2014高考数学题型归纳
2014高考数学难题集锦(一)含详细答案及评分标准
2014高考数学难题集锦(一)1、已知集合,若集合,且对任意的,存在,使得(其中),则称集合为集合的一个元基底.(Ⅰ)分别判断下列集合是否为集合的一个二元基底,并说明理由;①,;②,.(Ⅱ)若集合是集合的一个元基底,证明:;(Ⅲ)若集合为集合的一个元基底,求出的最小可能值,并写出当取最小值时的一个基底.2、设函数(1)若关于x的不等式在有实数解,求实数m的取值范围;(2)设,若关于x的方程至少有一个解,求p 的最小值.(3)证明不等式:3、设,圆:与轴正半轴的交点为,与曲线的交点为,直线与轴的交点为.(1)用表示和;(2)求证:;(3)设,,求证:.4、数列,()由下列条件确定:①;②当时,与满足:当时,,;当时,,.(Ⅰ)若,,写出,并求数列的通项公式;(Ⅱ)在数列中,若(,且),试用表示;(Ⅲ)在(Ⅰ)的条件下,设数列满足,,(其中为给定的不小于2的整数),求证:当时,恒有.5、已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e],f(x)=ax+lnx(其中e是自然对数的底数,a∈R)(1)求f(x)的解析式;(2)设g(x)=,x∈[-e,0),求证:当a=-1时,f(x)>g(x)+;(3)是否存在实数a,使得当x∈[-e,0)时f(x)的最小值是3 如果存在,求出实数a的值;如果不存在,请说明理由.6、(理)对数列和,若对任意正整数,恒有,则称数列是数列的“下界数列”.(1)设数列,请写出一个公比不为1的等比数列,使数列是数列的“下界数列”;(2)设数列,求证数列是数列的“下界数列”;(3)设数列,构造,,求使对恒成立的的最小值.7、已知函数(1)求在点处的切线方程;(2)若存在,使成立,求的取值范围;(3)当时,恒成立,求的取值范围.8、已知函数.(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)<0.9、函数,数列和满足:,,函数的图像在点处的切线在轴上的截距为.(1)求数列{}的通项公式;(2)若数列的项中仅最小,求的取值范围;(3)若函数,令函数数列满足:且其中.证明:.参考答案1、解:(Ⅰ)①不是的一个二元基底.理由是;②是的一个二元基底.理由是,.21世纪教育网………………………………………3分(Ⅱ)不妨设,则形如的正整数共有个;形如的正整数共有个;形如的正整数至多有个;形如的正整数至多有个.又集合含个不同的正整数,为集合的一个元基底.故,即. ………………………………………8分(Ⅲ)由(Ⅱ)可知,所以.当时,,即用基底中元素表示出的数最多重复一个. *假设为的一个4元基底,不妨设,则.当时,有,这时或.如果,则由,与结论*矛盾.如果,则或.易知和都不是的4元基底,矛盾.当时,有,这时,,易知不是的4元基底,矛盾.当时,有,这时,,易知不是的4元基底,矛盾.当时,有,,,易知不是的4元基底,矛盾.当时,有,,,易知不是的4元基底,矛盾.当时,有,,,易知不是的4元基底,矛盾.当时,有,,,易知不是的4元基底,矛盾.当时,均不可能是的4元基底.当时,的一个基底;或{3,7,8,9,10};或{4,7,8,9,10}等,只要写出一个即可.综上,的最小可能值为5. ……………………14分2、解:(1)依题意得,而函数的定义域为∴在上为减函数,在上为增函数,则在上为增函数即实数m的取值范围为………………………………4分(2)则显然,函数在上为减函数,在上为增函数则函数的最小值为所以,要使方程至少有一个解,则,即p的最小值为0 …………8分(3)由(2)可知:在上恒成立所以,当且仅当x=0时等号成立令,则代入上面不等式得:即,即所以,,,,…,将以上n 个等式相加即可得到:………………………………12分3、解:(1)由点在曲线上可得, …………1分又点在圆上,则, ……………2分从而直线的方程为, ………………4分由点在直线上得: ,将代入化简得: . ……………………6分(2) , …………7分 又,……………9分(3)先证:当时,.事实上, 不等式后一个不等式显然成立,而前一个不等式.故当时, 不等式成立., ……………………11分(等号仅在n=1时成立)求和得:……………………14分4、(Ⅰ)解:因为,所以,.因为,所以,.因为,所以,.所以. …………………………………… 2分由此猜想,当时,,则,.… 3分下面用数学归纳法证明:①当时,已证成立.②假设当(,且)猜想成立,即,,.当时,由,得,则,. 综上所述,猜想成立.所以.故. ……………………………………………… 6分(Ⅱ)解:当时,假设,根据已知条件则有,与矛盾,因此不成立,…………… 7分所以有,从而有,所以.当时,,,所以; …………………… 8分当时,总有成立.又,所以数列()是首项为,公比为的等比数列, ,,又因为,所以. …………………………… 10分(Ⅲ)证明:由题意得.因为,所以.所以数列是单调递增数列. …………………………………… 11分因此要证,只须证.由,则<,即.…… 12分因此.所以.故当,恒有. …………………………………………………14分5、21.6、(1)等,答案不唯一;……………4分(2),当时最小值为9,;……………6分,则,因此,时,最大值为6,……………9分所以,,数列是数列的“下界数列”;……………10分(3),…11分,……………12分不等式为,,,…13分设,则,…………15分当时,单调递增,时,取得最小值,因此,……………17分的最小值为……………18分7、.解(1)在处的切线方程为即(3分)(2)即令时,时,在上减,在上增.又时,的最大值在区间端点处取到.,在上最大值为故的取值范围是,(8分)(3)由已知得时,恒成立,设由(2)知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. (11分)由可得从而当时,故当时,为减函数,又于是当时,即故不符合题意.综上可得的取值范围为(14分)8、(I)(i)若单调增加.(ii)若且当所以单调增加,在单调减少. ………………4分(II)设函数则当.故当,………………8分(III)由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设由(II)得从而由(I)知,………………14分9、解:(1),得是以2为首项,1为公差的等差数列,故…………3分(2),,在点处的切线方程为令得仅当时取得最小值,∴的取值范围为………6分(3)所以又因则显然…………8分………12分…………14分。
2014年高中数学题型分析(集合)
2014年全国高考理科数学试题分类汇编1:集合(教师)1、(2012年高考(新课标理))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( D )A .3B .6C .8D .102、2012年高考(新课标理)已知集合{1A =,{1,}B m =,A B A =,则m =(c )(A )0 (B )0或3 (C )1 (D )1或33、(2011年高考(新课标理))已知集合{}{}5,3,1,4,3,2,1,0==N M ,N M P ⋂=,则集合P 的子集有 BA 2个B 4个C 6个D 8个4、(2013年高考新课标1(理))已知集合{}{2|20,|A x x x B x x =->=<,则 ( )A.A∩B=∅B.A ∪B=RC.B ⊆AD.A ⊆B[来源:Z_xx_] 【答案】B. 5、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知集合{}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M(A){}2,1,0 (B){}2,1,0,1- (C){}3,2,0,1- (D){}3,2,1,0【答案】A 6.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集{}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则()=U AB ð( )A.{}134,, B.{}34, C.{}3 D. {}4 【答案】D 7 .(2013年普通高等学校招生统一考试辽宁数学(理)试题)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A.()01, B.