第20讲 平行四边形

合集下载

【精编】2019学年沪教版五年级第一学期数学第20讲-期末复习(二)(含答案)

【精编】2019学年沪教版五年级第一学期数学第20讲-期末复习(二)(含答案)

第20讲—期末复习(二)(一)上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。

(二)上次预习思考内容讨论分享本学期后两章易错题整理一、判断题(对的在括号内打"√",错的打"×").(1)两个面积相等的三角形可以拼成一个平行四边形。

( )(2)两个面积相等的三角形,它们的底和高一定相等。

( )(3)梯形的面积等于梯形的上底加下底的和乘以高再除以2。

( )(4)两个面积相等的梯形可以拼成一个平行四边形。

( )(5)两个同底等高的三角形,形状相同,面积相等。

( )二、填空题(1)一个三角形的面积是4.8m2,与它等底等高的平行四边形的面积是()(2)三角形一条边长是4.5分米,这条边上的高是8.6分米;另一条边长是3分米,则这条边上的高是( ).(3)一个平行四边形,底为8分米,高2分米.如果底不变,高增加2分米,则面积增加( );底和高都扩大5倍;它的面积扩大( ).(4)一个梯形的面积是76平方厘米,下底是12厘米,上底是8厘米,梯形的高是( )厘米。

(5)一个梯形的上底是2厘米,下底是4厘米,高是3厘米,求梯形面积的算式是()。

当下底缩短到2厘米时,梯形变成(),这时的面积是()平方厘米;当上底等于0时,梯形变成(),这时的面积是()平方厘米。

三、选择题(1)两个完全一样的三角形,可以拼成一个( )。

A.长方形B.正方形C.梯形D.平行四边形 (2)一个三角形,它的任意一条边上的高都是它的对称轴,这个三角形是( )。

A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形(3)一个直角三角形的两条直角边分别是3厘米和4厘米,斜边是5厘米,那么斜边上的高是( )。

A.2 厘米 B.2.4厘米 C.3厘米 D.2.5厘米 (4)从平行四边形的一个顶点向对边可以作( )条高。

A.一B.两C.四D.无数(5)如图,ABCD 是一个直角梯形,AECD 是一个平行四边形,DF 是梯形的高。

20.2.2平行四边形

20.2.2平行四边形

OD C B A O DC B A OD C B A 20.2.2平行四边形课型:新授课 执笔人:卢凤龙 审核人:孙光荣教学目标:1、知识与技能: 探索并掌握平行四边形的对角线互相平分的性质,掌握平行线之间距离处处相等的结论,了解其应用.2、过程与方法:经历探索平行四边形的特殊性质的过程,在探究中发展学生的几何思维和合作交流意识.3、情感态度与价值观: 在观察、推理、归纳等探索过程中发展学生的合情推理能力,进一步培养学生的数学说理习惯与活动.教学重点:掌握平行四边形对角线互相平分的特征和平行线间距离处处相等的性质.教学难点:对角线互相平分的特征和平行线间距离处处相等的性质.教学过程一、学前准备1.什么是平行四边形?2.平行四边形的边、角有何特征?3. Y ABCD 中,AB ∥ ,AD ∥ ,AD= ,AB= ,A ∠= ,B ∠= .二、新知探究1.动手操作,用心观察如图(1),在半透明纸上画两个一模一样的平行四边形,并画出它们的对角线,把他们叠合在一起,然后把上面一个平行四边形绕着对角线的交点O 旋转180°, 你能观察到OA 与OC 、OB 与OD 的关系吗?2.结论归纳 图(1)平行四边形的对角线3.应用探究例1 如图(2),在Y ABCD 中,已知对角线AC 和BD 相交于点O ,A O B 的周长为15,AB=6,那么对角线AC 与BD 的和是多少?学生观察、思考并与同伴进行分析交流. 【分析】:要求AC+BC 的值,由于平行四边形对角线互相平分,因此只要求2(AO+OB )的值,即只要求AO+OB的值即可. 图(2)解:例2 如图(2),Y ABCD 的周长为48cm ,对角线AC 、BD 相交于点O ,△AOB 的周长比△OBC 的周长多6cm ,求Y ABCD 的各边长.解:G F E D C B AMN F E D B AE D C B A 4. 练后反思:本题利用了平行四边形的对边相等、对角线互相平分的性质,由本题的解答可以得到:平行四边形两邻边之和等于平行四边形周长的一半;平行四边形被对角线分成的四个小三角形中,相邻的两个三角形周长之差等于邻边之差.三、学习体会:1、本节课你的收获有2、本节课你的疑惑是四、自我测试一、选择题 1.如图(3),AF ∥BG ,AB ∥CD ,C E BG ⊥,F G B G ⊥,则下列说法错误的是( )A 、AB=CDB 、点C 到直线BG 的距离就是线段CE 的长C 、EC=FGD 、直线AF 与直线BG 的距离就是线段CD 的长 图(3)2. Y ABCD 中,对角线AC 、BD 相交于点O ,AC=10,BD=8,则BC 的取值范围是( )A 、810BC << B 、19B C << C 、45B C <<D 、218B C <<3.下列说法正确的是( )A 、平行四边形的对角线平分且相等B 、平行四边形对角线的交点到一组对边的距离相等C 、四边形具有平行四边形的所有性质D 、沿平行四边形的一条对角线对折,这条对角线两旁的图形能够重合 4.如图(4),在Y ABCD 中,DE AB ⊥于E ,BF C D ⊥于F ,D N BC ⊥于E ,则图中相等的线段有( )对。

教案设计:小学数学平行四边形教案

教案设计:小学数学平行四边形教案

小学数学平行四边形教案[ 20 -20 学年度第学期 ]任教学科:任教年级:授课教师:XXXX实验学校小学数学平行四边形教案温馨提示:该教案是教师为顺利而有效地开展教学活动,根据教学大纲的要求,以课时为单位,对教学内容,教学步骤,教学方法等进行具体的安排和设计的一种实用性教学文书.是经过周密考虑,精心设计而确定下来,体现着很强的计划性.本文可根据实际情况进行修改和使用。

小学数学平行四边形是一个重点课程, 数学老师要提前编写教案, 上课的时候才会讲的更好。

今天笔者就与大家分享小学数学平行四边形教案, 仅供大家参考!小学数学平行四边形教案[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力, 空间观念和动手能力。

2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。

[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。

[教学关键]在教学过程中, 尽可能为学生提供观察、操作的机会, 丰富学生的感性认识, 使学生的感性认识升华为理性认识。

[教学方法]演示法、观察法、操作法等。

[教具准备]多媒体课件、可拉动的长方形框架、钉子板, 方格纸[学具准备]可拉动的长方形框架, 一张长方形的纸。

[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则, 老师先发一些基本图形给学生, 有三角形、圆形、长方形、正方形、平行四边形等, 叫到什么图形的时候, 大一部分同学就起立把图形举高让大家看, 最后, 只剩下平行四边形没有叫着, 揭示课题:今天我们就来认识这一种新的四边形。

板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形, 引导学生观察在观察的基础上进行小组交流讨论, 这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流, 教师引导学生观察发现:以上的图形都含有, 指出这种图形就是我们今天要认识的平行四边形, 课件出示平行四边形的图和文字。

第20章 平行四边形的判定

第20章 平行四边形的判定

第20章平行四边形的判定(1)平行四边形是中心对称图形,具有两组对边分别平行且相等、对角相等及邻角互补、两条对角线互相平分等特征.(2)平行四边形的判定方法有:有5种方法①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.(3)矩形、菱形、正方形都是特殊的平行四边形,它们除了具有平行四边形的所有特征外,还具有以下性质:矩形:四个角都是直角、对角线互相平分且相等.菱形:四条边都相等、对角线互相垂直平分且每一条对角线平分一组对角.正方形:四条边都相等、四个角都是直角、对角线互相垂直平分且相等,每一条对角线平分一组对角(具有矩形、菱形的所有特征).(4)矩形、菱形、正方形既是轴对称图形,又是中心对称图形;矩形、菱形都有两条对称轴,而正方形有四条对称轴,它们的对称中心都是对角线的交点.(5)矩形、菱形、正方形的判定方法有:分别有3 3 2 种方法①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③两条对角线相等的平行四边形是矩形;④有一组邻边相等的平行四边形是菱形;⑤有四条边相等的四边形是菱形;⑥两条对角线垂直的平行四边形是菱形;⑦有一组邻边相等的矩形是正方形;⑧有一个角是直角的菱形是正方形.(6)有且只有一组对边平行的四边形叫做梯形,这组平行的边叫做梯形的上底与下底,不平行的两边叫做梯形的腰,两腰相等的梯形叫做等腰梯形,有一个角是直角的梯形叫做直角梯形.(7)等腰梯形是轴对称图形,它的对称轴是过两底中点的直线,它有以下性质:①等腰梯形同一底上的两个内角相等;②等腰梯形的两条对角线相等.(8)等腰梯形的判定方法有:①两腰相等的梯形是等腰梯形②同一底上的两个角相等的梯形是等腰梯形;③两条对角线相等的梯形是等腰梯形..例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.例2(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC 上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明.(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单.例3(补充)已知:如图,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2) △ABC的顶点分别是△B′C′A′各边的中点.六、随堂练习1.已知:ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.1.(选择)下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分2.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF五、例习题分析例1(补充)已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.分析:证明BE=DF,可以证明两个三角形全等,也可以证明四边形BEDF是平行四边形,比较方法,可以看出第二种方法简单.证明:∵例2(补充)已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.分析:因为BE⊥AC于E,DF⊥AC于F,所以BE∥DF.需再证明BE=DF,这需要证明△ABE与△CDF全等,由角角边即可.证明:、.1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.七、课后练习1.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()2.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.3.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB=CD.选择两个条件,能判定四边形ABCD是平行四边形的共有_______2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.七、课后练习1.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.2.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.3.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.。

第20章《平行四边形的判定》测试题3

第20章《平行四边形的判定》测试题3

第20章《平行四边形的判定》测试题3一、填空题1、顺次连接一个任意四边形四边的中点,得到一个四边形。

2.命题“平行四边形的对角线互相平分”的逆命题是 .3.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm ,则其对角线长为_______,矩形的面积为________.4.一个菱形的两条对角线长分别为6cm ,8cm ,这个菱形的边长为_______,•面积S=______.5.如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”).6、如图,在平行四边形ABCD 中,E 、F 是对角线BD 上的两点,要使△ADF ≌△CBE ,还需添加一个什么条件? 。

