高考经典课时作业5-2 动能和动能定理

合集下载

高考物理一轮复习:5-2《动能和动能定理》ppt课件

高考物理一轮复习:5-2《动能和动能定理》ppt课件

由动能的表达式
Ek=12mv2 知,A、 B、C 错误;动能 是标量,与方向无 关,D 正确.
答案 解析
基础自测 教材梳理 考点突破 题型透析 学科培优 素能提升 课时训练 规范解答
首页 教材梳理
2.(对动能定理的理解)(多选)关于动能定理式的中表W达表式示W总=功Ek,2-是物
Ek1,下列说法正确的是( BC )
体受到的所有力的代数
A.公式中的W为不包含重力的其他力做的和总,功故A错误,B正
B.公式中的W为包含重力在内的所有力做确的;功E,k也2-可E通k1是过动以能下的两
种方式计算:先求每个力的功再内求容功的代数增和量或,先合求外合力外做力正再功求,合
外力的功
动能增加,合外力做负
基础自测 教材梳理 考点突破 题型透析 学科培优 素能提升 课时训练 规范解答 首页 上页 下页 尾页 并通过掷硬币和掷骰子的试验,引入古典概型,通过转盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。教科书首先通过具体实例给出了随机事件的定义,通过抛掷硬币的试验,观察正面朝上的次数和
比例,引出了随机事件出现的频数和频率的定义,并且利用计算机模拟掷硬币试验,给出试验结果的统计表和直观的折线图,使学生观察到随着试验次数的增加,随机事件发生的频率稳定在某个常数附近,从而给出概率的统计定义。概率的意义是本章的重点内容。教科书从几方面解释 概率的意义,并通过掷硬币和掷骰子的试验,引入古典概型,通过转 盘游戏引入几何概型。分别介绍了用计算器和计算机中的Excel软件产生(取整数值的)随机数的方法,以及利用随机模拟的方法估计随机事件的概率、估计圆周率的值、近似计算不规则图形的面积等。

高考物理动能与动能定理试题经典及解析

高考物理动能与动能定理试题经典及解析
(1)玩具滑车到达 点时对 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)一、高中物理精讲专题测试动能与动能定理1.如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量0.04kg m =,电量4310C q -=⨯的带负电小物块与弹簧接触但不栓接,弹簧的弹性势能为0.32J 。

某一瞬间释放弹簧弹出小物块,小物块从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高点B ,并沿轨道BC 滑下,运动到光滑水平轨道CD ,从D 点进入到光滑竖直圆内侧轨道。

已知倾斜轨道与水平方向夹角为37α︒=,倾斜轨道长为2.0m L =,带电小物块与倾斜轨道间的动摩擦因数0.5μ=。

小物块在C 点没有能量损失,所有轨道都是绝缘的,运动过程中小物块的电量保持不变,可视为质点。

只有光滑竖直圆轨道处存在范围足够大的竖直向下的匀强电场,场强5210V/m E =⨯。

已知cos370.8︒=,sin370.6︒=,取210m/s g =,求:(1)小物块运动到A 点时的速度大小A v ; (2)小物块运动到C 点时的速度大小C v ;(3)要使小物块不离开圆轨道,圆轨道的半径应满足什么条件?【答案】(1)4m/s ;(233;(3)R ⩽0.022m 【解析】 【分析】 【详解】(1)释放弹簧过程中,弹簧推动物体做功,弹簧弹性势能转变为物体动能212P A E mv =解得220.324m/s 0.04P A E v m ===⨯ (2)A 到B 物体做平抛运动,到B 点有cos37A Bvv ︒= 所以45m/s 0.8B v == B 到C 根据动能定理有2211sin37cos3722C B mgL mg L mv mv μ︒-︒⋅=- 解得33m/s C v =(3)根据题意可知,小球受到的电场力和重力的合力方向向上,其大小为F=qE-mg =59.6N所以D 点为等效最高点,则小球到达D 点时对轨道的压力为零,此时的速度最小,即2Dv F m R=解得D FRv m=所以要小物块不离开圆轨道则应满足v C ≥v D 得:R ≤0.022m2.在光滑绝缘的水平面上,存在平行于水平面向右的匀强电场,电场强度为E ,水平面上放置两个静止、且均可看作质点的小球A 和B ,两小球质量均为m ,A 球带电荷量为Q +,B 球不带电,A 、B 连线与电场线平行,开始时两球相距L ,在电场力作用下,A 球与B 球发生对心弹性碰撞.设碰撞过程中,A 、B 两球间无电量转移.(1)第一次碰撞结束瞬间A 、B 两球的速度各为多大?(2)从开始到即将发生第二次碰撞这段过程中电场力做了多少功?(3)从开始到即将发生第二次碰撞这段过程中,若要求A 在运动过程中对桌面始终无压力且刚好不离开水平桌面(v=0时刻除外),可以在水平面内加一与电场正交的磁场.请写出磁场B 与时间t 的函数关系.【答案】(1)10A v '= 12BQEL v m='5QEL (3) 222B mL Q E t QE =⎛⎫- ⎪⎝⎭223mL mLt QE QE<≤ 【解析】(1)A 球的加速度QE a m =,碰前A的速度1A v =B 的速度10B v = 设碰后A 、B 球速度分别为'1A v 、'1B v ,两球发生碰撞时,由动量守恒和能量守恒定律有:''111A A B m m m v v v =+,2'2'2111111222A AB m m m v v v =+所以B 碰撞后交换速度:'10A v =,'11B A v v ==(2)设A 球开始运动时为计时零点,即0t =,A 、B 球发生第一次、第二次的碰撞时刻分别为1t 、2t;由匀变速速度公式有:110A avt -==第一次碰后,经21t t -时间A 、B 两球发生第二次碰撞,设碰前瞬间A 、B 两球速度分别为2A v 和2B v ,由位移关系有:()()2'1212112B av t t t t -=-,得到:213tt == ()2211122A A a a v t t t v =-===;'21B B v v = 由功能关系可得:222211=522A B m m QEL W v v +=电(另解:两个过程A 球发生的位移分别为1x 、2x ,1L x =,由匀变速规律推论24L x =,根据电场力做功公式有:()125W QE QEL x x =+=) (3)对A 球由平衡条件得到:A QB mg v =,A at v =,QEa m=从A 开始运动到发生第一次碰撞:()220t mg g t Qat Et m B Q ⎛==<≤ ⎝ 从第一次碰撞到发生第二次碰撞:()2t t B =<≤ 点睛:本题是电场相关知识与动量守恒定律的综合,虽然A 球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.3.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m 的半圆柱体A 紧靠挡板放在斜面上,质量为2m 的圆柱体B 放在A 上并靠在挡板上静止。

课时作业23:5.2动能定理及应用

课时作业23:5.2动能定理及应用

课时限时练(限时:40分钟)对点练1动能定理的理解1.(多选)关于动能定理的表达式W=E k2-E k1,下列说法正确的是()A.公式中的W为不包含重力的其他力做的总功B.公式中的W为包含重力在内的所有力做的功,也可通过以下两种方式计算:先求每个力的功再求功的代数和或先求合力再求合力的功C.公式中的E k2-E k1为动能的增量,当W>0时动能增加,当W<0时,动能减少D.动能定理适用于直线运动,但不适用于曲线运动,适用于恒力做功,但不适用于变力做功答案BC2.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,它落到地面时的速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于()A.mgh-12m v2-12m v2B.-12m v2-12m v2-mghC.mgh+12m v2-12m v2D.mgh+12m v2-12m v2答案C解析对物块从h高处竖直上抛到落地的过程,根据动能定理可得mgh-W f=12m v 2-12m v2,解得W f=mgh+12m v2-12m v2,选项C正确。