(]02, C.()1,2 D.(]12,【答案】D 8 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R| |x|≤2}, A = {x ∈R| x≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D9.(2013年高考上海卷(理))设常数a R∈,集合{|(1)()0},A x xx a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞(C) (2,)+∞(D) [2,)+∞【答案】B.10 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合A ={0,1,2},则集合B ={},x y x A y A -∈∈中元素的个数是(A) 1 (B) 3 (C)5 (D)9 【答案】C11.(2013年高考陕西卷(理))设全集为R, 函数()f x M, 则C M R 为(A) [-1,1] (B) (-1,1)(C) ,1][1,)(∞-⋃+∞- (D) ,1)(1,)(∞-⋃+∞-【答案】D12 .(2013年普通高等学校招生统一考试大纲版数学(理)设集合{}{}{}1,2,3,4,5,|,,,A B M x x a b a A b B====+∈∈则M 中的元素个数为(A)3 (B)4 (C)5 (D)6 【答案】B13.(2013年高考四川卷(理))设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B =( )(A){2}- (B){2} (C){2,2}- (D)∅[来源:Z 。
2014年全国各地高考数学试题及解答分类大全(不等式)
2014年全国各地高考数学试题及解答分类大全(不等式)一、选择题:1(2014安徽理)y x ,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+02202202y x y x y x ,若ax y z -=取得最大值的最优解不唯一,则实数a 的值为()A,121-或 B.212或 C.2或1 D.12-或解析:数形结合求解。
考点:1.线性规划求参数的值.2.(2014福建文)要制作一个容积为34m ,高为1m 的无盖长方体容器,已知该溶器的底面造价是每平方米20元,侧面造价是是每平方米10元,则该容器的最低总造价是().80.120.160.240A B C D 元元元元3.(2014福建文)已知圆()()22:1C x a y b -+-=,设平面区域70,70,0x y x y y +-≤⎧⎪Ω=-+≥⎨⎪≥⎩,若圆心C =Ω,且圆C 与x 轴相切,则22a b +的最大值为().5.29.37.49A B C D 4.(2014北京理)若x 、y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为4-,则k 的值为()A.2B.2-C.12D.12-【答案】D 【解析】可行域如图所示,当0>k 时,知x y z -=无最小值,当0<k 时,目标函数线过可行域内A点时z 有最小值,联立⎩⎨⎧=+-=020y kx y ,解之得⎪⎭⎫ ⎝⎛-0,2k A ,420min -=+=k z ,即21-=k .5、(2014广东文)若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于A.7B.8C .10 D.11答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.选C.6.(2014广东理)若变量x 、y 满足约束条件11y x x y y ≤⎧⎪+≤⎨⎪≤-⎩,且2z x y =+的最大值和最小值分别为M和m ,则M m -=()A.8B.7C.6D.5截距最大,此时z 取最大值M ,即()2213M =⨯+-=;()336M m -=--=,故选C.7.(2014湖北文)若变量x ,y+y ≤4,-y ≤2,≥0,y ≥0,则2x +y 的最大值是()A .2B .4C .7D .84.C[解析]+y ≤4,-y ≤2,≥0,y ≥0表示的可行域如下图阴影部分所示.设z =2x +y ,平移直线2x +y =0,易知在直线x +y =4与直线x -y =2的交点A (3,1)处,z =2x2=-+y x 02=+-y kx A=-x y+y 取得最大值7.故选C.8.(2014湖北理)由不等式组x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.18B.14C.34D.787.D [解析]作出Ω1,Ω2表示的平面区域如图所示,S Ω1=S △AOB =12×2×2=2,S △BCE =12×1×12=14,则S 四边形AOEC =S Ω1-S △BCE =2-14=74.故由几何概型得,所求的概率P =S 四边形AOEC S Ω1=742=78.故选D.9.(2014江西理)(不等式选做题)对任意,x y R ∈,111x x y y -++-++的最小值为()A.1 B.2 C.3 D.4【答案】B【解析】()|1||||1||1|1||11|123x x y y x x y y -++-++≥--+--+=+=10.(2014全国大纲文)不等式组(2)0||1x x x +>⎧⎨<⎩的解集为()A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >11.(2014全国新课标Ⅰ文)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5(B )3(C )-5或3(D )5或-3【答案】:B 【解析】:画出不等式组对应的平面区域,如图所示.在平面区域内,平移直线0x ay +=,可知在点A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a = -5或a = 3.但a = -5时,z取得最大值,故舍去,答案为a = 3.选B.12.(2014全国新课标Ⅰ理)不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3P B .1p ,4p C.1p ,2p D .1p ,3P 【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.13.(2014全国新课标Ⅱ文)设x ,y 满足约束条件0103310x y x y x y ≥⎧⎪--≤⎨⎪-+≥-⎩+,则z =2x +y 的最大值为()A.8B.7C.2D.1【答案解析】A.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.14.(2014全国新课标Ⅱ理)设x ,y 满足约束条件03103507x y x x y y ≤⎧⎪-+≤⎨⎪--≥-⎩+,则z =2x -y 的最大值为()A.10B.8C.3D.2【答案解析】B.解析:作图即可.考点:考查二元一次不等式组的应用,中等题.15.(2014山东理)已知实数,x y 满足xya a <(01a <<),则下列关系式恒成立的是(A )221111x y >++(B )22ln(1)ln(1)x y +>+(C )sin sin x y >(D )22x y>15.【答案】D【解析】y x a a a yx>∴<<<10, 但不能判断22y x >(如1,0-==y x )∴排除A,B;x y sin = 是周期函数,∴排除C;3x y = 是单调递增函数,∴D 正确.16.(2014山东文)已知实数,x y 满足(01)x ya a a <<<,则下列关系式恒成立的是(A)33x y>(B)sin sin x y >(C)22ln(1)ln(1)x y +>+(D)221111x y >++16.【答案】A【解析】由)10(<<<a a a yx得,y x >,但是不可以确定2x 与2y 的大小关系,故C 、D 排除,而x y sin =本身是一个周期函数,故B 也不对,33y x >正确。
2014年高考数学基本题型、思路、方法和结论大梳理(一)
例2 判 断下列命 题 的真假 . ( 1 )已知 厂 ( z ) 在 R上 为增 函数 , 若f ( a )
( 2 )若 n 6 ≠ 0, 则 “≠ 0且 b e : 0 .
