八年级初二数学 数学勾股定理的专项培优练习题(及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学数学勾股定理的专项培优练习题(及答案
一、选择题
1.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()
A.42 B.32 C.42或32 D.37或33
2.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm,在容器内壁离容器底部4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm,则该圆柱底面周长为()cm.
A.9 B.10 C.18 D.20
3.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=5,AC=53,CB的反向延长线上有一动点D,以AD为边在右侧作等边三角形,连CE,CE最短长为()
53
A.5B.53C.53D.
4.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直 .试在直线a上找一点M,在直线b上找一点N,满足
线b的距离为3,AB230
MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()
A.6 B.8 C.10 D.12
5.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )
A.3 B.15
4
C.5 D.
15
2
6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()
A.12cm B.14cm C.20cm D.24cm
7.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为()
A.3 B.15
4
C.5 D.
15
2
8.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()
A.3.5 B.3C13D
36
9.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()
A .5
B .6
C .8
D .10
10.在四边形ABCD 中,AB ∥CD ,∠A =90°,AB =1,BD ⊥BC ,BD =BC ,CF 平分∠BCD 交BD 、AD 于E 、F ,则EDC 的面积为( )
A .22﹣2
B .32﹣2
C .2﹣2
D .2﹣1
二、填空题
11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.
12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.
13.如图,在四边形ABCD 中,22AD =,3CD =,
45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.
14.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是
___________________(π的值取3).
15.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13
CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________
16.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD
的值为____________.
17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)
①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°
18.如图,小正方形的边长为1,连接小正方形的三个格点可得△ABC ,则AC 边上的高的长度是_____________.
19.如图,在△ABC中,AB=AC=10,BC=12,BD是高,则点BD的长为_____.
20.如图,直线
4
2
3
y x
=+与x轴、y轴分别交于点B和点A,点C是线段OA上的一
点,若将ABC
∆沿BC折叠,点A恰好落在x轴上的'A处,则点C的坐标为______.
三、解答题
21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.
(1)经过多少秒,△BMN为等边三角形;
(2)经过多少秒,△BMN为直角三角形.
22.定义:如图1,平面上两条直线AB、CD相交于点O,对于平面内任意一点M,点M到直线AB、CD的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”为(0,0)的点有1个,即点O.
(1)“距离坐标”为(1,0)的点有个;
(2)如图2,若点M 在过点O 且与直线AB 垂直的直线l 上时,点M 的“距离坐标”为(p ,q ),且∠BOD = 150︒,请写出p 、q 的关系式并证明;
(3)如图3,点M 的“距离坐标”为(1,3),且∠DOB = 30︒,求OM 的长.
23.已知ABC ∆中,如果过项点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为ABC ∆的关于点B 的二分割线.例如:如图1,Rt ABC ∆中,90A ︒∠=,20C ︒∠=,若过顶点B 的一条直线BD 交AC 于点D ,若20DBC ︒∠=,显然直线BD 是ABC ∆的关于点B 的二分割线.
(1)在图2的ABC ∆中,20C ︒∠=,110ABC ︒∠=.请在图2中画出ABC ∆关于点B 的二分割线,且DBC ∠角度是 ;
(2)已知20C ︒∠=,在图3中画出不同于图1,图2的ABC ∆,所画ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.BAC ∠的度数是 ;
(3)已知C α∠=,ABC ∆同时满足:①C ∠为最小角;②存在关于点B 的二分割线.请求出BAC ∠的度数(用α表示).
24.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .
(1)根据题意用尺规作图补全图形(保留作图痕迹);
(2)设,BC m AC n ==
①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.
②若线段2AD EC =,求m n
的值.
25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.
(1)若∠A=35°,则∠CBD的度数为________;
(2)若AC=8,BC=6,求AD的长;
(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示) 26.如图1, △ABC和△CDE均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a,且点A、D、E在同一直线上,连结BE.
(1)求证: AD=BE.
(2)如图2,若a=90°,CM⊥AE于E.若CM=7, BE=10, 试求AB的长.
(3)如图3,若a=120°, CM⊥AE于E, BN⊥AE于N, BN=a, CM=b,直接写出AE的值(用a, b 的代数式表示).
27.如图1,在平面直角坐标系中,直线AB经过点C(a,a),且交x轴于点A(m,0),交y轴于点B(0,n),且m,n6
m n﹣12)2=0.
(1)求直线AB的解析式及C点坐标;
(2)过点C作CD⊥AB交x轴于点D,请在图1中画出图形,并求D点的坐标;
(3)如图2,点E(0,﹣2),点P为射线AB上一点,且∠CEP=45°,求点P的坐标.
28.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…
(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;
(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.
29.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.
(1)如图1,求∠BGD的度数;
(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;
(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=43,求菱形ABCD的面积.
30.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.
(1)如图1,若m=8,求AB的长;
(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE2DE;(3)如图3,若m=3AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
存在2种情况,△ABC是锐角三角形和钝角三角形时,高AD分别在△ABC的内部和外部【详解】
情况一:如下图,△ABC是锐角三角形
∵AD是高,∴AD⊥BC
∵AB=15,AD=12
∴在Rt△ABD中,BD=9
∵AC=13,AD=12
∴在Rt△ACD中,DC=5
∴△ABC的周长为:15+12+9+5=42
情况二:如下图,△ABC是钝角三角形
在Rt△ADC中,AD=12,AC=13,∴DC=5
在Rt△ABD中,AD=12,AB=15,∴DB=9
∴BC=4
∴△ABC的周长为:15+13+4=32
故选:C
【点睛】
本题考查勾股定理,解题关键是多解,注意当几何题型题干未提供图形时,往往存在多解情况.
2.C
解析:C
【分析】
将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.
【详解】
解:如图,
将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,
2222'15129A D A B BD ∴--'==.
所以底面圆的周长为9×2=18cm.
故选:C .
【点睛】
本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.
3.C
解析:C
【分析】
在CB 的反向延长线上取一点B ’,使得BC =B ’C ,连接AB ’,易证△AB ’D ≌△ABE ,可得∠ABE =∠B ’=60°,因此点E 的轨迹是一条直线,过点C 作CH ⊥BE ,则点H 即为使得BE 最小时的E 点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.
【详解】
解:在CB 的反向延长线上取一点B ’,使得BC =B ’C ,连接AB ’,
∵∠ACB =90°,∠ABC =60°,
∴△AB ’B 是等边三角形,
∴∠B ’=∠B ’AB =60°,AB ’=AB ,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠B’AD+∠DAB=∠DAB+∠BAE,
∴∠B’AD=∠BAE,
∴△AB’D≌△ABE(SAS),
∴∠ABE=∠B’=60°,
∴点E在直线BE上运动,
过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,
∴∠BCH=30°,
∴BH=1
2
BC=
5
2

