运筹学实验1预测模型

合集下载

运筹学实验报告

运筹学实验报告

运筹学实验报告中南民族⼤学管理学院学⽣实验报告课程名称:《管理运筹学》年级:2011级专业:会计学指导教师:胡丹丹学号:姓名:实验地点:管理学院综合实验室2012学年⾄2013学年度第2 学期⽬录实验⼀线性规划建模及求解实验⼆运输问题实验三⽣产存储问题实验四整数规划问题实验五⽬标规划实验六⽤lingo求解简单的规划问题实验七实验⼋实验九实验⼗实验(⼀)线性规划建模及求解实验时间:2013-5-18实验内容:某轮胎⼚计划⽣产甲、⼄两种轮胎,这两种轮胎都需要在A、B、C三种不同的设备上加⼯。

每个轮胎的⼯时消耗定额、每种设备的⽣产能⼒以及每件产品的计划如表所⽰。

问在计划内应该如何安排⽣产计划,使总利润最⼤?(1)请建⽴模型。

(2)使⽤“管理运筹学”软件求得结果。

根据“管理运筹学”软件结果,回答下列问题:(3)哪些设备的⽣产能⼒已使⽤完?哪些设备的⽣产能⼒还没有使⽤完?其剩余的⽣产能⼒为多少?(4)三种设备的对偶价格各为多少?请对此对偶价格的含义给予说明。

(5)保证产品组合不变的前提下,⽬标函数中的甲产品产量决策变量的⽬标系数的变化范围是多少?(6)当⼄中轮胎的单位售价变成90元时,最优产品的组合是否改变?为什么?(7)如何在A、B、C三台设备中选择⼀台增加1⼩时的⼯作量使得利润增加最多,请说明理由。

(8)若增加设备C的加⼯时间由180⼩时增加到200⼩时,总利润是否变化?为什么?(9)请写出约束条件中常数项的变化范围。

(10)当甲种轮胎的利润由70元增加到80元,⼄种轮胎的利润从65元增加到75元,请试⽤百分之⼀百法则计算其最优产品组合是否变化?并计算新利润(11)当设备A的加⼯时间由215降低到200,⽽设备B的加⼯时间由205增加到225,设备C的加⼯时间由180降低到150,请试⽤百分之⼀百法则计算原来的⽣产⽅案是否变化,并计算新利润。

实验相应结果:解:(1)设计划⽣产甲⼄两种轮胎的数量分别为x1,x2. 此线性规划的数学模型如下:Max f =70*x1+65*x2约束条件:7*x1+3*x2≤2154*x1+5*x2≤2052*x1+4*x2≤180x1 ≥0 , x2 ≥0(2)⽤运筹学软件求的结果如下:则当x1=20, x2=25时,最⼤利润为3025元(3)由(2)中结果可知,设备A和设备B的⽣产能⼒已经使⽤完,设备C 的⽣产能⼒还没有⽤完,还剩40h。