(只需添加一个条件)三、证明题1、在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点。

求证:四边形AFCE 是平行四边形。

2、在如图菱形ABCD 中,对角线AC 、BD 相交于O ,E 、F 分别是AB 、BC 的中点。

求证:OE=OF 。

A B C DE F (第15题)B D A CF E3、已知:如图,已知:D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于, 若MA=MC ,求证:四边形ADCN 是平行四边形4.已知:如图,D 是△ABC 的BC 边上的中点,DE ⊥AC ,DF ⊥AB ,垂足分别是E 、F ,且BF=CE.求证:(1)△ABC 是等腰三角形;(2)当∠A=90°时,试判断四边形AFDE 是怎样的四边形,证明你的结论.4、已知:如图7,在梯形ABCD 中A D ∥BC ,AB=DC 。

点E 、F 、G 分别在边AB 、BC 、CD 上,AE=GF=GC 。

(1) 求证:四边形AEFG 是平行四边形;(2) 当∠FGC=2∠EFB 时,求证:四边形AEFG 是矩形。

浙教版八年级下册 4.2 平行四边形性质 课件(共20张PPT)

浙教版八年级下册 4.2 平行四边形性质 课件(共20张PPT)

∴ AB∥CD,AD∥BC (平行四边形的定义)
∴ ∠A+∠B=180° ∠C+∠B=180°
∠A+∠D=180° ∠C+∠D=180°
(两直线平行,同旁内角互补)
推论: 平行四边形邻角互补.
做一做 1.已知在□ABCD中,∠A=55°.求其余内角的度
数.
2.已知平行四边形相邻两条边的长度之比为3:2, 周长为20cm,求平行四边形各条边长.
新课讲解
验证 平行四边形的对角相等.
平行四边形的对边相等.
D
已知:如图,四边形ABCD是平行四边形,
C
求证:∠A=∠C,∠ABC=∠CDA.
AB=CD, AD=BC.
A
B
新课讲解
D
C
∵ 四边形ABCD是平行四边形
∴ ∠A=∠C,∠B=∠D.
A
B
(平行四边形的对角相等)
AB=CD,AD=BC.
(平行四边形的对边相等)
∴AD-AE=CB-CF 即 DE=BF
∵∠BAD=∠DCB,∠EAF=∠FCE (平行四边形对角相等)
∴∠BAD-∠EAF=∠DCB-∠FCE 即∠BAF=∠DCE
做一做
已知:如图,在□ABCD中,E是CD上一点,BE=BC.
求证:AD=BE,∠A=∠ABE.
DE
C
A
B
新课讲解 与三角形的稳定性相反,四边形具有不稳定性.
BE⊥AC,DF⊥AC,垂足分别为点E,F.
求证:BE=DF.
A
D
E
F
B
C
拓展提高
1.学校买了四棵树,准备栽在花园里,已经 栽了三棵(如图),现在学校希望这四棵树 能组成一个平行四边形,你觉得第四棵树应 该栽在哪里?

人教版数学四年级上册第五单元《平行四边形的认识》(课件20张ppt)

人教版数学四年级上册第五单元《平行四边形的认识》(课件20张ppt)

课堂练习
作业布置
第67页练习十一,第1题。
板书设计
平行四边形的认识
两组对边分别平行的四边形,叫Байду номын сангаас平行四边形。
谢谢!
人教版小学数学四年级上册第五单元
平行四边形的认识
视察下面的图形,寻找平行四边形。
导入新课
感受生活中“平行四边形”的存在
新课学习
视察、猜想平行四边形的特征
新课学习
验证平行四边形的特征
边的特点
新课学习
平行四边形的两组对边分别平行并且相等。两组对角分别相等。
角的特点
∠1=∠3,∠2=∠4。
验证平行四边形的特征
新课学习
通过实验我们发现平行四边形的四条边确定了,形状不能确定。
问题:请你思考一下,这是什么原因呢?
用四根小棒摆一个平行四边形。
新课学习
从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
认识平行四边形的底、高
新课学习
理解平行四边形的底、高特征
新课学习
概括平行四边形的特点
两组对边分别平行的四边形,叫做平行四边形。
新课学习
做一个平行四边形。
实验要求:① 用双手捏住平行四边形的两个对角, 向相反方向拉。② 将你的实验结果和发现记录在练习本上。
学生动手体验四角灵活的平行四边形模型。
绿色圃中小学教育网http://www.lspjyX
新课学习
对边之间的高长度相等。
对边之间的高互相平行。
新课学习




探究画高的方法
1. 问题:我们可以怎样画平行四边形的高呢?

20 平行四边形的判定导学案(华师)

20 平行四边形的判定导学案(华师)