∴CH=22
BC BH
=53

即BE的最小值是53

故选C.
【点睛】
本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB构造成等边三角形,通过全等证出∠ABC 是定值,即点E的运动轨迹是直线是解决此题的关键.
4.B
解析:B
【解析】
【分析】
MN表示直线a与直线b之间的距离,是定值,只要满足AM+NB的值最小即可.过A作直线a的垂线,并在此垂线上取点A′,使得AA′=MN,连接A'B,则A'B与直线b的交点即为N,过N作MN⊥a于点M.则A'B为所求,利用勾股定理可求得其值.
【详解】
过A作直线a的垂线,并在此垂线上取点A′,使得AA′=4,连接A′B,与直线b交于点N,过N作直线a的垂线,交直线a于点M,连接AM,过点B作BE⊥AA′,交射线AA′于点E,如图,∵AA′⊥a,MN⊥a,∴AA′∥MN.
又∵AA′=MN=4,∴四边形AA′NM是平行四边形,∴AM=A′N.
由于AM+MN+NB要最小,且MN固定为4,所以AM+NB最小.
由两点之间线段最短,可知AM+NB的最小值为A′B.
∵AE=2+3+4=9,AB230
=,∴BE2239
AB AE
=-=.
∵A′E=AE﹣AA′=9﹣4=5,∴A′B22
=+=8.
'A E BE
所以AM+NB的最小值为8.
故选B.
【点睛】
本题考查了勾股定理的应用、平行线之间的距离,解答本题的关键是找到点M、点N的位置,难度较大,注意掌握两点之间线段最短.
5.C
解析:C
【解析】
将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,
∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,
∴得出S1=8y+x,S2=4y+x,S3=x,
∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,
所以S2=x+4y=5,
故答案为5.
点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.
6.D
解析:D
【分析】
将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
【详解】
解:如图:将圆柱展开,EG为上底面圆周长的一半,
作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,
延长BG,过A'作A'D⊥BG于D,
∵AE=A'E=DG=4cm,
∴BD=16cm,
Rt△A'DB中,由勾股定理得:22
201612
-=cm
∴则该圆柱底面周长为24cm.
故选:D.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
7.B
解析:B
【分析】
首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.
【详解】
解:设ED=x,则AE=6-x,
∵四边形ABCD为矩形,
∴AD∥BC,
∴∠EDB=∠DBC;
由题意得:∠EBD=∠DBC,
∴∠EDB=∠EBD,
∴EB=ED=x;
由勾股定理得:
BE2=AB2+AE2,
即x2=9+(6-x)2,
解得:x=15
4

