2016年高考文数母题题源系列 专题13三视图与几何体的表面积和体积 Word版含解析

合集下载

空间几何体的三视图、表面积和体积 高考数学真题与解析

空间几何体的三视图、表面积和体积  高考数学真题与解析

专题八立体几何8.1空间几何体的三视图、表面积和体积考点一空间几何体的三视图与直观图1.(2016天津文,3,5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()答案B由几何体的正视图、俯视图以及题意可画出几何体的直观图,如图所示.该几何体的侧视图为选项B中图形.故选B.评析本题主要考查空间几何体的三视图与直观图,考查学生的空间想象能力和识图、画图能力.2.(2014课标Ⅰ,8,5分,0.795)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案B 由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.3.(2014北京理,7,5分)在空间直角坐标系O-xyz 中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,2).若S 1,S 2,S 3分别是三棱锥D-ABC 在xOy,yOz,zOx 坐标平面上的正投影图形的面积,则()A.S 1=S 2=S 3B.S 2=S 1且S 2≠S 3C.S 3=S 1且S 3≠S 2D.S 3=S 2且S 3≠S 1答案D 三棱锥D-ABC 如图所示.S 1=S △ABC =12×2×2=2,S 2=12×2×2=2,S 3=12×2×2=2,∴S 2=S 3且S 1≠S 3,故选D.4.(2014课标Ⅰ理,12,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.62B.6C.42D.4答案B 由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC 为等腰直角三角形,AB=BC=4,取BC 的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD 中,BD=DC=25,BC=DM=4,所以在Rt△AMD 中,AD=B 2+D 2=42+22+42=6,又在Rt△ABC 中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.评析本题考查空间几何体的三视图与直观图之间的互相转化,考查面面垂直性质定理的应用.同时考查考生的空间想象能力和运算求解能力.正确画出三棱锥的直观图是解决本题的关键.5.(2013课标Ⅱ,理7,文9,5分)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()答案A设O(0,0,0),A(1,0,1),B(1,1,0),C(0,1,1),将以O、A、B、C为顶点的四面体补成一正方体后,由于OA⊥BC,所以该几何体以zOx平面为投影面的正视图为A.方法归纳由几何体直观图画三视图的要求:①注意三个视图对应的观察方向;②注意视图中虚线与实线的区别;③画出的三视图要符合“长对正,高平齐,宽相等”的基本特征.6.(2013湖南理,7,5分)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于()A.1B.2C.2-12D.2+12答案C若该正方体的放置方式如图所示,当正视的方向与正方体的任一侧面垂直时,正视图的面积最小,其值为1,当正视的方向与正方体的对角面BDD1B1或ACC1A1垂直时,正视图的面积最大,其值为2,由于正视的方向不同,因此正视图的面积S∈[1,2].故选C.评析本题考查空间几何体的三视图与直观图,考查学生空间想象能力及有关知识的应用能力,解答本题应设法求出正视图的面积的取值范围,而不应该逐项计算.7.(2011课标理,6文,8,5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()答案D 由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面垂直于底面的三棱锥组成的组合体,故其侧视图应为D 选项.错因分析将组合体看成半圆柱和三棱锥的组合或不注意C 和D 中中线实虚的含义,易误选A 或C.评析本题主要考查空间几何体的三视图,考查学生的识图能力和空间想象能力.考点二空间几何体的表面积与体积1.(2018课标Ⅰ文,5,5分)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.122πB.12πC.82πD.10π答案B 本题主要考查圆柱的表面积及圆柱的轴截面.设圆柱的底面半径为r,高为h,由题意可知2r=h=22,∴圆柱的表面积S=2πr 2+2πr·h=4π+8π=12π.故选B.解题关键正确理解圆柱的轴截面及熟记圆柱的表面积公式是解决本题的关键.2.(2016课标Ⅱ文,4,5分)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323πC.8πD.4π答案A 设正方体的棱长为a,则a 3=8,解得a=2.设球的半径为R,则2R=3a,即R=3,所以球的表面积S=4πR 2=12π.故选A.方法点拨对于正方体与长方体,其体对角线为其外接球的直径,即外接球的半径等于体对角线的一半.3.(2016课标Ⅲ,理10,文11,5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+365B.54+185C.90D.81答案B由三视图可知,该几何体是底面为正方形(边长为3),高为6,侧棱长为35的斜四棱柱.其表面积S=2×32+2×3×35+2×3×6=54+185.故选B.易错警示学生易因空间想象能力较差而误认为侧棱长为6,或漏算了两底面的面积而致错.4.(2015课标Ⅰ理,11,5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8答案B由已知条件可知,该几何体由圆柱的一半和半球组成,其表面积为2πr2+πr2+4r2+2πr2=5πr2+4r2.由5πr2+4r2=16+20π得r=2.故选B.5.(2015北京理,5,5分)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+5B.4+5C.2+25D.5答案C 由三视图可得该三棱锥的直观图如图所示,其中PA=1,BC=2,取BC 的中点M,连接AM,MP,则AM=2,AM⊥BC,故AC=AB=B 2+A 2=1+4=5,由正视图和侧视图可知PA⊥平面ABC,因此可得PC=PB=B 2+A 2=1+5=6,PM=B 2+A 2=1+4=5,所以三棱锥的表面积为S △ABC +S △PAB +S △PAC +S △PBC =12×2×2+12×5×1+12×5×1+12×2×5=2+25,故选C.6.(2015陕西,理5,文5,5分)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4答案D 由题中三视图知该几何体是底面半径为1,高为2的半个圆柱,故其表面积S=2×12×π×12+π×1×2+2×2=3π+4.评析本题考查三视图的概念和性质以及圆柱的表面积,考查运算及推理能力和空间想象能力.由三视图确定几何体的直观图是解题的关键.7.(2015课标Ⅱ,理9,文10,5分,0.685)已知A,B 是球O 的球面上两点,∠AOB=90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为()A.36πB.64πC.144πD.256π答案C ∵S △OAB 是定值,且V O-ABC =V C-OAB ,∴当OC⊥平面OAB 时,V C-OAB 最大,即V O-ABC 最大.设球O 的半径为R,则(V O-ABC )max =13×12R 2×R=16R 3=36,∴R=6,∴球O 的表面积S=4πR 2=4π×62=144π.思路分析由△OAB 的面积为定值分析出当OC⊥平面OAB 时,三棱锥O-ABC 的体积最大,从而根据已知条件列出关于R 的方程,进而求出R 值,利用球的表面积公式即可求出球O 的表面积.导师点睛点C 是动点,在三棱锥O-ABC 中,如果以面ABC 为底面,则底面面积与高都是变量,而S △OAB 为定值,因此转化成以面OAB 为底面,这样高越大,体积越大.8.(2014浙江理,3,5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2答案D由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为S=3×5+2×12×4×3+4×3+3×3+2×4×3+2×4×6+3×6=138(cm2).9.(2014福建文,5,5分)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于()A.2πB.πC.2D.1答案A由题意得圆柱的底面半径r=1,母线l=1.∴圆柱的侧面积S=2πrl=2π.故选A.10.(2018浙江,3,4分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.2B.4C.6D.8答案C本小题考查空间几何体的三视图和直观图以及几何体的体积公式.由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上,下底边的长分别为1cm,2cm,高为2 cm,直四棱柱的高为2cm.故直四棱柱的体积V=1+22×2×2=6cm3.思路分析(1)利用三视图可判断几何体是直四棱柱;(2)利用“长对正,高平齐,宽相等”的原则,可得直四棱柱的各条棱长.11.(2016山东理,5,5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.13+23πB.13+C.13+答案C由三视图可知四棱锥为正四棱锥,底面正方形的边长为1,四棱锥的高为1,球的直径等于正四棱锥底面正方形的对角线的长,所以球的直径2R=2,即所以半球的体积为23πR3又正四棱锥的体积为13×12×1=13,所以该几何体的体积为13+故选C.易错警示不能从俯视图中正确地得到球的半径,而错误地从正视图中得到球的半径R=12.评析本题考查了空间几何体的三视图和体积公式.正确得到几何体的直观图并准确地计算是解题关键.12.(2016北京,6,5分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1答案A由三视图可画出三棱锥的直观图如图所示,其底面是等腰直角三角形ACB,直角边长为1,三棱锥的高为1,故体积V=13×12×1×1×1=16.故选A.13.(2015课标Ⅰ,理6,文6,5分,0.451)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛答案B设圆锥底面的半径为R尺,由14×2πR=8得R=16π,从而米堆的体积V=14×13πR2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62π≈22(斛).故选B.14.(2015课标Ⅱ,理6,文6,5分,0.426)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15答案D如图,由已知条件可知,在正方体ABCD-A1B1C1D1中,截去三棱锥A-A1B1D1后剩余的部分即为题中三视图对应的几何体,设该正方体的棱长为a,则截去部分的体积为16a3,剩余部分的体积为a3-16a3=56a3.它们的体积之比为15.故选D.15.(2015重庆理,5,5分)某几何体的三视图如图所示,则该几何体的体积为()A.13+2πB.13π6C.7π3D.5π2答案B由三视图可知,该几何体是一个底面半径为1,高为2的圆柱和底面半径为1,高为1的半圆锥拼成的组合体.所以该几何体的体积为12×13×π×12×1+π×12×2=13π6,故选B.16.