A EDBFC20.1 平行四边形的判定学案(1)学习目标:掌握用“平行四边形的定义”判定一个四边形是平行四边形;理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习重点:理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习过程:一、回顾旧知,自主学习:1、什么叫平行四边形?平行四边形有哪些性质?并将其性质分别用命题形式叙述出来. ①如果一个四边形是平行四边形,那么它的 两组对边分别平行;(边) ②如果一个四边形是平行四边形,那么它的 ;(边) ③如果一个四边形是平行四边形,那么它的 ;(边) ④如果一个四边形是平行四边形,那么它的 ;(角) ⑤如果一个四边形是平行四边形,那么它的 . (对角线) 以上命题的逆命题分别是什么?并判断命题①②的逆命题是否是真命题?如果是,有何作用?2、①平行四边形的判定方法一(定义法):两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. ②平行四边形的判定方法二:两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. 二、边学边导,基础过关:1、如图,,,AB D C EF AD BC D E C F ====,图中哪些线段互相平行?A B D CABDC2、如图,已知□ABCD 中DE ⊥AC ,BF ⊥AC . 求证:四边形DEBF 为平行四边形.三、精讲点拨,巩固提升:如图,E 、F 分别为□ABCD 两边AD 、BC 的中点,连结BE 、DF . 求证:21∠=∠.四、达标检测,当堂过关:1、一组对边平行,另一组对边相等的四边形是平行四边形吗?2、如图,在□ABCD 中,AE 、CF 分别是DAB ∠、BC D ∠的平分线. 求证:四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,四边形ABCD 中,△ADE ≌△CBF ,点E 、F 分别为AB 、CD 的中点,BD 是对角线,AG //DB 交CB 的延长线于点G . ①求证:四边形ABCD 是平行四边形;②若四边形BFDE 是菱形,求证:四边形AGBD 是矩形; ③在②中应增加什么条件,才能判定矩形AGBD 是正方形.六、作业:教材P 107习题20.1:2E FABDC12DABCFE EFDACB20.1 平行四边形的判定学案(2)学习目标:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习重点:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.2、若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法三:一组对边 的四边形是平行四边形.用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,已知AD ∥BC ,要使四边形ABCD 为平行四边形,需添加一个条件为 . 2、如图,在□ABCD 中,E 、F 分别为对边BC 、AD 上的点,连结AE 、CF ,且DF =BE ,求证:四边形AECF 为平行四边形.三、精讲点拨,巩固提升:1、以不在同一直线上的三个点为顶点作平行四边形最多能作 个. 并将它们画出来.A BDCAB DCA ·B ·C ·A ·B ·C ·A ·B ·C ·2、如图,已知DC ∥AB ,且DC =12AB ,E 为AB 的中点.①求证:△AED ≌△EBC .②观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相 等的三角形(直接写出结果,不要求证明): .四、达标检测,当堂过关:1、不能判断四边形ABCD 是平行四边形的是( )A 、AB =CD ,AD =BC B 、AB =CD ,AB ∥CDC 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC2、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE . 求证:四边形ABCD 是平行四边形.五、拓展延伸,智力闯关:已知点D 、E 、F 分别在△ABC 的边BC 、AB 、AC 上,且DE ∥AF , G 在FD 的延长线上,DG =DF . 求证:AG 与ED 互相平分.六、作业:教材P 107习题20.1:3;A GFEDCB20.1 平行四边形的判定学案(3)学习目标:理解并掌握用“对角线互相平分的四边形是平行四边形”判定一个四边形是平行四边形;理解并掌握用“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形,会用这些定理进行有关的论证和计算.学习重点:掌握“对角线互相平分的四边形是平行四边形”和“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形.学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.平行四边形的判定方法三: 的四边形是平行四边形. 2、若一个四边形的对角线互相平分,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法四:对角线 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.3、若一个四边形的两组对角分别相等,能否判定这个四边形也是平行四边形呢?已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法五:两组对角 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,AO =OC ,BD =16cm ,则当OB = cm 时,四边形ABCD 是平行四边形.ABDCABDCOABDCO2、如图,在□ABCD 中,点E 、F 是对角线BD 上的两点,且BE =DF ,求证:四边形AECF 是平行四边形.三、精讲点拨,巩固提升:1、如图,在□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,当E 、 F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( ) A 、AE =CF B 、DE =BF C 、∠ADE =∠CBF D 、∠AED =∠CFB2、如图,在□ABCD 中,MN // AC ,分别交DA 的延长线于点M ,DC 的延长线于点N ,AB 于点P ,BC 于点Q . 求证:PM =QN .四、达标检测,当堂过关:1、如图,延长△ABC 的中线AD 至E ,使得DE =AD ,那么四边形ABEC 是平行四边形吗?为什么?2、如图,在□ABCD 中,已知AE 、CF 分别是∠DAB 、 ∠BCD 的角平分线,试证明四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,在△ABC 中,AB =5,AC =2,试求BC 边上的中线AD的取值范围.六、作业:教材P 105练习:1(做书上);P 106练习:2;A BDCEF A B CD M N PQA BCDE ABC D20.1 平行四边形的判定学案(4)学习目标:灵活运用平行四边形的判定方法. 学习重点:平行四边形的判定方法的综合运用. 学习过程:一、回顾旧知,自主学习:平行四边形的性质和判定方法有哪些?它们之间有何联系?二、边学边导,基础过关:1、刘师傅给客户加工一个平行四边形零件,如图,他要检查这个零件是否符合要求,以下方法不正确的是( ) A 、AB ∥CD ,AB =CD B 、AB ∥CD ,AD =BC C 、∠A =∠C ,∠B =∠D D 、AB =CD ,BC =AD2、一个四边形的边长依次是a 、b 、c 、d ,且222222a b c d ac bd +++=+,则这个四边形 是 ,依据是 .3、如图,在△ABC 中,D 是BC 的中点,F 、E 分别是AD 及其延长线上的点,CF ∥BE ,连结BF 、CE ,试判断四边形BECF 是不是平行四边形.4、如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB =CD ,③∠A =∠C ,④∠B +∠C =180°. 已知:在四边形ABCD 中, , .求证:四边形ABCD 是平行四边形.A B D CABC DF EABCD三、精讲点拨,巩固提升:1、如图,在□ABCD 中,AE =CF ,M 、N 分别是DE 、BF 的中点. 求证:四边形MFNE 是平行四边形.2、如图,在△ABC 中,D 是AB 的中点,E 是AC 的中点. 求证:DE 12BC .四、达标检测,当堂过关:1、如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点. 求证:四边形AFBE 是平行四边形.2、如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF .(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.六、作业:教材P 125复习题B 组:8,9.ABDCEABCDE F20.2 矩形的判定学案学习目标:掌握矩形的判定方法及与其性质的综合应用.学习重点:矩形的判定方法.学习过程:一、回顾旧知,自主学习:1、什么叫做矩形?矩形有哪些特殊性质?2、矩形与平行四边形有什么共同之处?有什么不同之处?3、类比平行四边形的判定方法如何判定一个四边形是矩形呢?你能猜想出几种判定矩形的方法?并对你的猜想加以论证.归纳:矩形的判定方法:①;②;③.二、边学边导,基础过关:1、判断:①对角线相等的四边形是矩形;()②对角线互相平分且相等的四边形是矩形;()③有一个角是直角的四边形是矩形;()④四个角都是直角的四边形是矩形;()⑤四个角都相等的四边形是矩形;()⑥对角线相等且有一个角是直角的四边形是矩形;()⑦对角线相等且互相垂直的四边形是矩形. ()2、如图,O是矩形ABCD的对角线AC与BD的交点,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.三、精讲点拨,巩固提升:1、如图,在△ABC中,AB=AC,若将△ABC绕点C旋转180º,得到△EDC,当∠ACB为多少度时,四边形ABED为矩形?说明理由.DA ECB2、如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.四、达标检测,当堂过关:如图,四边形ABCD 是由两个全等的正三角形ABD 和正三角形BCD 组成的,M 、N 分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.五、拓展延伸,智力闯关:如图,点O 是△ABC 的边AC 上一动点,过O 点作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)证明:OE =OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.六、作业:教材P 110习题20.2:1,2,3;.ADC BE FGHMNBCOAF EDBACDNM20.3 菱形的判定学案学习目标:掌握菱形的判定方法及与其性质的综合应用. 学习重点:菱形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做菱形?菱形有哪些特殊性质?2、根据菱形的定义及其特殊性质,你能猜想出菱形的判定方法吗?并加以论证. 归纳:菱形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、判断:①对角线互相垂直的四边形是菱形;( ) ②对角线互相垂直平分的四边形是菱形;( ) ③对角线互相垂直,且有一组邻边相等的四边形是菱形; ( ) ④两条邻边相等,且一条对角线平分一组对角的四边形是菱形; ( ) ⑤一条对角线平分一组对角的平行四边形是菱形.( )2、如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.三、精讲点拨,巩固提升:已知□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.CFODE ABBA CEDF四、达标检测,当堂过关:1、如图,已知AD平分∠BAC,DE∥AC,DF∥AB. 判断四边形AEDF的形状.2、如图,□ABCD的两条对角线AC、BD相交于点O,AB=5,AC=8,DB=6.求证:四边形ABCD是菱形.五、拓展延伸,智力闯关:如图,△ABC中,∠ACB=90°,BF平分∠ABC,CD⊥AB于点D,与BF交于点G,GE∥CA. 求证:CE和FG互相垂直平分.六、作业:教材P116习题20.3:1,2,3;GEFDCBAAB CFDEABCDO20.4 正方形的判定学案学习目标:掌握正方形的判定方法及与其性质的综合应用. 学习重点:正方形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做正方形?正方形有哪些特殊性质?2、正方形与平行四边形、矩形、菱形有什么共同之处?有什么不同之处?由此你能猜想出正方形的判定方法吗?并加以论证. 归纳:正方形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) A 、AC =BD ,AB ∥CD ,AB =CD B 、AD ∥BC ,∠A =∠C C 、AO =BO =CO =DO ,AC ⊥BD D 、AO =CO ,BO =DO ,AB =BC2、如图,△ABC 中,∠ACB =90°,CD 平分∠ACB ,DE ⊥BC , DF ⊥AC ,垂足分别为E 、 F .求证:四边形CFDE 是正方形.三、精讲点拨,巩固提升:如图,矩形ABCD 的外角平分线围成四边形EFGH .求证:四边形EFGH 是正方形.BACQE D PNMHGF四、达标检测,当堂过关:1、矩形ABCD加上一个条件:,就可以得到正方形ABCD.2、菱形ABCD加上一条条件:,就可以得到正方形ABC D.3、判断:(1)四个角都相等的四边形是正方形;()(2)四条边都相等的四边形是正方形;()(3)对角线相等的菱形是正方形;()(4)对角线互相垂直的矩形是正方形;()(5)对角线垂直且相等的四边形是正方形;()(6)四边相等,有一角是直角的四边形是正方形. ()4、在正方形ABCD中,点E、F、G、H分别在各边上,且AH=BE=CF=DG.四边形EFGH是正方形吗? 为什么?五、拓展延伸,智力闯关:如图,在△ABC中,AB=AC,点D在边BC上,DE⊥AB,DF⊥AC,垂足分别为E、F.请探究,当∠A满足什么条件或点D在什么位置时,四边形AEDF将成为矩形?四边形AEDF 将成为正方形?画出符合条件的图形,并证明.六、作业:教材P118习题20.4:1,2,3;BAC EDFHG ED AB F C20.5 等腰梯形的判定学案学习目标:掌握等腰梯形的判定方法,能用它们解决简单的问题. 学习重点:等腰梯形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么样的几何图形是梯形?什么样的几何图形是等腰梯形?2、等腰梯形有何特殊性质?3、根据等腰梯形的定义及其特殊性质,你能猜想出等腰梯形的判定方法吗?并加以论证. 归纳:等腰梯形的判定方法:① ; ② ;③ .二、边学边导,基础过关:1、如图,在四边形ABCD 中, AD ∥ BC ,但 AD ≠B C ,若使它成为等腰梯形,则需要添 加的条件是_______________________.(写出一个即可)2、如图,矩形ABCD 中,点E 、F 在边AD 上,AE =FD . 求证:四边形EBCF 是等腰梯形.3、如图,梯形ABCD 中,AD ∥BC ,∠1=∠2. 求证:四边形ABCD 是等腰梯形.ADBCA DB C三、精讲点拨,巩固提升:1、如图,在梯形ABCD 中,AD ∥BC ,若∠A +∠C =180°,则梯形ABCD 是等腰梯形吗? 请说明理由.结论: .2、如图,AD 是∠BAC 的平分线,DE ∥AB ,DE =AC ,AD ≠EC . 求证:四边形ADCE 是等腰梯形.四、达标检测,当堂过关:如图,在梯形ABCD 中,AD ∥BC ,CA 平分∠BCD , DM ∥A C ,∠B =2∠M . 求证:梯形ABCD 是等腰梯形.五、拓展延伸,智力闯关:如图,在梯形ABCD 中,AD ∥BC ,AD <BC ,E 、F 分别是AD 、BC 的中点,且EF ⊥BC . 求证:梯形ABCD 是等腰梯形.六、作业:教材P 122习题20.5:1,2,3;A D BCADBCMADBCEFABE OC D第二十章平行四边形的判定复习学案(1)学习目标:小结本章知识,巩固平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用.学习过程:一、知识回顾,自主学习:平行四边形、矩形、菱形、正方形、等腰梯形有哪些性质和判定方法?图形性质判定方法平行四边形矩形菱形正方形等腰梯形二、边学边导,基础过关:1、下列说法不正确...的是()A、一组邻边相等的矩形是正方形B、对角线相等的菱形是正方形C、对角线互相垂直的矩形是正方形D、有一个角是直角的平行四边形是正方形2、如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A、BA=BCB、AC、BD互相平分C、AC=BDD、AB∥CD3、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A、四边形AECD是等腰梯形B、BF=12 DFC、S△AFD=2S△EFBD、∠AEB=∠ADCABCD BACEDF4、如图,E 、F 是 ABCD 对角线AC 上的两点,且BE ∥DF . 求证: (1)△ABE ≌△CDF ; (2)∠1=∠2.三、精讲点拨,巩固提升:1、如图,在等腰梯形ABCD 中,AB ∥DC ,AD =BC =CD ,点E 为AB 上一点,连结CE ,请添加一个你认为合适的条件 ,使四边形AECD 为菱形,并说明理由.2、如图,在A B C △中,点D 、E 、F 分别在边AB 、B C 、C A 上,且D E C A ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形; ②如果90BAC ∠= ,那么四边形AEDF 是矩形; ③如果AD 平分B A C ∠,那么四边形AEDF 是菱形; ④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中正确的有 .(只填写序号) 四、达标检测,当堂过关:1、如图,已知□ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明□ABCD 是矩形的有 .(只填写序号) 2、如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE =AF. (1)求证:BE =DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM =OA , 连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.五、作业:教材P 125复习题B 组:10,11,12.DCABEA FCDBE BA CD1 2AD BE FOCM第二十章 平行四边形的判定复习学案(2)学习目标:巩固熟练平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用. 学习过程:一、自主学习,基础过关:1、如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .求证:四边形ABCD是等腰梯形.2、如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.3、如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°. (1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF的形状,并说明理由.二、精讲点拨,巩固提升:在平行四边形ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ; (4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.EFDA B CHG F E O D C BA图①H G F E O D CBA图②A BCDO E F GH 图③ABCDO EF G H 图④A D CBM三、达标检测,当堂过关:1、如图(1),在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90°,AB 与CE 交于F ,ED 与A B 、BC 分别交于M 、H . (1)求证:CF =CH ; (2)如图(2),△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45° 时,判断四边形ACDM 是什么四边形?并证明你的结论.2、如图 ,△ABC 是等腰直角三角形,∠A =90o,点P 、Q 分别是AB 、AC 上的动点,且满足BP =AQ ,D 是BC 的中点. (1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,说明理由.四、拓展延伸,智力闯关: 若一次函数y =2x 和反比例函数y =2x的图象都经过点A 、B ,已知点A 在第三象限.(1)求点A 、B 两点的坐标;(2)根据函数图像,求不等式2x>2x 的解集;(3)若点C 的坐标为(3,0),且以点A 、B 、C 、D 为顶点的四边形是平行四边形,请你求出点D 的坐标; (4)若点C 的坐标为(t ,0),t >0,四边形ABCD 是平行四边形,当t 为何值时点D 在y 轴上.五、作业:教材P 126复习题C 组:13,14,15.。