∴ED=15
4

故选:B.【点睛】
本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.
8.B
解析:B
【分析】
如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.
【详解】
解:∵点A 和点B 在数轴上对应的数分别是4和2,
∴OB=2,OA=4,
如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,
∴△ABC 是等边三角形,
∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=, ∴()22223323OC OD CD =+=+
=,
∴OM=OC=23,
∴点M 对应的数为23.
故选:B .
【点睛】
本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.
9.C
解析:C
【分析】
根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.
【详解】
在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,
∴AD ⊥BC ,BC=2BD.
∴∠ADB=90°
在Rt △ABD 中,根据勾股定理得:=4
∴BC=2BD=2×4=8.
故选C.
【点睛】
本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.
10.C
解析:C
【分析】
先过点E 作EG ⊥CD 于G ,再判定△BCD 、△ABD 都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG 的长,进而得到△EDC 的面积.
【详解】
解:过点E 作EG ⊥CD 于G ,
又∵CF 平分∠BCD ,BD ⊥BC ,
∴BE =GE ,
在Rt △BCE 和Rt △GCE 中
CE CE BE GE
=⎧⎨=⎩, ∴Rt △BCE ≌Rt △GCE ,
∴BC =GC ,
∵BD ⊥BC ,BD =BC ,
∴△BCD 是等腰直角三角形,
∴∠BDC =45°,
∵AB//CD ,
∴∠ABD =45°,
又∵∠A =90°,AB =1,
∴等腰直角三角形ABD 中,BD
=BC ,
∴Rt △BDC 中,CD 2,
∴DG =DC ﹣GC =2
∵△DEG 是等腰直角三角形,
∴EG =DG =2

∴△EDC 的面积=
1
2×DC×EG =12
×2×(2)=2 故选:C .
【点睛】
本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG进行求解.二、填空题
11.8
【解析】
如图作点B关于AC的对称点B′,连接B′A交DC于点E,则BM+MN的最小值等于的最小值
作交于,则为所求;
设,,
由,,
h+5=8,即BM+MN的最小值是8.
点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.
12.96 25
【分析】
将△B´CF的面积转化为求△BCF的面积,由折叠的性质可得CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,可证得△ECF是等腰直角三角形,EF=CE,∠EFC=45°,由等面积法可求CE的长,由勾股定理可求AE的长,进而求得BF的长,即可求解.
【详解】
根据折叠的性质可知,CD=AC=6,∠ACE=∠DCE,∠BCF=∠B´CF,CE⊥AB,∴∠DCE+∠B´CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,且CE⊥AB,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∵S△ABC=1
2
AC•BC=
1
2
AB•CE,
∴AC•BC=AB•CE,
∵根据勾股定理求得AB=10,
∴CE=24
5

∴EF=24
5

∵AE 18
5

∴BF=AB−AE−EF=10-18
5

24
5

8
5

∴S△CBF=1
2
×BF×CE=
1
2
×
8
5
×
24
5

96
25

∴S△CB´F=96 25

故填:96 25

【点睛】
此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.
13.5
【分析】
作AD′⊥AD,AD′=AD构建等腰直角三角形,根据SAS求证△BAD≌△CAD′,证得BD=CD′,∠DAD′=90°,然后在Rt△AD′D和Rt△CD′D应用勾股定理即可求解.
【详解】
作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:
∵∠BAC+∠CAD=∠DAD′+∠CAD ,
∴∠BAD=∠C AD′,
在△BAD 与△CAD′中,
{BA CA
BAD CAD AD AD =∠=∠=''