对点练2动能定理的基本应用3.在篮球比赛中,某位同学获得罚球机会,如图1,他站在罚球线处用力将篮球投出,篮球以约为1 m/s的速度撞击篮筐。

已知篮球质量约为0.6 kg,篮筐离地高度约为3 m,忽略篮球受到的空气阻力,则该同学罚球时对篮球做的功大约为()图1A.1 J B.10 JC.50 J D.100 J答案B解析该同学将篮球投出时的高度约为h1=1.8 m,根据动能定理有W-mg(h-h1)=12m v2,解得W=7.5 J,故选项B正确。

4.(2020·广东惠州市第三次调研)如图2,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直,一小球以速度v从轨道下端滑入轨道,并保证从轨道上端水平飞出,则关于小球落地点到轨道下端的水平距离x与轨道半径R的关系,下列说法正确的是()图2A.R越大,则x越大B.R越小,则x越大C.当R为某一定值时,x才有最大值D.当R为某一定值时,x才有最小值答案C解析设半圆的半径为R,根据动能定理得-mg·2R=12m v′2-12m v2,离开最高点做平抛运动,有2R=12gt2,x=v′t,联立解得x=4R(v2-4gR)g=-16g(R-v28g)2+v44gg可知当R=v28g时,水平位移最大,故C正确。

高考物理一轮复习专题5.2动能和动能定理(精讲)(含解析)

高考物理一轮复习专题5.2动能和动能定理(精讲)(含解析)

专题5.2 动能和动能定理1.掌握动能和动能定理;2.能运用动能定理解答实际问题。

知识点一 动能(1)定义:物体由于运动而具有的能。

(2)公式:E k =12mv 2,v 为瞬时速度,动能是状态量。

(3)单位:焦耳,1 J =1 N·m=1 kg·m 2/s 2。

(4)标矢性:动能是标量,只有正值。

(5)动能的变化量:ΔE k =E k2-E k1=12mv 22-12mv 21。

知识点二 动能定理(1)内容:合外力对物体所做的功等于物体动能的变化。

(2)表达式:W =ΔE k =12mv 22-12mv 21。

(3)物理意义:合外力对物体做的功是物体动能变化的量度。

(4)适用条件①既适用于直线运动,也适用于曲线运动。

②既适用于恒力做功,也适用于变力做功。

③力可以是各种性质的力,既可以同时作用,也可以不同时作用。

考点一 动能定理的理解及应用【典例1】(2018·全国卷Ⅰ·18)如图,abc 是竖直面内的光滑固定轨道,ab 水平,长度为2R ;bc 是半径为R 的四分之一圆弧,与ab 相切于b 点.一质量为m 的小球,始终受到与重力大小相等的水平外力的作用,自a 点处从静止开始向右运动.重力加速度大小为g .小球从a 点开始运动到其轨迹最高点,机械能的增量为( )A .2mgRB .4mgRC .5mgRD .6mgR【答案】C【解析】小球从a 运动到c ,根据动能定理,得F ·3R -mgR =12mv 21,又F =mg ,故v 1=2gR ,小球离开c 点在竖直方向做竖直上抛运动,水平方向做初速度为零的匀加速直线运动.且水平方向与竖直方向的加速度大小相等,都为g ,故小球从c 点到最高点所用的时间t =v 1g =2R g ,水平位移x =12gt 2=2R ,根据功能关系,小球从a 点到轨迹最高点机械能的增量为力F 做的功,即ΔE =F ·(2R +R +x )=5mgR 。

高考物理一轮复习 5.2动能和动能定理课件

高考物理一轮复习 5.2动能和动能定理课件
(2)判断物体受到的重力和摩擦力做功大小. (3)物体初、末状态动能的变化量.
完整版ppt
22
【解析】 由动能定理得 WG+WFN=0,故WFN=mglsinα.
【答案】 mglsinα
完整版ppt
23
运用动能定理应注意的事项 (1)动能定理的研究对象可以是单一物体,或者是可以看作 单一物体的物体系统. (2)当题目中涉及位移和速度而不涉及时间时可优先考虑动 能定理;处理曲线运动中的速率问题时也要优先考虑动能定 理. (3)求变力做功问题优先考虑动能定理.
B.如果合外力对物体所做的功为零,则合外力一定为零 C.物体在合外力作用下做变速运动,动能一定变化 D.物体的动能不变,所受合外力必定为零
完整版ppt
12
解析:由W=Fxcosθ,知F合=0时,W合=0,故A项正确; 由动能定理知合外力做功等于物体动能的变化,若动能不变 化,则合外力做功为零,匀速圆周运动中,动能不变化合外力 做功为零,但合外力不为零,故B、D项错误;匀速圆周运动是 变速运动,动能不变化,故C项错误.
的量度.
完整版ppt
8
4.动能定理的适用条件 (1)动能定理既适用于直线运动,也适用于 曲线运动 ; (2)既适用于恒力做功,也适用于 变力做功 ; (3)力可以是各种性质的力,既可以同时作用,也可以 不同时作用 .
(4)惯性参考系.
完整版ppt
9
基础自测
1.物体做匀速圆周运动时( ) A.速度变化,动能变化 B.速度变化,动能不变 C.速度不变,动能变化 D.速度不变,动能不变
完整版ppt
10
解析:速度是矢量,动能是标量,物体做匀速圆周运动时 速度的方向随时变化,但大小不变,故速度在变,动能不变, 选项B正确.

高考物理一轮复习课时作业【5-2】动能定理及其应用(含答案)

高考物理一轮复习课时作业【5-2】动能定理及其应用(含答案)