(2015浙江理,2,5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C.323cm3D.403cm3答案C由三视图知,该几何体是由棱长为2cm的正方体和底面边长为2cm,高为2cm的正四棱锥组合而成的几何体.所以该几何体的体积V=23+13×22×2=323cm3,故选C.17.(2015山东理,7,5分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.2π3B.4π3C.5π3D.2π答案C如图,此几何体是底面半径为1,高为2的圆柱挖去一个底面半径为1,高为1的圆锥,故所求体积V=2π-π3=5π3.评析本题主要考查几何体的体积及空间想象能力.18.(2015湖南文,10,5分)某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为材料利用率=新工件的体积)原工件的体积A.89πB.827πC.24(2-1)3πD.8(2-1)3π答案A由三视图可知,原工件是一个底面半径为1,母线长为3的圆锥,则圆锥的高为22,新工件是该圆锥的内接正方体,如图,此截面中的矩形为正方体的对角面,设正方体的棱长为x,则22x1=22-x22,解得x=223.所以正方体的体积V1223=16227,又圆锥的体积V2=13π×12×22=223π,所以原工件材料的利用率为12=89π,故选A.19.(2014陕西理,5,5分)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B.4πC.2πD.4π3答案D 如图为正四棱柱AC 1.根据题意得AC=2,∴对角面ACC 1A 1为正方形,∴外接球直径2R=A 1C=2,∴R=1,∴V 球=4π3,故选D.20.(2014课标Ⅱ,理6,文6,5分,0.506)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727 B.59C.1027D.13答案C 该零件是两个圆柱体构成的组合体,其体积为π×22×4+π×32×2=34πcm 3,圆柱体毛坯的体积为π×32×6=54πcm 3,所以切削掉部分的体积为54π-34π=20πcm 3,所以切削掉部分的体积与原来毛坯体积的比值为20π54π=1027,故选C.21.(2014课标Ⅱ文,7,5分,0.495)正三棱柱ABC-A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A-B 1DC 1的体积为()A.3B.32C.1答案C 在正三棱柱ABC-A 1B 1C 1中,∵AD⊥BC,AD⊥BB 1,BB 1∩BC=B,∴AD⊥平面B 1DC 1,∴t1D1=13△1D1·AD=13×12×2×3×3=1,故选C.22.(2013课标Ⅰ,理8,文11,5分,0.718)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π答案A由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V=4×2×2+12π×22×4=16+8π.故选A.思路分析由三视图分析该几何体的构成,从而利用三视图中的数据计算几何体的体积.23.(2013浙江文,5,5分)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100cm3C.92cm3D.84cm3答案B由三视图可知,该几何体是一个长方体截去了一个三棱锥,结合所给数据,可得其体积为6×6×3-13×12×4×4×3=100(cm3),故选B.24.(2012大纲全国,理7,文7,5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.18答案B由三视图可得,该几何体为如图所示的三棱锥S-ABC,其中底面△ABC为等腰三角形,底边AC=6,AC 边上的高为3,SB⊥底面ABC,且SB=3,所以该几何体的体积V=13×12×6×3×3=9.故选B.评析本题考查了三视图和三棱锥的体积,考查了空间想象能力.由三视图正确得到该几何体的直观图是求解的关键.25.(2011陕西文,5,5分)某几何体的三视图如图所示,则它的体积为()A.8-2π3B.8-π3C.8-2πD.2π3答案A由给出的三视图可得原几何体为正方体中挖去一圆锥,且此圆锥以正方体的上底面内切圆为底,以正方体的棱长为高.故所求几何体的体积为8-13×π×12×2=8-2π3.评析三视图是考查空间想象能力很好的一个题材,正确解答此类题目的关键是平时空间想象能力的培养,对文科学生来说,本题属中等难度题.26.(2016课标Ⅰ,6,5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是()A.17πB.18πC.20πD.28π答案A由三视图知该几何体为球去掉了18所剩的几何体(如图),设球的半径为R,则78×43πR3=28π3,故R=2,从而它的表面积S=78×4πR2+34×πR2=17π.故选A.27.(2016课标Ⅱ,6,5分)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20πB.24πC.28πD.32π答案C由三视图可得圆锥的母线长为22+(23)2=4,∴S圆锥侧=π×2×4=8π.又S圆柱侧=2π×2×4=16π,S圆柱底=4π,∴该几何体的表面积为8π+16π+4π=28π.故选C.思路分析先求圆锥的母线长,从而可求得圆锥的侧面积,再求圆柱的侧面积与底面积,最后求该几何体的表面积.28.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.答案14π解析本题考查长方体和球的性质,考查了球的表面积公式.由题意知长方体的体对角线为球O的直径,设球O的半径为R,则(2R)2=32+22+12=14,得R2=72,所以球O的表面积为4πR2=14π.疑难突破明确长方体的体对角线为球O的直径是求解的关键.易错警示易因用错球的表面积公式而致错.29.(2013课标Ⅱ,15,5分,0.158)已知正四棱锥O-ABCD底面边长为3,则以O为球心,OA为半径的球的表面积为.答案24π解析设底面中心为E,连接OE,AE,则|AE|=12|AC|=∵体积V=13×|AB|2∴|OA|2=|AE|2+|OE|2=6.从而以OA为半径的球的表面积S=4π·|OA|2=24π.思路分析先根据已知条件直接利用锥体的体积公式求得正四棱锥O-ABCD的高,再利用勾股定理求出|OA|,最后根据球的表面积公式计算即可.30.(2013课标Ⅰ,15,5分,0.123)已知H是球O的直径AB上一点,AH∶HB=1∶2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.答案9π2解析平面α截球O所得截面为圆面,圆心为H,设球O的半径为R,则由AH∶HB=1∶2得OH=13R,由圆H的面积为π,得圆H的半径为1,+12=R2,得出R2=98,所以球O的表面积S=4πR2=4π·98=92π.31.(2013福建理,12,4分)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是.答案12π解析由三视图知:棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为232=12π.32.(2017江苏,6,5分)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则12的值是.答案32解析本题考查空间几何体的体积.设圆柱内切球的半径为R,则由题设可得圆柱O 1O 2的底面圆的半径为R,高为2R,∴12=π2·2R 43π3=32.33.(2018天津理,11,5分)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为.答案112解析本题主要考查正方体的性质和正四棱锥的体积.由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M-EFGH 的体积V=13×12×12=112.34.(2016天津理,11,5分)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为m3.答案2解析四棱锥的底面是平行四边形,由三视图可知其面积为2×1=2m2,四棱锥的高为3m,所以四棱锥的体积V=13×2×3=2m3.易错警示该题有两点容易出错:一是锥体的体积公式中的系数13易漏写;二是底面平行四边形的面积易错误地写成3×1=3m2.评析本题考查了三视图和直观图,考查了锥体的体积.35.(2016四川,13,5分)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.答案解析由题意及正视图可知三棱锥的底面等腰三角形的底长为23,三棱锥的高为1,则三棱锥的底面积为12×22-(3)2×23=3,∴该三棱锥的体积为13×3×1=评析正确理解正视图中的数据在直观图中表示的含义很关键.36.(2014山东理,13,5分)三棱锥P-ABC中,D,E分别为PB,PC的中点,记三棱锥D-ABE的体积为V1,P-ABC的体积为V2,则12=.答案14解析如图,设S△ABD=S1,S△PAB=S2,E到平面ABD的距离为h1,C到平面PAB的距离为h2,则S 2=2S1,h2=2h1,V1=1S1h1,V2=1S2h2,∴1=1ℎ1=1.评析本题考查三棱锥的体积的求法以及等体积转化法在求空间几何体体积中的应用.本题的易错点是不能利用转化与化归思想把三棱锥的体积进行适当的转化,找不到两个三棱锥的底面积及相应高的关系,从而造成题目无法求解或求解错误.37.(2012安徽,12,5分)某几何体的三视图如图所示,则该几何体的体积等于.答案56解析由题意知,该三视图对应的几何体如图,其体积12(2+5)×4×4=56.评析本题主要考查三视图的知识,考查学生的空间想象能力.由三视图得到直观图是解题关键.38.(2011课标理,15,5分)已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O-ABCD的体积为.答案83解析如图,连接AC,BD,交于O1,则O1为矩形ABCD所在小圆的圆心,连接OO1,则OO1⊥面ABCD,易求得O1C=23,又OC=4,∴OO1=B2-12=2,∴棱锥体积V=13×6×23×2=83.失分警示立体感不强,空间想象能力差,无法正确解出棱锥的高而得出错误结论.评析本题主要考查球中截面圆的性质及空间几何体的体积的计算,通过球这个载体考查学生的空间想象能力及推理运算能力.39.(2011课标文,16,5分)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.答案13解析如图,设球的半径为R,圆锥底面半径为r,由题意得πr2=316×4πR2.=12R.体积较小的圆锥的高AO1=R-12R=12R,体积较大的圆锥的高BO1=R+12R=32R.1故这两个圆锥中,体积较小者的高与体积较大者的高的比值为13.评析本题考查球、球内接圆锥的相关问题,考查R,r的关系,由题意得到是解答本题的关键. 40.(2020课标Ⅰ文,19,12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P 为DO上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P-ABC的体积.解析(1)由题设可知,PA=PB=PC.由于△ABC是正三角形,故可得△PAC≌△PAB,△PAC≌△PBC.又∠APC=90°,故∠APB=90°,∠BPC=90°.从而PB⊥PA,PB⊥PC,故PB⊥平面PAC,所以平面PAB⊥平面PAC.(2)设圆锥的底面半径为r,母线长为l.由题设可得rl=3,l2-r2=2.解得r=1,l=3.从而AB=3.由(1)可得PA2+PB2=AB2,故所以三棱锥P-ABC的体积为13×12×PA×PB×PC=13×12×第21页共21页。