∴△BAD ≌△CAD′(SAS ),
∴BD=CD′,∠DAD′=90°,
由勾股定理得22()4AD AD +=',
∵∠D′DA+∠ADC=90°,
∴由勾股定理得22(')5DC DD +=,
∴BD=CD′=5
故答案为5.
【点睛】
本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形,正确引出辅助线构造等腰直角三角形是本题的关键.
14.15厘米
【分析】
要想求得最短路程,首先要画出圆柱的侧面展开图,把A 和C 展开到一个平面内.根据两点之间,线段最短,结合勾股定理即可求出蚂蚁爬行的最短路程.
【详解】
解:如图,展开圆柱的半个侧面是矩形,
∴矩形的长是圆柱的底面周长的一半,即AB =39π=厘米,矩形的宽BC =12厘米. ∴蚂蚁需要爬行最短路程222212915AC BC AB =++厘米.
故答案为:15厘米
【点睛】
求两个不在同一平面内的两点之间的最短距离时,一定要展开到一个平面内,根据两点之间,线段最短.
15.53或203 【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.
【详解】
解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示
∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,
根据勾股定理可得2210AB AC += ∵13CD BC =
,13CE AC =, ∴13CD BC ==103,13
CE AC ==83 ∵DE AC ⊥
根据勾股定理可得222CD CE -=
由折叠的性质可得:DH=CD=
103,CP=PH ∴EH=DH -DE=43
设CP=PH=x,则EP=CE-CP=8
3
-x
在Rt△PEH中,EP2+EH2=PH2
即(8
3
-x)2+(
4
3
)2=x2
解得:x=5 3
即此时CP=5
3

②当折叠后点C的对应点H在AC的上方时,如下图所示
根据折叠的性质可得DH=CD=10
3
,CP=PH
∴EH=DH+DE=16 3
设CP=PH=y,则EP= CP-CE =y-8 3
在Rt△PEH中,EP2+EH2=PH2
即(y-8
3
)2+(
16
3
)2=y2
解得:y=20 3
即此时CP=20
3

综上所述:CP=5
3

20
3

故答案为:5
3

20
3

【点睛】
此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.
16.62 2
【分析】
过A 点作BC 的垂线,E 点作AC 的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM 上截取AG=DG ,则∠DGM=30°,设DM=a,通过勾股定理可得到DG=AG=2a ,GM=3a,AM=BM=(32)a +,
BD=(31)a +,AB=2(31)a +,代入计算即可.
【详解】
过A 点作AM ⊥BC 于M 点,过E 点EN ⊥AC 于N 点.
∵∠BCA =30°,AE=EC
∴AM=
12AC ,AN=12
AC ∴AM=AN
又∵AD=AE
∴R t∆ADM ≅ R t∆AEN (HL)
∴∠DAM=∠EAN 又∵∠MAC=60°,AD ⊥AE
∴∠DAM=∠EAN=15°
在AM 上截取AG=DG ,则∠DGM=30°
设DM=a,则 DG=AG=2a ,
根据勾股定理得:GM=3a,
∵∠ABC =45°
∴AM=BM=(32)a +
∴BD=(31)a +,AB=2(32)a +,
∴()()6226231a AB BD a
++==+ 故答案为:
62+
【点睛】
本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.
17.①②③
【详解】
解:∵△ABC 是等边三角形,
60ABC ∴∠=,
∵△BQC ≌△BPA ,
∴∠BPA =∠BQC ,BP =BQ =4,QC =PA =3,∠ABP =∠QBC ,
60PBQ PBC CBQ PBC ABP ABC ∴∠=∠+∠=∠+∠=∠=,
∴△BPQ 是等边三角形,①正确.
∴PQ =BP =4,
2222224325,525PQ QC PC +=+===,
222PQ QC PC ∴+=,
90PQC ∴∠=,即△PQC 是直角三角形,②正确.
∵△BPQ 是等边三角形,
60PBQ BQP ∴∠=∠=,
∵△BQC ≌△BPA ,
∴∠APB =∠B QC ,
6090150BPA BQC ∴∠=∠=+=,③正确.
36015060150APC QPC QPC ∴∠=---∠=-∠,
90PQC PQ QC ∠=≠,,
45QPC ∴∠≠,
即135APC ∠≠,④错误.
故答案为①②③.
18.355
【详解】 四边形DEFA 是正方形,面积是4; △ABF,△ACD 的面积相等,且都是 ×1×2=1. △BCE 的面积是:12×1×1=12
. 则△ABC 的面积是:4﹣1﹣1﹣
12=32. 在直角△ADC 中根据勾股定理得到:222+1=5
设AC 边上的高线长是x .则
125x=32, 解得:355

