2019年334 二元一次方程组的解法——加减消元法语文

合集下载

二元一次方程组的解法之加减消元法

二元一次方程组的解法之加减消元法


12x 16y 32 ③ 12x 9y 3 ④
当程的方的方程两程组边的的都系两乘数(能x(个以相或不方一 同或互能程个或y为)使不适互相的两能当为反直的相系个接数反数数方用(数)相程加不,呢等中减为那?消零么元)就时, 可,使以可变用将形加方后减
消元法来解方程组了.


2x 3y 11 ①
2x 3 (3) 11
解得 x 1 写解
3x 45 8
解得 x 4
x 1
因此原方程组的解是
y
3
x 4
因此原方程组的解是
y
5樂见
2x 3y 11 ①
(1)6x 5y 9

3x 4y 8 ① (2)4x 3y 1 ②
解:①×5得10x 15y 55③ 解:①×4得 12x 16y 32 ③
小结:如果两个方程中有一个未知数的系数相 等(或互为相反数),那么把这两个方程直接 相减(或相加);否则,就把方程乘以适当的 数进行变形,再将所得方程相减(或相加). 樂

1997m 1999n 3995 (5)1999m 1997n 3997
选择消
,将方程
①+②得
3996m3996n 39962

y
3
x 4
因此原方程组的解是
y
5樂见
牛刀小试
解下列方程组:
3x 2 y 8 ① (1)6x 5y 47 ②
2x 3y 12 ① (2) 3x 4 y 17 ②
樂 见
巩固练习
用加减法解下列方程时,你认为先消哪个未知数 比较简单,填写消元的过程.
2m 3n 1 ① 选择消 n
(1) 5m 3n 4 ② 将方程 ②-① 进行消元

加减消元法—解二元一次方程组(1)

加减消元法—解二元一次方程组(1)

追问3
如何用加减法消去x?
应用新知
二 元 一 次 方 程 组 3x 3 x+4y y= =16 16
①×5
使未知数x 系数相等
15x+20y=80
5x-6y=33
代 入
②×3
15x-18y=99
解得x
x=6
1 y= 2
解得y
两 式 相 减
消 x
38y=-19
初步尝试:

解下列方程组: 1. 3x 2 y 6, 2.
y 4.
探究新知
x y 10 ,① 问题1 我们知道,对于方程组 2 x y 16 ②
可以用代入消元法求解,除此之外,还有没有 其他方法呢? 追问5 ①-②也能消去未知数y,求出x吗?
(x y )( 2x y ) 10 16.
探究新知
问题2 联系上面的解法,想一想应怎样解方程组
3x 10 y 2.8, ① ② 15 x 10 y 8 .
追问1 此题中存在某个未知数系数相等吗?你发 现未知数的系数有什么新的关系? 未知数y的系数互为相反数,由①+②,可消去 未知数y,从而求出未知数x的值. 追问2 两式相加的依据是什么? “等式性质”
探究新知
问题3 这种解二元一次方程组的方法叫什么?有 哪些主要步骤? 当二元一次方程组中的两个二元一次方程中同一 未知数的系数相反或相等时,把这两个方程的两边分 别相加或相减,就能消去这个未知数,得到一个一元 一次方程,这种方法叫做加减消元法,简称加减法.
自测
x = 1 mx + n = 5 1、已知方程组 的解是 y = 2 my - n = 1
2 m=____________,n=________________ 3

3.3(2)二元一次方程组的解法(加减消元)及典型例题

3.3(2)二元一次方程组的解法(加减消元)及典型例题

有相
这样可以通过第一个方程组求出x和y的值,再将 这两个值代入第二个方程,求关于a和b的二元 一次方程组。
9、 关于x、y的方程组 解满足3x+2y=19,求原方程组的解。
解:

分别把m=1代入到 x=7m、y=-m中, 得: x=7 ,y=-1 ∴原方程组的解为:
①+②,得: 2x=14m x=7m
4 x 2 y 14 (2) 5 x y 7
x 3 y 20 (3) 3 x 7 y 100
2 x 3 y 8 (4) 5 y 7 x 5
归纳小结
1、解二元一次方程组的基本方法:加减法和代入法 2、基本思路:消元 3、加减法解方程组的一般步骤: (1)变换系数; (2)加减消元(同号减,异号加); (3)回代求解; (4)写出方程组的解。
x=2
• 8、若方程组
同的解,求a和b的值。 分析:将两个方程组中的四个方程重新组合:
b ax y 2 4x y 1 2 , 2x y 3 a x by 1 2
4x y 1 2x y 3 ,a b ax y 2 x by 1 2 2

代入(1)得, x
22 23

加减法解二元一次方程组的一般步骤:
1。把一个方程(或两个方程)的两边都乘以一个 适当的数,使两个方程的一个未知数的系数的绝对 值相等; 2。把一个未知数系数绝对值相等的两个方程的两边 分别相加(或相减),得到一个一元一次方程,求得 一个未知数的值; 3。把这个未知数的值代入原方程组的任何一个方程, 求得另一个未知数的值; 4。写出方程组的解。
6、若方程5x 求m 、n 的值.

消元——二元一次方程组的解法教学建议及例题分析

消元——二元一次方程组的解法教学建议及例题分析

消元——二元一次方程组的解法教学建议及例题分析教学建议二元一次方程组在生活中经常应用.它不仅是研究其它代数的基础,在解决实际问题中也有着广泛的应用.因此,探索和掌握解二元一次方程对学生更好地认识现实世界是非常重要的.本节课主要内容为二元一次方程组的解法:代入法和加减法.“消元”是解二元一次方程组的基本思路.所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数.因此本节课是从实际问题开始,介绍了代入和加减两种消元法解二元一次方程组.本节共包括两部分内容代入法和加减法.可分为四个课时完成. 解二元一次方程组是本节课的重点.根据本节课的教学目标、教材内容以及学生的认知特点,建议采用以引导发现法为主,并与讨论法相结合的教学策略.具体建议如下:1.学法在本节课的学习过程中,要注重培养学生自主、合作、探索的学习方式,充分发挥其主体作用,锻炼运算能力.采取让学生自己观察,大胆猜想、积极参与小组讨论交流及利用课件自主探索等学习方式.使学生在实际应用中获取知识,并通过讨论来深化对知识的理解.多创造条件和机会让学生发表见解,展示自我.在学习中,让学生能在具体的情境中列出二元一次方程组并求出方程组的解;了解“消元”的思想和步骤;通过应用题,使学生理解二元一次方程组的问题.2.教法本节课采用多媒体辅助教学,利用动画对等式性质进行直观演示,通过消元法的演示,直观、生动地反映消元的思想;此外还可利用实际问题,列二元一次方程组,同时给学生积极参与的机会,让学生自主探索二元一次方程组的实际问题,激发学生的学习兴趣.3. 突出问题的应用意识.教师首先用一个学生感兴趣的实际问题引人课题,然后运用二元一次方程组给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习.4.体现学生的主体意识.教师始终把学生放在主体的地位:让学生通过对二元一次方程组和一元一次方程的比较,分别归纳出它们的特点,从而感受到利用二元一次方程组解实际问题是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳.5.体现学生思维的层次性.教师首先引导学生尝试用一元一次方程方法解决问题,然后再逐步引导学生列出含两个未知数的方程,寻找它们之间的特点,归纳出代入消元法的思想和步骤.在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性.6.渗透建模的思想.把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力.7.重视方程的应用价值的同时关注其文化内涵.在《九章算术》中记载了很多利用二元一次方程组解决的问题.向学生介绍古今中外的数学,使学生在数学知识和能力得到提高的同时能够感受到数学文化的熏陶.典型例题例1.用代入法解方程组:①X+4y=13 ②分析:这一例题是代入法解二元一次方程组的典型例题,学生能解答,但是部分学生可能对于用含有一个未知数的式子表示另一个未知数还不太熟悉,因此教师要铺垫:用哪个方程表示哪个未知数好一些.技巧:熟练掌握用含有一个未知数的式子来表示另一个未知数即可.例2.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比2:5.某厂每天生产这种消毒液22.5吨.这些消毒液应该分装大、小瓶两种产品各多少瓶?分析:抓住问题中的两个等量关系.规律:由实际问题,设未知数,找等量关系,列一元一次方程.例3:用加减法解方程组: 3x+5y=21 ①2x-5y=-11 ②分析:从绝对值是否相等来判断是否可以用加减法,再利用符号判断是用加法还是用减法.例4. 解方程组: 3x+4y=16 ①5x-6y=33 ②分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减这两个方程不能消元.对方程进行适当的变形,使得这两个方程中某个未知数的系数相同或相反.。