高考数学真题专题(文数)空间几何体的三视图、表面积和体积

高考数学真题专题(文数)空间几何体的三视图、表面积和体积

专题八 立体几何第二十二讲 空间几何体的三视图、表面积和体积2019年1.(2019全国II 文16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)2.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.3.(2019全国III 文16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.4.(2019江苏9)如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是 .5.(2019天津文12若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.6.(2019北京文12)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.7.(2019浙江4)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体体积公式V 柱体=Sh ,其中S 是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A.158 B.162C.182 D.322010-2018年一、选择题1.(2018全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O,2O,过直线12O O的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A.B.12πC.D.10π2.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为BAA.B.C.3D.23.(2018全国卷Ⅰ)在长方体1111ABCD A B C D-中,2AB BC==,1AC与平面11BB C C所成的角为30︒,则该长方体的体积为A.8B.C.D.4.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是5.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC 体积的最大值为 A.B.C.D.6.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图A .2B .4C .6D .87.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A.1 B.2 C.3 D.48.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π9.(2017北京)某三棱锥的三视图如图所示,则该三棱锥的体积为A.60 B.30 C.20 D.1010.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图A .12π+ B .32π+ C .312π+ D . 332π+ 11.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π12.(2016年山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233π+ B .13+ C .13 D .1+ 13.(2016年全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016年全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .18+B .54+C .90D .81 16.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .2+C .1+D .21.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为 (材料利用率=新工件的体积原工件的体积)A .89πB .169πC .31)πD .31)π22.(2015新课标1)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。

高考数学专题十三三视图与体积表面积精准培优专练文

高考数学专题十三三视图与体积表面积精准培优专练文

培优点十三 三视图与体积、表面积1.由三视图求面积例1:一个几何体的三视图如图所示,则该几何体的表面积为_________.【答案】33π【解析】由三视图可得该几何体由一个半球和一个圆锥组成, 其表面积为半球面积和圆锥侧面积的和.球的半径为3, ∴半球的面积21143182S =⋅π⋅=π,圆锥的底面半径为3,母线长为5, ∴圆锥的侧面积为23515S rl =π=π⋅⋅=π,∴表面积为1233S S S =+=π.2.由三视图求体积例2:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )A .4B .2C .42D .8【答案】D【解析】由于长方体被平面所截,∴很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体,从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成,∴所求体积为长方体体积的一半。

从图上可得长方体的底面为正方形,且边长为2,长方体的高为314+=,∴22416V=⋅=长方体,∴182V V==长方体,故选D.一、单选题1.某几何体的三视图如图所示,若该几何体的表面积为,则俯视图中圆的半径为()A.1 B.2 C.3 D.4【答案】A【解析】由三视图可知该几何体为一个长方体挖去了一个半球,设圆半径为r,∴该几何体的表面积2222242216S r r r r r r=⨯⋅+⨯⋅-π⋅+π⋅=+π,得1r=,故选A.2.正方体1111ABCD A B C D-中,E为棱1AA的中点(如图)用过点1B E D、、的平面截去该正方体的上半部分,则剩余几何体的左视图为()对点增分集训A .B .C .D .【答案】D【解析】由题意可知:过点B 、E 、1D 的平面截去该正方体的上半部分,如图直观图, 则几何体的左视图为D ,故选D .3.如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A .236B .72C .76D .4【答案】A【解析】由三视图可得,该几何体是如图所示的三棱柱11ABB DCC -挖去一个三棱锥E FCG -,故所求几何体的体积为()111232221112326⎛⎫⨯⨯⨯-⨯⨯⨯⨯= ⎪⎝⎭,故选A .4.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为( )A .()251++πB .521⎛⎫++π ⎪ ⎪⎝⎭ C .5122⎛⎫++π ⎪ ⎪⎝⎭D .512⎛⎫+π ⎪ ⎪⎝⎭【答案】C【解析】由三视图可知,其对应的几何体是半个圆锥,圆锥的底面半径为1r =, 圆锥的高2h =,其母线长22125l =+=,则该几何体的表面积为:2111511152222222S ⎛⎫=⨯π⨯+⨯π⨯⨯+⨯⨯=++π ⎪ ⎪⎝⎭,本题选择C 选项. 5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于( )A .34πB .32πC .17πD .172π 【答案】A【解析】由三视图知几何体是底面为边长为3,4,5的三角形, 高为5的三棱柱被平面截得的,如图所示,截去的是一个三棱锥,底面是边长为3,4,5的直角三角形,高为3的棱锥, 如图蓝色线条的图像是该棱锥,三棱锥上底面外接圆半径52圆心设为M 半径为r ,球心到底面距离为32,设球心为O , 由勾股定理得到2222253342224h R r ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2434S R =π=π,故选A .6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为( )A .32πB .16πC .36πD .72π【答案】C【解析】还原几何体如图所示三棱锥由1B BCD -(如下左图),将此三棱锥补形为直三棱柱111B C D BCD -(如上右图),在直三棱柱111B C D BCD -中取1BC B C 、的中点12O O 、,取12O O 中点O ,()()()22222523R O A OO =+=+=,2244336S R =π=⨯=π表,故答案为C .7.一个四棱锥的三视图如图所示,则该几何体的表面积为( )A .642+B .842+C .643+D .843+【答案】B【解析】根据三视图,画出原空间结构图如下图所示:∴表面积为111111111111DA D DA B DB C DC D A B C D S S S S S S =++++11112222222222228422222=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯=+,∴故选B . 8.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174π B .214π C .4π D .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A B C D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A B C D -的长、宽、高分别为2,a ,b ,∴此三棱锥的外接球即为长方体1111ABCD A B C D -的外接球,且球半径为2222224a b a b R ++++==, ∴三棱锥外接球表面积为()()22222242144514a b a b a ⎛⎫++ππ=π++=π-+⎪⎝⎭, ∴当且仅当1a =,12b =时,三棱锥外接球的表面积取得最小值为214π.故选B . 9.在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,PA AB =,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .12 B .13C .14 D .15【答案】B【解析】由三视图知,剩余部分的几何体是四棱锥P ABCD -被平面QBD 截去三棱锥Q BCD -(Q 为PC 中点)后的部分,连接AC 交BD 于O ,连楼OQ ,则OQ PA ∥,且12OQ PA=,设PA AB a==,则313P ABCDV a-=,23111132212Q BCDV a a a-=⨯⨯=,剩余部分的体积为:3311312a a-,则所求的体积比值为:3331112113312aa a=-.本题选择B选项.10.如图,画出的是某四棱锥的三视图,网格纸上小正方形的边长为1,则该几何体的体积为()A.15 B.16 C.503D.533【答案】C【解析】由题得几何体原图是下图中的四棱锥A BCDE-,底面四边形BCDE的面积为114442221022⨯-⨯⨯-⨯⨯=,∴四棱锥的体积为15010533⨯⨯=,故答案为C .11.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为( )A .94B .823C .12D .83【答案】D【解析】几何体为如图多面体PABCDE ,∴体积为()11118221222132323D PABE A BCD V V --+=⨯⨯⨯⨯++⨯⨯⨯⨯=,故选D .12.如图为一个多面体的三视图,则该多面体的体积为( )A .203B .7C .223D .233【答案】B【解析】如图所示,该几何体为正方体去掉两个倒置的三棱锥,∴该多面体的体积为32111121212273232V =-⨯⨯⨯-⨯⨯⨯⨯=;故选B .二、填空题13.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.【答案】12【解析】根据三视图知长方体挖去部分是一个底面为等腰梯形(上底为2,下底为4,高为2)高为2的直四棱柱,∴()12422122V Sh ==+⨯⨯=. 14.已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为_______与_______.【答案】404+π,4163π+ 【解析】由三视图可知,其对应的几何体是一个组合体,上半部分是一个直径为2的球,下半部分是一个直棱柱,棱柱的底面是边长为2的正方形,高为4,则该几何体的表面积224122424404S =π⨯+⨯+⨯⨯=+π,几何体的体积:32441241633V =π⨯+⨯=+π. 15.某四棱锥的三视图如图所示,则该四棱锥的体积为_________.【答案】1【解析】根据题中所给的三视图,还原几何体,可知其为有一条侧棱垂直于底面的一个四棱锥,该四棱锥的底面就是其俯视图中的直角梯形,根据图中所给的数据,结合椎体的体积公式,可得其体积11212132V +=⨯⨯⨯=,故答案是1. 16.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为__________.【答案】23【解析】由三视图知,该几何体由正方体沿面11AB D 与面11CB D 截去两个角所得,其体积为33112121233-⨯⨯⨯=,故答案为23.。