开卷速查规范特训课时作业实效精练开卷速查(十七) 动能定理及其应用A组基础巩固1.关于物体的动能,下列说法中正确的是( )A.物体速度变化,其动能一定变化B.物体所受的合外力不为零,其动能一定变化C.物体的动能变化,其运动状态一定发生改变D.物体的速度变化越大,其动能一定也变化越大解析:A选项中若速度的方向变化而大小不变,则其动能不变化,故A错;B选项中物体受合外力不为零,只要速度大小不变,其动能就不变化,如匀速圆周运动中,物体合外力不为零,但速度大小始终不变,动能不变,故B错;C选项中,物体动能变化,其速度一定发生变化,故运动状态改变,C选项正确;D选项中,物体速度变化若仅由方向变化引起时,其动能不变,如匀速圆周运动中,速度变化,但动能始终不变,故D错.答案:C2.一个小物块冲上一固定的粗糙斜面,经过斜面上A、B两点,到达斜面上最高点后返回时,又通过了B、A两点,如图17-1所示,关于物块上滑时由A到B的过程和下滑时由B到A的过程,动能的变化量的绝对值ΔE 上和ΔE下以及所用时间t上和t下相比较,有( )图17-1A.ΔE上<ΔE下,t上<t下B.ΔE上>ΔE下, t上>t下C.ΔE上<ΔE下, t上>t下D.ΔE上>ΔE下, t上<t下解析:ΔE上=W阻+mgh,ΔE下=mgh-W阻,即ΔE上>ΔE下.整个斜面是粗糙的,所以在AB段v上>v下,t上<t下.答案:D3.[2018·安徽卷]如图17-2所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中( )图17-2A .重力做功2mgRB .机械能减少mgRC .合外力做功mgRD .克服摩擦力做功12mgR解析:一个小球在A 点正上方由静止释放,刚好通过B 点时恰好对轨道没有压力,只有重力提供向心力,即:mg =mv 2/R ,得v 2=gR ,对全过程运用动能定理可得选项D 正确.答案:D4.(多选题)如图17-3所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块.现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )图17-3A .支持力对物块做功为0B .支持力对小物块做功为mgLsin αC .摩擦力对小物块做功为mgLsin αD .滑动摩擦力对小物块做功为12mv 2-mgLsin α解析:缓慢抬高过程中,摩擦力始终跟运动方向垂直,不做功,支持力与重力做功的代数和为零,所以支持力的功等于mgLsin α;下滑过程中支持力跟运动方向始终垂直,不做功,由动能定理可得:mgLsin α+W f =mv22,解得W f =12mv 2-mgLsin α;综上所述,B 、D 正确.答案:BD5.刹车距离是衡量汽车安全性能的重要参数之一.如图17-4所示的图线1、2分别为甲、乙两辆汽车在紧急刹车过程中的刹车距离l 与刹车前的车速v 的关系曲线,已知紧急刹车过程中车与地面间是滑动摩擦.据此可知,下列说法中正确的是( )图17-4A .甲车的刹车距离随刹车前的车速v 变化快,甲车的刹车性能好B .乙车与地面间的动摩擦因数较大,乙车的刹车性能好C .以相同的车速开始刹车,甲车先停下来,甲车的刹车性能好D .甲车的刹车距离随刹车前的车速v 变化快,甲车与地面间的动摩擦因数较大解析:在刹车过程中,由动能定理可知:μmgl =12mv 2,得l =v 22μg =v22a 可知,甲车与地面间动摩擦因数小(题图线1),乙车与地面间动摩擦因数大(题图线2),刹车时的加速度a =μg ,乙车刹车性能好;以相同的车速开始刹车,乙车先停下来.B 项正确.答案:B6.(多选题)在新疆旅游时,最刺激的莫过于滑沙运动.某人坐在滑沙板上从沙坡斜面的顶端由静止沿直线下滑到斜面底端时,速度为2v 0,设人下滑时所受阻力恒定不变,沙坡长度为L ,斜面倾角为α,人的质量为m ,滑沙板质量不计,重力加速度为g.则( )A .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为3 v 0B .若人在斜面顶端被其他人推了一把,沿斜面以v 0的初速度下滑,则人到达斜面底端时的速度大小为5v 0C .人沿沙坡下滑时所受阻力F f =mgsin α-2mv 20/L D .人在下滑过程中重力功率的最大值为2mgv 0图17-5解析:对人进行受力分析如图17-5所示,根据匀变速直线运动的规律有:(2v 0)2-0=2aL ,v 21-v 20=2aL ,可解得v 1=5v 0,所以A 错误,B 正确;根据动能定理有:mgLsin α-F f L =12m(2v 0)2,可解得F f =mgsin α-2mv 2/L ,C 正确;重力功率的最大值为P m =2mgv 0sin α,D 错误.答案:BC图17-67.如图17-6所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC 相切的圆弧,BC 为水平,其距离d =0.50 m ,盆边缘的高度为h =0.30 m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为( )A .0.50 mB .0.25 mC .0.10 mD .0解析:分析小物块的运动过程,可知由于克服摩擦力做功,物块的机械能不断减少.根据动能定理可得mgh -μmgx =0,物块在BC 之间滑行的总路程x =mgh μmg =h μ=0.300.10m =3 m .小物块正好停在B 点,所以选项D 正确.答案:DB 组 能力提升8.[2018·四川省绵阳市南山中学月考]儿童乐园中一个质量为m 的小火车,以恒定的功率P 由静止出发,沿一水平直轨道行驶达到最大速度v m 后做匀速运动,在到达终点前某时刻关闭发动机,小火车又做匀减速直线运动,到达终点时恰好停止.小火车在运动过程中通过的总路程为s ,则小火车运动的总时间为( )A.2s v m +mv 2mP B.s v m +mv 2m P C.2s v mD.msv mP解析:由动能定理可得:Pt -fs =0,f =P v m ,得t =sv m,这里的t 是在发动机关上前的时间,后来减速的时间是t 2=v m a ,a =f m =P mv m ,t 2=mv 2m P , T =t +t 2=s v m +mv 2mP,故本题选择B.答案:B9.如图17-7甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时的动能为( )图17-7A .0 B.12F max x 0 C.π4F max x 0 D.π4x 20 解析:根据动能定理,小物块运动到x 0处时的动能为这段时间内力F 所做的功,物块在变力作用下,不能直接用功的公式来计算,但此题可用根据图象求“面积”的方法来解决.力F 所做的功的大小等于半圆的“面积”大小.E k =W =12S 圆=12π⎝ ⎛⎭⎪⎫x 022,又F max =x 02.整理得E k =π4F max x 0=π8·x 20,C 选项正确.答案:C10.(多选题)[2018·四川省成都外国语学校月考]如图17-8所示,某生产线上相互垂直的甲、乙传送带等高,宽度均为d ,而且均以大小为v 的速度运行,图中虚线为传送带中线.一工件(视为质点)从甲左端释放,经长时间由甲右端滑上乙,滑至乙中线处时恰好相对乙静止.下列说法中正确的是( )图17-8A .工件在乙传送带上的痕迹为直线,痕迹长为22d B .工件从滑上乙到恰好与乙相对静止所用的时间为d2vC .工件与乙传送带间的动摩擦因数μ=v2gdD .乙传送带对工件的摩擦力做功为零解析:物体滑上乙时,相对于乙上的那一点的速度分为水平向右的速度v 和向后的速度v ,合速度为2v ,沿着与乙成45°的方向,那么相对于乙的运动轨迹肯定是直线,故A 正确.假设它受滑动摩擦力f =μmg ,方向与合相对速度在同一直线上,则角θ=45°,则相对于乙的加速度也沿这个方向,经过t 后,它滑到乙中线并相对于乙静止,根据牛顿第二定律,有μmg =ma ,解得a =μg ;运动距离L =2×d 2=22d ,又L =12at 2,L和a 代入所以t =d v ,μ=2v 2gd ,故B 错误、C 错误.滑上乙之前,工件绝对速度为v ,动能为12mv 2,滑上乙并相对停止后,绝对速度也是v ,动能也是12mv 2而在乙上面的滑动过程只有摩擦力做了功,动能没变化,所以乙对工件的摩擦力做功为零,故D 正确.答案:AD11.[2018·黑龙江省庆安县三中月考]飞机若仅依靠自身喷气式发动机推力起飞需要较长的跑道,某同学设计在航空母舰上安装电磁弹射器以缩短飞机起飞距离,他的设计思想如下:如图17-9所示,航空母舰的水平跑道总长l =180 m ,其中电磁弹射器是一种长度为l 1=120 m 的直线电机,这种直线电机从头至尾可以提供一个恒定的牵引力F 牵.一架质量为m =2.0×104kg 的飞机,其喷气式发动机可以提供恒定的推力F 推=1.2×105N .考虑到飞机在起飞过程中受到的阻力与速度大小有关,假设在电磁弹射阶段的平均阻力为飞机重力的0.05倍,在后一阶段的平均阻力为飞机重力的0.2倍.飞机离舰起飞的速度v =100 m/s ,航母处于静止状态,飞机可视为质量恒定的质点.请你求出(计算结果均保留两位有效数字):图17-9(1)飞机在后一阶段的加速度大小; (2)电磁弹射器的牵引力F 牵的大小.解析:(1)令后一阶段飞机加速度为a 2,平均阻力为f 2=0.2mg , 则F 推-f 2=ma 2, 得a 2=4.0 m/s 2.(2)由动能定理:F 牵l 1+F 推l -f 1l 1-f 2(l -l 1)=12mv 2得F 牵=6.8×105 N.答案:(1)4.0 m/s 2(2)6.8×105N12.[2018·浙江省慈溪中学月考]如图17-10所示,一小球从A 点以某一水平向右的初速度出发,沿水平直线轨道运动到B 点后,进入半径R =10 cm 的光滑竖直圆形轨道,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续向C 点运动,C 点右侧有一壕沟,C 、D 两点的竖直高度h =0.8 m ,水平距离s =1.2 m ,水平轨道AB 长为L 1=1 m ,BC 长为L 2=3 m ,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g =10 m/s 2,求:(1)若小球恰能通过圆形轨道的最高点,求小球在A 点的初速度?(2)若小球既能通过圆形轨道的最高点,又不掉进壕沟,求小球在A 点的初速度的范围是多少?图17-10解析:(1)对圆周最高点应用牛顿第二定律得 mg =m v 21R从A 点到最高点应用动能定理得 -mg(2R)-μmgL 1=12mv 21-12mv 20,则A 点的速度v 0=3 m/s.(2)若小球恰好停在C 处,对全程进行研究,则有 -μmg(L 1+L 2)=0-12mv′2,解得v′=4 m/s.所以当3 m/s≤v A ≤4 m/s 时,小球停在BC 间. 若小球恰能越过壕沟时,则有:h =12gt 2,s =v C t ,从A 到C 有-μmg(L 1+L 2)=12mv 2C -12mv″2解得:v″=5 m/s ,所以当v A ≥5 m/s,小球越过壕沟. 综上,则A 的速度范围是 3 m/s≤v A ≤4 m/s 和v A ≥5 m/s. 答案:(1)v A =3 m/s(2)范围是:3 m/s≤v A ≤4 m/s 和v A ≥5m/s13.[2018·上海市宝山区月考]如图17-11所示,在竖直面内有一光滑水平直轨道与半径为R =0.25 m 的光滑半圆形轨道在半圆的一个端点B 相切,半圆轨道的另一端点为C.在直轨道上距B 点为x(m)的A 点,有一可看做质点、质量为m =0.1 kg 的小物块处于静止状态.现用水平恒力将小物块推到B 处后撤去恒力,小物块沿半圆轨道运动到C 点后,恰好落回到水平面上的A 点,取g =10 m/s 2.求:图17-11(1)水平恒力对小物块做的功W 与x 的关系式. (2)水平恒力做功的最小值. (3)水平恒力的最小值.解析:(1)小物块从C 到A 的运动是平抛运动. 设小物块在C 处的速度为v C ,则由C 到A , x =v C t2R =12gt 2由以上两式得v 2C=gx24R,小球从A 到C 有W -2mgR =12mv 2C解得W =mg(2R +x 28R)=(0.5x 2+0.5) J.(2)当W 最小时,物块刚好能够通过C 点,此时mv 2CR =mg由C 到A 仍做平抛运动,所以v 2C=gx24R仍成立,由以上两式:x =2R代入公式可求得恒力做功的最小值为 W min =(0.5+0.5×4×0.252)J =0.625 J (3)由功的公式得F =W Fx将W =(0.5x 2+0.5) J ,代入上式得F =⎝ ⎛⎭⎪⎫0.5x +0.5x N由数学知识可知,当0.5x =0.5x ,即x =1时F 最小F min =1 N.答案:(1)W =()0.5x 2+0.5J (2)0.625 J (3)1 NC 组 难点突破14.[2018·江苏常州模拟]某滑沙场有两个坡度不同的滑道AB 和AB′(均可看作斜面),甲、乙两名旅游者分别乘两个完全相同的滑沙撬从A 点由静止开始分别沿AB 和AB′滑下,最后都停在水平沙面BC 上,如图17-12所示.设滑沙撬和沙面间的动摩擦因数处处相同,斜面与水平面连接处均可认为是圆滑的,滑沙者保持一定姿势坐在滑沙撬上不动.则下列说法中正确的是( )图17-12A .甲滑行的总路程一定大于乙滑行的总路程B .甲在B 点的动能一定等于乙在B′点的动能C .甲在B 点的速率一定等于乙在B′点的速率D .甲全部滑行的水平位移一定大于乙全部滑行的水平位移解析:由动能定理列方程计算可得两人最后都停在水平沙面B′C 上同一点,甲滑行的总路程一定大于乙滑行的总路程,甲全部滑行的水平位移一定等于乙全部滑行的水平位移,选项A 正确,D 错误;甲在B 点的动能一定大于乙在B′点的动能,甲在B 点的速率一定大于乙在B′点的速率,选项B 、C 错误.答案:A。