运筹学第1次及目标规划

运筹学第1次及目标规划

第一次实验要求:建模并求解(excel规划求解)1、合理下料问题.现要做100套钢架,每套由长2.8米、2.2米和1.8米的元钢各一根组成,已知原材料长6.0米,问应如何下料,可以使原材料最省?如果每套钢架由2.8米的元钢1根、2.2米的元钢2根、1.8米的元钢3根,则如何修改数学模型?2、配料问题.某工厂要用三种原材料甲、乙、丙混合调配出三种不同规格的产品A、B、C.已知产品的规格要求、产品单价、每天能供应的原材料数量及原材料单价(分别见表1和表2),问该厂应如何安排生产,使利润收入为最大?表1表23、连续投资问题.某部门在今后五年内考虑给下列项目投资,已知:项目A,从第一年到第四年每年年初需要投资,并于次年末回收本利115%;项目B,第三年初需要投资,到第五年末能回收本利125%,但规定最大投资额不超过4万元;项目C,第二年初需要投资,到第五年末能回收本利140%,但规定最大投资额不超过3万元;项目D,五年内每年初可购买公债,于当年末归还,并加利息6%.该部门现有资金10万元,问它应如何确定给这些项目每年的投资额,使到第五年末拥有的资金的本利总额为最大?4、购买汽车问题.某汽车公司有资金600 000元,打算用来购买A、B、C三种汽车.已知汽车A每辆为10 000元,汽车B每辆为20 000元,汽车C每辆为23 000元.又汽车A每辆每班需一名司机,可完成2 100吨·千米;汽车B每辆每班需两名司机,可完成3 600吨·千米;汽车C每辆每班需两名司机,可完成3 780吨·千米.每辆汽车每天最多安排三班,每个司机每天最多安排一班.限制购买汽车不超过30辆,司机不超过145人.问:每种汽车应购买多少辆,可使每天的吨·千米总数最大?5、人员安排问题.某医院根据日常工作统计,每昼夜24小时中至少需要如下表所示数量的护士,护士们分别在各时段开始时上班,并连续工作8小时,向应如何安排各个时段开始上班工作的人数,才能使护士的总人数最少?目标规划实验要求:建模并求解(1-5选2个,6-12选3个)【案例6.1】升级调资问题.某高校领导在考虑本单位员工的升级调资方案时,依次考虑如下的目标:(1)年工资总额不超过900万元;(2)每级的人数不超过定编规定的人数;(3)副教授、讲师、助教级的升级面尽可能达到现有人数的20%;助教级不足编制的人数可直接聘用应届毕业研究生.教授级人员中有10%要退休.有关资料见表6.6,请为该领导拟定满意的方案.表6.6【案例6.2】农场生产计划问题.友谊农场有3万亩农田,欲种植玉米、大豆和小麦三种农作物.各种作物每亩需施化肥分别为0.12吨、0.20吨、0.15吨.预计秋后玉米每亩可收获500kg,售价为0.24元/千克,大豆每亩可收获200千克,售价为1.20元/千克,小麦每亩可收获300千克,售价为0.70元/千克.农场年初规划时考虑如下几个方面:P1:销售收入不低于350万元;P2:总产量不低于1.25万吨;P3:小麦产量以0.5万吨为宜;P4:大豆产量不少于0.2万吨;P5:玉米产量不超过0.6万吨;P6:农场现能提供5 000吨化肥;若不够,可在市场高价购买,但希望高价采购量愈少愈好.试就该农场生产计划建立数学模型.【案例6.3】多目标运输问题.已知有三个产地给四个销地供应某种产品,产销地之间的供需量和单位运价,见表6.7有关部门在研究调运方案时依次考虑以下七项目标,并规定其相应的优先等级:P1:B4是重点保证单位,必须全部满足其需要;P2:A3向B1提供的产量不少于120;P3:每个销地的供应量不小于其需要量的80%;P4:所订调运方案的总运费不超过最小运费调运方案的20%;P5:因路段的问题,尽量避免安排将A2的产品运往B4;P6:给B1和B3的供应率要相同;P7:力求总运费最省.试求满意的调运方案.表6.7【案例6.4】电台节目安排问题.一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间.据有关规定,该台每天允许广播12小时,其中商业节目用以赢利,每分钟可收入250美元,新闻节目每分钟需支出40美元,音乐节目每播一分钟费用为17.50美元.根据规定,正常情况下商业节目只能占广播时间的20%,每小时至少安排5分钟新闻节目.问每天的广播节目该如何安排?优先级如下:P1:满足规定要求;P2:每天的纯收入最大.试建立该问题的目标规划模型.【案例6.5】混合配方问题.某酒厂用三种等级的原料酒I、II、III兑制成三种混合酒(A、B、C牌).这些原料酒的供应量受到严格限制,它们每日的供应量分别为1 500千克,2 000千克和1 000千克,供应价格分别为18元/千克,13.5元/千克和9元/千克.三种混合酒的配方及售价见表6.8.表6.8厂长确定:首先必须按规定比例兑制混合酒;其次是获利最大;再次是混合酒A每天至少生产2 000千克.试建立数学模型.6、公司决定使用100万元新产品开发基金开发A,B,C三种新产品.经预测估计,开发A,B,C三种新产品的投资利润率分别为5%,6%,8%.由于新产品开发有一定风险,公司研究后确定了如下优先顺序目标:第一,A产品至少投资30万元;第二,为分散投资风险,任何一种新产品的开发投资不超过开发基金总额的35%;第三,应至少留有10%的开发基金,以备急用;第四,使总的投资利润最大.试建立投资方案的目标规划模型.7、某电子制造公司生产两种立体声耳机,一种为普及型,装配一个需1小时,另一种为豪华型,每个装配时间为2小时.正常的装配作业每周限定为40小时.市场调查表明,每周生产量普及型不超过30件,豪华型不超过15件.净利润普及型为每件40元,豪华型每件60元.已知公司经理对优先级的排序如下:P1:总利润最大;P2:装配线尽可能少加班;P3:销售耳机尽可能多;试建立此问题的目标规划模型.8、某工厂生产甲、乙两种产品,单位甲产品可获利6元,单位乙产品可获得4元.生产过程中每单位甲、乙产品所需机器台时数分别为2和3个单位,需劳动工时数分别为4和2个单位.该厂在计划期内可提供100个单位的机器台时数和120个劳动工时数,如果劳动力不足尚可组织工人加班.该厂制定了如下目标:第一目标:计划期内利润达180元;第二目标:机器台时数充分利用;第三目标:尽量减少加班的工时数;第四目标:甲产品产量达22件,乙产品产量达18件.上述四个目标分别为四个不同的优先等级.请列出该目标规划问题的数学模型,并用图解法、单纯形法(表格形式)分别求解之.9、已知单位牛奶、牛肉、鸡蛋中的维生素及胆固醇含量等有关数据如下表,如果只考虑三种食物,并且设立了下列三个目标:第一,满足三种维生素的每日最小需要量;第二,使每日摄入的胆固醇最少;第三,使每日购买食品的费用最少.要求建立问题的目标规划模型.10、某工厂生产白布、花布两种产品,其生产率皆为1 000米/小时;其利润分别为1.5元/米和2.5元/米;每周正常生产时间为80小时(加班时间不算在内).第一目标:充分利用正常生产时间进行生产;第二目标:每周加班时数不超过10小时;第三目标:销售花布要求达到70 000米,白布达45 000米;第四目标:每周利润达15万元.试建立上述问题的数学模型.11、某工厂生产唱机和录音机两种产品,每种产品均需经A、B两个车间的加工才能完成.表中给出了全部已知条件,要求尽可能实现的目标有以下六个:第一目标:仓库费用每月不超过4 600元;第二目标:唱机每月售出50台;第三目标:勿使A、B车间停工(权系数由两车间的生产费用决定);第四目标:车间A加班不超过20小时;第五目标:录音机每月售出80台;第六目标:车间A、B加班时数的总和要限制(权系数由两车间的生产费用决定).试列出该问题的目标规划数学模型.12、某公司下设三个工厂,生产同一种产品,现在要把三个工厂生产的产品运送给四个订户.工厂的供应量、订户的需求量以及从三个工厂到四个订户的单位运费如表所示(表格中方格内数字为单位运费).现在要作出一个产品调运计划,依次满足下列各项要求:p1:订户4的订货量首先要保证全部予以满足;p2:其余订户的订货量满足程度应不低于80%;p3:工厂3调运给订户1的产品量应不少于15个单位;p4:因线路限制,工厂2应尽可能不分配给订户4;p5:订户1和订户3的需求满足程度应尽可能平衡;p6:力求使总运费最小.试建立上述问题的目标规划模型.。

运筹学实验报告-线性规划

运筹学实验报告-线性规划

商学院课程实验报告课程名称 运筹学 专业班级 金融工程班 姓 名 指导教师 成 绩2018年 9 月 20日学号:表2 所需营业员统计表星期一二三四五六日需要人数300 300350400480600 5503.建立线性规划模型设x j(j=1,2,…,7)为休息2天后星期一到星期日开始上班的营业员数量,则这个问题的线性规划问题模型为minZ=x1+x2+x3+x4+x5+x6+x7{x1+x4+x5+x6+x7≥300 x1+x2+x5+x6+x7≥300 x1+x2+x3+x6+x7≥350 x1+x2+x3+x4+x7≥400 x1+x2+x3+x4+x5≥480x2+x3+x4+x5+x6≥600x3+x4+x5+x6+x7≥550x≥0,j=1,2,…,7(二)操作步骤1.将WinQSB安装文件复制到本地硬盘,在WinQSB文件夹中双击setup.exe。