【备战高考文科数学】题型全突破:热点题型一 空间几何题的三视图与体积和表面积(解析版)

【备战高考文科数学】题型全突破:热点题型一 空间几何题的三视图与体积和表面积(解析版)

热点题型一空间几何题的三视图与体积和表面积(解析版)空间几何体的三视图及体积与表面积问题是高考的必考点,常在选择题中出现。

题目难度中等,只要考生对三视图的概念清楚,并加以练习即可掌握。

常见问题归纳如下;类型一三视图的辨识类型二三视图与几何体的体积和表面积【基础知识整合】1.空间几何体的结构特征(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2) 三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正(主)侧(左)一样高,正(主)俯一样长,侧(左)俯一样宽;看不到的线画虚线.3.柱、锥、台和球的表面积和体积类型一三视图的辨识【典例1】【2013年高考新课标2文(9)】一个四面体的顶点在空间直角坐标系O xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A B C D【答案】A【典例2】【2016高考天津文数(3)】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B【变式训练】1.【2014湖北高考】在如图所示的空间直角坐标系错误!未找到引用源。

中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D【解析】设错误!未找到引用源。

,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D.考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题.【思路点拨】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学学科内知识间的内在联系,充分体现了数学学科特点和知识间的内在联系,能较好的考查学生的综合知识运用能力.其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.2. 【2014全国1文8】如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱【答案】B类型二 三视图与几何体的体积和表面积【典例1】【2016年高考新课标1文(7)】(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π【典例2】【2016年高考新课标3文(7)】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C考点:三视图,空间几何体的体积.【思路点拨】以三视图为载体考查几何体的体积,解题的关键是根据三视图想象原几何体的形状构成,并从三视图中发现几何体中各元素间的位置关系及数量关系,然后在直观图中求解.【变式训练】1. 【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)错误!未找到引用源。

高考专题13 三视图与体积表面积精准培优专练

高考专题13 三视图与体积表面积精准培优专练

培优点十三 三视图与体积、表面积1.由三视图求面积例1:一个几何体的三视图如图所示,则该几何体的表面积为_________.【答案】33π【解析】由三视图可得该几何体由一个半球和一个圆锥组成, 其表面积为半球面积和圆锥侧面积的和.球的半径为3, ∴半球的面积21143182S =⋅π⋅=π,圆锥的底面半径为3,母线长为5, ∴圆锥的侧面积为23515S rl =π=π⋅⋅=π,∴表面积为1233S S S =+=π.2.由三视图求体积例2:某个长方体被一个平面所截,得到的几何体的三视图如图所示,则这个几何体的体积为( )A .4B .22C .42D .8【答案】D【解析】由于长方体被平面所截,∴很难直接求出几何体的体积,可以考虑沿着截面再接上一个一模一样的几何体,从而拼成了一个长方体,∵长方体由两个完全一样的几何体拼成,∴所求体积为长方体体积的一半。

从图上可得长方体的底面为正方形, 且边长为2,长方体的高为314+=,∴22416V =⋅=长方体,∴182V V ==长方体,故选D .一、单选题1.某几何体的三视图如图所示,若该几何体的表面积为,则俯视图中圆的半径为( )A .1B .2C .3D .4【答案】A【解析】由三视图可知该几何体为一个长方体挖去了一个半球,设圆半径为r , ∴该几何体的表面积2222242216S r r r r r r =⨯⋅+⨯⋅-π⋅+π⋅=+π,得1r =,故选A . 2.正方体1111ABCD A B C D -中,E 为棱1AA 的中点(如图)用过点1B E D 、、的平面截去该正方体的上半部分,则剩余几何体的左视图为( )对点增分集训A .B .C .D .【答案】D【解析】由题意可知:过点B 、E 、1D 的平面截去该正方体的上半部分,如图直观图, 则几何体的左视图为D ,故选D .3.如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则该几何体的体积为( )A .236B .72C .76D .4【答案】A【解析】由三视图可得,该几何体是如图所示的三棱柱11ABB DCC -挖去一个三棱锥E FCG -,故所求几何体的体积为()111232221112326⎛⎫⨯⨯⨯-⨯⨯⨯⨯= ⎪⎝⎭,故选A .4.一个几何体的三视图如图所示,其中正视图是半径为1的半圆,则该几何体的表面积为( )A .()251++πB .5212⎛⎫++π ⎪ ⎪⎝⎭C .51222⎛⎫++π ⎪ ⎪⎝⎭D .5122⎛⎫+π ⎪ ⎪⎝⎭【答案】C【解析】由三视图可知,其对应的几何体是半个圆锥,圆锥的底面半径为1r =, 圆锥的高2h =,其母线长22125l =+=,则该几何体的表面积为:21115111522222222S ⎛⎫=⨯π⨯+⨯π⨯⨯+⨯⨯=++π ⎪ ⎪⎝⎭,本题选择C 选项. 5.若某三棱柱截去一个三棱锥后所剩几何体的三视图如图所示,则所截去的三棱锥......的外接球的表面积等于( )A .34πB .32πC .17πD .172π 【答案】A【解析】由三视图知几何体是底面为边长为3,4,5的三角形, 高为5的三棱柱被平面截得的,如图所示,截去的是一个三棱锥,底面是边长为3,4,5的直角三角形,高为3的棱锥, 如图蓝色线条的图像是该棱锥,三棱锥上底面外接圆半径52圆心设为M 半径为r ,球心到底面距离为32,设球心为O , 由勾股定理得到2222253342224h R r ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2434S R =π=π,故选A .6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积为( )A .32πB .16πC .36πD .72π【答案】C【解析】还原几何体如图所示三棱锥由1B BCD -(如下左图),将此三棱锥补形为直三棱柱111B C D BCD -(如上右图),在直三棱柱111B C D BCD -中取1BC B C 、的中点12O O 、,取12O O 中点O ,()()()22222523R O A OO =+=+=,2244336S R =π=⨯=π表,故答案为C .7.一个四棱锥的三视图如图所示,则该几何体的表面积为( )A .642+B .842+C .643+D .843+【答案】B【解析】根据三视图,画出原空间结构图如下图所示:∴表面积为111111111111DA D DA B DB C DC D A B C D S S S S S S =++++11112222222222228422222=⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯=+,∴故选B . 8.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为( )A .174π B .214π C .4π D .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A B C D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A B C D -的长、宽、高分别为2,a ,b ,∴此三棱锥的外接球即为长方体1111ABCD A B C D -的外接球,且球半径为222222422a b a b R ++++==, ∴三棱锥外接球表面积为()()222222421445124a b a b a ⎛⎫++ππ=π++=π-+⎪ ⎪⎝⎭, ∴当且仅当1a =,12b =时,三棱锥外接球的表面积取得最小值为214π.故选B . 9.在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为正方形,PA AB =,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .12 B .13C .14 D .15【答案】B【解析】由三视图知,剩余部分的几何体是四棱锥P ABCD -被平面QBD 截去三棱锥Q BCD -(Q 为PC 中点)后的部分,连接AC 交BD 于O ,连楼OQ ,则OQ PA ∥,且12OQ PA =,设PA AB a ==,则313P ABCD V a -=,23111132212Q BCD V a a a -=⨯⨯=, 剩余部分的体积为:3311312a a -,则所求的体积比值为:3331112113312aa a =-.本题选择B 选项.10.如图,画出的是某四棱锥的三视图,网格纸上小正方形的边长为1,则该几何体的体积为( )A .15B .16C .503D .533【答案】C【解析】由题得几何体原图是下图中的四棱锥A BCDE -,底面四边形BCDE 的面积为114442221022⨯-⨯⨯-⨯⨯=,∴四棱锥的体积为15010533⨯⨯=,故答案为C .11.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为( )A .94B .823C .12D .83【答案】D【解析】几何体为如图多面体PABCDE ,∴体积为()11118221222132323D PABE A BCD V V --+=⨯⨯⨯⨯++⨯⨯⨯⨯=,故选D .12.如图为一个多面体的三视图,则该多面体的体积为( )A .203B .7C .223D .233【答案】B【解析】如图所示,该几何体为正方体去掉两个倒置的三棱锥,∴该多面体的体积为32111121212273232V =-⨯⨯⨯-⨯⨯⨯⨯=;故选B .二、填空题13.网格纸上小正方形的边长为1,粗虚、实线画出的是某个长方体挖去一个几何体得到的几何图形的三视图,则该被挖去的几何体的体积为__________.【答案】12【解析】根据三视图知长方体挖去部分是一个底面为等腰梯形(上底为2,下底为4,高为2)高为2的直四棱柱,∴()12422122V Sh ==+⨯⨯=. 14.已知某几何体的三视图如图所示,则该几何体的表面积和体积分别为_______与_______.【答案】404+π,4163π+ 【解析】由三视图可知,其对应的几何体是一个组合体,上半部分是一个直径为2的球,下半部分是一个直棱柱,棱柱的底面是边长为2的正方形,高为4,则该几何体的表面积224122424404S =π⨯+⨯+⨯⨯=+π, 几何体的体积:32441241633V =π⨯+⨯=+π. 15.某四棱锥的三视图如图所示,则该四棱锥的体积为_________.【答案】1【解析】根据题中所给的三视图,还原几何体,可知其为有一条侧棱垂直于底面的一个四棱锥,该四棱锥的底面就是其俯视图中的直角梯形,根据图中所给的数据,结合椎体的体积公式, 可得其体积11212132V +=⨯⨯⨯=,故答案是1. 16.已知某几何体的三视图如图所示,三视图的轮廓均为正方形,则该几何体的体积为__________.【答案】23【解析】由三视图知,该几何体由正方体沿面11AB D 与面11CB D 截去两个角所得,其体积为33112121233-⨯⨯⨯=,故答案为23.。