355
. 19.485
【解析】
试题分析:根据等腰三角形的性质和勾股定理可知BC 边上的高为8,然后根据三角形的面积法可得111012822BD ⨯⨯=⨯⨯,解得BD=485
. 20.(0,
34). 【分析】 由423
y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122
OA '=
-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423
y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32
-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=
32, ∴2222352()22AB OA OB =
+=+=, ∴53122
OA '=-=, 设点C 的坐标为(0,m )
由翻折得ABC A BC '≌,
∴2A C AC m '==-,
在Rt A OC '中, 222A C OC A O ''=+,
∴222(2)1m m -=+,解得m=34

∴点C 的坐标为(0,
34). 故答案为:(0,
34
). 【点睛】 此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC ≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标.
三、解答题
21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.
【分析】
(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;
(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=
12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=
12BN 列方程求解可得. 【详解】
解 (1)设经过x 秒,△BMN 为等边三角形,
则AM =x ,BN =2x ,
∴BM =AB -AM =30-x ,
根据题意得30-x =2x ,
解得x =10,
答:经过10秒,△BMN 为等边三角形;
(2)经过x 秒,△BMN 是直角三角形,
①当∠BNM =90°时,
∵∠B =60°,
∴∠BMN =30°,
∴BN =12BM ,即2x =12
(30-x), 解得x =6;
②当∠BMN =90°时,
∵∠B =60°,
∴∠BNM =30°,
∴BM =
12BN ,即30-x =12
×2x , 解得x =15, 答:经过6秒或15秒,△BMN 是直角三角形.
【点睛】
本题考查勾股定理的逆定理,等边三角形的判定.
22.(1)2;(2)32q p =;(3)27OM = 【分析】
(1)根据“距离坐标”的定义结合图形判断即可;
(2)过M 作MN ⊥CD 于N ,根据已知得出MN q =,OM p =,求出∠MON =60°,根据含30度直角三角形的性质和勾股定理求出2232MN MO NO p =
-=即可解决问题;
(3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点,首先证明OM OE OF EF ===,求出2MF =,23ME =,然后过F 作FG QM ⊥,交QM 延长线于G ,根据含30度直角三角形的性质求出1FG =,3MG =,再利用勾股定理求出EF 即可.
【详解】
解:(1)由题意可知,在直线CD 上,且在点O 的两侧各有一个,共2个,
故答案为:2;
(2)过M 作MN CD ⊥于N ,
∵直线l AB ⊥于O ,150BOD ∠=︒,
∴60MON ∠=︒,
∵MN q =,OM p =,
∴1122NO MO p =
=, ∴223MN MO NO p =
-=, ∴32
q p =; (3)分别作点M 关于AB 、CD 的对称点F 、E ,连接EF 、OE 、OF ,连接MF 、ME 分别交AB 、CD 于P 点、Q 点.
∴OFP OMP △≌△,OEQ OMQ △≌△,
∴FOP MOP ∠=∠,EOQ MOQ ∠=∠,OM OE OF ==,
∴260EOF BOD ∠=∠=︒,
∴△OEF 是等边三角形,
∴OM OE OF EF ===,
∵1MP =,3MQ =, ∴2MF =,23ME =,
∵30BOD ∠=︒,
∴150PMQ ∠=︒,
过F 作FG QM ⊥,交QM 延长线于G ,
∴30FMG ∠=︒,
在Rt FMG △中,112FG MF ==,则3MG =,
在Rt EGF 中,1FG =,33EG ME MG =+=,
∴22(33)127EF =+=,
∴27OM =.
【点睛】
本题考查了轴对称的应用,含30度直角三角形的性质,勾股定理以及等边三角形的判定和性质等,正确理解题目中的新定义是解答本题的关键.
23.(1)作图见解析,20DBC ∠=︒;(2)作图见解析,35BAC ∠=︒;(3)∠A =45°或90°或90°-2α或1452