’ ( 6 ) ≥ ’ ( 一n ) + 厂( 一6 ) , 则Ⅱ +6 ≥ 0; ( 4 )若 c A U B= : =c A, 求 实数 n的 取 + /
固本 ・归细 整 理
编者 按 俗话说 : 基 础不 牢 , 地动 山摇 . 基础 题 掌握 好 了, 难 题 无非 是基 础 题 的 复 杂 化 、 综合 化. 为此 , 本刊特 约 高 中数 学名 师龙艳 文 , 在 2 0 1 3 . 9 期至 2 O 1 4 . 4期 的归 纳整 理栏 目中, 以连 载 的形 式 , 结合 多年 高三 复 习教 学经验 , 为 同学 们提 供 最“ 骨架” 的 问题 和 其 主 要 的 方 法、 常 用 的结论 、 基本 的 思路 , 名 为《 2 0 1 4年 高考数 学基 本题 型 、 思路 、 方 法和 结 论 大梳 理 》 ,
A, 求 实数 的 取 值 范 围.
变 式 将 集 合 A 改 为 A一 { l 一. 2 - +
3 x+ 1 0 ≤ 0} .
舞
《
例
’ 已知全 集 U— l 。 一3 x+2 ≥0 } ,
方 法 与 不 等 式 有 关 的集 合 问题 , 画
数轴 分析 .
类 型一 : 集合 的表示 例 判 断下 列 集合 的 区 别 : A一 { l — +1 ) , B一{ y1 y — + 1 ) , C一 { ( z, - ) , ) 1 y —
数 “的 取 值 范 同 .
◎ 注意 单元 素集合 要考 虑 △一0 . 类型 三 : 集合 相等
2014高考数学考试技巧考点题型全攻略100条
高考数学考试技巧考点题型全攻略第一部分 集合与函数1、在集合运算中一定要分清代表元的含义.[举例1]已知集},2|{},,|{2R x y y Q R x x y y P x ∈==∈==,求Q P .分析:集合P 、Q 分别表示函数2x y =与x y 2=在定义域R 上的值域,所以),0[+∞=P ,),0(+∞=Q ,),0(+∞=Q P .[举例2]函数⎩⎨⎧∈-∈=)()()(M x x P x x x f ,其中P 、M 是实数集R 的两个非空子集,又规定:(){|(),},(){|(),}F P y y f x x P F M y y f x x M ==∈==∈.给出下列四个判断:(1)若∅=M P ,则()()F P F M =∅ ;(2)若∅≠M P ,则()()F P F M ≠∅ ;(3)若,R M P = 则()()F P F M R = ;(4)若,R M P ≠ 则()()F P F M R ≠ . 其中正确的判断有----------------------------------------------------------------------------------( )A 、1个;B 、2个;C 、3个;D 、4个.分析:这是一道比较难的题,涉及到函数的概念,集合的意义.()F P 是函数)(P x x y ∈=的值域,()F M 是函数)(M x x y ∈-=的值域.取),0[+∞=P ,)0,(-∞=M 可知(1)、(3)不正确.由函数的定义可知,函数定义域内的任意一个值只能与一个函数值对应,所以若∅≠M P ,只能是}0{=M P ,此时()(){0}F P F M ⊇ ,(2)正确.对于命题(4):设,a P M ∉ 则a P ∉且a M ∉,若0a =,显然有0()F P ∉且0()F M ∉,所以有()()F P F M R ≠ ;若0a ≠,由a P ∉则()a F P ∉,由a M ∉,则()a F M -∉.若有()a F M ∉,则a M -∉,所以a P -∉,则()a F P -∉,所以()()a F P F M -∉ ,则()()F P F M R ≠ .同理可证,若()a F P -∈,则有()()a F P F M ∉ .(4)也正确,选B.2、空集是任何集合的子集,空集是任何非空集合的真子集.[举例]若}2|{},|{2>=<=x x B a x x A 且∅=B A ,求a 的取值范围.分析:集合A 有可能是空集.当0≤a 时,∅=A ,此时∅=B A 成立;当0>a 时,),(a a A -=,若∅=B A ,则2≤a ,有40≤<a .综上知,4≤a .注意:在集合运算时要注意学会转化B A A B A ⊆⇔= 等.3、充要条件的判定可利用集合包含思想判定:若B A ⊆,则∈x A 是∈x B 的充分条件;若B A ⊇,则∈x A 是∈x B 的必要条件;若B A ⊆且B A ⊇即B A =,则∈x A 是∈x B 的充要条件.有时利用“原命题”与“逆否命题”等价,“逆命题”与“否命题”等价转换去判定也很方便.充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲⇒乙)”与“甲的充分条件是乙(乙⇒甲)”,是两种不同形式的问题.[举例]设有集合}2|),{(},2|),{(22>-=>+=x y y x N y x y x M ,则点M P ∈的_______条件是点N P ∈;点M P ∈是点N P ∈的_______条件.分析:集合M 是圆222=+y x 外的所有点的集合,N 是直线2+=x y 上方的点的集合.显然有M N ⊆.(充分不必要、必要不充分)4、掌握命题的四种不同表达形式,会进行命题之间的转化,会正确找出命题的条件与结论.能根据条件与结论判断出命题的真假.[举例]命题:“若两个实数的积是有理数,则此两实数都是有理数”的否命题是________________________,它是____(填真或假)命题.5、若函数)(x f y =的图像关于直线a x =对称,则有)()(x a f x a f +=-或)()2(x f x a f =-等,反之亦然.注意:两个不同函数图像之间的对称问题不同于函数自身的对称问题.函数)(x f y =的图像关于直线a x =的对称曲线是函数)2(x a f y -=的图像,函数)(x f y =的图像关于点),(b a 的对称曲线是函数)2(2x a f b y --=的图像.[举例1]若函数)1(-=x f y 是偶函数,则)(x f y =的图像关于______对称.分析:由)1(-=x f y 是偶函数,则有)1()1(-=--x f x f ,即)1()1(x f x f +-=--,所以函数)(x f y =的图像关于直线1-=x 对称.或函数)1(-=x f y 的图像是由函数)(x f y =的图像向右平移一个单位而得到的,)1(-=x f y 的图像关于y 轴对称,故函数)(x f y =的图像关于直线1-=x 对称.[举例2]若函数)(x f y =满足对于任意的R x ∈有)2()2(x f x f -=+,且当2≥x 时x x x f +=2)(,则当2<x 时=)(x f ________.