2016届高考数学理命题猜想专题12空间几何体的三视图﹑表面积及体积(解析版)

2016届高考数学理命题猜想专题12空间几何体的三视图﹑表面积及体积(解析版)

【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、(1)(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()【答案】(1)B(2)B【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】(1)D(2)D【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、(1)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+ 5 B.4+ 5C.2+2 5 D.5(2)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连接EF,FB,DE,BD则几何体EFC1-DBC的体积为()A.66 B.68C.70 D.72【答案】(1)C(2)A【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】(2015·四川)在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是________.【答案】1 24【命题热点突破三】多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例3、(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π(2)(2015·课标全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【答案】(1)C(2)【方法技巧】三棱锥P-ABC可通过补形为长方体求解外接球问题的两种情形:(1)P可作为长方体上底面的一个顶点,A、B、C可作为下底面的三个顶点;(2)P-ABC为正四面体,则正四面体的棱都可作为一个正方体的面对角线.【变式探究】在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ABD的面积分别为2 2,3 2,62,则三棱锥A-BCD的外接球体积为________.【答案】6π【解析】如图,以AB,AC,AD为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的对角线长.据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62.∴三棱锥外接球的体积为V =43π·(62)3=6π. 【高考真题解读】1.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5B .等于5C .至多等于4D .至多等于3 【答案】 C2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323 cm 3 D.403 cm 3 【答案】 C【解析】 该几何体是棱长为2 cm 的正方体与一底面边长为2 cm 的正方形,高为2 cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323(cm 3).故选C.3.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8【答案】 B4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.【答案】 83π【解析】 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3.5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4【答案】 D6.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .22【答案】 B【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【答案】 C8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π 【答案】 C【解析】 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B. 23+π C.13+2π D.23+2π【答案】 A【解析】 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝⎛⎭⎫12×1×2×1=π+13,选A.10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.15【答案】 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.4(2-1)3πD.12(2-1)3π【答案】 A。

高中 高考文科数学专项复习 立体几何 空间几何体的三视图及表面积和体积的计算问题

高中 高考文科数学专项复习 立体几何  空间几何体的三视图及表面积和体积的计算问题
心.球半径 R=OA=1,球心到底面圆的距离为 1 OM= . 2 3 ∴ 底面圆半径 r = OA -OM = ,故圆柱体积 V = π·r2· h= 2
2 2
)
Байду номын сангаас
π·
3π 32 ×1= . 4 2
答案 B
4.(2017· 全国Ⅰ卷)已知三棱锥S-ABC的所有顶点都在球O的球面
上, SC 是球 O 的直径 . 若平面 SCA⊥平面 SCB , SA = AC , SB =
解析
(1)设点P在平面A1ADD1的射影为P′,在平面C1CDD1的射
影为P″,如图所示.
∴三棱锥 P-BCD 的正视图与侧视图分别为△P′AD 与△P″CD, 1 1 因此所求面积 S=S△P′AD+S△P″CD=2×1×2+2×1×2=2.
(2) 由几何体的正视图和俯视图可知该几何体的直观图如图①,
【训练1】 (1)(2017· 兰州模拟)如图,在底面边长为1,高为2的正 四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三 棱锥P-BCD的正视图与侧视图的面积之和为( )
A.1 C.3
B.2 D.4
(2)(2016· 天津卷 ) 将一个长方体沿相邻三个面的对角
线截去一个棱锥,得到的几何体的正视图与俯视图 如图所示,则该几何体的侧视图为( )
2 2
法二
1 (估值法)由题意知, V 圆柱<V 几何体<V 圆柱, 又 V 圆柱=π×32×10 2
=90π,∴45π<V 几何体<90π.观察选项可知只有 63π 符合.
答案 B
3.(2017· 全国 Ⅲ 卷 ) 已知圆柱的高为 1 ,它的两个底面的圆周在直 径为2的同一个球的球面上,则该圆柱的体积为( 3π π π A.π B. 4 C.2 D.4 解析 如图画出圆柱的轴截面 ABCD,O 为球

专题 由三视图求表面积和体积

专题 由三视图求表面积和体积

由三视图求表面积和体积一、方法与技巧二、常见几何体1.(2016•益阳模拟)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.60 B.54 C.48 D.24【解答】解:由三视图知:几何体是一个侧面向下放置的直三棱柱,侧棱长为4,底面三角形为直角三角形,直角边长分别为3,4,斜边长为5.∴几何体的表面积S=S棱柱侧+S底面=(3+4+5)×4+2××3×4=48+12=60.故选:A.2.(2016•凉山州模拟)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6 B.12 C.24 D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选B3.(2016•衡水校级一模)已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.27﹣3πD.18﹣3π【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.4.(2016•广元二模)一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3【解答】解:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4 体积V=Sh==48cm3故选A5.(2016•江门模拟)一个几何体的三视图及其尺寸如下,则该几何体的表面积为()A.12πB.15πC.24πD.36π【解答】解:由三视图可知该几何体为一个圆锥,底面直径为6,母线长为5,底面圆的面积S1=π×()2=9π.侧面积S2=π×3×5=15π,表面积为S1+S2=24π.故选C.6.(2016•安康二模)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:三视图复原的几何体是三棱锥,底面是底边长为2,高为2的等腰三角形,三棱锥的一条侧棱垂直底面,高为2.三棱锥的体积为:==.故选D.7.(2016•杭州模拟)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.8.(2016•呼伦贝尔一模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V,并且可以用n个这样的几何体拼成一个棱长为4的正方体,则V,n的值是()A.V=32,n=2 B.C.D.V=16,n=4【解答】解:由三视图可知,几何体为底面是正方形的四棱锥,所以V=,边长为4的正方体V=64,所以n=3.故选B9.(2016•广东模拟)一空间几何体的三视图如图所示,则该几何体的体积为()A.12 B.6 C.4 D.2【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2,故选D.10.(2016•延边州模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C. D.4【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.11.(2016•江西校级一模)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24 B.π+20 C.2π+24 D.2π+20【解答】解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.12.(2016•太原二模)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:所以该几何体的体积为23﹣×22×1=.故选A.13.(2016•太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.14.(2016•河西区模拟)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B. C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.15.(2016•岳阳二模)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.16.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.17.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.18.(2016•揭阳一模)已知某空间几何体的三视图如图所示,则该几何体的体积是48.【解答】解:由三视图可知原几何体如图所示,可看作以直角梯形ABDE为底面,BC为高的四棱锥,由三棱锥的体积公式可得V=××(2+6)×6×6=48,故答案为:48.三、常见几何体的组合体19.(2016•佛山模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C. D.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.20.(2016•乐山模拟)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.四、常见几何体的切割体21.(2016•茂名一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.22.(2016•威海一模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.【解答】解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.23.(2016•张掖校级模拟)某几何体的三视图如图所示,则该几何体的体积为26【解答】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.24.(2016•商洛模拟)已知一个几何体的三视图是三个全等的边长为l的正方形,如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体是正方体削去一个角,体积为1﹣=1﹣=.故选:D.25.(2016•银川校级一模)如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18.【解答】解:由三视图可知正方体边长为6,截去部分为三棱锥,作出几何体的直观图如图所示:∴被截去的几何体的表面积S=+×(6)2=54+18.故答案为54+18.26.(2016•哈尔滨校级二模)一个空间几何体的三视图如图所示,则这个几何体的体积为.【解答】解:根据已知中的三视图,可得几何体的直观图如下图所示:该几何是由一个以俯视图为底面的四棱锥,切去两个棱锥所得的组合体,四棱柱的体积为:×(2+4)×4×4=48,四棱锥F﹣EHIJ的体积为:×(2+4)×4×2=8,中棱锥F﹣HGJ的体积为:=,故组合体的体积V=,故答案为:4.(2011•北京模拟)已知一个几何体的三视图如所示,则该几何体的体积为()A.6 B.5.5 C.5 D.4.5【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积可以做出,高是3,做出截去得到三棱锥的体积,长方体的体积也可以做出.【解答】解:由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积是×1×1=,高是3,∴截去得到三棱锥的体积是2××=1,长方体的体积是3×2×1=6∴几何体的体积是6﹣1=5故选C.。