2021高考一轮复习课时提升作业 十五 5.2动能定理及其应用

2021高考一轮复习课时提升作业 十五 5.2动能定理及其应用

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时提升作业十五动能定理及其应用(45分钟100分)一、选择题(本题共8小题,每小题6分,共48分。

1~5题为单选题,6~8题为多选题)1.(2017·厦门模拟)如图所示,两个光滑斜面的高度h相同,倾角θ1<θ2。

一物体m先后沿两斜面由静止从顶端下滑,到底端时的动能分别是E k1和E k2,则( )A.E k1<E k2B.E k1>E k2C.E k1=E k2D.条件不足,无法比较【解析】选C。

物体下滑过程中,只有重力做功,由动能定理得mgh=E k-0,由于m 和h相等,则有E k1=E k2,故选项C正确。

2.(2017·江门模拟)一个物块以初动能E滑上斜面最高处时克服重力做功0.6E,则它又滑回斜面底端时的动能为( )A.0.8EB.0.6EC.0.4ED.0.2E【解析】选D。

物块向上滑动过程,由动能定理得-mgh-W f=0-E,由题意可知mgh=0.6E,解得W f=0.4E,物块下滑过程,由动能定理得mgh-W f=E k,解得E k=0.2E,故D正确。

3.如图所示,在竖直平面内有一“V”形槽,其底部BC是一段圆弧,两侧都与光滑斜槽相切,相切处B、C位于同一水平面上。

一小物体从右侧斜槽上距BC平面高度为2h的A处由静止开始下滑,经圆弧槽再滑上左侧斜槽,最高能到达距BC所在水平面高度为h的D处,接着小物体再向下滑回,若不考虑空气阻力,则( )A.小物体恰好滑回到B处时速度为零B.小物体尚未滑回到B处时速度已变为零C.小物体能滑回到B处之上,但最高点要比D处低D.小物体最终一定会停止在圆弧槽的最低点【解析】选C。

小物体从A处运动到D处的过程中,克服摩擦力所做的功为W f1=mgh,小物体从D处开始运动的过程,因为速度较小,小物体对圆弧槽的压力较小,所以克服摩擦力所做的功W f2<mgh,所以小物体能滑回到B处之上,但最高点要比D处低,C正确,A、B错误;因为小物体与圆弧槽间的动摩擦因数未知,所以小物体可能停在圆弧槽上的任何地方,D错误。