分析:由)2()2(x f x f -=+知,函数)(x f y =的图像关于直线2=x 对称,因而有)4()(x f x f -=成立.2<x ,则24>-x ,所以)4()4()4()(2x x x f x f -+-=-=.即2<x 时209)(2+-=x x x f .6、若函数)(x f y =满足:)0)(()(≠-=+a a x f a x f 则)(x f 是以a 2为周期的函数.注意:不要和对称性相混淆.若函数)(x f y =满足:)0)(()(≠-=+a x f a x f 则)(x f 是以a 2为周期的函数.(注意:若函数)(x f 满足)(1)(x f a x f ±=+,则)(x f 也是周期函数) [举例]已知函数)(x f y =满足:对于任意的R x ∈有)()1(x f x f -=+成立,且当)2,0[∈x 时,12)(-=x x f ,则=++++)2006()3()2()1(f f f f ______. 分析:由)()1(x f x f -=+知:)()1(]1)1[()2(x f x f x f x f =+-=++=+,所以函数)(x f y =是以2为周期的周期函数.1)0()2()2004()2006(-=====f f f f ,1)1()3()2003()2005(=====f f f f ,故意原式值为0.7、奇函数对定义域内的任意x 满足0)()(=+-x f x f ;偶函数对定义域内的任意x 满足0)()(=--x f x f .注意:使用函数奇偶性的定义解题时,得到的是关于变量x 的恒等式而不是方程.奇函数的图像关于原点对称,偶函数图像关于y 轴对称;若函数)(x f y =是奇函数或偶函数,则此函数的定义域必关于原点对称;反之,若一函数的定义域不关于原点对称,则该函数既非奇函数也非偶函数.若)(x f y =是奇函数且)0(f 存在,则0)0(=f ;反之不然.[举例1]若函数a x f x -+=121)(是奇函数,则实数=a _______;分析:注意到)0(f 有意义,必有0)0(=f ,代入得21=a .这种特值法在解填空、选择题时若能灵活运用,则事半功倍.[举例2]若函数3)2()(2+-+=x b ax x f 是定义在区间]2,12[a a --上的偶函数,则此函数的值域是__________.分析:函数是偶函数,必有0)2()12(=-+-a a ,得1-=a ;又由()y f x =是偶函数,因而2=b .即]3,3[(3)(2-∈+-=x x x f ,所以此函数的值域为]3,6[-.8、奇函数在关于原点对称的区间内增减性一致,偶函数在关于原点对称的区间内增减性相反.若函数)(x f y =的图像关于直线a x =对称,则它在对称轴的两侧的增减性相反;此时函数值的大小取决于变量离对称轴的远近.解“抽象不等式(即函数不等式)”多用函数的单调性,但必须注意定义域.[举例]若函数)(x f y =是定义在区间]3,3[-上的偶函数,且在]0,3[-上单调递增,若实数a 满足:)()12(2a f a f <-,求a 的取值范围.分析:因为)(x f y =是偶函数,)()12(2a f a f <-等价于不等式)(|)12(|2a f a f <-,又此函数在]0,3[-上递增,则在]3,0[递减.所以2|12|3a a >-≥,解得211+-<≤-a .9、要掌握函数图像几种变换:对称变换、翻折变换、平移变换.会根据函数)(x f y =的图像,作出函数a x f y a x f y x f y x f y x f y +=+===-=)(),(|,)(||),(|),(的图像.(注意:图像变换的本质在于变量对应关系的变换);要特别关注|)(||),(|x f y x f y ==的图像.[举例]函数|1|12|log |)(2--=x x f 的单调递增区间为_____________. 分析:函数|1|12|log |)(2--=x x f 的图像是由函数x y 2log =的图像经过下列变换得到的:先将函数x y 2log =的图像上各点的横坐标缩短到原来的21(或将函数x y 2log =的图像向上平移1个单位)得到函数x y 2log 2=的图像,再将函数x y 2log 2=的图像作关于y 轴对称得到函数|2|log 2x y =的图像,再将函数|2|log 2x y =的图像向右平移21个单位,得到函数|12|log 2-=x y 的图像,再将函数|12|log 2-=x y 的图像向下平移1个单位得到函数1|12|log 2--=x y ,最后将函数1|12|log 2--=x y 的图像在x 轴下方部分翻折到x 轴上方得到函数|1|12|log |)(2--=x x f 的图像.注意在变化过程中函数图像与坐标轴的交点的变化(尤其是与x 轴的交点不要搞错),从图像上可以看出此函数的单调递增区间是)1,21[-与),23[+∞. 需要注意的是:函数图像变化过程:|)(||)(|)(a x f y x f y x f y -=⇒=⇒=与变化过程:|)(|)()(a x f y a x f y x f y -=⇒-=⇒=不同.前者是先作关于y 轴对称后平移,而后者是先平移后再作关于直线a x =对称.10、研究方程根的个数、超越方程(不等式)的解(特别是含有参量的)、二次方程根的分布、二次函数的值域、三角函数的性质(包括值域)、含有绝对值的函数及分段函数的性质(包括值域)等问题常利用函数图像来解决.但必须注意的是作出的图形要尽可能准确:即找准特殊的点(函数图像与坐标轴的交点、拐点、极值点等)、递增递减的区间、最值等.[举例1]已知函数1)(,12)(+=-=ax x g x x f ,若不等式)()(x g x f >的解集不为空集,则实数a 的取值范围是____________.分析:不等式)()(x g x f >的解集不为空集,亦即函数)(x f y =的图像上有点在函数)(x g y =的图像的上方. 函数12)(-=x x f 的图像是x 轴上方的半 支抛物线,函数1)(+=ax x g 的图像是过点)1,0(斜率为a 的直线.当1a =时直线与抛物线相切,由图像知:12-<a .(注意图中的虚线也满足题义)[举例2]若曲线1||2+=x y 与直线b kx y +=没有公共点,则b k ,应当满足的条件是 . 分析:曲线1||2+=x y 是由)0(12≥+=x x y 与12+-=x y 交点为)1,0(和)1,0(-,图像如图(实线部分).可以看出若直线b kx y +=曲线1||2+=x y 的图像没有公共点,此直线必与x 轴平行,所以0=k ,11<<-b .11、一条曲线可以作为函数图像的充要条件是:曲线与任何平行于y 轴的直线至多只有一个交点.一个函数存在反函数的充要条件是:定义域与值域中元素须一一对应,反应在图像上平行于x 轴的直线与图像至多有一个交点.