高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习 (含答案与解析)

高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习 (含答案与解析)

高考数学(文科)专题练习空间几何体的三视图、表面积与体积一、选择题.B...2.如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为A....(2016·河南郑州一测如图是一个四面体的三视图,这三个视图均是腰长为和俯视图的虚线是三角形的中线,则该四面体的体积为(C.8 3及其三视图中的正视图和侧视图如图所示,则棱C.38D.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该B.54185+D.81某几何体的三视图如图所示,则该几何体的体积等于C.5 2如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是C.8π《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为“在屋内墙角处堆放米尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已立方尺,圆周率约为3,估算出堆放的米约有C.36斛如图,网格纸上正方形小格的边长为1(表示,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯C.10 27均在球O的球面上,AB)的正三角形的三个顶点都在球的表面积为____________.已知一个三棱柱,其底面是正三角形,且侧棱与底面垂直,一个体积为高考数学(文科)专题练习空间几何体的三视图、表面积与体积答案一、选择题1~5.CDABB 6~10.CBBCC二、填空题11;12.40π;13..14.13高考数学(文科)专题练习空间几何体的三视图、表面积与体积解析一、选择题1.解析:该几何体的侧视图即为其在面BCC1B1上的射影,又A点射影为点B,E点射影为线段CC1的中点,故选C.2.解析:由正视图和侧视图可知,这是一个横放的正三棱柱,一个侧面水平放置,则俯视图应为D.3.解析:四面体的直观图如图A-BCD,所以V=×(×1×2)×2=。

高考文数考点解析空间几何体的结构及其三视图和直观图、空间几何体的表面积与体积

高考文数考点解析空间几何体的结构及其三视图和直观图、空间几何体的表面积与体积

考点26 空间几何体的结构及其三视图和直观图、空间几何体的表面积与体积一、选择题1.(2016·全国卷Ⅰ高考文科·T7)同(2016·全国卷Ⅰ高考理科·T6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是 ( )A.17πB.18πC.20πD.28π【解析】选A.该几何体是一个球体挖掉18剩余的部分,如图所示,依题意得78×43πR 3=28π3,解得R=2, 所以该几何体的表面积为4π×22×78+43π×22=17π. 2.(2016·全国卷Ⅱ文科·T7)同(2016·全国卷Ⅱ理科·T6)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 ( )A.20πB.24πC.28πD.32π【解题指南】观察三视图,确定圆柱和圆锥的底面半径和高,再利用表面积是各个面的和进行计算.【解析】选C.几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h.由图得r=2,c=2πr=4π,h=4,由勾股定理得: l =,S 表=πr 2+ch+21c l =4π+16π+8π=28π.3.(2016·全国卷Ⅱ文科·T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为 ( ) A.12π B.323π C.8π D.4π 【解题指南】利用正方体的体对角线就是球的直径求解.【解析】选A.因为正方体的体积为8,所以正方体的棱长为2,其体对角线长为2,所以正方体的外接球的半径为,所以球的表面积为4π·()2=12π. 4.(2016·全国卷Ⅲ·文科·T10)与(2016·全国卷3·理科·T9)相同如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ( )B.54+18C.90D.81【解题指南】根据三视图作出原几何体是关键.【解析】选B.根据三视图可知原几何体是一个斜四棱柱,上下底面为边长为3的正方形,左右为底边长为3,侧棱为的矩形,前后为底边为3,侧棱为的平行四边形,且底边上的高为6,所以S=9+9+18+18+9+9.5.(2016·全国卷Ⅲ·文科·T11)与(2016·全国卷3·理科·T10)相同在封闭的直三棱柱ABC-A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB=6,BC=8,AA 1=3,则V 的最大值是 ( ) A.4π B.9π2 C.6π D.32π3【解题指南】注意当球和直三棱柱的三个侧面内切时,球已不在直三棱柱内.【解析】选B.当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC ,AB=6,BC=8,所以AC=10,底面的内切圆的半径即为此时球的半径r=68102+-=2,直径为4>侧棱.所以球的最大直径为3,半径为32,此时体积V=9π2. 6.(2016·山东高考文科·T5)同(2016·山东高考理科·T5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为 ( )A.13+23πB.13+πC.13+ππ【解题指南】充分利用三视图各测度的数值,还原几何体本身各测度的数值,进而求其体积.【解析】选C.由三视图可知,半球的半径为,四棱锥底面正方形边长为1,高为1,所以该组合体的体积=43π·3⎝⎭×12+13×1×1×1=13π. 7.(2016·天津高考文科·T3)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为 ( )【解题指南】利用正视图和俯视图进行判断.【解析】选B.由题意得截去的是长方体前右上方顶点.8.(2016·北京高考理科·T6)某三棱锥的三视图如图所示,则该三棱锥的体积为 ( )A.61B.31 C.31D.1【解题指南】三棱锥的体积为31Sh.【解析】选A.通过三视图可还原几何体为如图所示的三棱锥,则通过侧视图得高h=1,底面积S=21×1×1=21,所以体积V=31Sh=61.二、填空题9.(2016·浙江高考理科·T11)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解题指南】先由三视图还原几何体再进行求解.【解析】几何体为两个相同长方体组合而成,长方体的长宽高分别为4,2,2,所以体积为2×(2×2×4)=32(cm3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(2×2×2+2×4×4)-2×2×2=72(cm2).答案:723210.(2016·浙江高考理科·T14)如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是.【解题指南】利用三棱锥的体积公式表示出体积,再利用不等式求最值.【解析】结合图形利用不等式的放缩进行求值,注意基本不等式的适用条件.在△ABC中,AB=BC=2,∠ABC=120°,所以AC==设CD=x,则AD=2-x,所以PD=2-x,所以V P-BCD=13S△BCD·h≤13×12BC·CDsin30°·PD=16×2x×12×(2)=16x(2)≤216⎝⎭=16×2⎝⎭=12, 当且仅当x=2-x ,即x==”, 此时PD=BD=1,PB=2,满足题意. 答案: 1211.(2016·浙江高考文科·T9)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解题指南】先由三视图还原几何体再进行求解.【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,S 表=6×22+2×42+4×2×4-2×22=80(cm 2),V=23+4×4×2=40(cm 3).答案:80 4012.(2016·四川高考理科·T13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .【解题指南】先根据正视图和已知条件判断几何体的形状,代入公式即可得出几何体的体积. 【解析】由题可知,因为三棱锥每个面都是腰为2的等腰三角形,由正视图可得如下俯视图,且三棱锥高为h=1,则体积V=13Sh=13×112⎛⎫⨯⨯ ⎪⎝⎭×1=.答案:13.(2016·四川高考文科·T12)已知某三棱锥的三视图如图所示,则该三棱锥的体积是 .【解题指南】根据俯视图求出底面积,根据侧视图求出高,从而得出几何体的体积.【解析】由三视图可知该几何体是一个三棱锥,且底面积为S=12××高为1,所以该几何体的体积V=13Sh=13××1=答案:14.(2016·天津高考理科·T11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为 m 3.【解题指南】由几何体的三视图判断原几何体的构成,再求解. 【解析】底面为平行四边形,面积为2×1=2,高为3,所以V=2×1×3×13=2. 答案:215.(2016·北京高考文科·T11)某四棱柱的三视图如图所示,则该四棱柱的体积为.【解题指南】四棱柱的体积为底面积乘以高.【解析】由俯视图可知底面面积为错误!未找到引用源。