α︒-,或α=45°时45°<∠BAC <90°.
【分析】
(1)根据二分割线的定义,只要把∠ABC 分成90°角和20°角即可;
(2)可以画出∠A=35°的三角形;
(3)设BD 为△ABC 的二分割线,分以下两种情况.第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形;第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形分别利用直角三角形的性质、等腰三角形的性质和三角形的内角和定理解答即可.
【详解】
解:(1)ABC ∆关于点B 的二分割线BD 如图4所示,20DBC ∠=︒;
故答案为:20°;
(2)如图所示:∠BAC=35°;
(3)设BD 为△ABC 的二分割线,分以下两种情况.
第一种情况:△BDC 是等腰三角形,△ABD 是直角三角形,易知∠C 和∠DBC 必为底角, ∴∠DBC =∠C =α.
当∠A =90°时,△ABC 存在二分分割线;
当∠ABD =90°时,△ABC 存在二分分割线,此时∠A =90°-2α;
当∠ADB =90°时,△ABC 存在二分割线,此时α=45°且45°<∠A <90°; 第二种情况:△BDC 是直角三角形,△ABD 是等腰三角形,
当∠DBC =90°时,若BD =AD ,则△ABC 存在二分割线,此时
1809014522
A αα︒-︒-∠==︒-; 当∠BDC =90°时,若BD =AD ,则△ABC 存在二分割线,此时∠A =45°,
综上,∠A =45°或90°或90°-2α或1452α︒-,或α=45°时,45°<∠BAC <90°.
【点睛】
本题考查的是二分割线的理解与作图,属于新定义题型,主要考查了等腰三角形的性质、直角三角形的性质和三角形的内角和定理等知识,正确理解二分割线的定义、熟练掌握等腰三角形和直角三角形的性质是解答的关键.
24.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②
512
m n = 【分析】
(1)根据题意,利用尺规作图画出图形即可;
(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案; ②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
【详解】
(1)解:作图,如图所示:
(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.
理由如下:依题意得, BD BC m ==,
在Rt ABC 中,90ACB ∠=︒
222BC AC AB ∴=+
22AB m n =+22AD AB BD m n m ∴=-=+
222AD m AD n ∴+-
)()
2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-
0=;
∴线段AD 的长度是方程22 20x mx n +-=的一个根
②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =
2233
AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=
222BC AC AB ∴+=
2
2223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493
m n n mn m +=++ 25493
n mn = 512
m n ∴= 【点睛】
本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
25.(1)∠CBD=20°;(2)AD=16
4
;(3) △BCD 的周长为m+2 【分析】
(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而
得到∠CBD=20°;
(2)根据折叠可得AD=DB,设CD=x,则AD=BD=8-x,再在Rt△CDB中利用勾股定理可得x2+62=(8-x)2,再解方程可得x的值,进而得到AD的长;
(3)根据三角形ACB的面积可得1
1 2
AC CB m
=+,
进而得到AC•BC=2m+2,再在Rt△CAB中,CA2+CB2=BA2,再把左边配成完全平方可得CA+CB的长,进而得到△BCD的周长.
【详解】
(1)
∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴∠1=∠A=35°,
∵∠C=90°,
∴∠ABC=180°-90°-35°=55°,
∴∠2=55°-35°=20°,
即∠CBD=20°;
(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,
∴AD=DB,
设CD=x,则AD=BD=8-x,
在Rt△CDB中,CD2+CB2=BD2,
x2+62=(8-x)2,
解得:x= 7
4