图1 WinQSB文件夹2.指定安装软件的目标目录,安装过程中输入用户名和单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中,熟悉软件子菜单内容和功能,掌握操作命令。

图2 目标目录3.启动线性规划和整数规划程序。

点击开始→程序→WinQSB→Linear and Lnteger Programming,屏幕显示如图3所示的线性规划和整数规划界面。

图3 线性规划4.建立新问题或打开磁盘中已有文件。

按图3所示操作建立或打开一个LP问题,或点击File→New Problem建立新问题。

点击File→Load Problem打开磁盘中的数据文件,点击File→New Problem,出现图4所示的问题选项输入界面。

图4 建立新问题5.输入数据。

在选择数据输入格式时,选择Spreadsheet Matrix Form则以电子表格形式输入变量系统矩阵和右端常数矩阵,是固定格式,如图5所示。

选择Normal Model Form则以自由格式输入标准模型。

运筹学实验指导书

运筹学实验指导书

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

20000辆和22000辆。

为1600万元。

根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。

《实用运筹学》上机实验指导1

《实用运筹学》上机实验指导1

《实用运筹学》上机实验指导课程名称:运筹学/Operations Research实验总学时数:60学时一、实验教学目的和要求本实验与运筹学理论教学同步进行。

目的:充分发挥Excel软件这一先进的计算机工具的强大功能,改变传统的教学手段和教学方法,将软件的应用引入到课堂教学,理论与应用相结合。

丰富教学内容,提高学习兴趣。

要求:能用Excel软件中的规划求解功能求解运筹学中常见的数学模型。

二、实验项目名称和学时分配三、单项实验的内容和要求实验一线性规划(-)实验目的:安装Excel软件“规划求解”加载宏,用Excel软件求解线性规划问题。

(二)内容和要求:安装并启动软件,建立新问题,输入模型,求解模型,结果的简单分析。

(三)实例操作:求解习题1.1。

(1)建立电子表格模型:输入数据、给单元格命名、输入公式等;(2)使用Excel软件中的规划求解功能求解模型;(3)结果分析:如五种家具各生产多少?总利润是多少?哪些工序的时间有剩余,并对结果提出你的看法;(4)在Excel或Word文档中写实验报告,包括线性规划模型、电子表格模型和结果分析等。

案例1 生产计划优化研究某柴油机厂年度产品生产计划的优化研究。

某柴油机厂是我国生产中小功率柴油机的重点骨干企业之一。

主要产品有2105柴油机、x2105柴油机、x4105柴油机、x4110柴油机、x6105柴油机、x6110柴油机,产品市场占有率大,覆盖面广。

柴油机生产过程主要分成三大类:热处理、机加工、总装。

与产品生产有关的主要因素有单位产品的产值、生产能力、原材料供应量与生产需求情况等。

每种产品的单位产值如错误!未找到引用源。

所示。

表 C-1 各种产品的单位产值为简化问题,根据一定时期的产量与所需工时,测算了每件产品所需的热处理、机加工、总装工时,如表 C-2所示。

表 C-2 单位产品所需工时同时,全厂所能提供的总工时如表 C-3所示。

表 C-3 各工序所能提供的总工时产品原材料主要是生铁、焦碳、废钢、钢材四大类资源。

运筹学实验报告(1)

运筹学实验报告(1)

运筹学实验报告一、实验目的:通过实验熟悉单纯形法的原理,掌握matlab循环语句的应用,提高编程的能力和技巧,体会matlab在进行数学求解方面的方便快捷。

二、实验环境:Matlab2012b,计算机三、实验内容(包含参数取值情况):构造单纯形算法解决线性规划问题Min z=cxs.t. Ax=bxj>=0,j=1,…,n函数功能如下:function[S,val]=danchun(A1,C,N)其中,S为最优值,Val为最优解,A1为标准形式LP问题的约束矩阵及最后一列为资源向量(注:资源向量要大于零),A1=[A+b];C是目标函数的系数向量,C=c;N为初始基的下标(注:请按照顺序输入,若没有初始基则定义N=[])。

先输入A1,C,N三个必要参数,然后调用danchun(A1,C,N)进行求解。

在此函数中,首先判断N的长度是否为空,若为空,则flag=1,进入初始解问题的迭代求值,添加辅助问题,构建单纯形表,求g所对应的RHS值,若其>0,则返回该问题无解,若其=0,则返回A1,C,N三个参数,继续构造单纯形表求解。