【2014中考复习方案】(江西专版)中考数学复习权威课件:20特殊的平行四边形

【2014中考复习方案】(江西专版)中考数学复习权威课件:20特殊的平行四边形
赣考解读 考点聚焦
矩形的判定 (1)根据矩形的 定义;(2)有 3 ________ 个角是 直角的四边形是 矩形;(3)对角 相等 的平 线________ 行四边形是矩形
赣考探究
第20讲┃特殊的平行四边形
考点2
菱形
1.在菱形ABCD中,∠B=60°,AB=5,则对角线AC= ________ . 5 2.已知一个菱形的周长是20 cm,如果其中较长的一条对 角线是8 cm,那么这个菱形的面积是________ 24 cm2 .
赣考解读
考点聚焦赣考探究来自第20讲┃特殊的平行四边形
【归纳总结】
矩形的定义 矩形的性质 (1)矩形的四个角 直角 ; 都是________ 有一个角是 (2)矩形的对角线 直角 的平 互相平分并且 ________ 相等 ;(3)矩 行四边形叫做 ________ 矩形. 形是轴对称图 形,它有 ________ 条对称 2 轴
赣考解读 考点聚焦 赣考探究
第20讲┃特殊的平行四边形
探究二 与特殊平行四边形有关折叠的计算题
例2 如图20-2所示,矩形纸片ABCD中,AB=6 cm,BC= 8 cm,现将其沿EF对折,使得点C与点A重合,D点落在D′位置, 求AF长.
图20-2
解 析 由折叠可知∠AD′F=90°,D′F=DF,CD=AD′,所以
D′F=DF=AD-AF,在Rt△AD′F中利用勾股定理可求AF的长.
赣考解读
考点聚焦
赣考探究
第20讲┃特殊的平行四边形
解 设AF=x cm,则AD′=DC=6 cm,D′F=DF= AD-AF=BC-AF=(8-x)(cm), ∴AF2=AD′2+D′F2, 即x2=62+(8-x)2. 25 25 解得x= .故AF= cm. 4 4

小学五年级奥数专题讲座20多边形的面积(附答案)

小学五年级奥数专题讲座20多边形的面积(附答案)

小学五年级奥数专题讲座20多边形的面积(附答案)正方形面积=边长×边长=a2,长方形面积=长×宽=ab,平行四边形面积=底×高=ah,圆面积=半径×半径×π=πr2,扇形面积=半径×半径×π×圆心角的度数÷360°在实际问题中,我们遇到的往往不是基本图形,而是由基本图形组合、拼凑成的组合图形,它们的面积不能直接用公式计算。

在本讲和后面的两讲中,我们将学习如何计算它们的面积。

例1 小两个正方形组成下图所示的组合图形。

已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。

分析与解:组合图形的周长并不等于两个正方形的周长之和,因为CG部分重合了。

用组合图形的周长减去DG,就得到大、小正方形边长之和的三倍,所以两个正方形的边长之和等于(52-4)÷3=16(厘米)。

又由两个正方形的边长之差是4厘米,可求出大正方形边长=(16+4)÷2=10(厘米),小正方形边长=(16-4)÷2=6(厘米)。

两个正方形的面积之和减去三角形ABD与三角形BEF 的面积,就得到阴影部分的面积。

102+62-(10×10÷2)-(10+6)×6÷2=38(厘米2)。

例2如左下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。

分析与证明:这道题两个平行四边形的关系不太明了,似乎无从下手。

我们添加一条辅助线,即连结CE(见右上图),这时通过三角形DCE,就把两个平行四边形联系起来了。

在平行四边形ABCD中,三角形DCE的底是DC,高与平行四边形ABCD边DC上的高相等,所以平行四边形ABCD的面积是三角形DCE的两倍;同理,在平行四边形DEFG中,三角形DCE的底是DE,高与平行四边形DEFG 边DE上的高相等,所以平行四边形DEFG的面积也是三角形DCE的两倍。

(江西人教)数学中考复习方案【第20课时】特殊的平行四边形(34页)

(江西人教)数学中考复习方案【第20课时】特殊的平行四边形(34页)
+∠BEF,而∠EBG= 90 °-∠ABE ,△BEF是等腰直角三角形.
考情分析 考点聚焦 赣考探究
图20-3
第20课时
特殊的平行四边形
解:(1)证明:∵四边形 ABCD 是正方形, ∴AB=BC,∠ABC=90°. ∵BE⊥BF, ∴∠EBF=90°, ∴∠ABE=∠CBF. AB=CB, 在△ABE 和△CBF 中,∠ABE=∠CBF, BE=BF, ∴△ABE≌△CBF,∴AE=CF.
考情分析 考点聚焦 赣考探究
第20课时
特殊的平行四边形
【归纳总结】
正方形的性质
正方形的判定
①正方形对边平行;②正方形四边________ 相等 ;③
正方形四个角都是________ 直角 ;④正方形的对角线 ①有一组邻边相等的 相等,互相垂直平分,且每条对角线 矩形 是正方形;② ________
角线互相平分并且
三 (2)有________ 个角是直
角的四边形是矩形;(3)
相等 ;(3)矩形是一 ________
个轴对称图形,它有
相等 的平行 对角线________
四边形是矩形
两 ________ 条对称轴
考情分析
考点聚焦
赣考探究
第20课时
考点2
特殊的平行四边形
菱形
1 .在菱形 ABCD 中,∠ B = 60 °, AB = 5 ,则对角线 AC = ________ . 5
________________ 平分一组对角 ;⑤正方形既是轴对称图形也 有一个角是直角的 中心对称 图形,对称轴有四条,对称中心是 ________ 菱形 是__________ 是正方形
对角线的交点
考情分析
考点聚焦

2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)

2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)

2014年中考数学专题复习第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和事外角和是正几边形的每个外角的度数是,每个内角的度数是3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从几边形的一个顶点出发有条对角线,将多边形分成个三角形,一个几边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间地铺成一起,这就是平面图形的密铺,称作平面图形的2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两正多边形密铺,组合方式有:和、和、和合等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可写成2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对它的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式X同底(等底)同边(等边)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .思路分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解:由题意得,∠5=180°-∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.对应训练1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.1.240考点:多边形内角与外角.专题:数形结合.分析:利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.解:∵四边形的内角和为(4-2)×180°=360°,∴∠B+∠C+∠D=360°-60°=300°,∵五边形的内角和为(5-2)×180°=540°,∴∠1+∠2=540°-300°=240°,故答案为240.点评:考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.考点二:平面图形的密铺例 2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形思路分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.解:A、正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;故选D.点评:本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.对应训练考点三:平行四边形的性质例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8思路分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到∠AEB=∠EBC,再由BE平分∠ABC得到∠ABE=∠EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF得到AF=DE,当EF=14AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值.解答:解:∵四边形ABCD是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠EBC ,又BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE ,同理可得:DC=DF ,∴AE=DF ,∴AE-EF=DE-EF ,即AF=DE ,当EF=14AD 时,设EF=x ,则AD=BC=4x , ∴AF=DE=12(AD-EF )=1.5x , ∴AE=AB=AF+EF=2.5x ,∴AB :BC=2.5:4=5:8.故选D .点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用.例4 (2012•广安)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE=AD ,点F 在AD 上,AF=AB ,求证:△AEF ≌△DFC .思路分析:由四边形ABCD 是平行四边形,利用平行四边形的性质,即可得AB=CD ,AB ∥CD ,又由平行线的性质,即可得∠D=∠EAF ,然后由BE=AD ,AF=AB ,求得AF=CD ,DF=AE ,继而利用SAS 证得:△AEF ≌△DFC .证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠D=∠EAF ,∵AF=AB ,BE=AD ,∴AF=CD ,AD-AF=BE-AB ,即DF=AE ,在△AEF 和△DFC 中,AE DF EAF D AF DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DFC(SAS).点评:此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.对应训练3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.3.20考点:平行四边形的性质;线段垂直平分线的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为10,即可求得平行四边形ABCD的周长.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,即CD+DE+EC=10,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×10=20.故答案为:20.点评:此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.4.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD-ED=BC-BF,即AE=CF,在△AEO和△CFO中,AE CFAEO CFOFCO EAO=⎧⎪∠=∠⎨⎪∠=∠⎩,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.考点四:平行四边形的判定例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的四边形是矩形思路分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.解:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;C.一组对边相等,一组对角相等的四边形是平行四边形,∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,∵DE=AC,AD=AD,∠ADE=∠DAC,即DE ACADE DAC AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,故此选项正确;D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;故选:C.点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.思路分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB CDA C AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.对应训练5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个考点:平行四边形的判定;三角形中位线定理;菱形的判定;正方形的判定;命题与定理;轴对称图形;中心对称图形.分析:根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,如图所示),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选B.点评:本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)先根据平行四边形的性质可得出AD ∥BC ,∠DAB=∠BCD ,再根据平行线的性质及补角的性质得出∠E=∠F ,∠EAM=∠FCN ,从而利用ASA 可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM ∥DN ,则由有一组对边平行且相等的四边形是平行四边形即可证明.证明:(1)四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∴∠EAM=∠FCN ,又∵AD ∥BC ,∴∠E=∠F .在△AEM 与△CFN 中,EAM FCN AE CF E F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CFN ;(2)∵四边形ABCD 是平行四边形,∴AB ∥= CD ,又由(1)得AM=CN ,∴BM ∥DN ,∴四边形BMDN 是平行四边形.点评:本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单.【聚焦山东中考】1.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)。