5-2机械能守恒定律

5-2机械能守恒定律

[解析]
研究对象:滑块.
物理过程分析:物体受重力mg、支持力N、摩擦力f,示
意图如图8所示.由滑块所受摩擦力小于滑块沿斜面的下滑力
(重力沿斜面的分力)可知:
F合 1 下滑时,合力 F 合 1=mgsinθ-f,加速度 a1= ,方向沿斜 m 面向下,匀加速下滑; F合 2 上滑时,合力 F 合 2=mgsinθ+f,加速度 a2= ,方向沿斜 m 面向下,匀减速上滑.
高三总复习· 人教版· 物理
(5)对状态与过程关系的理解:功是伴随一个物理过程而 产生的,是过程量;而动能是状态量.动能定理表示了过程量 等于状态量的改变量的关系.
高三总复习· 人教版· 物理
(6)关于系统的动能定理 教材中得到的动能定理W=Ek2-Ek1是以一个物体为研究 对象的,式中W为所有外力(包括重力、弹力)所做的功.这一 定理可推广到由几个物体构成的物体系中去,但定理的形式应 做相应的ห้องสมุดไป่ตู้动.因为对一个物体系来说,在状态变化的过程中, 不仅有外力做功,还可能有内力做功,内力做功也会改变系统 的总动能.例如,系统内的爆炸力做功(如手榴弹爆炸),可使 整个系统的动能增加;系统内的摩擦力做功,又可使整个系统 的动能减少.若以W外、W内分别表示外力和内力对系统所做的 功,则有:W外+W内=Ek2-Ek1.即外力与内力对系统所做的总 功,等于系统在这个过程中动能的变化.这就是系统的动能定 理.
变式2—1如图5所示,物体在离斜面底端4 m处由静止滑下, 若动摩擦因数均为0.5,斜面倾角为37°,斜面与平面间由一段 圆弧连接,求物体能在水平面上滑行多远?
图5
高三总复习· 人教版· 物理
解析:物体在斜面上受重力mg、支持力FN1、摩擦力F1 的作用,沿斜面加速下滑(因μ=0.5<tan37°=0.75),到水平面 后,在摩擦力F2作用下做减速运动,直至停止.对物体在斜面 上和水平面上时进行受力分析,如图6所示.

人教版高中物理必修二 动能和动能定理课时作业

人教版高中物理必修二 动能和动能定理课时作业

高一物理必修2 第七章 机械能守恒定律之动能和动能定理同步练习1. 如图所示,人用绳通过滑轮在一个平台上拉一处在平台下水平地面上的车。

设人以速度v 匀速拉绳,那么,当绳与平台的水平夹角为α时,小车的动能为( ) A.2mv 21 B. α22cos /mv 21 C. α22sin /mv 21 D. α22tan mv 212. 光滑水平面上有一物体在一水平恒力F 作用下,速度由零到v 和由v 增加到2v 两阶段,水平恒力F 所做的功分别为1W 和2W ,则21W :W 为( )A. 1:1B. 1:2C. 1:3D. 1:43. 一质量为24kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起在滑块上作用一向右的水平力,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间里水平力做的功为( )A. 0B. 8JC. 16JD. 32J4. 水平面上的一个质量为m 的物体,在一水平恒力的作用下,由静止开始做匀加速直线运动,经过位移s 后撤去外力F ,又经过位移3s 后,物体停下来,则物体受到的阻力大小应是( ) A. 4F B. F 4 C. 3F D. 3F 5. 以初速度v 0竖直向上抛出一质量为m 的小物体。

假定物体所受的空气阻力f 大小不变。

已知重力加速度为g ,则物体上升的最大高度和返回到原抛出点的速率分别为( )A. 和B. 和202(1)v f g mg +v 202(1)v f g mg+vC. 和D. 和6. 两物体A 、B 的质量之比为1:2m :m B A =,二者动能相同,它们和水平桌面的动摩擦因数相同。

则二者在桌面上滑行到停止经过的距离之比为( )A.1:2s :s B A = B. 2:1s :s B A = C. 1:4s :s B A = D. 4:1s :s B A =7. 在光滑水平地面上叠放着两物体A 和B ,如图所示,水平拉力F 作用在物体B 上,使A 、B 两物体从静止出发一起运动,经过时间t ,撤去拉力F ,再经过时间t ,物体A 、B 的动能分别设为A E 和B E ,在运动过程中A 、B 始终保持相对静止,以下有几种说法:①B A E E +等于拉力F 做的功②B A E E +小于拉力F 做的功③A E 等于撤去拉力F 前摩擦力对物体A 做的功④A E 大于撤去拉力F 前摩擦力对物体A 做的功其中正确的是( )A. ①③B. ①④C. ②③D. ②④8. 如图所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动。