A1为经过变换后的系数及资源向量,C为单纯形表的第一行,N为经过辅助问题求解之后的基的下标。

否则,直接构建单纯形表,对该问题进行求解,此时flag=2,多次迭代后找到解。

另外,若在大于零的检验数所对应的系数均小于零时,会显示“此问题无界”。

若找到最优解和最优值时,会输出“val”和“S=”以及具体数值。

四、源程序(在matlab中输入edit后回车,写在.M文件中,并保存为danchun.M)function[S,val]=danchun(A1,C,N)if(length(N)==0)gN=zeros(1,length(A1(:,1)));gC=[-C,gN,0];%原文题的检验数的矩阵G=[zeros(1,length(C)),-ones(1,length(gN)),0];val=zeros(1,length(C));%val为最优解;for i=(length(C)+1):length(C)+length(A1(:,1))%生成基变量gN(i-length(C))=i;endNn=gN;%%%%%%%ll=zeros(1,length(N));%比值最小原则%生成除了最上端两行的表的矩阵gb=A1(:,length(C)+1);A1(:,length(C)+1)=[];l=zeros(length(gN),length(gN));gA=[A1,l,gb];for i=1:length(gb)gA(i,gN(i))=1;endfor i=1:length(gN)%J为基本可行基所对应的检验数J(i)=G(gN(i));endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);endendflag=1;elseflag=2;A=A1;Z=[-C,0];%单纯形表的第一行val=zeros(1,length(C));%val为最优解;ll=zeros(1,length(N));%比值最小原则end%%初始解问题while flag==1for i=1:length(gN)%J为基本可行基所对应的G的检验数J(i)=G(gN(i));JZ(i)=Z(gN(i));%JZ为基本可行基所对应的Z的检验数endfor i=1:length(gN)%找到基本可行基的检验数,将其赋值为0 if(J(i)~=0)G=G-(J(i)/gA(i,gN(i)))*gA(i,:);Z=Z-(JZ(i)/gA(i,gN(i)))*gA(i,:);endG1=G;%G1为检验数G1(:,length(G1))=[];D=max(G1);%找到检验数的最大值if(D<=0)%检验数都小于0if(G(length(G))>=1)disp('此情况无解');flag=0;elseif(G(length(G))>=0)for i=1:length(gN)if(max(gN)<=length(A1(1,:)));flag=2;for j=1:length(Nn)a=Nn(1);gA(:,a)=[];Z(a)=[];endA=gA;N=gN;break;endendendendelse%检验数大于0for i=1:length(G)if(G(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(gN)if(gA(j,i)>0)ll(j)=gA(j,length(G))/gA(j,i);%求比值elsell(j)=10000;endendd=min(ll);for k=1:length(ll)%找到进基和离基if(ll(k)==d)gN(k)=i;gA(k,:)=gA(k,:)/gA(k,i);for m=1:k-1gA(m,:)=-(gA(m,i)/gA(k,i))*gA(k,:)+gA(m,:);endfor n=k+1:length(ll)gA(n,:)=-(gA(n,i)/gA(k,i))*gA(k,:)+gA(n,:);endbreak;endendendendendendwhile(flag==2)for i=1:length(N)%J为基本可行基所对应的检验数J(i)=Z(N(i));endfor i=1:length(N)%找到基本可行基的检验数,将其赋值为0if(J(i)~=0)Z=Z-(J(i)/A(i,N(i)))*A(i,:);endendZ1=Z;%Z1为检验数Z1(:,length(Z1))=[];D=max(Z1);%找到检验数的最大值if(D<=0)%检验数都小于0disp('已找到最优解和最优值')for i=1:length(N)val(N(i))=A(i,length(Z));endS=Z(length(Z));disp('val');disp(val);flag=0;else%检验数大于0for i=1:length(Z)if(Z(i)==D)%找到最大的那个检验数所对应的元素for j=1:length(N)if(A(j,i)>0)ll(j)=A(j,length(Z))/A(j,i);%求比值elsell(j)=10000;endendd=min(ll);if(d==10000)disp('此问题无界')flag=0;break;endfor k=1:length(ll)%找到进基和离基if(ll(k)==d)N(k)=i;A(k,:)=A(k,:)/A(k,i);for m=1:k-1A(m,:)=-(A(m,i)/A(k,i))*A(k,:)+A(m,:);endfor n=k+1:length(ll)A(n,:)=-(A(n,i)/A(k,i))*A(k,:)+A(n,:);endbreakendendendendendend五、运行结果与数据测试参考例题:例1:Min z=3x1+x2+x3+x4s.t. -2x1+2x2+x3=43x1+2x+x4=6Xj>=0,j=1,2,3,4在workspace中写入,形式如下:>> A=[-2 2 1 0 43 1 0 1 6]A =-2 2 1 0 43 1 0 1 6>> C=[3 1 1 1]C =3 1 1 1>> N=[3 4]N =3 4>> danchun(A,C,N)已找到最优解和最优值val0 2 0 4ans =6例2:初始解问题Min z=5x1+21x3s.t. x1-x2+6x3-x4=2x1+x2+2x3-x5=1xj>=0,j=1,…,5在workspace中写入,形式如下:>> A=[1 -1 6 -1 0 21 12 0 -1 1]A =1 -1 6 -1 0 21 12 0 -1 1 >> C=[5 0 21 0 0]C =5 0 21 0 0>> N=[]N =[]>> danchun(A,C,N)已找到最优解和最优值val0.5000 0 0.2500 0 0ans =7.7500六、求解实际问题(即解决附件中的实验题目)实验题目列出下列问题的数学模型,并用你自己的单纯形算法程序进行计算,最后给出计算结果。

《运筹学》教案目标规划数学模型

《运筹学》教案目标规划数学模型

《运筹学》教案-目标规划数学模型教案章节:一、引言教学目标:1. 理解目标规划数学模型的基本概念。

2. 掌握目标规划数学模型的建立方法。

教学内容:1. 目标规划数学模型的定义。

2. 目标规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解目标规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解目标规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解目标规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解目标规划数学模型的基本概念,包括目标、约束条件、优化方法等。

3. 讲解建立方法:讲解目标规划数学模型的建立步骤,包括明确目标、确定约束条件、选择优化方法等。

4. 案例分析:分析实际案例,让学生更好地理解目标规划数学模型。

5. 课堂练习:让学生运用所学的知识,解决实际问题,巩固所学内容。

6. 总结与展望:总结本节课的重点内容,布置课后作业,预告下一节课的内容。

教学评价:1. 课堂讲解的清晰度和准确性。

2. 学生参与案例分析和课堂练习的积极性和主动性。

3. 学生对目标规划数学模型的理解和应用能力。

教案章节:二、线性规划数学模型教学目标:1. 理解线性规划数学模型的基本概念。

2. 掌握线性规划数学模型的建立方法。

教学内容:1. 线性规划数学模型的定义。

2. 线性规划数学模型的建立步骤。

教学方法:1. 讲授法:讲解线性规划数学模型的基本概念和建立方法。

2. 案例分析法:分析实际案例,让学生更好地理解线性规划数学模型。

教学准备:1. 教案、PPT、教学案例。

2. 投影仪、白板、教学用具。

教学过程:1. 引入新课:通过讲解线性规划数学模型的定义和应用领域,引发学生对该课题的兴趣。

2. 讲解基本概念:讲解线性规划数学模型的基本概念,包括决策变量、目标函数、约束条件等。

3. 讲解建立方法:讲解线性规划数学模型的建立步骤,包括明确目标、确定决策变量、列出约束条件等。

运筹学实验报告

运筹学实验报告

运筹学实验报告学院:经济管理学院专业班级:工商11-2班姓名:石慧婕学号:311110010207实验一线性规划一实验目的学习WinQSB软件的基本操作,利用Linear Programming功能求解线性规划问题。