2019学年沪教版五年级第一学期数学第20讲-期末复习(二)(含答案)

2019学年沪教版五年级第一学期数学第20讲-期末复习(二)(含答案)

第20讲—期末复习(二)(一)上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。

(二)上次预习思考内容讨论分享本学期后两章易错题整理一、判断题(对的在括号内打"√",错的打"×").(1)两个面积相等的三角形可以拼成一个平行四边形。

( )(2)两个面积相等的三角形,它们的底和高一定相等。

( )(3)梯形的面积等于梯形的上底加下底的和乘以高再除以2。

( )(4)两个面积相等的梯形可以拼成一个平行四边形。

( )(5)两个同底等高的三角形,形状相同,面积相等。

( )二、填空题一、(1)× (2)× (3)√ (4)× (5)×二、(1)9.6m 2 (2)12.9分米 (3)16平方分米 25倍 (4)7.6 (5)2)(÷+=h b a S 平行四边形 6 三角形 6 三、(1)D (2)C (3)B (4)B (5)A【知识梳理1】平行四边形,三角形及梯形面积求法与应用例题1:一块长15米,宽10米的草地外面围一条宽1.5米的小路,求小路的面积?教法指导:引导学生将实际问题转化成理论问题,正确求出外围长方形的长和宽,其实是分别加上小路宽的两倍,长是18米,宽是13米。

小路的面积等于大长方形的面积减去小长方形的面积。

也可以将小路分成四个窄点的长方形来求其面积。

参考答案:小路的面积为18×13-15×10=84(平方米)15米10米教法指导:联结AC,将阴影部分分割成两个钝角三角形,这两个钝角三角形都已知底和高,接下来就比较简便,解题的关键在于将这个不规则的图形分割成我们所熟悉的图形。

参考答案:7×8÷2+4×10÷2=48试一试:计算下列图形的面积教法指导:(1)将图形分割成一个长方形和一个直角梯形;(2)将这个不规则的图形补上一个边长为2cm的正方形后,得到一个直角梯形。

(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)

(完整版)2019年中考数学专题复习第二十讲多边形与平行四边形(含详细参考答案)

2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等、也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和是外角和是正n 边形的每个外角的度数是,每个内角的度数是。

3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从n 边形的一个顶点出发有条对角线,将多边形分成个三角形,一个n 边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n 边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间、地铺成一起,这就是平面图形的密铺,又称作平面图形的。

2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两种正多边形密铺,组合方式有:和、和、和等几种【名师提醒:能密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边形1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD 可表示为2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边截得的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对边的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形都不能保证是平行四边形】4、平行四边形的面积:计算公式×同底(等底)同高(等高)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2018•铜仁市)如果一个多边形的内角和是外角和的3 倍,则这个多边形的边数是()A.8 B.9C.10 D.11【思路分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:A.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.考点二:平行四边形的性质例2 (2018•青岛)已知:如图,平行四边形ABCD,对角线AC 与BD 相交于点E,点G 为AD 的中点,连接CG,CG 的延长线交BA 的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.【思路分析】(1)只要证明AB=CD,AF=CD 即可解决问题;(2)结论:四边形ACDF 是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF 是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF 是平行四边形,∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG 是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF 是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.考点三:平行四边形的判定例3 (2018•东营)如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F,AB=BF.添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是()A.AD=BC B.CD=BFC.∠A=∠C D.∠F=∠CDF【思路分析】正确选项是D.想办法证明CD=AB,CD∥AB 即可解决问题;【解答】解:正确选项是D.理由:∵∠F=∠CDF,∠CED=∠BEF,EC=BE,∴△CDE≌△BFE,CD∥AF,∴CD=BF,∵BF=AB,∴CD=AB,∴四边形ABCD 是平行四边形.故选:D.【点评】本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.【备考真题过关】一、选择题1.(2018•北京)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°2.(2018•乌鲁木齐)一个多边形的内角和是720°,这个多边形的边数是()A.4 B.5C.6 D.73.(2018•济宁)如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP、CP 分别平分∠EDC、∠BCD,则∠P 的度数是()A.50°B.55°C.60°D.65°4.(2018•台州)正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°5.(2018•宁波)如图,在▱ABCD 中,对角线AC 与BD 相交于点O,E 是边CD 的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1 的度数为()A.50°B.40°C.30°D.20°6.(2018•黔南州)如图在▱ABCD 中,已知AC=4cm,若△ACD 的周长为13cm,则▱ABCD 的周长为()A.26cm B.24cmC.20cm D.18cm7.(2018•泸州)如图,▱ABCD 的对角线AC,BD 相交于点O,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为()A.20 B.16C.12 D.88.(2018•玉林)在四边形ABCD 中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD 为平行四边形的选法共有()A.3 种B.4 种C.5 种D.6 种9.(2018•呼和浩特)顺次连接平面上A、B、C、D 四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D 四个条件中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况共有()A.5 种B.4 种C.3 种D.1 种10.(2018•眉山)如图,在▱ABCD 中,CD=2AD,BE⊥AD 于点E,F 为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()DEBCA.1 个B.2 个C.3 个二、填空题11.(2018•宿迁)若一个多边形的内角和是其外角和的3 倍,则这个多边形的边数是.12. (2018•山西)图1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2 是从图1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.13. (2018•抚顺)将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5= .14.(2018•十堰)如图,已知▱ABCD 的对角线AC,BD 交于点O,且AC=8,BD=10,AB=5,则△OCD 的周长为.215.(2018•株洲)如图,在平行四边形ABCD 中,连接BD,且BD=CD,过点A 作AM⊥BD 于点M,过点D 作DN⊥AB 于点N,且DN=3 ,在DB 的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP= .16.(2018•泰州)如图,▱ABCD 中,AC、BD 相交于点O,若AD=6,AC+BD=16,则△BOC 的周长为.17.(2018•无锡)如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC⊥OY 于点C,以AC 为一边在∠XOY 内作等边三角形ABC,点P 是△ ABC 围成的区域(包括各边)内的一点,过点P 作PD∥OY 交OX 于点D,作PE∥OX 交OY 于点E.设OD=a,OE=b,则a+2b 的取值范围是.三、解答题18.(2018•岳阳)如图,在平行四边形ABCD 中,AE=CF,求证:四边形BFDE 是平行四边形.19.(2018•宿迁)如图,在▱ABCD 中,点E、F 分别在边CB、AD 的延长线上,且BE=DF,EF 分别与AB、CD 交于点G、H.求证:AG=CH.20.(2018•临安区)已知:如图,E、F 是平行四边形ABCD 的对角线AC 上的两点,AE=CF.求证:(1)△ADF≌△CBE;(2)EB∥DF.21.(2018•福建)如图,▱ABCD 的对角线AC,BD 相交于点O,EF 过点O 且与AD,BC 分别相交于点E,F.求证:OE=OF.22.(2018•大庆)如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,连接CD,过 E 作EF∥DC 交BC 的延长线于F.(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是25cm,AC 的长为5cm,求线段AB 的长度.23. (2018•永州)如图,在△ABC 中,∠ACB=90°,∠CAB=30°,以线段AB 为边向外作等边△ABD,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F.(1)求证:四边形BCFD 为平行四边形;(2)若AB=6,求平行四边形BCFD 的面积.2019 年中考数学专题复习第五章四边形第二十讲多边形与平行四边形参考答案【备考真题过关】一、选择题1.【思路分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和;根据一个外角得60°,可知对应内角为120°,很明显内角和是外角和的2 倍即720.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.2.【思路分析】根据内角和定理180°•(n-2)即可求得.【解答】解:∵多边形的内角和公式为(n-2)•180°,∴(n-2)×180°=720°,解得n=6,∴这个多边形的边数是6.故选:C.【点评】本题主要考查了多边形的内角和定理即180°•(n-2),难度适中.3.【思路分析】先根据五边形内角和求得∠ECD+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P 的度数.【解答】解:如图,∵在五边形ABCDE 中,∠A+∠B+∠E=300°,∴∠ECD+∠BCD=240°,又∵DP、CP 分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP 中,∠P=180°-(∠PDC+∠PCD)=180°-120°=60°.故选:C.【点评】本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和=(n-2)•180(n≥3 且n 为整数).4.【思路分析】利用正十边形的外角和是360 度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数;【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°-36°=144°;故选:D.【点评】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360 度.多边形的内角与它的外角互为邻补角.5.【思路分析】直接利用三角形内角和定理得出∠BCA 的度数,再利用三角形中位线定理结合平行线的性质得出答案.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°-60°-80°=40°,∵对角线AC 与BD 相交于点O,E 是边CD 的中点,∴EO 是△DBC 的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.【点评】此题主要考查了三角形内角和定理、三角形中位线定理等知识,得出EO 是△DBC 的中位线是解题关键.6.【思路分析】根据三角形周长的定义得到AD+DC=9cm.然后由平行四边形的对边相等的性质来求平行四边形的周长.【解答】解:∵AC=4cm,若△ADC 的周长为13cm,∴AD+DC=13-4=9(cm).又∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AB+BC)=18cm.故选:D.【点评】本题考查了平行四边形的性质.此题利用了“平行四边形的对边相等”的性质.7.【思路分析】首先证明:1,由AE+EO=4,推出AB+BC=8 即可解决问题;OE= BC2【解答】解:∵四边形ABCD 是平行四边形,∴OA=OC,∵AE=EB,∴1OE= BC,2∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD 的周长=2×8=16,故选:B.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.【思路分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4 种,分别是:①②、③④、①③、③④.故选:B.【点评】本题考查了平行四边形的判定,平行四边形的判定方法共有五种,在四边形中如果有:1、四边形的两组对边分别平行;2、一组对边平行且相等;3、两组对边分别相等;4、对角线互相平分;5、两组对角分别相等.则四边形是平行四边形.本题利用了第1,2,3 种来判定.9.【思路分析】根据平行四边形的判定定理可得出答案.【解答】解;当①③时,四边形ABCD 为平行四边形;当①④时,四边形ABCD 为平行四边形;当③④时,四边形ABCD 为平行四边形;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.10.【思路分析】如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH 是菱形即可解决问题;【解答】解:如图延长EF 交BC 的延长线于G,取AB 的中点H 连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,∴S 四边形DEBC=S△EBG=2S△BEF,故③正确,∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH 是平行四边形,∵CF=BC,∴四边形BCFH 是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.二、填空题11.【思路分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n 边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n-2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.12.【思路分析】根据多边形的外角和等于360°解答即可.【解答】解:由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为:360°.【点评】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.13.【思路分析】直接利用三角形内角和定理得出∠6+∠7 的度数,进而得出答案.【解答】解:如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,2 2 2 ∴∠5=180°-(∠6+∠7)=40°. 故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确应用三角形内角和定理是解 题关键.14. 【思路分析】根据平行四边形的性质即可解决问题;【解答】解:∵四边形 ABCD 是平行四边形,∴AB=CD=5,OA=OC=4,OB=OD=5,∴△OCD 的周长=5+4+5=14,故答案为 14.【点评】本题考查平行四边形的性质、三角形的周长等知识,解题的关键是熟 练掌握平行四边形的性质,属于中考基础题.15. 【思路分析】根据 BD=CD ,AB=CD ,可得 BD=BA ,再根据AM ⊥BD ,DN ⊥AB ,即可得到 DN=AM=3 ,依据∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,即可得到△APM 是等腰直角三角形,进而得到 AP= AM=6.【解答】解:∵BD=CD ,AB=CD ,∴BD=BA ,又∵AM ⊥BD ,DN ⊥AB ,∴DN=AM=3 ,又∵∠ABD=∠MAP+∠PAB ,∠ABD=∠P+∠BAP ,∴∠P=∠PAM ,∴△APM 是等腰直角三角形,2∴AP= AM=6,故答案为:6.【点评】本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM 是等腰直角三角形.16.【思路分析】根据平行四边形的性质,三角形周长的定义即可解决问题;【解答】解:∵四边形ABCD 是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC 的周长=BC+OB+OC=6+8=14,故答案为14.【点评】本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【思路分析】作辅助线,构建30 度的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a,在Rt△HEP 中,∠EPH=30°,可得EH 的长,计算a+2b=2OH,确认OH 最大和最小值的位置,可得结论.【解答】解:过P 作PH⊥OY 交于点H,∵PD∥OY,PE∥OX,∴四边形EODP 是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt △HEP 中,∠EPH=30°,∴ 1 1 EH= EP= a , 2 2 ∴a+2b=2( 1 a+b )=2(EH+EO )=2OH , 2 当 P 在 AC 边上时,H 与 C 重合,此时 OH 的最小值 1,即 a+2b 的 最小值是 2; 当 P 在点 B 时,OH 的最大值是:1+ 3 2 =OC= OA=1 2= 5 ,即(a+2b )的最大值是 5, 2∴2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形 30 度角的性质、平行四边形的判定和性质,有难度,掌握确认 a+2b 的最值就是确认 OH 最值的范围.三、解答题18. 【思路分析】首先根据四边形 ABCD 是平行四边形,判断出 AB ∥CD ,且AB=CD ,然后根据 AE=CF ,判断出 BE=DF ,即可推得四边形 BFDE 是平行四边形.【解答】证明:∵四边形 ABCD 是平行四边形,∴AB ∥CD ,且 AB=CD ,又∵AE=CF ,∴BE=DF ,∴BE ∥DF 且 BE=DF ,∴四边形 BFDE 是平行四边形.【点评】此题主要考查了平行四边形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①判定定理 1:SSS--三条边分别对应相等的两个三角形全等.②判定定理 2:SAS--两边及其夹角分别对应相等的两个三角形全等.③ 判定定理 3:ASA--两角及其夹边分别对应相等的两个三角形全等.④判定定理⎨ ⎩4:AAS--两角及其中一个角的对边对应相等的两个三角形全等.⑤判定定理 5:HL--斜边与直角边对应相等的两个直角三角形全等.19. 【思路分析】利用平行四边形的性质得出 AF=EC ,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形 ABCD 是平行四边形,∴AD=BC ,∠A=∠C ,AD ∥BC ,∴∠E=∠F ,∵BE=DF ,∴AF=EC ,⎧∠A =∠C 在△AGF 和△CHE 中⎪ AF =EC , ⎪∠F =∠E ∴△AGF ≌△CHE (ASA ),∴AG=CH .【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.20. 【思路分析】(1)要证△ADF ≌△CBE ,因为 AE=CF ,则两边同时加上EF ,得到 AF=CE ,又因为 ABCD 是平行四边形,得出AD=CB ,∠DAF=∠BCE ,从而根据 SAS 推出两三角形全等;(2)由全等可得到∠DFA=∠BEC ,所以得到 DF ∥EB .【解答】证明:(1)∵AE=CF ,∴AE+EF=CF+FE ,即 AF=CE .又 ABCD 是平行四边形,∴AD=CB ,AD ∥BC .∴∠DAF=∠BCE.在△ADF 与△CBE中AF=CE∠DAF=∠BCEAD=CB,∴△ADF≌△CBE(SAS).(2)∵△ADF≌△CBE,∴∠DFA=∠BEC.∴DF∥EB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.【思路分析】由四边形ABCD 是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【解答】证明:∵四边形ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE 和△OCF 中,∠OAE=∠OCFOA=OC∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.22.【思路分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE 的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【解答】(1)证明:∵D、E 分别是AB、AC 的中点,F 是BC 延长线上的一点,∴ED 是Rt△ABC 的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC=EF,∵DC 是Rt△ABC 斜边AB 上的中线,∴AB=2DC,∴四边形DCFE 的周长=AB+BC,∵四边形DCFE 的周长为25cm,AC 的长5cm,∴BC=25-AB,∵在Rt△ABC 中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.23.【思路分析】(1)在Rt△ABC 中,E 为AB 的中点,则1 1CE= AB,BE= AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得2 2∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60 度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,则四边形BCFD 是平行四边形.(2)在Rt△ABC 中,求出BC,AC 即可解决问题;【解答】(1)证明:在△ABC 中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD 中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E 为AB 的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC.在△ABC 中,∠ACB=90°,E 为AB 的中点,3 3 3 3 ∴ 1 1 CE= AB ,BE= AB .2 2∴CE=AE ,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°.又∵△AEF ≌△BEC ,∴∠AFE=∠BCE=60°.又∵∠D=60°,∴∠AFE=∠D=60°.∴FC ∥BD .又∵∠BAD=∠ABC=60°,∴AD ∥BC ,即 FD ∥BC .∴四边形 BCFD 是平行四边形.(2)解:在 Rt △ABC 中,∵∠BAC=30°,AB=6, ∴ 1 BC= AB=3,AC= BC=3 , 2∴S 平行四边形 BCFD =3×3 =9 .【点评】本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直角三角形、勾股定理等知识,解题的关键是正确寻找全等 三角形解决问题,属于中考常考题型.。

