本题3分)(2021·浙江·嵊州市初级中学七年级期中)如果2925x kx -+是一个完全平方式,那么k 的值是( ). A .15± B .15C .30±D .3装…………○………姓名:___________班级:_______………○…………线…………○由题意可知首末两项是3x 和5的平方,那么中间项为加上或减去3x 和5的乘积的2倍即可求解. 【详解】解:∠9x 2−kx +25是一个完全平方式, ∠-kx =(±2)×3x ×5,则k =±30. 故选:C . 【点睛】本题主要考查完全平方公式,熟练掌握并根据两平方项确定出这两个数,再根据乘积二倍项求解.5.(本题3分)(2021·浙江温州·七年级阶段练习)下列四个选项的图形不能由12∠=∠得到a b ∥的是( )A .B .C .D .【答案】A 【解析】 【分析】根据平行线的判定条件:同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,进行逐一判断即可. 【详解】解:A 、1∠与2∠不是同位角,不是内错角,也不是同旁内角,则由1∠=2∠不能得到a b ∥,故此选项符合题意;B 、如图所示,12∠=∠,23∠∠=,13∠∠∴=,∠a b ∥(同位角相等,两直线平行),故此选项不符合题意;C 、12∠=∠,∠a b ∥(内错角相等,两直线平行),故此选项不符合题意;线…………○…○…………装………故选:A .【点睛】本题主要考查了平行线的判定,对顶角的性质,熟知平行线的判定条件是解题的关键. 6.(本题3分)(2021·浙江嘉兴·七年级期末)用加减消元法解二元一次方程组7329x y x y -=⎧⎨-=⎩①②时,下列方法中能消元的是( ) A .∠×2+∠ B .∠×2﹣∠C .∠×3+∠D .∠×(﹣3)﹣∠ 【答案】B 【解析】 【分析】根据∠×2+∠得出5x −4y =23,即可判断A ;根据∠×2−∠得出−x =5,即可判断B ;根据∠×3+∠得出6x −5y =30,即可判断C ;根据∠×(−3)−∠得出−6x −y =−3,即可判断D . 【详解】解答:解:A .7329x y x y -=⎧⎨-=⎩①②, ∠×2+∠,得5x −4y =23,不能消元,故本选项不符合题意;B .7329x y x y -=⎧⎨-=⎩①②,∠×2−∠,得−x =5,能消元,故本选项符合题意;C .7329x y x y -=⎧⎨-=⎩①②,∠×3+∠,得6x −5y =30,不能消元,故本选项不符合题意;D .7329x y x y -=⎧⎨-=⎩①②,∠×(﹣3)﹣∠,得−6x +5y =−30,不能消元,故本选项不符合题意; 故选:B .本题考查了解二元一次方程组,通过加减消元法能把二元一次方程组转化成一元一次方程是解此题的关键.7.(本题3分)(2021·浙江·新昌县拔茅中学七年级期中)若方程(x +a )(x -1)=x 2+bx -4,则( ) A .a =-4,b =-3 B .a =-4,b =3C .a =4,b =-3D .a =4,b =3【答案】D 【解析】 【分析】根据多项式乘多项式法则计算(x +a )(x -1)=x 2+(a -1)x -a ,由(x +a )(x -1)=x 2+bx -4可得a -1=b 且-a =-4,据此得出a 、b 的值. 【详解】解:(x +a )(x -1)=x 2-x +ax -a =x 2+(a -1)x -a , ∠(x +a )(x -1)=x 2+ bx -4, ∠a -1=b 且-a =-4,, 即a =4, b =3, 故选:D 【点睛】本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.8.(本题3分)(2021·浙江衢州·七年级期末)已知关于x ,y 的方程组2464x y a x y a +=-⎧⎨-=⎩,给出下列结论:∠62x y =⎧⎨=-⎩是原方程组的一个解;∠当a =-2时,x ,y 的值互为相反数;∠当a =1时,方程组的解也是方程x +y =4-a 的解;∠x ,y 间的数量关系是22153x y +=.其中正确的是( ) A .∠∠∠ B .∠∠∠C .∠∠∠D .