AD=8-7
4
=
1
6
4

(3)∵△ABC 的面积为m+1,
∴1
2
AC•BC=m+1,
∴AC•BC=2m+2,
∵在Rt△CAB中,CA2+CB2=BA2,
∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,
∵AD=DB,
∴CD+DB+BC=m+2.
即△BCD的周长为m+2.
【点睛】
此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.
26.(1)见解析;(2)26;(3
+ 【分析】
(1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;
(2)由等腰直角三角形的性质可得CM=12
DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;
(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出
,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.
【详解】
证明:(1)∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE
在△ACD 和△BCE 中,
AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩
∴△ACD ≌△BCE (SAS )
∴AD=BE
(2)∵∠DCE=90°,CD=CE ,
∴△DCE 为等腰直角三角形,
∵CM ⊥DE ,
∴CM 平分DE ,即M 为DE 的中点
∴CM=12
DE , ∴DE=2CM=14,
∵∠ACB=∠DCE
∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE
在△ACD 和△BCE 中,
AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩
∴△ACD ≌△BCE (SAS )
∴AD=BE=10,∠CAD=∠CBE
∴AE=AD+DE=24
如图,设AE,BC交于点H,
在△ACH和△BEH中,
∠CAH+∠ACH=∠EBH+∠BEH,而∠CAH=∠EBH,
∴∠BEH=∠ACH=90°,
∴△ABE为直角三角形
由勾股定理得2222
AB=AE BE=2410=26
++
(3)由(1)(2)可得△ACD≌△BCE,
∴∠DAC=∠EBC,
∵△ACB,△DCE都是等腰三角形,∠ACB=∠DCE=120°
∴∠CAB=∠CBA=∠CDE=∠CED=30°,
∵CM⊥DE,
∴∠CMD=90°,DM=EM,
∴CD=CE=2CM,3CM
∴33
∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°,∴∠NBE=30°,
∴BE=2EN,3EN
∵BN=a
∴23
=AD
∴23
23
+b
【点睛】
本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键. 27.(1)y=-2x+12,点C坐标(4,4);(2)画图形见解析,点D坐标(-4,
0);(3)点P的坐标(
14
3
-,
64
3

【分析】
(1)由已知的等式可求得m、n的值,于是可得直线AB的函数解析式,把点C的坐标代入可求得a的值,由此即得答案;
(2)画出图象,由CD⊥AB知1
AB CD
k k=-可设出直线CD的解析式,再把点C代入可得
CD的解析式,进一步可求D点坐标;
(3)如图2,取点F(-2,8),易证明CE⊥CF且CE=CF,于是得∠PEC=45°,进一步求出直线EF的解析式,再与直线AB联立求两直线的交点坐标,即为点P.
【详解】
解:(1)∵6
m-+(n﹣12)2=0,
∴m=6,n=12,
∴A(6,0),B(0,12),
设直线AB解析式为y=kx+b,
则有
12
60
b
k b
=


+=

,解得
2
12
k
b
=-


=


∴直线AB解析式为y=-2x+12,
∵直线AB过点C(a,a),
∴a=-2a+12,∴a=4,
∴点C坐标(4,4).
(2)过点C作CD⊥AB交x轴于点D,如图1所示,
设直线CD解析式为y=1
2
x+b′,把点C(4,4)代入得到b′=2,
∴直线CD解析式为y=1
2
x+2,
∴点D坐标(-4,0).
(3)如图2中,取点F(-2,8),作直线EF交直线AB于P,
图2
∵直线EC 解析式为y =
32x -2,直线CF 解析式为y =-23x +203, ∵32×(-23
)=-1, ∴直线CE ⊥CF ,
∵EC =
CF =
∴EC =CF ,
∴△FCE 是等腰直角三角形,
∴∠FEC =45°,
∵直线FE 解析式为y =-5x -2,
由21252y x y x =-+⎧⎨=--⎩解得143643x y ⎧=-⎪⎪⎨⎪=⎪⎩
, ∴点P 的坐标为(1464,33
-
). 【点睛】
本题是一次函数的综合题,综合考查了坐标系中两直线的垂直问题、两条直线的交点问题和求特殊角度下的直线解析式,并综合了勾股定理和等腰直角三角形的判定和性质,解题的关键是熟知坐标系中两直线垂直满足121k k =-,一次函数的交点与对应方程组的解的关系.其中,第(3)小题是本题的难点,寻找到点F (-2,8)是解题的突破口.
28.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析.
【分析】
(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;
(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解.
【详解】
(1)不存在一组数,既符合上述规律,且其中一个数为71.
理由如下:
根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意;
若271m =,则35.5,m =,此时m 不符合题意;
若2171m +=,则270m =,此时m 不符合题意,
所以不存在一组数,既符合上述规律,且其中一个数为71.
(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数.。

相关文档
最新文档