掌握线性规划的基本理论与求解方法,重点在于单纯形法的应用以及灵敏度分析方法。

二、实验内容安装WinQSB软件,了解WinQSB软件在Windows环境下的文件管理操作,熟悉软件界面内容,掌握操作命令。

利用Linear Programming功能建立线性模型,输入模型,求解模型,并对求解结果进行简单分析。

三实验步骤1.将WinQSB文件复制到本地硬盘;在WinQSB文件夹中双击setup、exe。

2.指定安装WinQSB软件的目标目录(默认为C:\ WinQSB)。

3.安装过程需要输入用户名与单位名称(任意输入),安装完毕之后,WinQSB菜单自动生成在系统程序中。

4.熟悉WinQSB软件子菜单内容及其功能,掌握操作命令。

5.求解线性规划问题。

启动程序开始→程序→WinQSB→Linear and Integer Programming。

某工厂要用三种原材料C、P、H混合调配出三种不同规格的产品A、B、D。

已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价分别见下表1与2。

该厂应如何安排生产,使利润收入为最大?表1表2CPH10010060652535(1)计算过程(1)利用WinQSB软件,根据建立的数据模型,设定完成后建立问题的电子表格;在电子表格中输入各个系数,保存。

如下图:点击菜单栏Solve and Analyze中的Solve the Problem项或者点击工具栏中的图标用单纯形法求解,查瞧求解得出的结果;(2)点击菜单栏Solve and Analyze中的Solve and Display Steps,查瞧单纯形法在求解该问题时的具体迭代步骤;点击菜单栏Solve and Analyze中的Graphic Method,用图解法求解,显示可行域。

运筹学实验报告(一)线性规划问题的计算机求解

运筹学实验报告(一)线性规划问题的计算机求解

运筹学实验报告实验课程:运筹学实验日期: 2020年4月4日任课教师:杨小康班级:数学1802 姓名:王超学号:2501180224一、实验名称: 简单线性规划模型的求解与Lingo软件的初步使用二、实验目的:了解Lingo软件的基本功能和简单线性规划模型的求解的输入和输出结果。

熟悉Lingo 软件在运筹学模型求解中的作用,增强自身的动手能力,提高实际应用能力三、实验要求:1、熟悉Lingo软件的用户环境,了解Lingo软件的一般命令2、给出Lingo中的输入,能理解Solution Report中输出的四个部分的结果。

4、能给出最优解和最优值;5、能给出实际问题的数学模型,并利用lingo求出最优解四、报告正文(文挡,数据,模型,程序,图形):1.在Lingo中求解下面的线性规划数学模型;(1)12132412512345 max2543..28,,,,0z x xx xx xs tx x xx x x x x=++=⎧⎪+=⎪⎨++=⎪⎪≥⎩(2)12121212max2343..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(3)12121212max243..28,0z x xxxs tx xx x=+≤⎧⎪≤⎪⎨+≤⎪⎪≥⎩(4)12121212max324 ..3,0z x xx xs t x xx x=+-≤⎧⎪-+≤⎨⎪≥⎩(5)1212121212max102401.530.50,0z x xx xx xs tx xx x=++≤⎧⎪+≤⎪⎨+≥⎪⎪≥⎩2、某工厂利用三种原料生产五种产品,其有关数据如下表。

原料可利用数(千克)每万件产品所用材料数(千克)A B C D E甲10 1 2 1 0 1 乙24 1 0 1 3 2 丙21 1 2 2 2 2 每万件产品的利润(万元)8 20 10 20 21 (l)建立该问题的运筹学模型。

(2)利用lingo 软件求出最优解,得出最优生产计划解:(1)设xi(i=1,2...,5)为所用材料生产的件数则数学模型,,,,21 2222242 3102;212010208max543215 43215431532154321≥≤++++≤+++≤+++++++ =xxxxxx xxxxt xxxx xxxxsxxxxxz (2)结果为220.3:现有15米长的钢管若干,生产某产品需4米、5米、7米长的钢管各为100、150、120根,问如何截取才能使原材料最省?(建立线性规划模型并利用lingo软件求解)解:方案4米5米7米剩余量截取长度1 3 0 0 32 2 1 0 23 2 0 1 04 1 2 0 15 0 3 0 06 0 1 1 37 0 0 2 14人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。

运筹学经典模型

运筹学经典模型

X13 1.000000 0.000000 X21 13.000000 0.000000 X24 12.000000 0.000000 X33 21.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 3) 0.000000 2.000000 4) 0.000000 5.000000 5) 0.000000 -6.000000 6) 0.000000 -2.000000 7) 0.000000 -6.000000 8) 0.000000 -5.000000 NO. ITERATIONS= 6
事实上,我们关心更多的是那些非零变量,因此, 可选择LINDO中的命令,只列出非零变量.
OBJECTIVE FUNCTION VALUE 1) 161.0000 VARIABLE VALUE REDUCED COST X11 2.000000 0.000000 X12 17.000000 0.000000
8
! The supply constraints 2) x11 + x12 + x13 + x14 <= 30 3) x21 + x22 + x23 + x24 <= 25 4) x31 + x32 + x33 + x34 <= 21 ! The demand constraints 5) x11 + x21 + x31 = 15 6) x12 + x22 + x32 = 17 7) x13 + x23 + x33 = 22 8) x14 + x24 + x34 = 12 end
一、运输问题
返 回 导 航

《运筹学》实验指导书

《运筹学》实验指导书

《运筹学》实验指导书适用专业:工业工程东北大学秦皇岛分校控制工程学院工业工程专业2014年3月前言对于工业工程专业来说,运筹学是一门公共基础课,是应用性很强的课程。

它是利用现代数学研究各种资源的运用、筹划和相关决策等问题的一门重要学科,主要研究如何在一定条件下科学、合理地分配人力、物力、财力等资源,使实际系统有效运行。

它可以用来预测发展趋势,制定行动规划或优选方案,从而为行政管理人员和决策者在决策时提供科学的依据。

运筹学的实际运用包括如下六个步骤:问题分析;模型构造;模型求解;模型验证;解的有效控制;方案实施。

随着计算机软件的发展,许多复杂的运筹学计算可以由计算机软件来完成,如matlab、mathematica、lingo、excel等。

本实验课程以lingo软件为工具,使学生在学习了运筹学基本原理的基础上,进一步掌握使用软件工具解决运筹学实际问题的方法。

本实验课程共8学时,内容如下:1、软件编程基础及其在运筹学中的应用(2学时)2、单纯形法的计算机实现(2学时)3、解运输问题(2学时)4、解目标规划、整数规划问题和指派问题(2学时)实验一软件编程基础及其在运筹学中的应用(2学时)一、实验目的1、熟悉lingo的操作环境。