∠∠∠∠【答案】A 【解析】 【分析】∠将x=6,y=-2代入检验即可做出判断;∠将a=-2代入方程组求出方程组的解即可做出判断;∠将a=1代入方程组求出方程组的解,代入方程中检验即可;∠消去a 得到关于x【详解】∠将x=5,y=-1代入方程组得:12866(2)4aa -=-⎧⎨--=⎩,解得:a=2,本选项正确;∠将a=-2代入方程组得:246(2)4(2)x y x y +=--⎧⎨-=⨯-⎩,解得:44x y =-⎧⎨=⎩, 则x 与y 互为相反数,本选项正确;∠将a=1代入方程组得:246141x y x y +=-⎧⎨-=⨯⎩,解得:7212x y ⎧=⎪⎪⎨⎪=-⎪⎩, 将7212x y ⎧=⎪⎪⎨⎪=-⎪⎩代入方程x +y =4-1得:3=3,是方程x+y=3的解,本选项正确;∠2464x y a x y a +=-⎧⎨-=⎩①②,由∠得:a=6-2x-4y,代入∠得:x-y=4(6-2x-4y ), 整理得:35188x y +=,本选项错误,则正确的选项为∠∠∠. 故选:A . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.(本题3分)(2021·浙江绍兴·七年级期中)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )…………订………………○……级:___________考号:____…………○………………………装…………○A .60°和135°B .60°和105°C .105°和45°D .以上都有可能【答案】D 【解析】 【分析】根据题意画出图形,再由平行线的性质定理即可得出结论. 【详解】 解:如图当AC ∠DE 时,45BAD DAE ∠=∠=︒; 当BC ∠AD 时,60DAB B ∠=∠=︒; 当BC ∠ AE 时,∠60EAB B ∠=∠=︒,∠4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒; 当AB ∠DE 时,∠ 90E EAB ∠=∠=︒, ∠4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒. 故选:D . 【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.10.(本题3分)(2021·浙江·七年级期末)有两个正方形A ,B ,现将B 放在A 的内部如图甲,将A ,B 并排放置后构造新的正方形如图乙.若图甲和图乙中阴影部分的面积分别为310和215,则正方形A ,B 的面积之和为( )……线…………○……………○…………装…………○A .4B .4.5C .5D .5.5【答案】B 【解析】 【分析】设A 、B 正方形的面积分别为a 、b , ,再根据题意列式求得2310=、215,然后根据a +b =2+【详解】解:设A 、B 正方形的面积分别为a 、b , 由图甲可得:2310=由图乙可得:2215a b --=,即:215a +b =2321454510510.++==. 故选B . 【点睛】本题主要考查了完全平方公式在图形面积中的应用,根据图形列出等量关系是解答本题的关键.第II 卷(非选择题)二、填空题(共21分)11.(本题3分)(2021·浙江·七年级期中)计算:()224xy y -⋅=_____. 【答案】38xy - 【解析】 【分析】根据单项式乘单项式法则计算.……○…………学校:__________…………○…………订解:()224xy y -⋅ =38xy -故答案为:38xy -. 【点睛】本题考查了单项式乘单项式运算,解题的关键是掌握运算法则.12.(本题3分)(2021·浙江省衢州市衢江区实验中学七年级期末)已知方程3x ﹣y =6,用含x 的代数式表示y :___. 【答案】y =3x -6 【解析】 【分析】将含x 的项移到方程的右边,再两边除以-1即可得. 【详解】 解:∠3x -y =6, ∠-y =6-3x , y =3x -6,故答案为:y =3x -6. 【点睛】本题主要考查解二元一次方程,熟练掌握等式的基本性质是解题的关键.13.(本题3分)(2021·浙江·七年级期中)如图,将三角形ABC 平移得到三角形DEF ,点A 的对应点D 落在AC 上,若10AF,2DC =,则BE 的长为________.【答案】4 【解析】 【分析】根据平移的性质可知AD CF BE ==,结合已知条件即可求得答案. 【详解】将三角形ABC 平移得到三角形DEF ,则10AD DC CF AF ++==, 2DC =,4AD CF ∴==,4BE ∴=,故答案为4. 【点睛】本题考查了平移的性质,掌握平移的性质是解题的关键.14.(本题3分)(2021·浙江宁波·七年级期中)计算:(15x 3y 5﹣10x 4y 4﹣20x 3y 2)÷(﹣5x 3y 2)=___. 【答案】32324y xy -++ 【解析】 【分析】根据多项式除以单项式法则计算即可. 