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

高考物理总复习5.2动能和动能定理课时作业新人教版必修2

高考物理总复习5.2动能和动能定理课时作业新人教版必修2

【与名师对话】高考物理总复习 5.2动能和动能定理课时作业 新人教版必修21.(2013·湖北荆州模拟)质量不等,但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则下列说法正确的有( )A .质量大的物体滑行距离大B .质量小的物体滑行距离大C .质量大的物体滑行时间长D .质量小的物体滑行时间长解析:物体的动能全部用来克服摩擦阻力做功,有E k =μmgl ,则l =E kμmg可知,质量小的物体,滑行距离大,选项A 错误,B 正确;而t =va =2E km μg,可见质量小的物体,滑行时间长,选项C 错误,D 正确.答案:BD2.如图所示,在光滑水平面上,一物体以速率v 向右做匀速直线运动,当物体运动到P 点时,对它施加一个水平向左的恒力,过一段时间,物体向反方向运动再次通过P 点,则物体再次通过P 点的速率( )A .大于vB .小于vC .等于vD .无法确定解析:F 做功为零,物体动能不变.答案:C3.(2013·山西太原调研)一质量为m 的小球,用长为l 的轻绳悬挂于O点.小球在水平拉力F 的作用下,从平衡位置P 点很缓慢地移动到Q 点,如右图所示,则拉力F 所做的功为( )A .mgl cos θB .mgl (1-cos θ)C .Fl cos θD .Fl sin θ解析:移动小球过程中拉力F 和重力G 对物体做功,根据动能定理W F -mg (l -l cos θ)=0-0可得:W F =mgl (1-cos θ),选项B 正确.但要注意F 是变力,不能用W =Fl 来求.答案:B4.如图所示,质量为m 0、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的滑动摩擦力为F f .物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是( )A .物块到达小车最右端时具有的动能为(F -F f )(L +s )B .物块到达小车最右端时,小车具有的动能为F f LC.物块克服摩擦力所做的功为F f (L +s )D .物块克服摩擦力所做的功为F f s解析:物块m 在水平方向受到拉力F 和摩擦力F f 的作用,合力为F -F f ,物块的位移为L +s ,合力对物块做的功为(F -F f )(L +s );物块到达小车最右端时具有的动能为(F -F f )(L +s ),A 正确,B 错误;摩擦力对物块做的功等于摩擦力的大小F f 与位移(L +s )的乘积,C 正确,D 错误.答案:AC5.木块在水平恒定的拉力F 作用下,由静止开始在水平路面上前进x ,随即撤消此恒定的拉力,接着木块又前进了2x 才停下来.设运动全过程中路面情况相同,则木块在运动中获得动能的最大值为( )A.Fx2B.Fx3C .FxD.2Fx 3解析:木块从静止开始在拉力F 和阻力(设为f )的作用下,先做匀加速直线运动,撤去拉力F 后木块在阻力f 的作用下做匀减速运动,所以撤去拉力F 的瞬间木块的动能最大.对全过程分析,由动能定理有Fx -f ·3x =0;对木块由静止开始到最大动能的过程,由动能定理得E km =Fx -fx ,由此二式解得:E km =23Fx ,D 正确.答案:D6.(2013·苏北四市期末联考)如下图甲所示,静置于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时的动能为( )A .0 B.12F m x 0 C.π4F m x 0 D.π4x 20 解析:根据动能定理,小物块运动到x 0处时的动能为这段时间内力F 所做的功,物块在变力作用下运动,不能直接用功的公式来计算,但此题可用根据图象求“面积”的方法来解决.力F 所做的功的大小等于半圆的“面积”大小.E k =W =12S 圆=12π(x 02)2,又F m =x 02.整理得E k =π4F m x 0=π8x 20,C 选项正确.答案:C7.(2014·南昌大学附中)某研究性学习小组用加速度传感器探究物体从静止开始做直线运动的规律,得到了质量为1.0 kg 的物体运动的加速度随时间变化的关系图线,如图所示.由图可以得出( )A .从 t =4.0 s 到t =6.0 s 的时间内物体做匀减速直线运动B .物体在t =10.0 s 时的速度大小约为5.8 m/sC .从t =10.0 s 到t =12.0 s 的时间内合外力对物体做的功约为7.3 JD .不能从已知信息粗略估算出物体在t =3.0 s 时的速度解析:从t =4.0 s 到t =6.0 s 的时间内物体的加速度减小,物体做加速度减小的变加速运动.故A 错误;物体从静止开始做加速运动,由于Δv =a Δt ,故加速度图线与时间轴包围的面积表示速度的变化量,t =10 s 时的速度等于前10秒图线与坐标轴包围的面积,v =68×0.1=6.8 m/s ,所以B 错误.由于加速度图线与时间轴包围的面积表示速度的变化量,故可以估算出12 s 末的速度为v ′=S ′=7.8 m/s ,根据动能定理得:W 合=12mv ′2-12mv 2=12×1×7.82-12×1×6.82=7.3 J ,故C 正确.物体从静止开始做加速运动,由于Δv =a Δt ,故加速度图线与时间轴包围的面积表示速度的变化量,故t =3.0 s 时的速度等于前3秒图线与坐标轴包围的面积,故D 错误.答案:C8.(2013·湖南长沙重点高中高三考试)随着中国首艘航母“辽宁号”的下水,同学们对舰载机(图甲)的起降产生了浓厚的兴趣.下面是小聪编制的一道舰载机降落的题目,请你阅读后求解.(1)假设质量为m 的舰载机关闭发动机后在水平地面跑道上降落,触地瞬间的速度为v 0,在跑道上滑行的v —t 图象见图乙.求舰载机滑行的最大距离和滑行时受到的阻力;(2)航母可以通过设置拦阻索来增大对舰载机的阻力.现让该舰载机关闭发动机后在静止于海面的航母水平甲板上降落,若它接触甲板瞬间的速度仍为v 0,在甲板上的运动可以看做匀变速运动,在甲板上滑行的最大距离是(1)中的14.求该舰载机在航母上滑行时受到的平均阻力(结果用m 、v 0、t 0表示).解析:(1)由题图乙信息,根据匀变速运动规律 最大距离为x =12v 0t 0由动能定理有-fx =0-12mv 2解得阻力f =mv 0t 0(2)最大距离x ′=14x =18v 0t 0由动能定理有-f ′x ′=0-12mv 2联立解得f ′=4mv 0t 0答案:(1)mv 0t 0 (2)4mv 0t 09.(2013·石家庄市部分学校高三联考)如图所示,斜面OP 倾角为θ,Q 为斜面上的一点.一质量为m 的小滑块从斜面底端O 以初速度v 0沿斜面向上滑动,恰好能滑到斜面顶端P ,小滑块与斜面间的动摩擦因数为μ,下列各选项中的接触面材料相同,小滑块在O 点时的初速度大小不变,则小滑块一定能滑到和P 等高位置的是( )A .剪去PQ 部分B .增大斜面倾角,沿斜面ON 向上滑C .把斜面改为折面OMP ,且在M 点有一小段光滑圆弧D .把斜面改为圆弧面OEP解析:剪去PQ 部分,虽然到Q 后不再克服摩擦力做功、但在Q 点时的速度沿斜面向上、到最高点时有水平速度,不能判定小滑块能否到P 点等高位置,A 错;小滑块从O 到P (与P 等高的位置)增加的重力势能相同,沿ON 、OP 和OMP 滑动过程中克服摩擦力做功均可表示为μmgx (x 为对应的水平位移),此三种情况OP 和OMP 的x 相同、而ON 的x 小,沿OP 和OMP 上滑克服摩擦力做功相同、均大于ON ,应用动能定理可知到N 点速度大于0、沿OMP 到P 点速度为0,B 、C 均对;应用向心力公式可知沿圆弧面上滑过程正压力大于mg cos θ、克服摩擦力做功比沿OP 多,应用动能定理可知沿圆弧面上滑不能到P 点,D 错.答案:BC10.一个小物块从底端冲上足够长的斜面后,又返回斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为E /2.若小物块冲上斜面的动能为2E ,则物块( )A .返回斜面底端时的动能为EB .返回斜面底端时的动能为3E /2C .返回斜面底端时的速度大小为2vD .返回斜面底端时的速度大小为v解析:设初动能为E 时,小物块沿斜面上升的最大位移为x 1,初动能为2E 时,小物块沿斜面上升的最大位移为x 2,斜面的倾角为θ,由动能定理得:-mgx 1sin θ-F f x 1=0-E,2F f x 1=E2,全程动能定理为:-2F f ·x 1=12mv 2-E ;而-mgx 2sin θ-F f x 2=0-2E ,可得:x 2=2x 1,所以返回斜面底端时的动能为2E -2F f x 2=E ,A 正确,B 错误;由E =12mv ′2可得v ′=2v ,C 、D 均错误.答案:A11.(2013·河北沧州模拟)在抗震救灾中,用直升飞机转移被困群众.设被救人员的质量m =80 kg ,所用吊绳的拉力最大值F m =1200 N ,所用电动机的最大输出功率为P m =12 kW ,为尽快吊起被困群众,操作人员采取的办法是,先让吊绳以最大的拉力工作一段时间,而后电动机又以最大功率工作,被救人员上升h =90 m 时恰好达到最大速度(g 取10 m/s 2),试求:(1)被救人员刚到达机舱时的速度; (2)这一过程所用的时间.解析:(1)第一阶段绳以最大拉力拉着被救人员匀加速上升,当电动机达到最大功率时,功率保持不变,被救人员变加速上升,速度增大,拉力减小,当拉力与重力相等时速度达到最大.由P m =F T v m =mgv m 得v m =P m mg =12×10380×10m/s =15 m/s. (2)a 1=F m -mg m =1200-80×1080m/s 2=5 m/s 2, 匀加速阶段的末速度v 1=P m F m =12×1031200 m/s =10 m/s ,时间t 1=v 1a 1=105 s =2 s ,上升的高度h 1=v 12t 1=102×2 m=10 m ,对于以最大功率上升过程,由动能定理得:P m t 2-mg (h -h 1)=12mv 2m -12mv 21,代入数据解得t 2=5.75 s ,此过程所用总时间为t =t 1+t 2=(2+5.75) s =7.75 s. 答案:(1)15 m/s (2)7.75 s12.(2013·潍坊模拟)2012年伦敦奥运会女子10米(即跳台距水面10 m)跳台比赛中,我国小将陈若琳技压群芳夺得冠军.设运动员质量为m =50 kg ,其体形可等效为长度L =1.0 m ,直径d =0.3 m 的圆柱体,不计空气阻力,当她跳起到达最高点时,她的重心离跳台台面的高度为0.70 m ,在从起跳到接触水面过程中完成一系列动作,入水后水的等效阻力F (不包括浮力)作用于圆柱体的下端面,F 的数值随入水深度y 变化的函数图象如图所示,该直线与F 轴相交于F =2.5mg 处,与y 轴相交于y =h (某一未知深度)处,为了确保运动员的安全,水池必须有一定的深度,已知水的密度ρ=1×103kg/m 3,g 取10 m/s 2,根据以上的数据估算:(1)起跳瞬间所做的功;(2)从起跳到接触水面过程的时间;(3)跳水池至少应为多深?(保留两位有效数字)解析:(1)起跳瞬间做功W =mgh 1,h 1=0.70 m -1.0 m2=0.2 m ,代入数据得W =100 J.(2)从起跳到接触水面为竖直上抛运动,12mv 20=mgh 1,代入数据得v 0=2 m/s ,据位移公式:-h 2=v 0t -12gt 2,h 2=10 m ,代入数据得t =1.63 s. (3)由F -y 图象可知,阻力F 随y 均匀变化,故平均阻力为F2.从起跳到入水至最低点,设水池至少深为h ,根据动能定理得W +mg (h 2+h )-Fh 2-F 浮L2-F 浮(h -L )=0-0,式中F 浮=ρgV =ρg πd24L代入数据,得h =6.6 m.答案:(1)100 J (2)1.63 s (3)6.6 m。