2、学会用lingo编程的方法来求解运筹学问题并读取结果。

二、实验素材例题1、(利润最大化问题)某工厂生产甲、乙两种产品。

每生产一个单位的甲产品需要使用A设备1小时,工人劳动时间1小时,可赢利20元;生产一个单位的乙产品需要使用B设备1小时,工人劳动时间2小时,可赢利30元。

受工厂条件限制,每天的总劳动时间不能超过120小时,A设备的总使用时间不能超过60小时,B设备的总使用时间不能超过50小时。

试建立线性规划模型,每天生产多少甲、乙产品,可使利润最大?解:建立线性规划模型。

设x1为每天生产甲产品的数量,x2为每天生产乙产品的数量。

由此得到线性规划模型:max=20*x1+30*x2;x1+2*x2<=120;x1<=60;x2<=50;x1>=0;x2>=0;将程序输入lingo软件,不需输入最后两行(变量的非负约束),点击solve 按钮,得到求解结果如下:Global optimal solution found. ---(已找到全局最优解)Objective value: 2100.000 ---(最优目标函数值) Infeasibilities: 0.000000 ---(找到的解违反了几个约束条件)Total solver iterations: 1 ---(迭代次数)Variable Value Reduced CostX1 60.00000 0.000000X2 30.00000 0.000000Row Slack or Surplus Dual Price1 2100.000 1.0000002 0.000000 15.000003 0.000000 5.0000004 20.00000 0.000000由上述结果得到,每天生产甲产品60个单位,乙产品30个单位,每天可获得的最大利润是2100元。

运筹学实验报告(一)线性规划问题的计算机求解-(1)

运筹学实验报告(一)线性规划问题的计算机求解-(1)

运筹学实验报告(一)线性规划问题的计算机求解-(1)-CAL-FENGHAI.-(YICAI)-Company One1运筹学实验报告实验课程:运筹学实验日期: 任课教师:王挺第五种方案0 3 0 0第六种方案0 1 1 3第七种方案0 0 2 1设:第i种方案需要的钢管为Xi根(其中i=1,2...6),可得:minz=X1+X2+X3+X4+X5+X6+X7解:model:min= X1+X2+X3+X4+X5+X6+X7;3*X1+2*X2+2*X3+X4>=100;X2+2*X4+3*X5+X6>=150;X3+X6+2*X7>=120;endObjective value: 135.0000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 0.000000 0.2500000X2 0.000000 0.1666667X3 50.00000 0.000000X4 0.000000 0.8333333E-01X5 50.00000 0.000000X6 0.000000 0.1666667X7 35.00000 0.0000004人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司机和乘务人员人数如表1所示。

班次时间所需人数班次时间所需人数1 6:00~10:00 60 4 18:00~22:00 502 10:00~14:00 70 5 22:00~2:00 203 14:00~18:00 60 6 2:00~6:00 30设司机和乘务人员分别在各时间段开始时上班,并连续工作8小时,问该公交线路应怎样安排司机和乘务人员,既能满足工作需要,又使配备司机和乘务人员的人数最少?5投资计划问题某地区在今后三年内有四种投资机会,第一种是在3年内每年年初投资,年底可获利润20%,并可将本金收回。

预测模型 训练

预测模型 训练

做一个有责任心的人作文范文十篇做人,有三个‘心’字必不可少,一个是上进心,二是仁爱心,三是责任心。

所以,做一个有责任心的人,人人尽一份责任,世界将更加美好。

下面是小编为大家整理的做一个有责任心的人作文范文十篇,以供大家参考借鉴!做一个有责任心的人作文范文一在当今社会,人与人之间最多的是责任。

而如今,最重要的是什么?是负责任,负起自已的责任。

所以,做一个有责任心的人,是非常重要的。

诚信,是有责任心的前提。

想要说你有责任心,那么你就一定会有诚信为前提。

如果你没有了诚信,那么谁还会相信你?如果没有一个人相信你,那么你还从何谈起责任心?没有了这些,你还如何在社会上立足?勇气,是有责任心的基础。

如果说你有责任心,那么就一定要有勇气作为基础。

你必须要有敢于承担责任的勇气。

做错了事,你就必须要有敢于承担过错的勇气。

为自已负责是有责任心的一种体现,勇于承担过错也是为自已负责任的表现之一。

美国总统里根小时候有一天他的父亲给他买了一把斧头,他想试试斧头有多锋利,便到自家后院把父亲种的一棵樱桃树给砍倒了。

事后他的父亲问他是不是他砍倒了樱桃树,他勇敢地承认了,等着父亲责罚,没想到他的父亲非但没有责骂他,反而开心地笑了,而且他还说了一句话:“只要你能勇于为自已的过错承担责任,我连这一整片樱桃树都可以不要。

”里根从此开始,勇于承担自已的责任,最后终于成为了美国的总统。

这说明了什么?说明了有承担责任的勇气对责任心的影响是巨大的。

信心,是有责任心的关健。

想要说你有责任心,那么你就必须得有足够的自信心来作为支持。

当你负但起责任时,就一定要有足够的自信心,相信自已一定能把自已的责任负担起,不论你的这份责任是对别人负责还是对自已负责。

因为,对别人负责就是对自已负责。

当然,此处所说的足够的自信必须要有足够的实力为基础。

如果没有足够的实力,那么再多的自信心也是徒劳的。

那些实力不足却自信过头的人,是莽夫。

有了以上所述的几个条件,你就要去努力了,努力去做一个有责任心的人吧!做一个有责任心的人作文范文二明亮的天空,洁净如水,没有一丝瑕疵,像心灵一般美好,恰好映衬着我们心中最纯真的一份情感——责任感,也是人类社会中最重要,不可或缺的。