【详解】解:()()354432321510205x y x y x y x y ÷--- =32324y xy -++故答案为:32324y xy -++. 【点睛】本题考查了多项式除以单项式,解题的关键是掌握运算法则.15.(本题3分)(2021·浙江台州·七年级期末)某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x 个,足球y 个,则可列方程组为________.【答案】115080700x y x y +=⎧⎨+=⎩ 【解析】 【分析】根据“用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个”,找到等量关系列出方程即可. 【详解】解:设购买篮球x 个,购买足球y 个,根据“足球和篮球共11个”可x +y =11;……订………_________考号:_____……○……………………即50x +80y =700,因此可得方程组:115080700x y x y +=⎧⎨+=⎩, 故答案为:115080700x y x y +=⎧⎨+=⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.16.(本题3分)(2021·浙江宁波·七年级期中)如图,已知//AB CD ,BF 平分ABE ∠,//BF DE ,且40D ∠=︒,则BED ∠的度数为______.【答案】140° 【解析】 【分析】延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得∠D =∠AGD ,再根据两直线平行,同位角相等可得∠AGD =∠ABF ,然后根据角平分线的定义得∠EBF =∠ABF ,再根据平行线的性质解答. 【详解】解:如图,延长DE 交AB 的延长线于G , ∠//AB CD ,∠∠D =∠AGD =40°, ∠BF //DE ,∠∠AGD =∠ABF =40°, ∠BF 平分∠ABE , ∠∠EBF =∠ABF =40°, ∠BF //DE ,∠∠BED =180°﹣∠EBF =140°. 故答案为:140°.……○…………订……………○……________班级:___________考号:○…………线…………○…………………装…………○【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键. 17.(本题3分)(2021·浙江湖州·七年级期末)建党100周年主题活动中,702班浔浔设计了如图1的“红色徽章”其设计原理是:如图2,在边长为a 的正方形EFGH 四周分别放置四个边长为b 的小正方形,构造了一个大正方形ABCD ,并画出阴影部分图形,形成了“红色徽章”的图标.现将阴影部分图形面积记作1S ,每一个边长为b 的小正方形面积记作2S ,若126S S =,则ab的值是______.【答案】74【解析】 【分析】根据图形中阴影部分均为三角形,利用三角形面积公式,找到底和高可求出DGI ∆与MNC ∆面积,求KMD ∆面积使用正方形面积减去三个三角形面积,可求得1S ,2S ,利用已知条件进行多项式的化简即可得出答案. 【详解】如图所示,对需要的交点标注字母:……线…………○……内…………○…………装…………○()2111222DGI S a b b ab b ∆=+⨯=+, KMD ABCD DMC DKA KBM S S S S S ∆∆∆∆=---()()()()()22111222222a b a b a b a b a b b =+-++-++- 232ab b =+,()2111222MNC S a b b ab b ∆=+⨯=+, ∴21522DGI KMD MNC S S S S ab b ∆∆∆=++=+,22S b =,∵126S S =, ∴225262ab b b +=,化简得:722a b =, ∴74a b =, 故答案为:74.【点睛】题目考察阴影部分面积的实质是对多项式之间的化简求值,求出各部分阴影面积是题目难点.三、解答题(共49分)18.