单调函数必存在反函数吗?(是的,并且任何函数在它的每一个单调区间内总有反函数).还应注意的是:有反函数的函数不一定是单调函数,你能举例吗?[举例]函数12)(2+-=ax x x f ,(]4,3[]1,0[ ∈x ),若此函数存在反函数,则实数a 的取值范围是__________.分析:由函数存在反函数的充要条件是定义域与值域中的元素一一对应,平行于x 轴的直线与函数的图像至多只有一个交点.又由二次函数12)(2+-=ax x x f 图像的对称轴为直线a x =知:0≤a 或4≥a 必存在反函数,10<<a 或43<<a 必不存在反函数.当]3,1[∈a 时如何讨论?注意到函数在区间]1,0[上递减,在]4,3[上递增,所以只要)1()4(f f <或)0()3(f f >即可.亦即325≤<a 或231<≤a .综上知,实数a 的取值范围是 ]0,(-∞ ),4[]3,25()23,1[+∞ . 12、求一个函数的反函数必须标明反函数的定义域,反函数的定义域不能单从反函数的表达式上求解,而是求原函数的值域.求反函数的表达式的过程就是解(关于x 的)方程的过程.注意:函数的反函数是唯一的,尤其在开平方过程中一定要注意正负号的确定. [举例]函数])2,((),22(log )(22--∞∈++=x x x x f 的反函数为__________. 分析:令)22(log 22++=x x y ,则12)1(22222-=+⇒=++yy x x x .因为2-≤x ,所以11-≤+x ,则121--=+y x ,121---=y x .又原函数的值域为),1[+∞,所以原函数的反函数为)1(121)(1≥---=-x x f x .(若是从反函数表达式得012≥-x 求得0≥x 就不是反函数的定义域).13、原函数的定义域是反函数的值域,原函数的值域是反函数的定义域;原函数与反函数的图像关于直线x y =对称;若函数)(x f y =的定义域为A ,值域为C ,C b A a ∈∈,,则有a a f f b b f f ==--))((,))((11.)()(1b fa a fb -=⇔=.需要特别注意一些复合函数的反函数问题.如)2(x f y =反函数不是)2(1x f y -=.[举例1]已知函数)(x f y =的反函数是)(1x f y -=,则函数)43(21+=-x f y 的反函数的表达式是_________.分析:求函数的反函数是解方程的过程,即用y 表示,x 然后将y x ,互换即得反函数的表达式.由)43(21+=-x f y 可得]4)2([31)2(432)43(1-=⇒=+⇒=+-y f x y f x y x f .所以函数)43(21+=-x f y 的反函数为]4)2([31-=x f y .[举例2]已知⎩⎨⎧<<--≥=02,)(log 0,2)(2x x x x f x ,若3)(1=-a f,则=a ____. 分析:由3)(1=-a f 得)3(f a =,所以8=a .14、判断函数的单调性可用有关单调性的性质(如复合函数的单调性),但证明函数单调性只能用定义,不能用关于单调性的任何性质,用定义证明函数单调性的关键步骤往往是因式分解.记住并会证明:函数)0,(,>+=b a x b ax y 的单调性. [举例]已知函数)0(1)(>+=a x ax x f 在),1[+∞∈x 上是单调增函数,求实数a 的取值范围.分析:函数)0,(,>+=b a xb ax y 称为“耐克”函数,由基本不等式知:当0>x 时,函数的最小值是ab 2,当a b x =时等号成立.],0(a b x ∈时,函数递减;),[+∞∈ab x 时,函数递增.记住此结论在解选择、填空等小题时用起来比较方便.函数)0(1)(>+=a x ax x f 在),1[+∞上递增,则11≤a,得1≥a .但若是大题推理就不能这样描述性的说明,必需要按函数单调性的定义有严格的论证.任设),,1[,21+∞∈x x 且21x x <.)1)(()()(212121x x a x x x f x f --=-,由函数)(x f 是单调增函数,则0)()(21<-x f x f ,而021<-x x ,则0121>-x x a .所以211x x a >对于),,1[,21+∞∈x x 且21x x <恒成立,因1121<x x ,故1≥a . 需要说明的是:在考试中若“小题大做”则浪费时间,因为“小题”只要结果;而“大题小做”则失分,因为“大题”需要严格的论证过程.15、一元二次函数是最基本的初等函数,要熟练掌握一元二次函数的有关性质.一元二次函数在闭区间上一定存在最大值与最小值,应会结合二次函数的图像求最值.[举例]求函数12)(2+-=ax x x f 在区间]3,1[-的最值.分析:求开口向上的二次函数在闭区间上的最小值要根据二次函数的对称轴与区间的位置关系分三种情况进行讨论,但求开口向上的二次函数在闭区间上的最大值只要根据区间端点与对称轴之间的距离分两种情况进行讨论即可.⎩⎨⎧>+≤-=)1(22)1(610)(max a a a a x f ,⎪⎩⎪⎨⎧>-≤≤---<+=)1(610)31(1)1(22)(2m in a a a a a a x f .16、一元二次函数、一元二次不等式、一元二次方程是不可分割的三个知识点.解一元二次不等式是“利用一元二次方程的根、结合一元二次函数的图像、写出一元二次不等式的解集”,可以将一元二次不等式的问题化归为一元二次方程来求解.特别对于含参一元二次不等式的讨论比较方便.还应当注意的是;一般地,不等式解集区间的端点值是对应方程的根(或增根).[举例1]已知关于x 的不等式5|3|≤+ax 的解集是]4,1[-,则实数a 的值为 .分析:若是从解不等式入手,还应考虑常数a 的正负进行讨论.如合理利用方程与不等式之间的关系则可迅速得到答案:解集端点值4,1-是方程5|3|=+ax 的根.则⎩⎨⎧=+=+-5|34|5|3|a a 得⎪⎩⎪⎨⎧-=-=21282或或a a ,知2-=a . [举例2]解关于x 的不等式:)(0122R a ax ax ∈>++.分析:首先要注意的是此不等式是否是一元二次不等式.当0=a 时,此不等式是恒成立的,则其解集为R .当0≠a 时,才是二次不等式.与其对应的方程为0122=++ax ax ,根判别式a a 442-=∆.当0>∆,即1>a 或0<a 时,方程两根为aa a a x -±-=22,1;当0=∆,即1=a 时,方程有等根1-=x ;当0<∆,即10<<a 时,方程无实根.结合二次函数的图像知:1>a 时不等式的解集为),(),(22+∞-+-----∞aa a a a a a a ;当1=a 时,不等式的解集为),1()1,(+∞---∞ ;当10<≤a 时,不等式的解集为R ;当0<a 时,不等式的解集为),(22aa a a a a a a ----+-.