《二元一次方程组解法》(二)--加减法 配套知识讲解 人教七年级下

《二元一次方程组解法》(二)--加减法 配套知识讲解  人教七年级下

二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(2020春•澧县期末)用加减消元法解方程组34659 23x y x y++==【思路点拨】先将原方程写成方程组的形式后,再求解. 【答案与解析】解:此式可化为:349(1) 2659(2) 3x yx y+⎧=⎪⎪⎨+⎪=⎪⎩由(1):3x+4y=18 (1) 由(2):6x+5y=27 (2) (1)×2:6x+8y=36 (3) (3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23 xy=⎧⎨=⎩【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元. 举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为:.【答案】12x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组ax by cex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y ce x y d x y f-++=⎧⎨-++=⎩的解. 【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解. 【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3. 举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是:. 【答案】 解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩,上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较,可得:510x y =⎧⎨=⎩.类型二、用适当方法解二元一次方程组3.解方程组36101610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单. 【答案与解析】解:设,610x y x ym n +-==,则原方程组可化为31m n m n +=⎧⎨-=-⎩①②解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩.【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法. 举一反三:【变式】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②,②×3-①×2得,3535y =,即1y =, 将1y =代入①得,99x =,即1x =, 所以原方程组的解为11x y =⎧⎨=⎩. 4.试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.【答案与解析】解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①②①-②,整理得513y y -=-③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =; 当5y ≤时,③可化为513y y -=-,无解. 将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解. 举一反三:【变式】(2020春•杭锦后旗校级期末)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值. 【答案】 解:方程组,①×3+②得:11x=22, 解得:x=2,将x=2代入①得:6﹣y=7, 解得:y=﹣1, ∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16. 第二课时 【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.(2020春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则 ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。

3.3.3二元一次方程组的解法——加减消元法

3.3.3二元一次方程组的解法——加减消元法

3x+2y=13
1、方程组
消去y后所得方程
3x-2y=5
是__6_x_=_1_8__; 消去x后所得方程是__4_y=_8___.
2、已知(2x+3y-4)²+∣x+2y-7∣=0.
2x 3y 4 0
由题意得方程组:
x
2y
7
0

3、用适当方法解下列方程组:
0.6x-0.5y=0.4 x+y=60
2、在消元的过程中如果口算能力稍差,用括号的 形式写出来.
①变形:使同一个未知数的系数相同或互为相反数; ②加减消元:通过加或减,让“二元”化成“一元”; ③求解:解一元一次方程,求出x的值; ④回代:求出y的值; ⑤写解:写出原方程组的解.
1、当相同字母的未知数的系数相同时; 2、当相同字母的未知数的系数互为相反数时; 3、当相同字母的未知数的系数不相等时.
能消去未知数y吗?怎样 ②-①得:分析
消y呢?依据是什么?
2x + y = 40
左-左= 右-右
-) x + y = 22
x +0 = 18
x y 22 ①
解方程组
2x
ቤተ መጻሕፍቲ ባይዱ
y
40