(本题6分)(2020·浙江金华·七年级期末)解下列方程组:(1)27532x y x y +=⎧⎨+=-⎩;(2)2333211x y x y +=⎧⎨-=⎩ 【答案】(1)11x y =-⎧⎨=⎩;(2)31x y =⎧⎨=-⎩【解析】 【分析】(1)这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元,可以对方程变形,使得这两个方程中某个未知数的系数相反或相等,进而利用加减消元法求解;(2)这两个方程中没有同一个未知数的系数相反或相等,直接加减这两个方程不能消元,可以对方程变形,使得这两个方程中某个未知数的系数相反或相等,进而利用加减消元法求解; 【详解】(1)27 5...3 2...x y x y +=⎧⎨+=-⎩①②, ∠×3,得62115x y +=∠, ∠×2,得624x y +=-∠, ∠-∠,得1919y =, 1y =,把1y =代入∠,得275x +=,22x =-,1x =-,∠这个方程组的解是:11x y =-⎧⎨=⎩;(2)23 3...3211...x y x y +=⎧⎨-=⎩①②, ∠×2,得466x y +=∠, ∠×3,得9633x y -=∠, ∠+∠,得1339x =,3x =,把3x =代入∠,得633y +=, 33y =-, 1y =-,∠这个方程组的解是:31x y =⎧⎨=-⎩.【点睛】…○…………装…学校:___________姓名:…………○…………订…………本题考查了二元一次方程组,解题的关键是熟练运用代入法和消元法求解二元一次方程组.19.(本题6分)(2019·浙江·温州市第二十三中学七年级期中)先化简,再求值:2(2)(2)(21)x x x --+-,其中1x =-.【答案】276x x --+;12. 【解析】 【分析】根据整式的运算法则化简,再代入x 即可求解. 【详解】2(2)(2)(21)x x x --+-=2244242x x x x x -+-+-+ =276x x --+把x =-1代入,原式=-1+7+6=12. 【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法运算法则.20.(本题8分)(2021·浙江·浦江县实验中学七年级期末)在正方形网格中,每个小正方形的边长均为1个单位长度,∠ABC 的三个顶点A ,B ,C 都在格点(正方形网格的交点称为格点).现将∠ABC 平移,使点A 平移到点D ,点E 、F 分别是B 、C 的对应点.(1)在图中请画出平移后的∠DEF ,并求出∠DFF 的面积是 ;(2)在网格中找格点P (A 点除外),使S △ABC =S △BCP ,这样的格点P 有 个. 【答案】(1)画图见解析,7 (2)画图见解析,4 【解析】 【分析】(1)根据点A 、D 得出平移方式;点B 、C 按同样的方式平移即可;取点K 、M 、N 与B 点构成正方形,由面积关系即可解答;…………○…………装…………订…………○…学校:___________姓名::___________考号:___________………装…………○…………订…………………○……………………○………(2)利用平行线之间的距离相等;B 点沿线段AC 的方向和长度平移到点P 1,则∠ABC 的面积等于∠P 1BC 的面积;再过A 点,P 1点,作BC 的平行线即可. (1)解:如图,点B 、C 分别向下平移2个单位长度,再向右平移6个单位长度得到点E 、F ,连接对应线段则∠DEF 即为所求三角形;点K 、M 、N 都在格点上,则∠DEF 的面积=∠ABC 的面积=正方形KBMN 的面积-∠KBA 面积-∠BMC 面积-∠CNA 面积, ∠∠DEF 面积=16-4-2-3=7;(2)解:有4个;如图B 点沿线段AC 的方向和长度平移到点P 1;P 1点沿线段BC 的方向和长度平移到点P 2;P 2点沿线段BC 的方向和长度平移到点P 3;A 点沿线段BC 的方向和长度平移到点P 4;P 1、P 2、P 3、P 4即为所求点.【点睛】本题考查了平移作图,平行线间的距离特征;掌握平移作图的步骤是解题关键. 21.(本题8分)(2020·浙江宁波·七年级期中)如图,某校有一块长为(3)a b +米,宽为(2)a b +米的长方形空地,中间是边长()a b +米的正方形草坪,其余为活动场地,学校计划将活动场地(阴影部分)进行硬化.…线…………○…………○…………装…………○(1)用含a ,b 的代数式表示需要硬化的面积并化简; (2)当5a =,2b =时,求需要硬化的面积. 【答案】(1)5a 2+3ab (2)155平方米 【解析】 【分析】(1)硬化面积是大长方形的面积减去小正方形的面积; (2)把5a =,2b =代入求值即可; (1)解:由图得,阴影面积=(3a +b )×(2a +b )-(a +b )2=6a 2+3ab +2ab +b 2-a 2-2ab -b 2=5a 2+3ab (2)解:当5a =,2b =时,阴影面积=5×52+3×5×2=155(平方米), 答:需要硬化的面积是155平方米. 【点睛】本题考查了多项式的乘法混合运算,乘方的运算法则,完全平方公式的展开,结合图形准确列出阴影面积的代数式是解题关键.22.