高考数学文试题分类汇编三视图

高考数学文试题分类汇编三视图

高考数学文试题分类汇编三视图1、(2016年山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为2.(2016年全国卷高考)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( C )(A)20π(B)24π(C)28π(D)32π3、(2016年天津高考)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( B )4.(2016年全国卷高考)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为B(A )(B )(C )90 (D )815、(2016年北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为.6、(2016年四川高考)已知某三菱锥的三视图如图所示,则该三菱锥的体积 。

7、(2016年浙江高考)某几何体的三视图如图所示(单位:),则该几何体的表面积是80 ;2,体积是_403.18+54+3.28.(15北京理科)某三棱锥的三视图如图所示,则该三棱锥的表面积是 C A.2+.4+ C.2+.59.(15北京文科)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( C )A .1 BC.210.(15年安徽文科)一个四面体的三视图如图所示,则该四面体的表面积是( C )(A ) (B )(C ) (D )11俯视图侧(左)视图211+1+2+11.(15年福建文科)某几何体的三视图如图所示,则该几何体的表面积等于( B )A .B .. D .12.(15年陕西文科)一个几何体的三视图如图所示,则该几何体的表面积为( D )A .B .C .D .13.[2014·北京卷] 某三棱锥的三视图如图1­3所示,则该三棱锥最长棱的棱长为2 .8+11+14+153π4π24π+34π+14.[2014·辽宁卷] 某几何体三视图如图1­2所示,则该几何体的体积为( C )A.8- B.8-C.8-π D.8-2π15.[2014·浙江卷] 某几何体的三视图(单位:)如图所示,则该几何体的体积是( B)A.72 3 B.90 3C.108 3 D.138 316.[2014·新课标全国卷Ⅱ] 如图1­1,网格纸上正方形小格的边长为1(表示1 ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 ,高为6 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( C )图1­117.[2014·四川卷] 某三棱锥的侧视图、俯视图如图1­1所示,则该三棱锥的体积是(锥体体积公式:V =,其中S 为底面面积,h 为高)( D )图1­1A .3B .2 D .118.[2014·重庆卷] 某几何体的三视图如图1­2所示,则该几何体的体积为( C )A.12 B.18 C.24 D.3019.[2014·天津卷] 一个几何体的三视图如图1­2所示(单位:m),则该几何体的体积为3.。

利用三视图求几何体的表面积和体积

利用三视图求几何体的表面积和体积

6
5
由三视图求几何体的体积和表面积的思路
1、由三视图确定几何体的形状 (1)由俯视图确定几何体的底面 (2)根据正视图或侧视图确定几何体侧棱与侧面特征,调整 实线和虚线所对应的棱、面的位置 (3)确定几何体直观图形状 2、由题目中的数据进行代入公式求解
布置作业:
《优化设计》p22-基础巩固3,4,6,7 P24例2,变式训练2, P25-基础巩固7,9
积等于
.
解析:该几何体如图所示,挖去的圆锥的母线长为
62 22 2 10
则圆锥的侧面积等于 4 10 圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面 积为 22 4 ,所以组合体的表面积
为 4 10 24 4 4 10 28 .
答案: 4 10 28
题型二:三视图有关的体积计算
1 3Байду номын сангаас
(S
SS' S')h
题型一:三视图有关面积计算
例1.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.72 B.66 C.60 D.30
解析:由所给三视图可知该几何体为一个三棱柱,且底面为
直角三角形,直角边长分别为3和4,斜边长为5,三棱柱的高为5,
如图所示,所以表面积为
2
温故知新
1、三视图
画三视图的三大原则
正俯一样长,正侧一样高,侧俯一样宽
温故知新
面积
圆柱的表面积:S圆柱 2r(r l) 圆锥的表面积:S圆锥 r(r l) 圆台的表面积:S圆台 (r 2 r'2 rl r'l)
体积
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台

2016届高考数学文命题猜想专题12空间几何体的三视图、表面积及体积(学生版)

2016届高考数学文命题猜想专题12空间几何体的三视图、表面积及体积(学生版)

【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、(1)(2014·课标全国Ⅰ)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、(1)(2015·北京)某三棱锥的三视图如图所示,则该三棱锥的表面积是()A.2+ 5 B.4+ 5C.2+2 5 D.5(2)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连接EF,FB,DE,BD则几何体EFC1-DBC的体积为()A.66 B.68C.70 D.72【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】(2015·四川)在三棱柱ABC-A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是AB,BC,B1C1的中点,则三棱锥PA1MN的体积是________.【命题热点突破三】多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.例3、(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π(2)(2015·课标全国Ⅱ)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【方法技巧】三棱锥P-ABC可通过补形为长方体求解外接球问题的两种情形:(1)P 可作为长方体上底面的一个顶点,A 、B 、C 可作为下底面的三个顶点;(2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.【变式探究】在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________.【高考真题解读】1.(2015·北京,7)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A.1B. 2C. 3D.22.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2πB.13π6C.7π3D.5π23.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+44.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 35.(2015·福建,9)某几何体的三视图如图所示,则该几何体的表面积等于( )A.8+2 2B.11+2 2C.14+2 2D.156.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A.1B.2C.4D.87.(2015·新课标全国Ⅱ,10)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π8.(2015·安徽,9)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ 3B.1+2 2C.2+ 3D.229.(2015·新课标全国Ⅰ,6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A.14斛B.22斛C.36斛D.66斛10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( )A.18B.17C.16D.1511.(2015·山东,9)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.22π3 B.42π3C.22πD.42π12.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件的利用率为(材料利用率=新工件的体积/原工件的体积)( )A.89πB.827πC.24(2-1)3π D.8(2-1)3π。

2016年高考数学专题精解课件:5.1.空间几何体的三视图、表面积与体积

2016年高考数学专题精解课件:5.1.空间几何体的三视图、表面积与体积

()
(A)1
(B) 2 (C) 3 (D)2
解析:(1)该几何体是底面为正方形,一侧 棱垂直于底面的四棱锥,最长棱的棱长为
12 12 12 = 3 ,故选 C.
第十五页,编辑于星期五:二十三点 十八分。
(2)正方体 ABCD-A1B1C1D1 中,M,N 分别是棱 A1B1,A1D1 的中点,如图是该正方 体被过 A,M,N 和 D,N,C1 的两个截面截去两个角后所得的几何体,则该几 何体的正视图为( )
(2)求不规则几何体的体积,常用分割或补形的思想,将不规则几何体转化为规 则几何体来求解. (3)求表面积,其关键思想是空间问题平面化.
第二十一页,编辑于星期五:二十三点 十八分。
举一反三 2-1:
(1)一个多面体的三视图如图所示,则该多面
体的表面积为( )
(A)21+ 3 (C)21
(B)18+ 3 (D)18
②锥体的体积 V= 1 Sh; 3
③台体的体积 V= 1 (S′+ SS +S)h. 3
④球的体积 V= 4 πR3. 3
第十三页,编辑于星期五:二十三点 十八分。
温馨提示 在有关体积,表面积的计算应用中注意等积法的应用.
第十四页,编辑于星期五:二十三点 十八分。
1.空间几何体的三视图
【例 1】 (1)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为
2 所以 S 表=4π×( 2 )2=8π.
答案: (1)8π
第二十五页,编辑于星期五:二十三点 十八分。
(2)A,B,C三点在同一球面上,∠BAC=135°,BC=4,且球心O到平面ABC的距离为1,则此球
O的体积为
.
解析: (2)在△ABC 中,∠BAC=135°,BC=4, 设△ABC 外接圆半径为 r,球的半径为 R,

2016届高考数学理仿真押题专题12空间几何体的三视图﹑表面积及体积(解析版)

2016届高考数学理仿真押题专题12空间几何体的三视图﹑表面积及体积(解析版)