平行四边形的判定

平行四边形的判定

A
E
D
B
F
C
2、已知:平行四边形ABCD中,E,F 分别是边AD,BC的中点(如图) A 求证:EB=DF E
证明:∵四边形ABCD 是平行 四边形 ∴AD BC BF=1/2BC
D
B
F
C
∵ED=1/2AD ∴ED BF
∴四边形EBFD是平行四边形 (一组对边平行且相等的四边形是平行四边形)
∴EB=DF
A B
D
C
要亲自动手喔!
定理1:
两组对边分别相等的四边 形是平行四边形 定理2:
一组对边平行且相等的四边 形是平行四边形。
已知:平行四边形ABCD中, E,F分别是边AD,BC的中点(如图) 求证:EB=DF
A
E
D
B
F
C
2、已知:平行四边形ABCD中,E, F分别是边AD,BC的中点(如图)
求证:EB=DF
两组对边分别平行 从边看:
两组对边分别相等
一组对边平行且相等
的四 边形 是平 行四 边形
再 见
A B C
A B
D C (3)
(1)
(5)
(2)
(4)
(6)
这些四边形一定是平行四边形吗 NhomakorabeaA BD C (3)
(1)
(5)
得:AD∥BC AB∥BD
定义:
两组对边分别平行的四边形是 平行四边形
A D C
∵AB∥CD,AD∥BC
B
∴四边形ABCD是平行四边形
根据手中的拼图,画一画、量一量,寻找 一些等量关系或位置关系等,大家一起猜 想一下除了定义可以判定平行四边形外, 还会有其它的方法吗?小组同学讨论。

(整理)20平行四边形与中心对称图形.

(整理)20平行四边形与中心对称图形.