(本题9分)(2021·浙江杭州·七年级期中)某场足球赛,价格为成人票50元/张,儿童票20元/张;门票总收入为7700元.(1)若售票总数160张,求售出的成人票张数. (2)设售出门票总数a 张,其中儿童票b 张. ∠求a ,b 满足什么数量关系;∠若售出的门票中成人票比儿童票的7倍还多6张,求b 的值.【答案】(1)成人票售出150张;(2)①5a﹣3b=770;②b的值为20.【解析】【分析】(1)设成人票售出x张,则儿童票售出(160﹣x)张,然后根据题意列出方程求解即可;(2)∠依题意得成人票售出(a﹣b)张,然后根据题意列出方程求解即可;∠依题意得成人票售出(a﹣b)张,然后根据题意列出方程求解即可.【详解】解:(1)设成人票售出x张,则儿童票售出(160﹣x)张,依题意得:50x+20(160﹣x)=7700,解得:x=150.答:成人票售出150张.(2)∠依题意得:成人票售出(a﹣b)张,∠50(a﹣b)+20b=7700,∠50a﹣30b=7700,∠a与b关系为:5a﹣3b=770.∠依题意得:成人票售出(a﹣b)张,∠a﹣b=7b+6则a﹣8b=6,又∠5a﹣3b=770,∠5377086a ba b-=⎧⎨-=⎩,解得:16620 ab=⎧⎨=⎩∠b的值为20.【点睛】本题主要考查了一元一次方程和二元一次方程组的实际应用,解题的关键在于能够准确找到等量关系列出方程求解.23.(本题12分)(2021·浙江杭州·七年级期中)已知,AB∠CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)外…………○…………○…………线………学校考号:___________○…………装…………………………○…………内…………○…………(2)如图3中,NE 平分∠FND ,MB 平分∠FME ,且2∠E +∠F =180°,求∠FME 的度数; (3)如图4中,∠BME =60°,EF 平分∠MEN ,NP 平分∠END ,且EQ ∠NP ,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ 的度数.【答案】(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30° 【解析】 【分析】(1)过E 作EH ∠AB ,易得EH ∠AB ∠CD ,根据平行线的性质可求解;过F 作FH ∠AB ,易得FH ∠AB ∠CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF -∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解. 【详解】解:(1)过E 作EH ∠AB ,如图1,∠∠BME =∠MEH , ∠AB ∠CD , ∠HE ∠CD , ∠∠END =∠HEN ,∠∠MEN =∠MEH +∠HEN =∠BME +∠END ,订…………○…考号:___________………………○………即∠BME =∠MEN ﹣∠END . 如图2,过F 作FH ∠AB , ∠∠BMF =∠MFK , ∠AB ∠CD , ∠FH ∠CD , ∠∠FND =∠KFN ,∠∠MFN =∠MFK ﹣∠KFN =∠BMF ﹣∠FND , 即:∠BMF =∠MFN +∠FND .故答案为∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND . (2)由(1)得∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND . ∠NE 平分∠FND ,MB 平分∠FME ,∠∠FME =∠BME +∠BMF ,∠FND =∠FNE +∠END , ∠2∠MEN +∠MFN =180°,∠2(∠BME +∠END )+∠BMF ﹣∠FND =180°, ∠2∠BME +2∠END +∠BMF ﹣∠FND =180°, 即2∠BMF +∠FND +∠BMF ﹣∠FND =180°, 解得∠BMF =60°,∠∠FME =2∠BMF =120°;(3)∠FEQ 的大小没发生变化,∠FEQ =30°. 由(1)知:∠MEN =∠BME +∠END , ∠EF 平分∠MEN ,NP 平分∠END ,∠∠FEN =12∠MEN =12(∠BME +∠END ),∠ENP =12∠END , ∠EQ ∠NP , ∠∠NEQ =∠ENP ,∠∠FEQ =∠FEN ﹣∠NEQ =12(∠BME +∠END )﹣12∠END =12∠BME , ∠∠BME =60°,∠∠FEQ =12×60°=30°.本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.。