第二部分 不等式17、基本不等式2)2(,2b a ab ab b a +≤≥+要记住等号成立的条件与b a ,的取值范围.“一正、二定、三相等”,“积定和有最小值、和定积有最大值”,利用基本不等式求最值时要考虑到等号是否成立.与函数相关的应用题多有基本不等式的应用.[举例]已知正数b a ,满足32=+b a ,则ba 11+的最小值为______. 分析:此类问题是典型的“双变量问题”,即是已知两变量的一个关系式,求此两变量的另一代数式的最值(或取值范围)问题.其解决方法一是“减元”,即由关系中利用一个变量表示另一变量代入到所求关系式中,转化为一元函数的最值问题;另一方法是构造基本不等式.由)223(31)23(31)22(3111+≥++=+++=+b a a b b b a a b a b a ,当且仅当b a a b =2等号成立,此时223,123+=+=b a .18、学会运用基本不等式:||||||||||||b a b a b a +≤±≤-.[举例1]若关于x 的不等式a x x <---|2||1|的解集是R ,则实数a 的取值范围是__; 分析:由不等式的解集为R ,则a 大于|2||1|---x x 的最大值.由绝对值不等式的性质知:1|)2()1(||2||1|=---≤---x x x x ,所以1>a .[举例2]若关于x 的不等式a x x <-+-|2||1|的解集不是空集,则实数a 的取值范围是_. 分析:1|)2()1(||2||1|=---≥-+-x x x x ,知1>a .19、解分式不等式不能轻易去分母,通常采用:移项(化一边为零)→通分→转化为整式不等式→化所有因式中的变量系数为正,(即不等式两边同除以变量系数,若它的符号不能确定即需要讨论)→“序轴标根”(注意比较各个根的大小,不能比较时即需要讨论);解绝对值不等式的关键是“去绝对值”,通常有①利用绝对值不等式的性质②平方③讨论.特别注意:求一个变量的范围时,若分段讨论的也是这个变量,结果要“归并”.[举例]解关于x 的不等式:)0(12)1(>>--a x x a . 分析:原不等式化为:0)]2()1)[(2(02)2()1(>----⇒>----a x a x x a x a .注意到此不等式二次项系数含有变量,故要讨论.(1)当1=a 时,不等式的解集为}2|{>x x ;(2)当10<<a 时,注意到此时对应的二次函数开口向下,对应方程两根12,221--==a a x x ,而211112>-+=--a a a ,此时不等式的解集为)12,2(--a a ;(3)当1>a 时,同样可得不等式的解集为),2()12,(+∞---∞ a a . 20、求最值的常用方法:①用基本不等式(注意条件:一正、二定、三相等);②二次函数;③单调性;④逆求法(包括判别式法);⑤换元法;⑥数形结合.一般而言:在用基本不等式求最值因“不相等”而受阻时,常用函数)0(,>+=a xa x y 的单调性;求二次函数(自变量受限制)的值域,先配方、再利用图像、单调性等;求分式函数的值域(自变量没有限制)常用“逆求”(即判别式法);求分式函数的值域(自变量受限制)通常分子、分母同除一个式子,变分子(分母)为常数.[举例1]已知函数223)(x ax x f -=的最大值不大于61,又当]21,41[∈x 时,81)(≥x f ,求实数a 的值. 分析:6)3(23)(22a a x x f +--=,则161622≤⇒≤a a ,又此二次函数开口向下,则有181)21(81)41(≥⇒⎪⎪⎩⎪⎪⎨⎧≥≥a f f .知1=a .注意到:开口向下的二次函数在闭区间上的最小值是区间一端点对应的函数值;同样开口向上的二次函数在闭区间上的最大值也是区间一端点对应的函数值.[举例2]求函数1363)(2+++=x x x x f 在区间]2,2[-上的最大值与最小值. 分析:因为函数的定义域不是一切实数,用判别式法所求的结果不一定是正确.可利用换元转化成基本不等式型的应用.设t x =+3,则t t t t x f 414)(2+=+=,]5,1[∈t .当2=t 时,t t 4+取最小值4;当5=t 时,t t 4+取最大值529.所以函数)(x f 在区间]2,2[-上的最大值为41,最小值为295.注意:此类函数的值域(最值)问题在解几的最值中经常涉及,要能熟练地掌握其解法.21、遇到含参不等式(或含参方程)求其中某个参数的取值范围通常采用分离参数法,转化为求某函数的最大值(或最小值);但是若该参数分离不出来(或很难分离),那么也可以整体研究函数),(x a f y =的最值.特别注意:双变量问题在求解过程中应把已知范围的变量作为主变量,另一个作为参数.[举例](1)已知不等式0224>+⋅-xxa 对于+∞-∈,1[x )恒成立,求实数a 的取值范围.(2)若不等式0224>+⋅-xxa 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:(1)由0224>+⋅-xxa 得:xx a 222+<对于+∞-∈,1[x )恒成立,因212≥x,所以22222≥+xx ,当22=x时等号成立.所以有22<a . (2)注意到0224>+⋅-xxa 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x,则x 取值范围为),1()0,(+∞-∞ .第三部分 三角函数22、若)2,0(πα∈,则αααtan sin <<;角的终边越“靠近”y 轴时,角的正弦、正切的绝对值就较大,角的终边“靠近”x 轴时,角的余弦、余切的绝对值就较大. [举例1]已知],0[πα∈,若0|cos |sin >-αα,则α的取值范围是_______. 分析:由0|cos |sin >-αα且],0[πα∈,即|c o s ||s i n |αα>知其角的终边应“靠近”y 轴,所以)43,4(ππα∈.[举例2]方程sin x x =的解的个数为____个.分析:在平面直角坐标系中作出函数sin y x =与y x =的图像,由函数sin ,y x y x ==都是奇函数,而当1x >时sin x x >恒成立.在(0,)2x π∈时,sin x x <,所以两函数图像只有一个交点(坐标原点),即方程sin x x =只有一个解. 同样:当(,)22x ππ∈-时,方程tgx x =只有唯一解0x =. 23、求某个角或比较两角的大小:通常是求该角的某个三角函数值(或比较两个角的三角函数值的大小),然后再定区间、求角(或根据三角函数的单调性比较出两个角的大小).比如:由βαtg tg >未必有βα>;由βα>同样未必有βαtg tg >;两个角的三角函数值相等,这两个角未必相等,如βαsin sin =;则βπα+=k 2;或Z k k ∈-+=,2βππα;若βαcos cos =,则Z k k ∈±=,2βπα;若βαtg tg =,则Z k k ∈+=,βπα.