运筹学中中的数学问题及模型

运筹学中中的数学问题及模型

( Min) Max Z c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn (, )b1 a x a x a x (, )b 22 2 2n n 2 21 1 a x a x a x (, )b m2 2 mn n m m1 1 x1 , x2 , , xn 0
第一章
运筹学中的几个数学问 题及模型
本章主要介绍运筹学中的几个数学问题及模型,即 线性规划问题、运输问题、图与网络优化技术等。学习 的重点是基本概念。 1.线性规划问题及其数学模型问题 2.运输问题 3.树和最小支撑树问题 4.最短路径问题 5.网络最大流问题 6.最小费用最大流问题 7.中国邮递员问题 8. NP-完备性
线性规划问题的标准型
Max Z c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn b1 a x a x a x b 22 2 2n n 2 21 1 a x a x a x b m2 2 mn n m m1 1 x1 , x2 , , xn 0
,其收入应为:w = 8y1 + 16y2 + 12y3 。
从工厂的决策者来看,当然希望 w 的值越大 越好;但从接受者的角度来看,他支付的越少越 好。所以工厂决策者只能在满足 所有产品的单 位利润条件下,使其总收入尽可能地小,才能实 现工厂决策者的意愿。为此需要解如下的线性规 划问题: Min w 8 y1 16 y2 12 y3
并且如果网络上的一个可行流f一定是d上的最大流而v一定是d的所有的截集中截量最小的一个即最小截集63定理51网络中的一个可行流f是最大流的充分必要条件是不存在关于f定理52在一个网络d中最大流的流量等于分离v64如果存在一条从v的增广路这时取调整量minmincijminfij其它不变再去掉所有的标号对新的可行流ffij65在实际的网络系统中当涉及到有关流的问题的时候我们往往不仅仅考虑的是流量还经常要考虑费用的问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、需求预测模型预测是用科学的方法预计、推断事物发展的必要性或可能性的行为,即根据过去和现在预计未来,由已知推断未知的过程。

预测分析的具体方法很多,概括起来主要有两种:定量预测法和定性预测法。

定量预测法是在掌握与预测对象有关的各种要素的定量资料的基础上,运用现代数学方法进行数据处理,据以建立能够反映有关变量之间规律性联系的各类预测模型的方法体系。

定量预测法又可分为时间系列预测法和因果关系预测法。

定性预测法是由有关方面的专业人员根据个人经验和知识,结合预测对象的特点进行综合分析,对事物的未来状况和发展趋势做出推测的预测方法。

它一般不需要进行复杂的定量分析,适用于缺乏完备的历史资料或有关变量之间缺乏明显的数量关系等情况下的预测。

定性预测法又可分为德尔菲法、各部门主管集体讨论法、销售人员意见汇集法、消费市场调查法等。

定性预测法和定量预测法在实际应用中相互补充、相辅相成。

定量分析法虽然较精确,但许多非计量因素无法考虑;定性分析法虽然可以将非计量因素考虑进去,但估计的准确性在很大程度上受预测人员的经验和素质的影响,难免产生预测结论因人而异,带有一定的主观随意性。

因此,在实际工作中常常是二者结合,相互取长补短,以提高预测的准确性和预测结论的可信度。

不管何种机构,如果按照以下步骤进行预测,将会使自己的预测结果更加有效:⑴明确定预测目标;⑵将需求规划和预测结合起来;⑶识别影响需求预测的主要因素;⑷理解和识别顾客群;⑸决定采用适当的预测方法;⑹确定预测效果的评估方法和误差的测度方法。

通过上面的介绍,我们知道,需求预测的方法很多,而在本次实验中,我们主要训练学生如何使用Excel来完成定量预测法中时间序列预测法的计算和分析工作。

一、实验目的1、掌握如何建立时间序列预测模型,并能根据不同的系统需求框架选择合适的预测方法。

2、掌握如何用Excel完成时间序列预测模型的计算和数据分析工作,包括回归分析、预测误差的测定。

二、实验内容1、时间序列预测法的相关知识任何预测方法的目的都是预测系统需求部分和估计随机需求部分。

系统需求部分的数据在一般形式下包含有需求水平、需求趋势和季节性需求。

它也可能表现为如下列方程所示的多种形式。

○复合型:系统需求=需求水平×需求趋势×季节性需求○附加型:系统需求=需求水平+需求趋势+季节性需求○混合型:系统需求=(需求水平+需求趋势)×季节性需求运用于既定预测的系统需求部分的具体形式,取决于需求的性质。

针对每种形式,企业都可以采用静态法和适应法这两种方法。

下面我们将通过一个实例来阐述时间序列预测法中的静态法和适应法,在预测过程中,我们假定系统需求是混合型,即系统需求=(需求水平+需求趋势)×季节性需求。

2、引例天然气在线公司利用现有的管道设施供应天然气,同时满足各个分销商的网上紧急订购需求。

该公司自2003年第二季度成立以来,需求一直在增长。

计划年度将从某给定年度的第二季度开始,并延续到下一年的第一季度。

公司正在规划其必备的生产能力及从2006年第二季度到2007年第一季度的天然气购买量,它还将预测下一年度的季节性需求。

它预计需求趋势和下一年的增长将和观测到的过去3年的需求趋势和增长相同。

过去3年的季节性需求见表1和图1。

表1 天然气在线公司的每季度需求量图1 天然气在线公司每季度的需求量变化3、 静态预测法静态预测法假定对系统需求中的需求水平、需求趋势和季节性需求的估计,不随观测到的新需求而变动。

在这种情况下,我们以历史数据为基础估计这些参数,然后用相同的数值进行未来的预测。

我们假定系统需求是混合型,即:系统需求=(需求水平+需求趋势)×季节性需求。

在静态预测法中,在t 期预测t+1期的需求的计算公式如下:11])([++*++=t t S T l t L F (公式1)其中:L=基期的预计需求水平(对基期剔除季节性影响后的需求的预测) T=预计需求(每个时期需求的上升或下降) S t =预计t 期的季节性需求D t =实际观测的t 期需求 F t =预测的t 期需求 ⑴预测需求水平和需求趋势在预测需求水平和需求之前,我们必须对需求数据进行处理,以剔除季节性需求的影响。

剔除季节性影响后的需求,表示在没有季节性影响的情况下将要观测到的需求。

时期数p 是一个表示时期个数的数字,在周期内包括的所有时期之后,季节性周期将重复进行。

对于天然气公司的需求来说,需求规律每年重复。

假设我们以季节为基础测量需求,则表1中的需求时期数是p=4。

为了保证在剔除季节性需求后每一个季节都占有相同的权重,我们采用连续几个需求周期的平均值作为p 。

从1+l 到p l +这段时期的平均需求是2/)1(++p l 时期剔除季节性影响后的需求。

如果p 是奇数,这种给出了当前一个时期剔除季节性影响后的需求;如果p 是偶数,这种方法给出了在)2/(p l +和)2/(1p l ++之间某一点剔除季节性影响后的需求。