解:②-①得: x=18
将x=18代入①得: 18+y=22
解得: y=4
∴原方程组的解是
x y
18 4
3x 7y 9 ①
解得: x=3
将x=3代入②得: 15-6y=4
解得:
y
11 6
x 2
∴原方程组的解是
y
11 6
3x 4y 16 ①
5x

加减消元法—二元一次方程组的解法

加减消元法—二元一次方程组的解法

加减消元法—二元一次方程组的解法教学内容解析本节内容是学习利用加减消元法解二元一次方程组的运算,在学习本节课之前,学生已经学习了二元一次方程组和它的解,并能用代入消元法解二元一次方程组。

学生已经具有了一种消元方法,具有了“转化”的数学思想。

而本节课是在代入消元法的基础上,学生发现、发明的一种新的消元方法:加减消元法,由加减消元法的得出,可以培养学生的创新能力、归纳能力,使学生会运用发现、分析、比较、综合、归纳的方法研究问题,通过本节课内容的学习,丰富了学生的消元手段,使学生能够更加熟练掌握解二元一次方程组的方法,为解决实际问题和解三元一次方程组以及求一次函数图象交点坐标等知识打下坚实基础。

教学目标设置。

一、教学目标1、会用加减消元法解二元一次方程组。

2、培养并提高学生的运算能力。

3、通过对方程组中未知数系数的观察和分析,明确解二元一次方程组的主要思路仍然是“消元”,从而促使二元一次方程组向一元一次方程的转化,培养学生的观察能力,更进一步体会转化的数学思想。

4、引导学生分析用加减消元解二元一次方程组的依据,养成在运算的过程中勤于思考、善于归纳总结的良好习惯。

通过研究解决问题的方法,培养学生合作交流的意识与创新意识和探究精神。

二、教学重点突破重点的方法是在回顾代入消元法的基础上,引导学生通过观察发现:方程组中未知数的系数特征,让两个方程直接进行相加(或相减)的运算就能达到消元的目的,从而将二元一次方程组转化为一元一次方程,这也是学生熟悉的转化思想的体现。

三、教学难点难点1:加减消元法解二元一次方程组。

学生在学习了代入消元法以后,不善于创新,不容易发现加减消元法;由于学生习惯了使用代入消元法解二元一次方程组,不愿意使用加减消元法,因此,教师在学生原有的知识的基础上,引导他们去发现新的消元法,明确这种方法产生的依据,使学生体会加减消元法的可靠性,另外使学生体会到这种方法的简洁性。

难点2:不直接满足加减消元法条件的二元一次方程组的解法这种方程组的不能直接进行加减消元,对学生们难度较大,他们需要思考的量较大,通过观察未知数的系数,才能决定消去哪一个未知数,并且需要调整方程中的未知数的系数,这需要在方程两边进行乘法运算,将方程有目的的变形,。

4.3_解二元一次方程组(加减法)_课件1 (1)

4.3_解二元一次方程组(加减法)_课件1 (1)

加减法归纳:
用加减法解同一个未知数的系数绝 对值不相等的二元一次方程组时,把 一个(或两个)方程的两边乘以适当 的数,使两个方程中某一未知数的系 数绝对值相等,从而化为第一类型方 程组求解.
小结:加减消元法解方程组的基本思路
成倍数关系:乘小化大
转 化
系数
绝对值相等
转 化
加减消元
不成倍数关系:化成最小公倍数
基本思路: 消元: 二元
一元
2、用代入法解方程的步骤是什么?
主要步骤:变,代,求,写 用一个未知数的代数式 1. 变 表示另一个未知数 2. 代 消去一个元,得到一个一 元一次方程 求出另一个未知数的值 3. 求 回代 4.写 写出方程组的解
如图所示的天平处于平衡状态,设每个 的质量为 x克,每个 的质量为 y克 ,你能根据 图示列出求 x ,y 的方程组吗?
5 y和 5 y
互为相反数……
看看小丽的思路, 你能消去一个未知数吗?
3x 5y 21 2 x 5 y -11
分析: ①左边 + ② 左边 =
① ②
(3x + 5y)+(2x - 5y)=21 + (-11)
① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
1、根据等式性质填空:
<1>若a=b,那么a±c= <2>若a=b,那么ac= . bc b.±c (等式性质1)
(等式性质2)
思考:若a=b,c=d,那么a±c=b±d吗? 2、用代入法解方程的关键是什么? 二元
代入 转化
一元
3、解二元一次方程组的基本思路是什么?
消元:

二元一次方程组的解法——加减法

二元一次方程组的解法——加减法
2.若 ,则x=,y=.
3.(江苏南京)解方程组
【补充思考】
五、感悟
通过本节课的学习,你认为加减法解二元一次方程组该注意哪些问题?还有哪些困惑?
【补充思考】
六、检测
1.已知 那么 的值是________.
2.关于x、y的二元一次方程组 的解为_________.
3.若二元一次方程 , 和 有公共解,求m的值.
学习课题:二元一次方程组的解法——加减法
学习目标:会用加减消元解二元一次方程组.
重点难点:会用加减消元解二元一次方程组.
学习策略指导:
加减消元法是通过加减将“二元”变为“一元”,体现了“转化”的思想方法.对于一般形式的二元一次方程组用加减法求解关键是选择消什么元,恰当选取往往会使计算简单,而且不易出错,选取的原则是:两个方程中同一个未知数的系数相反或相等,把这两个方程的两边分别相加或相减,消去这个未知数;若两个方程中没有同一个未知数的系数相反或相等,则要对方程变形,使得这两个方程中某个未知数的系数相反或相等.
另外,由①-②也能消去未知数y,得 ,即 ,得 ,把 代入①得 .所以原方程组的解是
现在你用刚才的方法求出x、y的值.(注意书写格式,参照以上解法思考下面的题目)
如何根据具体题目选择方法消去哪一个未知数?
你发现这两个方程组的方法有什么不同?消元时消哪个未知数比较方便?加法与减法哪个更简单?其中有什么规律?对你以后解方程组有什么帮助?
归纳:当二元一次方程组的两个二元一次方程中,同一个未知数的系数_______或______时,把这两个方程的两边分别_______或________,就能________这个未知数,得到一个____________方程,这种方法叫做________________,简称_________.

二元一次方程解法——加减消元法

二元一次方程解法——加减消元法

3x y 3 ① 2x y 2 ②
(3x + y)+(2x - y)=3 + 2
①左边 + ② 左边 = ① 右边 + ②右边
3x+y+2x-y=3+2
5x =5 x =1
3x y 3 ① 2x y 2 ②
解:由①+②得
5x=5
x=1
把x=1代入①,得
3+y=3
y=0
x 1
所以原方程组的解是 y 0
重点 根据方程组特点用加减法解方程组
难点 如何利用加减法进行消元
1、解二元一次方程组的基本思路是什么?
基本思路: 消元: 二元
一元
2、用代入法解下面的Leabharlann 程组3x y 3 2x y 2
还能用不同的方法来解吗?
3x y 3 ① 2x y 2 ②
观察:此方程组中, (1)未知数的系数有什么特点? (2)怎么样才能把这个未知数消去?
求x+y+m的值。
小结
1.本节课你都学习到了什么内容? 2. 什么是加减消元法?
加减法解方程组基本思路是什么?
3. 二元一次方程组的解法有哪些?
作业
P36 习题7.2 第1题 (2) (3) (4)
祝同学们学习进步
再见!
这种方法叫做加减消元法(简称加减法)
1.在什么情况下,二元一次方程组的两个方程 可以直接相加消元?
当方程组的两个方程中,某个未知数的系数互为 相反数时,可以把这两个方程的两边直接相加.
2.在什么情况下,二元一次方程组的两个方程可以 直接相减消元?
当方程组的两个方程中,某个未知数的系数相 等时,可以把这两个方程的两边直接相减.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 y+8
17
(来自《典中点》)
知识点 2 用适当的方法解二元一次方程组 知2-讲
步骤: (1)变形:通过变形,使方程组中某一未知数的
系数相等或互为相反数. (2)加减:消去一个未知数. (3)求解:得到一个未知数的值. (4)回代:求另一个未知数的值. (5)写出解.
例4
解方程组
x

2
2

x y

1
1, 2.