[举例1]已知βα,都是第一象限的角,则“βα<”是“βαsin sin <”的――( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. 分析:βα,都是第一象限的角,不能说明此两角在同一单调区间内.如613,3ππ都是第一象限的角,6133ππ<但613sin 3sin ππ>.选D. [举例2]已知0,0,αβαβπ>>+<,则“βα<”是“βαs i n s i n <”的―――( ) A 、充分不必要条件;B 、必要不充分条件;C 、充要条件;D 、既不充分又不必要条件. 分析:注意到由),0(,,πβαβα∈+,则βα,可以看作是一三角形的两内角.选C. 24、已知一个角的某一三角函数值求其它三角函数值或角的大小,一定要根据角的范围来确定;能熟练掌握由αtg 的值求ααcos ,sin 的值的操作程序;给(一个角的三角函数)值求(另一个三角函数)值的问题,一般要用“给值”的角表示“求值”的角,再用两角和(差)的三角公式求得.[举例1]已知α是第二象限的角,且a =αcos ,利用a 表示=αtg _____;分析:由α是第二象限的角,a =αcos 知21sin a -=α,aa tg 21cos sin -==ααα. [举例2]已知),2(,0cos 2cos sin sin 622ππααααα∈=-+,求)32sin(πα+的值.分析:由0cos 2cos sin sin 622=-+αααα得:0262=-+ααtg tg ,则21=αtg 或32-=αtg .又),2(ππα∈,所以32-=αtg .由万能公式得1312122sin 2-=+=αααtg tg ,135112cos 22=+-=αααtg tg .知261235)32sin(-=+πα. 25、欲求三角函数的周期、最值、单调区间等,应注意运用二倍角正(余)弦公式,半角公式降次即:)2cos 1(21cos ),2cos 1(21sin 22x x x x +=-=;引入辅助角(特别注意3π,6π经常弄错)使用两角和、差的正弦、余弦公式(合二为一),将所给的三角函数式化为B x A y ++=)sin(ϕω的形式.函数|)sin(|ϕω+=x A y 的周期是函数)sin(ϕω+=x A y 周期的一半.[举例]函数1cos sin 32cos 2)(2--=x x x x f 的最小正周期为_____;最大值为__;单调递增区间为______________;在区间]2,0[π上,方程1)(=x f 的解集为___________.分析:由1cos sin 32cos 2)(2--=x x x x f )652sin(22sin 32cos π+=-=x x x .所以函数)(x f 的最小正周期为π;最大值为2;单调递增区间满足22[652πππ-∈+k x ,)](22Z k k ∈+ππ,即)](6,32[Z k k k ∈--ππππ;由1)(=x f ,则21)652sin(=+πx ,62652πππ+=+k x 或652652πππ+=+k x 得3ππ-=k x 或)(Z k k x ∈=π,又由]2,0[π∈x 得解集为}2,,0,35,32{ππππ.注意:辅助角ϕ的应用:)sin(cos sin 22ϕ++=+x b a x b x a .其中a b tg =ϕ,且角ϕ所在的象限与点),(b a 所在象限一致.26、当自变量x 的取值受限制时,求函数)sin(ϕω+=x A y 的值域,应先确定ϕω+x 的取值范围,再利用三角函数的图像或单调性来确定)sin(ϕω+x 的取值范围,并注意A 的正负;千万不能把x 取值范围的两端点代入表达式求得.[举例]已知函数],0[),cos (sin sin 2)(π∈+=x x x x x f ,求)(x f 的最大值与最小值. 分析:函数1)4sin(22sin 2cos 1cos sin 2sin 2)(2+-=+-=+=πx x x x x x x f .由],0[π∈x ,则]43,4[4πππ-∈-x ,]1,22[)4sin(-∈-πx ,所以函数)(x f 的最大 、最小值分别为12+与0.27、三角形中边角运算时通常利用正弦定理、余弦定理转化为角(或边)处理.有关c b a ,,的齐次式(等式或不等式),可以直接用正弦定理转化为三角式;当知道△ABC 三边c b a ,,平方的和差关系,常联想到余弦定理解题;正弦定理应记为2sin sin sin a b cR A B C===(其中R 是△ABC 外接圆半径.[举例]在△ABC 中,c b a ,,分别是C B A ∠∠∠,,对边的长.已知c b a ,,成等比数列,且bc ac c a -=-22,求A ∠的大小及cBb sin 的值. 分析:由c b a ,,成等比数列得ac b =2,则bc ac c a -=-22化成bc a c b =-+222,由余弦定理得212cos 222=-+=bc a c b A ,3π=∠A .由ac b =2得b a c b =,所以cB b s i n =233sin sin sin ===πA b Ba .28、在△ABC 中:B A B A b a sin sin >⇔>⇔>;A C B sin )sin(=+,=+)cos(C BA cos -,2sin 2cosA CB =+,2cos 2sin AC B =+等常用的结论须记住.三角形三内角A 、B 、C 成等差数列,当且仅当3π=B .[举例1](1)已知△ABC 三边c b a ,,成等差数列,求B 的范围;(2)已知△ABC 三边c b a ,,成等比数列,求角B 的取值范围.分析:(1)由△ABC 的三边c b a ,,成等差数列,则c a b +=2,222cos 2a c b B ac+-=,消去b 化得223()1611cos 84842a c ac B ac ac +=-≥-=.所以]3,0(π∈B .(2)同样可以求得]3,0(π∈B .[举例2]在△ABC 中,若C A B sin sin cos 2=,则△ABC 的形状一定是――――( )A 、等腰直角三角形;B 、直角三角形;C 、等腰三角形;D 、等边三角形. 分析:在三角形ABC 中:A B B A B A B A C sin cos 2sin cos cos sin )sin(sin =+=+=,则B A B A B A B A =⇒=-⇒=-0)sin(0sin cos cos sin .所以△ABC 是等腰三角形. [举例3]△ABC 中,内角A 、B 、C 的对边分别为c b a ,,,已知c b a ,,成等比数列,且43cos =B . (1)求ctgC ctgA +的值;(2)设23=⋅BC BA ,求c a +的值. 