通过对从1+l 到p l +时期和从2+l 到1++p l 时期剔除季节性影响后的需求取平均值,我们得到)2/(1p l ++时期剔除季节性影响后的需求。

对于一个给定周期t,求剔除季节性影响后的需求可用下面的公式:⎪⎩⎪⎨⎧=∑∑+++-=+--+=+-为奇数如果为偶数,如果p p D p D p D D D t p t p t i i p t p t i i p t p t ,)2/()2/()2/(1)2/(1)2/()2/(22]2[ (公式2)在我们的例子中,p=4是偶数。

对于t=3,我们利用公式2获得剔除季节性影响后的需求。

如下式所示:8)2(2]2[34251)2/(1)2/(1)2/()2/(∑++∑++=+--+=+-==i i p t p t i i p t p t D D D pD D D D利用这种方法,我们可以获得时期3至时期10之间的剔除季节性影响后的需求,如图2和3所示。

图2和图3均由Excel 完成。

为了计算图2中所示C 列的结果,我们必须在单元格C4中输入公式:=(B2+B6+2*(B3+B4+B5))/8,这个公式和剔除季节性影响后的需求公式:8)2(34251∑++==i i D D D D 相对应,然后再用填充柄填充单元格C5︰C11。

图2 天然气在线公司剔除季节性影响后的需求的Excel 工作表剔除季节性影响后的需求10000200003000012345678时期需求系列1图3 天然气在线公司剔除季节性影响后的需求一旦剔除了季节性影响,需求就以一个固定的比率增长或减少。

因而在剔除季节性影响后的需求与时间t 之间存在一个线性关系。

这种关系可用下面的公式表示:tT L D t += (公式3)t D 表示在时期t 内剔除季节性影响后的需求,而不是时期t 的需求;L 表示基期剔除季节性影响后的需求;T 表示剔除季节性影响后的需求增长速度或需求趋势。

我们需要根据图2给出的剔除季节性影响后的需求预测L 和T 的值。

我们可以将图2中剔除季节性影响后的需求作为因变量,将时间作为自变量,通过两者之间的线性回归来预测L 和T 的值。

上述回归预测可以利用Excel 中的[工具][数据分析][回归]命令进行。

但应该注意的是,“数据分析”加载宏是Excel 的一个可选安装模块,在安装Excel 时,只有在选择“完全/定制安装”时才可选择装入这个模块。

在安装完成进入Excel 后还要用[工具][加载宏(I )]命令选中“分析工具库”,以后在[工具]菜单下就增加一条[数据分析(D )]命令。

所以,要利用Excel 中的[工具][数据分析][回归]命令进行预测,我们先必须完成上述操作,即加载“数据分析”的宏命令。

利用Excel 中的[工具][数据分析][回归]命令进行预测的操作顺序是:打开[工具][数据分析][回归]命令,出现如图4所示对话框。

对于图2中天然气公司的工作簿,我们需要在对话框中键入下面的信息。

Y 值输入区域(Y ):$C$4:$C$11 X 值输入区域(X ):$A$4:$A$11图4 [工具][数据分析][回归]数据输入界面然后按下确定按钮。

这时,一个含有回归结果的新工作表就打开了。

这个新工作表包括对初始需求水平L 和需求趋势T 的预测。

L 是以截取系数的形式获得的,T 是以变量X 的系数(或斜率)的形式从回归结果中获得的。

以天然气公司为例,我们得到L=18439和T=524。

因此,在本例中,任何时期t 内剔除季节性影响后的需求可用下述公式求出:t D t 52418439+= (公式4)许多同学可能会对回归分析前要剔除季节性影响产生疑问。

事实上,国内的许多教材也都是直接对初始需求数据和时间进行线性回归,来预测需求水平和需求趋势。

但有证据表明,这种做法是不合适的,因为初始的需求不是线性的,因而线性回归的结果也将是不准确的。

所以,在进行线性回归前,要剔除季节性需求的影响。

⑵预测季节性需求我们利用公式3获得各个时期剔除季节性影响后的需求。

季节性需求t S 是实际需求tD 与剔除季节性影响后的需求t D 之间的比率,即:ttt D D S =(公式5)以天然气公司为例,图5显示了利用公式3预测出的剔除季节性影响后的需求和利用公式5预测出的季节性需求。

为了计算上述结果,我们必须在单元格C2中输入公式:图5 天然气公司剔除季节性影响后的需求和季节性需求“=18439+524*A2”,然后再用填充柄对单元格C3︰C13进行填充;在单元格D2中输入公式:“=B2/C2”, 然后再用填充柄对单元格D3︰D13进行填充。

如果我们希望查看在单元格区域图6 打开菜单[工具][选项]命令后显示的界面C2︰D13输入的公式,可以采用下面的操作:打开菜单[工具][选项]命令,出现如图6所示对话框,选择窗口选项中的“公式(R )”选项,然后按“确定”按钮,则在Excel 的当前工作表中会显示各单元格所输入的公式,如图7所示。

图7 各单元格所输入的公式给定一个时期数p ,我们可以通过将相似时期的季节性需求加以平均来得到某一时期的季节性需求。

比如,如果p=4,时期1、5和9有相似的季节性需求,将上述3个时期的季节性需求加以平均就得到了这些时期的季节性需求。

假定数据中有一个r 的季节性循环,对于所有以pt+i,1≤i ≤p 为形式的时期,我们得到以下季节性需求:rS S r j jp i )(11∑-=+=(公式6)以天然气公司为例,总共12个时期,时期数p=4,表明数据中的季节性循环r=3。

利用公式6我们可以得到以下季节性需求:67.13)66.168.166.1(3)(17.13)32.104.115.1(3)(68.03)55.083.067.0(3)(247.03)52.047.042.0(3)(128441173310629511=++=++==++=++==++=++==++=++=S S S S S S S S S S S S S S S S至此,我们已经预测出需求水平、需求趋势和季节性需求。

相关文档
最新文档