知2-练
x 5, y 1.
x y 3,
2y 3 x y 11.
3

x y

4, 1.
(来自《典中点》)
2 解方程组
知2-练
3 x y 5 x y 16, 2 x y x y 15.
加减
2
方程组 3x 4 y 2, 3x 4y 1
既可以用_①__+__②___消
去未知数________;也可以用________消
y
①-②
去未知数________ .
知1-练
x
(来自《典中点》)
解方程组 3x 3 y 4,① 时,用加减消元法
3
2x 3y 1 ②
最简便的是( )
知1-练
A.①+② A C.①×2-②×3
B.①-② D.①×3+②×2
(来自《典中点》)
4 用加减法解下列方程组:
1
2x 2x

3 2
y y

5, 2;
1

x y

-8, 7;
2
x+2z 9 3x z+1

0, 0;
2
知2-讲
x 6,

y

6.
(来自《点拨》)
例4
解方程组

x
2
y

x
3
y

6,
知2-讲
导引:先将方程组2化 x简 y, 再3x用加3 y减 2法4.解方程组.
解:将原方程组化简,得 5x+y 36,①
①×5,得25x+5y=180x.③ 5,
x 1, z 4;
知1-练
4
3
4x 3x

2 4
y y

39, 18;

4

1 3 1 3
x+3 y y+3x

19, 11.

3
x

y

12, 4.5.
4

x y

3, 6.
知1-练
5 (中考·河北)利用加减消元法解方程组
x 4,

y

3.
(来自《典中点》)
用加减消元法解二元一次方程组的一般步骤 (1)加减消元法,适用于方程组的两个方程中同一个
未知数的系数互为相反数或相等; (2)把两个方程的两边分别相加或相减,消去一个未
知数,得到一个一元一次方程;
(3)解这个一元一次方程,求得一个未知数的值; (4)将这个求得的未知数的值代入原方程组中的任意
把y=- 13 5
代入①,得2x+3×


13 5

5
=3,解得x=
27 5
.
所以这个方程组的解为

x

27 , 5


y


13 5
.
方法二:①×2,得4x+6y=6.⑤ ②×3,得9x+6y=33.⑥
知1-讲
⑥-⑤,得5x=27,解得x=
27 .
把x= 27 代入①,得2× 27 +35y=3,解得y=- 13
x 2, 方把法y=二1代:入①①-,②得,3得x-- 7y1×4y11=.=--114,,所所以以xy==12..
所以原方程组的解为
x 2,

y

1.
2.同一未知数的系数的绝对值成倍数关系.
(2) 8x+9 y 73, ① 17x 3y 74. ②
知1-讲
总结
知1-讲
③方程组中任一个未知数的系数的绝对值既不相 等, 也不成倍数关系,可利用最小公倍数的知 识,把两个方程都适当地乘以一个数,使某个 未知数的系数的绝对值相等,然后再利用加减 法求解.
(来自《点拨》)
类型二 先变形,再加减消元
知1-讲
(1)如果同一未知数的系数的绝对值既不相等又不成 倍数关系,我们应设法将一个未知数的系数的绝 对值转化为相等关系.
将 x=650代人④,得5 ×650 + 3y = 3 400, y = 50.
所以
x 650,

y

50.
知2-讲
(来自教材)
1
解方程组:(1)(中考·东营)
x+y 6, 2x y 9.
(2)(中考·荆州) (3)
3x 2y 1,

x+3
y

7.