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析

高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。

开始时让连着A 的细线与水平杆的夹角α。

现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭2.如图所示,质量为m=1kg的滑块,在水平力F作用下静止在倾角为θ=30°的光滑斜面上,斜面的末端处与水平传送带相接(滑块经过此位置滑上皮带时无能量损失),传送带的运行速度为v0=3m/s,长为L=1.4m,今将水平力撤去,当滑块滑到传送带右端C时,恰好与传送带速度相同.滑块与传送带间的动摩擦因数μ=0.25,g=10m/s2.求(1)水平作用力F的大小;(2)滑块开始下滑的高度h;(3)在第(2)问中若滑块滑上传送带时速度大于3m/s,求滑块在传送带上滑行的整个过程中产生的热量Q.【答案】(1)(2)0.1 m或0.8 m (3)0.5 J【解析】【分析】【详解】解:(1)滑块受到水平推力F、重力mg和支持力F N处于平衡,如图所示:水平推力①解得:②(2)设滑块从高为h处下滑,到达斜面底端速度为v下滑过程由机械能守恒有:,解得:③若滑块冲上传送带时的速度小于传送带速度,则滑块在带上由于受到向右的滑动摩擦力而做匀加速运动;根据动能定理有:④解得:⑤若滑块冲上传送带时的速度大于传送带的速度,则滑块由于受到向左的滑动摩擦力而做匀减速运动;根据动能定理有:⑥解得:⑦(3)设滑块在传送带上运动的时间为t,则t时间内传送带的位移:s=v0t由机械能守恒有:⑧⑨滑块相对传送带滑动的位移⑩相对滑动生成的热量⑪⑫3.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角θ=37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。

近年届高考物理一轮复习第五章能量和运动课时作业15动能、动能定理(2021年整理)

近年届高考物理一轮复习第五章能量和运动课时作业15动能、动能定理(2021年整理)

课时作业(十五)动能、动能定理[基础小题练]1.(2018·广东六校联考)北京获得2022年冬奥会举办权,冰壶是冬奥会的比赛项目.将一个冰壶以一定初速度推出后将运动一段距离停下来.换一个材料相同、质量更大的冰壶,以相同的初速度推出后,冰壶运动的距离将()A.不变B.变小C.变大D.无法判断【解析】冰壶在冰面上以一定初速度被推出后,在滑动摩擦力作用下做匀减速运动,根据动能定理有-μmgs=0-错误!mv2,得s=错误!,两种冰壶的初速度相等,材料相同,故运动的位移大小相等.故选A。

【答案】A2.如图所示,两质量均为m=1 kg的小球1、2(可视为质点)用长为L=1。

0 m的轻质杆相连,水平置于光滑水平面上,且小球1恰好与光滑竖直墙壁接触,现用力F竖直向上拉动小球1,当杆与竖直墙壁夹角θ=37°时,小球2的速度大小v=1.6 m/s,sin 37°=0.6,g=10 m/s2,则此过程中外力F所做的功为()A.8 J B.8.72 JC.10 J D.9.28 J【解析】当杆与竖直墙壁夹角θ=37°时,设小球1的速度为v1,将小球1、2的速度沿杆方向和垂直杆方向分解,则有v1cos 37°=v cos 53°,所以v1=错误!v=1.2 m/s,取两小球和轻质杆为整体,则由动能定理知W F-mgL cos 37°=错误!mv错误!+错误!mv2,联立并代入数值得W F=10 J,C对.【答案】C3.两辆汽车在同一平直路面上行驶,它们的质量之比m1∶m2=1∶2,速度之比v1∶v2=2∶1。

当两车急刹车后,甲车滑行的最大距离为l1,乙车滑行的最大距离为l2,设两车与路面间的动摩擦因数相等,不计空气阻力,则( )A.l1∶l2=1∶2 B.l1∶l2=1∶1C.l1∶l2=2∶1 D.l1∶l2=4∶1【解析】由动能定理,对两车分别列式-μm1gl1=0-错误!m1v错误!,-μm2gl2=0-错误!m2v错误!,联立得l1∶l2=4∶1,故D正确.【答案】D4.半径为R的光滑半球固定在水平面上,现用一个方向与球面始终相切的拉力F把质量为m的小物体(可看作质点)沿球面从A点缓慢地移动到最高点B,在此过程中,拉力做的功为( )A.πFR B.πmgRC。

高考物理动能与动能定理及其解题技巧及练习题(含答案)

高考物理动能与动能定理及其解题技巧及练习题(含答案)

高考物理动能与动能定理及其解题技巧及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。

高考物理动能与动能定理解题技巧讲解及练习题(含答案)

高考物理动能与动能定理解题技巧讲解及练习题(含答案)

高考物理动能与动能定理解题技巧讲解及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

高考物理动能与动能定理的技巧及练习题及练习题(含答案)

高考物理动能与动能定理的技巧及练习题及练习题(含答案)