1.如右图放置的六条棱长都相等的三棱锥,则这个几何体的侧视图是()A.等腰三角形B.等边三角形C.直角三角形D.无两边相等的三角形【答案】 A2.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()【答案】 C【解析】由于C选项不符合三视图中“宽相等”的要求,故选C.3.一个正方体截去两个角后所得几何体的正(主)视图、侧(左)视图如图所示,则其俯视图为()【答案】 C 【解析】 由题意得正方体截去的两个角如图所示,故其俯视图应选C.4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )【答案】 C5.如图,用斜二测画法得到四边形ABCD 是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.【答案】 8 2【解析】:作DE ⊥AB 于E ,CF ⊥AB 于F ,则AE =BF =AD cos 45°=1,∴CD =EF =3.将原图复原(如图),则原四边形应为直角梯形,∠A ′=90°,A ′B ′=5,C ′D ′=3,A ′D ′=22,∴S 四边形A ′B ′C ′D ′=12×(5+3)×22=8 2.6.如图是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A .24B .12C .8D .4【答案】 B7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32 C .1 D. 3【答案】 B【解析】有三视图可以得到原几何体是以1为半径,母线长为2的半个圆锥,故侧视图的面积是32,故选B.8.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+16B.4π3+16C.2π6+16D.2π3+12【答案】 C9.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为( )A .92+24πB .82+24πC .92+14πD .82+14π 【答案】 C【解析】 该几何体是个半圆柱与长方体的组合体,直观图如图,表面积为S =5×4+2×4×4+2×4×5+2π×5+π×22=92+14π.10.四棱锥P -ABCD 的三视图如图所示,四棱锥P -ABCD 的五个顶点都在一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .12πB .24πC .36πD .48π【答案】 A11.用6根木棒围成一个棱锥,已知其中有两根的长度为 3 cm 和 2 cm ,其余四根的长度均为1 cm ,则这样的三棱锥的体积为________cm 3.【答案】 212【解析】 由题意知该几何体如图所示, SA =SB =SC =BC =1,AB =2,AC =3,则∠ABC =90°,取AC 的中点O ,连接SO 、OB ,则SO ⊥AC ,所以SO =SA 2-AO 2=12,OB =12AC =32,又SB =1,所以SO 2+OB 2=SB 2,所以∠SOB =90°,又SO ⊥AC ,所以SO ⊥底面ABC ,故所求三棱锥的体积V =13×22×12=212.12.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.【答案】 24 213.如图所示,E ,F 分别是正方体的面ADD 1A 1,面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面上的正投影可能是________.(要求:把可能的图的序号都填上)【答案】 ②③【解析】 由正投影的定义,四边形BFD 1E 在面AA 1D 1D 与面BB 1C 1C 上的正投影是图③;其在面ABB 1A 1与面DCC 1D 1上的正投影是图②;其在面ABCD 与面A 1B 1C 1D 1上的正投影也是②,故①④错误.14.用一个平行于圆锥底面的平面截这个圆锥,截得圆台的上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长.解 由圆台的上、下底面的面积之比为1∶16,设圆台上、下底面圆的半径分别为r 、4r ,圆台的母线长为l ,根据相似三角形的性质得33+l=r 4r ,解得l =9 cm.所以圆台的母线长为9 cm.15.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.解(1)正六棱锥.16.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、右侧面均为底边长为6,高为h 2的等腰三角形,如图所示.(1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.17.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2, 则正棱锥侧面的斜高为12+(2)2= 3. ∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2 =92+6 3.(2)设正三棱锥P -ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

母题13 三视图与几何体的表面积和体积
【母题来源一】【2016高考天津文数】
【母题原题】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()
【答案】B
【解析】由题意得截去的是长方体前右上方顶点,故选B
考点:三视图
【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.
2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相
关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据. 【母题来源二】【2016高考北京文数】
【母题原题】某四棱柱的三视图如图所示,则该四棱柱的体积为___________.
【答案】3
.2
【解析】四棱柱高为1,底面为等腰梯形,面积为13(12)122⨯+⨯=,因此体积为3.2
考点:三视图
【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.
【命题意图】本类题主要以三视图为载体,通过还原几何体考查空间想象能力,通过体积和表面积的运算考查运算求解能力.
【考试方向】高考对三视图的考查注意以以下几个方面为主:1、已知部分三视图,考查还原为原来立体图形的直观图;2、已知三视图,考查还原为立体图形的直观图并能计算表面积或体积;3、已知三视图,需要还原立体图形后求空间角或空间距离以及相关元素的位置关系4、以三视图为载体,考查还原后几何体的外接球或内切球问题。

【得分要点】
考点1.三视图和直观图
1.三视图
(1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,正侧一样高,俯侧一样宽,即“长对正,高平齐,宽相等”.
(2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样.
(3)画三视图时,可见的轮廓线用实线画出,被遮挡的轮廓线,用虚线画出. 2.直观图
空间几何体的直观图常用斜二测画法来画,其规则是:
(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ’轴、y ’轴的夹角为45o (或135o ),z ’轴与x ’轴和y ’轴所在平面垂直;
(2)原图形中平行于坐标轴的线段,直观图中仍平行。

平行于x 轴和z 轴的线段长度在直观图不变,平行于y 轴的线段长度在直观图中减半。

考点2.体积与表面积公式:
(1)柱体的体积公式:V =柱Sh ; 锥体的体积公式:V =
锥1
3
Sh ;
台体的体积公式:V =棱台1
()3
h S S '+; 球体的体积公式:V =
球3
43
r π。

(2)球的表面积公式:2
4S R π=球。

棱柱、棱锥及棱台的各个面的面积之和,即为其表面积。

【母题1】某几何体的三视图如图所示,则该几何体的表面积等于( )
A .8+.11+.14+.15 【答案】B
【考点】三视图及几何体表面积.
【名师点睛】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状.
【母题2】某几何体的三视图如图所示,则该几何体的表面积为()
+ A.4 B.21 C12 D.12
2
【答案】C
【考点】几何体的三视图与表面积.
【名师点晴】本题借助三视图考查了几何体的表面积,属于中档题.本题解答的难点在于根据三视图还原出几何体,还原时应当注意三个视图的外部轮廓都是边长为2的正方体,所以应该考虑该几何体为正方体通过被平面截取所得,同时平面经过各棱的中点,再结合三视图
沿相反的方向“拉回”,最后求表面积时,只要注意到相对面的关系,问题就容易解决了. 【母题3】若某多面体的三视图(单位:cm )如图所示,则此多面体的体积是
A.
78cm 3 B. 23cm 3 C. 56cm 3 D.12
cm 3
【答案】A
【考点】三视图与几何体的体积.
【名师点睛】对于多面体的三视图问题,往往置于长方体或正方体中,在此基础上经过割补,以及结合三视图形状画出还原后的几何体,进而求表面积或者体积.
【母题4】如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是多面体的三视图,则该多面体的体积为( )
A .203
B .8
C .223
D .163
【答案】C
【解析】由图像的三视图可得该几何体是一个正方体,截去一个小三棱锥,如图所示
1122
8212323
V V V =-=-⨯⨯⨯⨯=正方体三棱锥,应选C.
【考点】由三视图求几何体的体积.
【名师点晴】本题主要考查了空间几何体的三视图、几何体的体积的计算公式,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,根据空间几何体的侧面积(表面积)或体积公式求解,同时准确计算也是解答的一个易错点.
【母题5】某几何体的正(主)视图和侧(左)视图如图(1),它的俯视图的直观图是矩形1111O A B C 如图(2)
,其中11116,2O A O C ==,则该几何体的侧面积为( )
A .64
B .80
C .96
D .128 【答案】C
【考点】1、空间几何体的三视图;2、棱柱的侧面积.
【名师点睛】本题以三视图和直观图的斜二测画法为载体,考查几何体的侧面积问题,难度较大,知识融合较好,更好第考查学生空间想象能力和运算求解能力.
【母题6】一个棱长为2的正方形沿其棱的中点截去部分后所得几何体的三视图如图所示,
则该几何体的体积为()
A.7 B.22
3
C.
47
6
D.
23
3
【答案】D
【考点】1、三视图;2、组合体的体积.
【名师点睛】对于多面体的三视图问题,往往置于长方体或正方体中,在此基础上经过割补,以及结合三视图形状画出还原后的几何体,进而求表面积或者体积.
【母题7】如图所示,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,
则该几何体的体积为()
A....
【答案】B
【解析由三视图可还原几何体的直观图如图所示.此几何体可通过分割和补形的方法拼凑成
V=⨯=B.
一个长和宽均为333
【考点】几何体的三视图及体积的计算.
【名师点晴】本题主要考查了空间几何体的三视图换元空间几何体及空间几何体的提及的计算,着重考查了学生的空间想象能力和运算能力及转化的数学思想方法,属于基础题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,根据空间几何体的侧面积(表面积)或体积公式求解,同时准确计算也是解答的一个易错点.
【母题8】一个几何体的三视图如图所示,则该几何体的体积是()
A.6 B.8 C.10 D.12
【答案】D
【考点】三视图,几何体的体积
【名师点睛】本题考查圆锥和圆柱组合体的三视图,要求对基本柱、锥、台体的三视图要理解熟记,这样才可以对基本几何体组成的复杂几何体的三视图问题做到心里有数,有的放矢.【母题9】某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为()
A .22
B .32
C .4
D .62 【答案】B
考点:1.由几何体三视图得到直观图;2.三角形面积公式.
【名师点晴】本题主要考查了如何由几何体的三视图得到直观图,考查了空间想象力,属于中档题. 在本题中,由于正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,想到此四面体由边长为2的正方体截掉几部分得到的.正视图沿AD 方向,侧视图沿
DC 方向,俯视图沿QD 方向.
【母题10】已知某几何体的正视图和侧视图如图所示,则该几何体的俯视图不可能为( )
【答案】D
【解析】如果该几何体是圆锥,俯视图可以是A, B,如果该几何正四棱锥,俯视图可以是C,因此D是不可能的.故选D.
【考点】三视图.
【名师点睛】本题考查三视图,属于容易题,由正视图和侧视图的形状不能确定该几何体的形状,结合俯视图代入检验即可.。

相关文档
最新文档