平行四边形与中心对称图形一、一周知识概述1、四边形在平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.组成四边形的各条线段叫做四边形的边,每相邻两条边的公共端点叫做四边形的顶点.四边形用它的各个顶点的字母顺序来表示.如四边形ABCD.若把四边形的任何一边向两方延长,其它各边都在延长所得的直线的同一旁,这样的四边形叫做凸四边形.四边形中,连结不相邻的两个顶点的线段叫做四边形的对角线,四边形有两条对角线.四边形相邻两边所组成的角叫做四边形的内角,简称四边形的角.四边形相对的两个角叫做对角,相对的两条边叫做对边.2、平行四边形的定义两组对边分别平行的四边形是平行四边形.平行四边形ABCD记作“□ABCD”.如图,在□ABCD中,AB与CD,AD与BC分别为□ABCD的两组对边,∠A与∠C,∠B与∠D是两组对角.3、平行四边形的性质(1)平行四边形对角相等;(2)平行四边形对边平行且相等;(3)平行四边形的对角线互相平分.4、中心对称图形在平面内,将一个图形G绕一点O旋转180°,所得到的像与原来的图形G互相重合,那么图形G叫做中心对称图形.点O叫做图形G的对称中心,此时也称图形G关于点O对称.中心对称图形上,每一对对应点的连线段都经过对称中心,并且被对称中心平分.平行四边形是中心对称图形,对角线的交点是它的对称中心.5、平行四边形的判定方法(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.6、平行四边形判定与性质的关系特别说明的是:平行四边形的定义既是它的性质,又是它的判定.7、三角形中位线连结三角形两边中点的线段叫做三角形的中位线.三角形中位线的性质定理三角形的中位线平行于第三边,并且等于第三边的一半.如图,D、E分别是△ABC边AB、AC的中点,则,且DE∥BC.它说明三角形中位线与第三边的位置和大小关系.也是我们将来解决线与线之间平行关系和倍分关系的一种重要方法.二、重难点知识归纳掌握平行四边形的性质和判定方法,三角形中位线的性质;应用平行四边形的性质和判定方法解决平行四边形的有关问题;会应用三角形的中位线性质解题.三、典型例题讲解例1、O是□ABCD对角线的交点,的周长为59,,,则________,若与的周长之差为15,则______,□ABCD的周长=______.解析:□ABCD中,,.∴的周长∴.在ABCD中,BC=AD,∴AD=28.的周长-的周长,∴.∴ABCD的周长.说明:本题考查平行四边形的性质,解题关键是将与的周长的差转化为两条线段的差.例2、已知:如图,在平行四边形ABCD中,O是对角线AC、BD的交点,过O点的直线EF交AD、BC于E、F.求证:.分析:要证,只需证含有OE、OF的两个三角形全等即可,也就是说证明或证.这一点由平行四边形的性质容易证得.证明:∵四边形ABCD是平行四边形,∴,(平行四边形的对角线互相平分)∴.在与中,∴,∴.说明:此题利用了平行四边形对角线互相平分的性质,通过证明三角形全等,证明了.那么由此题可以看出过平行四边形对角线交点的任一直线被一组对边所截得的线段,被对角线的交点平分.平行四边形是以对角线交点为中心的对称图形.例3、如图,E、F分别是□ABCD的AD、BC边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)若M、N分别是BE、DF的中点,连结MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,∠A=∠C.又AE=CF,∴△ABE≌△CDF(SAS).(2)四边形MFNE是平行四边形.证明如下:由△ABE≌△CDF得BE=DF.又M、N分别为BE、DF的中点,∴EM=NF.由四边形ABCD为平行四边形知.又AE=CF,∴,四边形BEDF为平行四边形,故BE∥DF.∴,四边形MFNE为平行四边形.点评:本例两次用到“一组对边平行且相等的四边形是平行四边形”的判定定理,并且两次用到平行四边形的性质定理.例4、已知,如图,平行四边形ABCD的周长是36cm,自钝角顶点D向AB、BC引两条高DE、DF,且,.求这个平行四边形的面积.解析:设AB=x cm,BC=y cm.∵四边形ABCD为平行四边形,∴AB=CD,AD=BC.又四边形ABCD的周长为36cm,∴2x+2y=36.①∵DE⊥AB,DF⊥BC,∴S=AB·DE,S□ABCD=BC·DF.□ABCD.②由①②解得x=10,y=8.=AB·DE=.∴S□ABCD说明:利用方程思想是解决几何问题的一种重要方法.例5、如图,在△ABC中,∠ACB=90°,CF是斜边上的高,AT平分∠CAB交CF于点D,过D作DE∥AB交BC于点E.求证:CT=EB.证明:过D作DG∥CB交AB于点G.∵DE∥AB,∴四边形DEBG为平行四边形.∴DG=EB,∠3=∠B.在Rt△ABC与Rt△AFC中,易知∠4=∠B.∴∠4=∠3,∵∠1=∠2,AD=AD,∴△ACD≌△AGD,∴CD=GD.又∠1+∠5=90°,∠2+∠7=∠2+∠6=90°,∴∠5=∠6,∴CD=CT.∴CT=EB.例6、AD为△ABC的高,∠B=2∠C,M为BC的中点.求证:DM=AB.分析:由M为BC中点,要证DM=AB,联想利用中位线定理构造AB,即取AC的中点N,连接MN,DN,只须证明MN=DM,这可由在直角三角形中,斜边的中线等于斜边一半及∠B=2∠C证得.证法一:取AC的中点N,连接MN、DN.又∵M为BC中点,∴MN//AB,MN=AB,∴∠B=∠NMC.∵AD为△ABC的高,N为AC的中点,∴DN=CN,∴∠C=∠NDC.∵∠NMC=∠NDC+∠MND,∠B=2∠C,∴∠MDN=∠MND,∴MD=MN,∴DM=AB.证法二:取AB的中点P,连接DP、MP,则PM为△ABC的中位线.∴PM//AC,∴∠C=∠PMB.又∵AD为△ABC的高,P为AB的中点,∴PD=PB=AB,∴∠B=∠PDB.∵∠PDB=∠PMB+∠DPM,∠B=2∠C,∴∠DPM=∠DMP,∴PD=DM=AB.说明:如果题目中有线段倍分并有中点,解题思路经常构造中位线把问题转化;在证线段倍分时,也经常用到“斜边上的中线等于斜边的一半”这一结论证题.例7、在图(1)中的网格中画出四边形关于O点的中心对称图形.解:在网格中作出四边形关于O点的中心对称图形,如图(2).说明:作中心对称图形的实质,就是将图形的每一个顶点绕中心O旋转180°.比如,作点A′,使点A′与点A关于O点对称,只要连结AO,并延长AO至A′,使OA′=OA即可在线测试一、选择题1、下列命题正确的个数是()①两个全等三角形必关于某一点中心对称②关于中心对称的两个三角形是全等三角形(注意比较命题①、②的真假)③两个三角形对应点连线都经过同一点,则这两个三角形关于该点成中心对称(没有说明被这一点平分)④关于中心对称的两个三角形,对应点连线都经过对称中心A.1 B.2C.3 D.42、如图,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,□ABCD的周长为40,则S□ABCD为()A.24 B.36C.40 D.483、如图,在□ABCD中,已知AE、CF分别是∠DAB、∠BCD的角平分线,若∠B=50°,则∠BCF=()A.50°B.40°C.65°D.85°4、若A、B、C三点不共线,则以其为顶点的平行四边形共有()A.1个B.2个C.3个D.4个5、如图,□ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A.18°B.36°C.72°D.108°6、已知,第一个三角形的周长为1,它的三条中位线又组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,依次类推,第2009个三角形的周长为()A.B.C.D.7、如图,在△ABC中,AB=30cm,BC=24cm,CA=27cm,AE=EF=FB,EG∥DF∥BC,FM∥EN ∥AC,则图中阴影部分三个三角形周长的和为()A.70cm B.75cmC.80cm D.81cm8、如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=8,BD=10,AB=x,则x的取值范围是()A.1<x<9 B.2<x<18C.8<x<10 D.4<x<59、如图,在□ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4,则AE︰EF ︰FB为()A.1︰1︰2 B.2︰1︰3C.3︰2︰4 D.1︰1︰310、在四边形ABCD中,给出下列条件:①AB∥CD;②AD=BC;③∠A=∠C;④AD∥BC.能判断四边形是平行四边形的所有组合是()A.①④,②④,③④B.①③,②④,③④C.①④,①③,②④D.①④,①③,②④,③④B 卷二、解答题11、如图,在□ABCD中,AE⊥BC,AF⊥CD,E、F是垂足,∠B=50°.求□ABCD的其他三个角及∠EAF的度数.[答案]12、如图,已知AO是△ABC的∠A的平分线,BD⊥AO的延长线于点D,E是BC的中点.求证:.[答案]13、如图,四边形ABCD中,DC∥AB,以AD、AC为边作□ACED,延长DC交EB于点F.求证:EF=FB.[答案]14、如图,四边形ABCD关于点O成中心对称图形.求证:四边形ABCD是平行四边形.[答案]15、如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC;点N在AC上,且AN=MC.AM、BN相交于点P.求证:∠BPM=45°.第1题答案错误! 正确答案为 B第2题答案错误! 正确答案为 D第3题答案错误! 正确答案为 C第4题答案错误! 正确答案为 C第5题答案错误! 正确答案为 B第6题答案错误! 正确答案为 B第7题答案错误! 正确答案为 D第8题答案错误! 正确答案为 A第9题答案错误! 正确答案为 B第10题答案错误! 正确答案为 D提示:1、(2)(4)正确.2、设BC=x,CD=y,则依面积知4x=6y2x=3y,又x+y=20,列方程组求解.3、∠BCD=130°,∠BCF=65°.4、过点A、B、C分别作对边的平行线,有3个平行四边形.5、此题用到了“平行四边形的邻角互补”,求出∠ABC的度数后,即可得到∠ABE 的大小.6、三角形的三条中位线组成的三角形的周长等于前一个三角形的周长的一半.7、依平行四边形对边相等知正好为△ABC的周长.8、由平行四边形性质可知:OA=4,OB=5.在平行四边形中,AB、OA、OB构成三角形,所以5-4<x<5+4,即1<x<9.9、在□ABCD中,DC∥AB,所以∠DCE=∠CEB,又∠DCE=∠ECB,所以∠CEB=∠ECB,即BE=BC=4,F是AB中点,所以.又EF=BE-FB=4-3=1,AE=AB-BE=6-4=2,所以AE︰EF︰FB=2︰1︰3.10、由平行四边形的判定方法知选D.11、解:∵四边形ABCD为平行四边形,∴∠D=∠B=50°,∠C=∠BAD(□ABCD的对角相等).又∵AB∥CD,∴∠C+∠B=180°.∴∠C=∠BAD=130°.在四边形AECF中,AE⊥BC,AF⊥CD,∠C=130°,根据四边形内角和定理,得∠EAF=50°.12、分析:由“角平分线+垂直”易联想到等腰三角形,通过补图,运用等腰三角形三线合一,构造出三角形的中位线.证明:如图,延长AC、BD交于点F,则△ABF为等腰三角形,且BD=DF.又∵E为BC中点,∴ED是△BCF的中位线..13、证明:过点B作BG∥AD,交DC的延长线于点G,连结EG.∵DC∥AB,∴四边形ABGD为平行四边形.∴.在□ACED中,,∴.∴四边形BGEC是平行四边形,∴EF=FB(平行四边形对角线互相平分).14、分析:因为四边形ABCD是中心对称图形,所以A点和C点,B点和D点是对称点,则线段AC过点O,BD也过点O,且AC、BD都被点O平分,所以四边形ABCD 是平行四边形.证明:∵四边形ABCD关于点O成中心对称图形,∴AC、BD都过点O,且OA=OC,OB=OD,(中心对称的基本性质)∴四边形ABCD是平行四边形.(对角线互相平分的四边形是平行四边形)15、证明:如图,过M作DM⊥BC且使DM=AN,连结ND,则四边形AMDN为平行四边形,AM=DN,∠MDN=∠MAC.连结BD,由DM=AN=CM,BM=AC,得Rt△BMD≌Rt△ACM,则BD=AM=DN,∠BDM=∠AMC.∴∠BDN=∠BDM+∠MDN=∠AMC+∠MAC=90°.∴△BDM为等腰直角三角形.∴∠BPM=∠DNB=45°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20讲 平行四边形【考点总汇】一、平行四边形的性质与判定微拨炉:二、三角形的中位线1.三角形的中位线的定义:连接三角形两边 的线段叫做三角形的中位线。