第3章 一次方程与方程组
3.3 二元一次方程组及其解法 第4课时 二元一次方程组的解法——
加减消元法
1 课堂讲解 加减消元法:
直接加减消元 先变形,再加减消元 用适当的方法解二元一次方程组
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
知识点 1 加减消元法
类型一 直接加减消元
知1-导
把两个方程的两边分别相加或相减消去 一个未知数的方法,叫做加减消元法,简称 加减法.
最简单的方法是( )
A.①×3-②×2 D B.①×3+②×2
C.①+②×2
D.①-②×2
知1-练
(来自《典中点》)
7
解 简方 单程的组方法11是73xx(
2y 4y


)
8, ① 10, ②
消去未知数y最
A.①×2+② B B.①×2-②
知1-练
C.由①得y=
,再代入②
D.由①得x= 17x 8,再代入② 2
导引:两个方程中y的系数的绝对值成倍数关系, 方程②乘以3就可与方程①相加消去y.
知1-讲
解:②×3,得51x-9y=222,③
①+③,得59x=295,解得x=5.
把x=5代入①,得8×5+9y=73,解得y= .
11
所以原方程组的解为
3
x 5,


y

11 3
.
知1-讲
3.同一未知数的系数的绝对值不相等也不成倍数关系.
52Axx.+53要yy消61去.0,y,下可列以做将法①正×确5的+是②(×D2 )
B.要消去x,可以将①×3+②×(-5) C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(-5)+②×2
知1-练
(来自《典中点》)
6
用加减法解方程组 2a+2b 3, ① 3a b 4, ②
2
2
所以



x y


1 2
3 2
.
,
(来自教材)
1
方程组
2x 2x
3y 5y

1, 2
中,x的系数的特点是
知1-练
_点_相_是__等_______,__方___程__组_,57这xx+两44个yy方86,程中组,用y的__系__数__的__特消
互为相反数 元法解较简便.
y

24.②
③-②,得26x=156,解得x=6.
把x=6代入①,得y=6.
所以原方程组的解是
知2-讲
x 6,

y

6.
(来自《点拨》)
总结
知2-讲
每个二元一次方程组均可采用代入法或加减法求解,但是 在解题中我们应根据方程组的特点灵活选用最恰当的方法, 使计算过程简单,一般地,当化简后的方程组存在一个方 程的某个未知数的绝对值是1或有一个方程的常数项是0时, 用代入法;当两个方程中的某一个未知数系数的绝对值相 等或成倍数关系时,用加减法.
请完成《点拨训练》P96—97对应习题
知1-讲
加减消元法定义:把二元一次方程组中的两个方 程的两边分别相加或相减消去一个未知数的方法, 叫做加减消元法,简称加减法. 要点精析: 两个方程同一未知数的系数的绝对值如果相等或 成倍数关系,解方程组时考虑用加减消元法.
例1 用加减法解下列方程组. 1.同一未知数的系数相等或互为相反数.
知1-讲
y

x 3
y

6,
知2-讲
导引:先将方程组2化 x简,y再 3用x加 3减y 法 2解4. 方程组.
解:将①原×方5,程得组2化5x简+,5y得=1850xx.③+y,5y36,2①4.②
③-②,得26x=156,解得x=6. 把x=6代入①,得y=6.
所以原方程组的解是
知1-讲
分析:比较方程组中的两个方程,y的系数的绝对值比 较小,将①×3,②×2,就可使y的系数绝对值相 等,再用加减法即可消去y.
解: ①×3 ,得12x+6y = -15.③
知1-讲
②×2,得10x-6y = -18.④
③+④,得22x=- 33. x 3 . 2
把x 3 代入①,得-6+2y=-5. y= 1 .
(来自《点拨》)
例5 解方程组 13x+14y 40, ①
知2-讲
导引:呈现
相关文档
最新文档