七年级期中数学难点题型(一)
期中重难点题型(一)1.(市外期中)已知31=+mm ,则441mm+的值是( )A 、9B 、49C 、47D 、1 2.(市外期中)若0113x x 2=+-,则=+22x1x(A) 132 (B)169 (C)167 (D) 1713.(市外期中)已知:61-=-=+xy y x 且 求:的值。
及y x y x -+224.(市外期中)已知x 的值满足式子01x x 2=-+,求234016x2008x +的值5.(实验期中)阅读下文,寻找规律:已知1x ≠,观察下列各式:()()2111x x x -+=-,()()23111x x x x -++=-,()()234111x x x x x -+++=-…(1)填空:()1(x - 8)1x =-.(2)观察上式,并猜想:①()()211n x x x x -+++⋅⋅⋅+=____ __.②()()10911x x x x -++⋅⋅⋅++=_________. (3)根据你的猜想,计算:①()()234512122222-+++++=______. ② 234200712222...2++++++=______.6.(实验期中)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为(2)观察图②,三个代数式(m+n)2,(m-n)2,mn之间的等量关系是8.如图,AD是△ABC的角平分线,∠3=∠4,∠5=∠6,EF⊥BC于E。
(1)若∠ABC=36°,∠ACB=100°,则∠8=°,∠7=°。
(2)若∠ABC=40°,∠ACB=80°,则∠8=°,∠7=°。
(3)猜想:∠8与∠7的大小关系。
10.现有两块大小相同的直角三角板△ABC 、△DEF ,∠ACB=∠DFE=90°,∠A=∠D=30°.①将这两块三角板摆成如图a 的形式,使B 、F 、E 、A 在同一条直线上,点C 在边DF 上,DE 与AC 相交于点G ,试求∠AGD 的度数;②将图a 中的△ABC 固定,把△DEF 绕着点F 逆时针旋转成如图b 的形式,当旋转的角度等于多少度时,DF ∥AC ?并说明理由.12.(难题)在Rt△ABC中,∠ACB=90°,∠ABC=45°,点E在线段BC上,射线ED⊥AB于点D.(1)如图,点F在线段DE上,过点F作MN∥BC,分别交AB、AC于点M、N,点G在线段AF上,且∠GFN=∠GNF,∠GDF=∠GFD. ①试判断线段DG与NG有怎样的位置关系,直接写出你的结论②求证:∠1=∠2(2)如图2,点F在线段ED的延长线上,过F作FN∥BC,分别交AB、AC于点M、N,点G在线段AF上 且∠GFN=∠GNF,∠GDF=∠GFD.探究线段DG与NG的位置关系,并说明理由.13.已知:如图, 中, ,记 ,AD 为 的角平分线,M 为DC 上一点,ME 与AD 所在的直线垂直,垂足为E.(1)用 的代数式表示 的值;(2)若点M 在射线BC 上运动(不与点D 重合),其它条件不变, 的大小是否随点M 的位置变化而14(1含a (2为S (3为3S △ABC ∆ACB ABC ∠=∠ACB ABC α∠-∠=ABC ∆DM E ∠αDM E ∠15.(本题12分)如图甲,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠B=30°,∠C=70°,则∠DAE=________.(2)若∠C-∠B=30°,则∠DAE=________.(3)若∠C-∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).(4)如图乙,当∠C<∠B时我发现上述结论不成立,但为了使结论的统一与完美,我们不妨规定:角度也有正负,规定顺时针为正,逆时针为负.例如:∠DAE=-18°,则∠EAD=18°.作出上述规定后,上述结论还成立吗?___________.16.。
七年级期中重点试卷数学
一、选择题(每题5分,共25分)1. 已知等腰三角形底边长为8,腰长为10,则该等腰三角形的面积是()A. 40B. 45C. 50D. 602. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)3. 如果一个数是正数,那么它的平方根是()A. 负数B. 正数C. 零D. 无法确定4. 已知一个数的平方是16,那么这个数是()A. 4B. -4C. ±4D. 05. 下列函数中,y是x的函数的是()A. y = x + 1B. y = x^2C. y = x^3D. y = x^4二、填空题(每题5分,共25分)6. 如果a^2 = b^2,那么a和b的关系是______。