2.三角形的中位线的性质:三角形的中位线 于三角形的第三边,且等于第三边的 。

微拨炉:高频考点1、平行四边形的性质【范例】如图,在□ABCD 中,AB AD 2=,F 是AD 的中点,作AB CE ⊥,垂足E 在线段AB 上,连接CF EF ,,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)。

①BCD DCF ∠=∠21;②CF EF =;③CEF BEC S S ∆∆=2;④AEF DFE ∠=∠3。

得分要领:1.紧扣已知条件,由已知条件得出结论,答题时切忌漏掉已知条件。

2.在解决平行四边形中的线段或角相等的问题时,常利用平行四边形的性质证明三角形全等来解决,但有时也可利用垂直平分线的性质等简单方法求解。

【考题回放】1.平行四边形的对角线一定具有的性质是( )A.相等B.互相平分C.互相垂直D.互相垂直且相等2.如图,平行四边形ABCD 中,F E ,是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A.CF AE =B.FD BE =C.DE BF =D.21∠=∠3.如图,在□ABCD 中,DE 平分ADC ∠,6=AD ,2=BE ,则□ABCD 的周长是 。

第3题 第4题 4.如图,□ABCD 的对角线BD AC ,交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是 。

5.如图,平行四边形ABCD 的对角线BD AC ,相交于点O ,EF 过点O 且与CD AB ,分别交于点F E ,,求证:△AOE ≌△COF 。

高频考点2、平行四边形的判定【范例】如图,在平行四边形ABCD 中, 60=∠c ,N M ,分别是BC AD ,的中点,CD BC 2=。

(1)求证:四边形MNCD 是平行四边形。

(2)求证:MN BD 3=。

得分要领:证明四边形是平行四边形的方法有:1.若已知一组对边平行,可以证明这组对边相等,或另一组对边平行。

2.若已知一组对边相等,可以证明这组对边平行,或另一组对边相等。

3.若已知条件与对角线有关,可以证明对角线互相平分。

【考题回放】1.四边形ABCD 中,对角线BD AC ,相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A.AB ∥CD ,AD ∥BCB.OC OA =,OD OB =C.BC AD =,AD ∥BCD.CD AB =,BC AD =第1题 第2题 2.如图,在四边形ABCD 中,对角线BD AC ,交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线)。

3.已知BD 垂直平分AC ,ADF BCD ∠=∠,AC AF ⊥,(1)证明ABDF 是平行四边形。

(2)若5==DF AF ,6=AD ,求AC 的长。

4.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:30=∠BAC ,AB EF ⊥,垂足为F ,连接DF 。

(1)试说明EF AC =。

(2)求证:四边形ADFE 是平行四边形。

高频考点3、三角形的中位线【范例】如图,跷跷板AB 的支柱OD 经过它的中点O ,且垂直于地面BC ,垂足为D ,50=OD cm ,当它的一端B 着地时,另一端A 离地面的高度AC 为( )A.25cmB.50cmC.75cmD.100cm得分要领:三角线中位线的应用1.已知三角形的中位线,求第三边的长或已知第三边的长求三角形的中位线的长。

2.利用三角形的中位线可证明平行。

3.三角形的三条中位线围成的三角形与原三角形周长的比为1:2,面积的比为1:4。

【考题回放】1.如图,B A ,是池塘两端,设计一方法测量B A ,的距离,取点C ,连接BC AC ,,再取它们的中点E D ,,测得15=DE m ,则=AB ( )A.7.5mB.15mC.22.5mD.30m第1题 第2题2.如图,为估计池塘岸边B A ,两点间的距离,在池塘的一侧选取点O ,分别取OB OA ,的中点N M ,,测得32=MN m ,则B A ,两点间的距离是 m 。

3.如图,P 为平行四边形ABCD 边AD 上一点,F E ,分别是PC PB ,的中点,△PEF ,△PDC ,△PAB 的面积分别为21,,S S S ,若2=S ,则=+21S S 。

4.如图,在Rt △ABC 中,90=∠ACB ,点E D ,分别是边 AC AB ,的中点,延长BC 到点F ,使BC CF 21=。

若 10=AB ,则EF 的长是 。

5.如图,△ABC 的中位线5=DE cm ,把△ABC 沿DE 折叠,使点A 落在边BC 上的点F 处,若F A ,两点间的距离是8cm ,则△ABC 的面积为 cm 2。

【巧思妙解】巧构三角形的中位线解题【例题】如图,已知两个共顶点的等腰Rt △ABC ,Rt △CEF , 90=∠=∠CEF ABC ,连接AF ,M 是AF 的中点,连接ME MB ,。

当CB与CE 在同一直线上时,求证:BM ∥CF 。

解:如图,延长AB 交CF 于点D ,则△ABC 与△BCD 均为等腰直角三角形,∴BD BC AB ==,∴点B 为线段AD 的中点。

又∵点M 为线段AF 的中点,∴BM 为△ADF 的中位线,∴BM ∥CF 。

【实战演练】1.如图,在平行四边形ABCD 中,4=AB ,BAD ∠的平分线与BC的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,AE DG ⊥,垂足为G ,若1=DG ,则AE 的长为( ) A.32 B.34 C.4 D.82.在四边形ABCD 中,对角线BD AC ,相交于点O ,CBD ADB ∠=∠,添加下列一个条件后,仍不能判定四边形ABCD 是平行四边形的是( )A.CDB ABD ∠=∠B.BCD DAB ∠=∠C.CDA ABC ∠=∠D.BCA DAC ∠=∠3.如图,□ABCD 的周长为16cm ,BD AC ,交于点O ,且CD AD >,过O作AC OM ⊥,交AD 于点M ,则△CDM 的周长是 cm 。

4.如图,在□ABCD 中,E 是AD 边上的中点,连接BE ,并延长BE 交CD 延长线于点F ,则△EDF 与△BCF 的周长之比是 。

第4题 第5题 第7题5.图中S □ABCD =18cm 2,P 为BC 边上任意一点,M 为AP 上的一个点,且MP AM 21=,图中阴影部分面积是 cm 2。

6.已知:(A -2,1),(B -3,-1),(C 0,-1)。

点D 在坐标平面内。

且以D C B A ,,,四个点构成的四边形是平行四边形,则这样的D 点有 个。

7.如图,在Rt △ABC 中, 90=∠ACB ,F E D ,,分别是CA BC AB ,,的中点,若2014=CD cm ,则 =EF cm 。

8.如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明(写出一种即可)。

关系:①AD ∥BC ,②CD AB =,③C A ∠=∠,④ 180=∠+∠C B 。

已知:在四边形ABCD 中, , ;求证:四边形ABCD 是平行四边形。

9.如图,F E ,是平行四边形ABCD 的对角线AC 上的一点,AF CE =,请你猜想:线段BE 与线段DF有怎样的关系?并对你的猜想加以证明。

10.如图,已知△ABC 是等边三角形,点F D ,分别在线段AB BC ,上, 60=∠EFB ,EF DC =。

(1)求证:四边形EFCD 是平行四边形。

(2)若EF BF =,求证:AD AE =。

【限时小测】建议用时30分钟。

总分50分一、选择题(每小题3分,共12分)1.从平行四边形的一个锐角顶点引两边的垂线,两垂线夹角为135,则此四边形的四个角分别是( )A.45 ,135 ,45 ,135B.50 ,130 ,50 ,130C.35 ,35 ,145 ,145D.55 ,125 ,55 ,1252.如图,已知四边形ABCD 中,P R ,分别是CD BC ,上的点,F E ,分别是RP AP ,的中点,当点P 在CD 上从C 向D 移动而点R 不动时,那么下列结论成立的是( )A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P 的位置有关3.如图所示,在□ABCD 中,对角线BD AC ,相交于点O ,F E ,是对角线AC 上的两点,当F E ,满足下列哪个条件时,四边形DEBF 不一定是平行四边形( )A.OF OE =B.BF DE =C.CBF ADE ∠=∠D.CDF ABE ∠=∠第3题 第4题 4.如图,过□ABCD 的对角线BD 上一点M 分别作平行四边形两边的平分线EF 与GH ,那么图中的□AEMG 的面积1S 与□HCFM 的面积2S 的大小关系是( )A.21S S >B.21S S <C.21S S =D.212S S =二、填空题(每小题4分,共12分)5.如图,顺次连接四边形ABCD 四边的中点H G F E ,,,,则四边形EFGH 的形状一定是 。

第5题 第6题 6.如图,在□ABCD 中,已知两条对角线相交于点H G F E O ,,,,分别是DO CO BO AO ,,,的中点,以图中各点为顶点的平行四边形(包括□ABCD )共有 个。

7.如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180,点E 到了点'E 位置,则四边形E ACE '的形状是 。

三、解答题(共26分)8.(12分)已知,如图,在□ABCD 中,延长DA 到点E ,延长BC 到点F ,使得CF AE =,连接F E ,,分别交CD AB ,于点N M ,,连接BN DM ,。

(1)求证:△AEM ≌△CFN 。

(2)求证:BD 与MN 互相平分。

【培优训练】9.(14分)如图,在△ABC 中,AB AC >,点D 在AC 上,CD AB =,F E ,分别是AD BC ,的中点,连接EF 并延长,与BA 的延长线交于点G ,若60=∠EFC ,连接GD ,探索△AGD 的形状并加以证明。

相关文档
最新文档