高考物理动能与动能定理的技巧及练习题及练习题(含答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR=m v12-m v02且需要满足m≥mg,解得R≤0.72m,综合以上考虑,R需要满足的条件为:0.3m≤R≤0.42m或0≤R≤0.12m。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考经典课时作业5-2 动能和动能定理(含标准答案及解析)时间:45分钟 分值:100分1.(2013·长春模拟)一人乘竖直电梯从1楼到12楼,在此过程中经历了先加速,后匀速,再 减速的运动过程,则下列说法正确的是( )A .电梯对人做功情况是:加速时做正功,匀速时不做功,减速时做负功B .电梯对人做功情况是:加速和匀速时做正功,减速时做负功C .电梯对人做的功等于人动能的增加量D .电梯对人做的功和重力对人做的功的代数和等于人动能的增加量2.在地面上某处将一金属小球竖直向上拋出,上升一定高度后再落回原处,若不考虑空气 阻力,则下列图象能正确反映小球的速度、加速度、位移和动能随时间变化关系的是(取向上为正方向)( )3.如图所示,长为L 的长木板水平放置,在木板的A 端放置一个质量为m 的小物块.现缓慢地抬高A 端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v ,则在整个过程中( )A .支持力对小物块做功为0B .支持力对小物块做功为mgL sin αC .摩擦力对小物块做功为mgL sin αD .滑动摩擦力对小物块做功为12mv 2-mgL sin α 4.一质点开始时做匀速直线运动,从某时刻起受到一恒力作用.此后,该质点的动能可能( )A .一直增大B .先逐渐减小至零,再逐渐增大C .先逐渐增大至某一最大值,再逐渐减小D .先逐渐减小至某一非零的最小值,再逐渐增大5.如图所示,质量m =1 kg 、长L =0.8 m 的均匀矩形薄板静止在水平桌面上,其右端与桌子边缘相平.板与桌面间的动摩擦因数为μ=0.4.先用F =5 N 的水平力向右推薄板,使它翻下桌子,力F 做的功至少为(g 取10 m/s 2)( )A .1 JB .4 JC .2 JD .1.6 J6.(2013·中山模拟)如图所示,质量为m 的小车在水平恒力F 推动下,从山坡(粗糙)底部A 处由静止起运动至高为h 的坡顶B ,获得速度为v ,A 、B 之间的水平距离为x ,重力加速度为g .下列说法正确的是( )A .小车克服重力所做的功是mghB .合外力对小车做的功是12mv 2 C .推力对小车做的功是12mv 2+mgh D .阻力对小车做的功是12mv 2+mgh -Fx 7.如图所示,斜面高h ,质量为m 的物块,在沿斜面向上的恒力F 作用下,能匀速沿斜面 向上运动,若把此物块放在斜面顶端,在沿斜面向下同样大小的恒力F 作用下物块由静 止向下滑动,滑至底端时其动能的大小为( )A .mghB .2mghC .2FhD .Fh8.如图所示,光滑斜面的顶端固定一弹簧,一物体向右滑行,并冲上固定在地面上的斜面.设物体在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则物体从A 到C 的过程中弹簧弹力做功是( )A .mgh -12mv 2 B.12mv 2-mgh C .-mghD .-⎝⎛⎭⎫mgh +12mv 2 9.质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移L 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移L =9 m 时的速度是3 3 m/sB .在位移L =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 210.(2013·清华附中模拟)质量m =1 kg 的物体,在水平拉力F (拉力方向与物体初速度方向相同)的作用下,沿粗糙水平面运动,经过位移4 m 时,拉力F 停止作用,运动到位移是8 m 时物体停止,运动过程中E k -x 的图线如图所示.(g 取10 m/s 2)求:(1)物体的初速度多大?(2)物体和水平面间的动摩擦因数为多大?(3)拉力F 的大小.11.(2012·咸阳模拟)如图甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始,物块受到按如图乙所示规律变化的水平力F 作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,(g 取10 m/s 2)求:(1)A 与B 间的距离;(2)水平力F 在5 s 内对物块所做的功.12.如图所示是某公司设计的“2009”玩具轨道,是用透明的薄壁圆管弯成的竖直轨道,其中引入管道AB 及“200”管道是粗糙的,AB 是与“2009”管道平滑连接的竖直放置的半径为R =0.4 m 的14圆管轨道,已知AB 圆管轨道半径与“0”字型圆形轨道半径相同.“9”管道是由半径为2R 的光滑14圆弧和半径为R 的光滑34圆弧以及两段光滑的水平管道、一段光滑的竖直管道组成,“200”管道和“9”管道两者间有一小缝隙P .现让质量m =0.5 kg 的闪光小球(可视为质点)从距A 点高H =2.4 m 处自由下落,并由A 点进入轨道AB ,已知小球到达缝隙P 时的速率为v =8 m/s ,g 取10 m/s 2.求:(1)小球通过粗糙管道过程中克服摩擦阻力做的功;(2)小球通过“9”管道的最高点N 时对轨道的作用力大小;(3)小球从C 点离开“9”管道之后做平拋运动的水平位移大小.标准答案及解析:1.解析:电梯向上加速、匀速、再减速运动的过程中,电梯对人的作用力始终向上,故电梯始终对人做正功,A 、B 均错误;由动能定理可知,电梯对人做的功和重力对人做的功的代数和等于人动能的增加量,故D 正确、C 错误.答案:D2.解析:小球运动过程中加速度不变,B 错;速度均匀变化先减小后反向增大,A 对;位移和动能与时间不是线性关系,C 、D 错.答案:A3.答案:BD4.解析:当力的方向与速度方向相同或与速度方向的夹角小于90°时,物体的速度逐渐增大,动能逐渐增大;当力的方向与速度方向相反时,物体做匀减速运动,速度逐渐减小到零后反向逐渐增大,因此动能先减小至零后增大;当力的方向与速度的方向夹角大于90°小于180°时,力的方向与速度的方向夹角逐渐减小,速度先逐渐减小,直到夹角等于90°时速度达到最小值,而后速度逐渐增大,故动能先逐渐减小到某一非零的最小值,再逐渐增大.故选项A 、B 、D 正确. 答案:ABD5.解析:薄板在F 作用下先加速到一定速度,后撤去F ,薄板共向前运动L /2时刚好停止,此时F 做功最少且刚好翻下桌子,根据动能定理有W F -μmgL /2=0,解得W F =μmgL /2=1.6 J.答案:D6.解析:小车克服重力做功W =mgh ,A 正确;由动能定理,小车受到的合力所做的功等于小车动能的增量,W 合=ΔE k =12mv 2,B 正确;由动能定理,W 合=W 推+W 重+W 阻=12mv 2,所以推力做的功W 推=12mv 2-W 阻-W 重=12mv 2+mgh -W 阻,C 错误;阻力对小车做的功W 阻=12mv 2-W 推-W 重=12mv 2+mgh -Fx ,D 正确. 答案:ABD7.解析:上滑过程:W F -mgh -W f =0下滑过程:W F +mgh -W f =E k解得:E k =2mgh ,故B 正确.答案: B8.解析:由A 到C 的过程运用动能定理可得:-mgh +W =0-12mv 2, 所以W =mgh -12mv 2,故A 正确. 答案:A9.解析:由图象可知当L =9 m 时,W =27 J ,而W f =-μmgL =-18 J ,则W 合=W +W f=9 J ,由动能定理有W 合=12mv 2,解得v =3 m/s ,B 正确,在A 点时,W ′=15 J ,W f ′=-μmgL ′=-6 J ,由动能定理可得v A =3 m/s ,则a =v 2A 2L ′=1.5 m/s 2,D 正确. 答案:BD10.解析:(1)从图线可知初动能为2 J ,E k0=12mv 2=2 J ,v =2 m/s. (2)在位移为4 m 处物体的动能为E k =10 J ,在位移为8 m 处物体的动能为零,这段过程中物体克服摩擦力做功.设摩擦力为F f ,则-F f x 2=0-E k =0-10 J =-10 JF f =-10-4N =2.5 N 因F f =μmg故μ=F f mg =2.510=0.25. (3)物体从开始到移动4 m 这段过程中,受拉力F 和摩擦力F f 的作用,合力为F -F f ,根据动能定理有(F -F f )·x 1=E k -E k0故得F =E k -E k0x 1+F f =⎝⎛⎭⎫10-24+2.5 N =4.5 N.答案:(1)2 m/s (2)0.25 (3)4.5 N11.解析:(1)在3~5 s 内物块在水平恒力F 作用下由B 点匀加速运动到A 点,设加速度大小为a ,A 与B 间的距离为s ,则F -μmg =maa =F -μmg m=2 m/s 2 s =12at 2=4 m. 即A 与B 间的距离为4 m.(2)设整个过程中F 做的功为W F ,物块回到A 点时的速度为v A ,由动能定理得W F -2μmgs =12mv 2A ,v 2A =2as ,由以上两式得W F =2μmgs +mas =24 J.答案:(1)4 m (2)24 J12.解析:(1)小球从初始位置到达缝隙P 的过程中,由动能定理有mg (H +3R )-W f =12mv 2-0 代入数据得W f =2 J.(2)设小球到达最高点N 时的速度为v N ,对P →N 过程由动能定理得-mg ·4R =12mv 2N -12mv 2 在最高点N 时,根据牛顿第二定律有F N +mg =m v 2N R联立解得F N =m v 2N R-mg =35 N 由牛顿第三定律知小球在最高点N 时对轨道的作用力大小为35 N.(3)小球从初始位置到达C 点的过程中,由动能定理有mg (H +R )-W f =12mv 2C-0 解得v C =4 3 m/s小球从C 点离开“9”管道之后做平拋运动,竖直方向:2R =12gt 2,解得 t =0.4 s 水平方向:DE =v C t ≈2.77 m所以平拋运动的水平位移为2.77 m.答案:(1)2 J (2)35 N (3)2.77 m。

相关文档
最新文档