7. 下列数中,有理数是______。
8. 已知x + y = 5,x - y = 3,那么x的值是______。
9. 一个正方形的边长是2,那么它的周长是______。
10. 在直角坐标系中,点P(-3,4)关于原点的对称点是______。
三、解答题(每题10分,共30分)11. 解方程:3x - 5 = 2x + 1。
12. 已知等腰三角形底边长为6,腰长为8,求该等腰三角形的面积。
13. 已知一次函数y = kx + b的图象经过点A(1,2)和点B(3,6),求该函数的解析式。
四、应用题(每题15分,共30分)14. 小明家有一块长方形菜地,长为30米,宽为20米。
现在要在这块菜地上建一个长方形花坛,花坛的长是菜地长的2/5,宽是菜地宽的1/3。
求花坛的面积。
15. 小华有一批货物,共有100箱,每箱重50千克。
现在要将其运往仓库,仓库门口的斜坡长20米,高10米。
若每箱货物上斜坡时,每提高1米需要消耗5千克的能量,求小华运完这批货物共消耗了多少能量。
七年级重点数学期中测试卷
1.下列各数中,绝对值最小的是()A. -3B. 3C. -2D. 22.下列各式中,正确的是()A. a^2 = aB. (a+b)^2 = a^2 + b^2C. (a+b)(a-b) = a^2 - b^2D. a^2 + b^2 = (a+b)^23.下列各式中,正确的是()A. (a+b)^2 = a^2 + 2ab + b^2B. (a-b)^2 = a^2 - 2ab + b^2C.(a+b)(a-b) = a^2 + 2ab - b^2 D. (a-b)(a+b) = a^2 - 2ab + b^24.下列各式中,正确的是()A. a^2 + b^2 = (a+b)^2B. a^2 - b^2 = (a+b)^2C. a^2 + b^2 = (a-b)^2D. a^2 - b^2 = (a-b)^25.下列各式中,正确的是()A. a^2 + b^2 = (a+b)^2B. a^2 - b^2 = (a+b)^2C. a^2 + b^2 = (a-b)^2D. a^2 - b^2 = (a-b)^2二、填空题(每题4分,共20分)6.已知:a+b=5,a-b=1,求ab的值。
7.若一个数加上3后,它的倒数是1/2,求这个数。
8.若一个数的平方根是±2,求这个数的值。
9.若一个数的平方是25,求这个数的值。
10.若一个数的平方是4,求这个数的值。
三、解答题(每题10分,共30分)11.已知:a+b=5,ab=6,求a^2 + b^2的值。
12.已知:a^2 + b^2 = 25,ab=6,求a+b的值。
13.已知:a^2 + b^2 = 25,ab=6,求a-b的值。
14.某商品原价是200元,现在打8折,求现价。
15.一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
五、拓展题(每题10分,共10分)16.已知:a^2 + b^2 = 13,ab=6,求a^2 - b^2的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时小卷:七年级数学期中测试重点题型(一)
1.下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A ..①②
B .①③
C .①②③
D . ①②③④
2.下列各式正确的是( )
A .225(5)-=-
B .1996(1)1996-=-
C .2003(1)(1)0---=
D . 99(1)10--=
3.代数式 a 2- 的正确解释是( )
A .a 与 b 的倒数的差的平方
B .a 与 b 的差的平方的倒数
C .a 的平方与 b 的差的倒数
D . a 的平方与 b 的倒数的差
4.用科学记数数表示:1305000000= ;
5.5.47×105精确到 位,有 个有效数字
6.计算:6322111(0.5)[2(3)]0.5338
---÷⨯-----
7.用代数式表示:
(1)一个长方形的周长是 30cm ,若长方形的一边长为a cm ,则该长方形的面积是多少?
(2)某工厂第一个月的生产量是 a ,第二个月比第一个月增长产量b ,第三个月比第二个月增长 10%,问第三个月的产量是多少?
8.如图:正方形的边长为 a 。
(1)用代数式表示阴影的面积。
(2)若 a =2cm 时,求阴影的面积(结果保留π)。