分析:(1)先切化弦:CA BC A C A C C A A ctgC ctgA sin sin sin sin sin )sin(sin cos sin cos =+=+=+.由c b a ,,成等比,C A B ac b sin sin sin 22=⇒=,所以B c t g C c t g A s in 1=+.由43cos =B 得47sin =B ,则774=+ctgC ctgA . (2)注意到2343cos ===⋅ac B ac ,所以2=ac ,则22=b .又由余弦定理得:B ac c a b cos 2222-+=,得522=+c a ,92)(222=++=+c ac a c a ,所以3=+c a . 29、x x x x x x cos sin ,cos sin ,cos sin -+这三者之间的关系虽然没有列入同角三角比的基本关系式,但是它们在求值过程中经常会用到,要能熟练地掌握它们之间的关系式:2(sin cos )12sin cos x x x x ±=±.求值时能根据角的范围进行正确的取舍.[举例1]已知关于x 的方程02)cos (sin 2sin =+++x x a x 有实数根,求实数a 的取值范围. 分析:由x x x x x x x 2s i n 1c o sc o s s i n 2s in )c o s (s i n 222+=++=+,令t x x =+c o s s i n ,则12sin 2-=t x ,其中]2,2[-∈t .则关于t 的方程012=++at t 在]2,2[-∈t 上有解.注意到方程012=++at t 两根之积为1,若有实根必有一根在]1,1[-内,只要△0≥即可,得2≥a 或2-≤a .[举例2]已知),,0(πα∈且51cos sin -=+αα,则=αtg _____. 分析:此类问题经常出现在各类考试中,而且错误率都比较高.原因是不能根据角所在的象限,对函数值进行正确的取舍.由51cos sin -=+αα平方得02524cos sin 2<-=αα,又由),0(πα∈知),2(ππα∈.则有0c o s ,0s i n <>αα.2549cos sin 21)cos (sin 2=-=-αααα,得57c o s s in =-αα.有54cos ,53sin -==αα,所以43-=αtg .30、正(余)弦函数图像的对称轴是平行于y 轴且过函数图像的最高点或最低点,两相邻对称轴之间的距离是半个周期;正(余)弦函数图像的对称中心是图像与“平衡轴”的交点,两相邻对称中心之间的距离也是半个周期.函数ctgx y tgx y ==,的图像没有对称轴,它们的对称中心为Z k k ∈),0,2(π.两相邻对称轴之间的距离也是半个周期.[举例1]已知函数x x f 2sin )(=,且)(t x f +是偶函数,则满足条件的最小正数=t __; 分析:)22sin()(t x t x f +=+是偶函数,则0=x 是它图像的一条对称轴.0=x 时,函数取最大(小)值.12sin ±=t ,)(22Z k k t ∈+=ππ.所以满足条件的最小正数4π=t .[举例2]若函数x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称,则=a ___.分析:由x x a x f cos sin )(+=的图像关于点)0,3(π-成中心对称知0)3(=-πf ,33=a .第四部分 复数31、复数问题实数化时,设复数bi a z +=,不要忘记条件R b a ∈,.两复数bi a z +=1,),,,(,2R d c b a di c z ∈+=,21z z =的条件是d b c a ==,.这是复数求值的主要依据.根据条件,求复数的值经常作实数化处理. [举例]若复数z 满足:iii z z z z +-=++⋅23)(,则=z _____. 分析:设),(R b a bi a z ∈+=,原式化为i ai b a -=++1222,得⎩⎨⎧-==+12122a b a ,求得i z 2321±-=. 32、实系数一元二次方程若存在虚根,则此两虚根互为共轭.若虚系数一元二次方程存在实根不能用判别式判断.[举例]若方程)(022R b bx x ∈=++的两根βα,满足2||=-βα,求实数b 的值. 分析:在复数范围内22)(||βαβα-=-不一定成立,但22|||)(|βαβα-=-一定成立.对于二次方程,韦达定理在复数范围内是成立的.⎩⎨⎧=-=+2αββαb ,4|8||)(|22=-=-b βα,则42=b 或122=b ,所以2±=b 或32±=b .33、||21z z -的几何意义是复平面上21,z z 对应点之间的距离,r z z =-||0的几何意义是复平面上以0z 对应点为圆心,r 为半径的圆.[举例]若4|||2|0=-+-z z i z 表示的动点的轨迹是椭圆,则||0z 的取值范围是___.分析:首先要理解数学符号的意义:4|||2|0=-+-z z i z 表示复数z 对应的动点到复数i 2与0z 对应的两定点之间的距离之和等于4.而根据椭圆的定义知,两定点之间的距离要小于定值4,所以有4|2|0<-i z ,而此式又表示0z 对应的点在以i 2对应点为圆心,4为半径的圆内,由模的几何意义知)6,0[||0∈z .34、对于复数z ,有下列常见性质:(1)z 为实数的充要条件是z z =;(2)z 为纯虚数的充要条件是0=+z z 且0≠z ;(3)2||z z z =⋅;(4)1212||||||z z z z =. [举例]设复数z 满足:(1),4R zz ∈+(2)2|2|=-z ,求复数z . 分析:由,4R z z ∈+则z z z z z zz z z =⇒=--⇒+=+0)4|)(|(442或2||=z .当zz =时,则R z ∈,由2|2|=-z 得4=z 或0=z (舍去);当2||=z 时,可求得i z 31±=.综上知:i z z 31,4±==.第五部分 数列与极限35、等差数列{n a }中,通项b dn a n +=,前n 项和cn n d S n +=22(d 为公差,N n ∈).证明某数列是等差(比)数列,通常利用等差(比)数列的定义加以证明,即证:n n a a -+1是常数)(N n ∈(1n na a +=常数,)n N ∈,也可以证明连续三项成等差(比)数列.即对于任意的自然数n 有:n n n n a a a a -=-+++112(nn n n a a a a 112+++=). [举例]数列}{n a 满足:)(22,111N n a a a a n nn ∈+==+. (1)求证:数列}1{na 是等差数列;(2)求}{n a 的通项公式. 分析:注意是到证明数列}1{n a 是等差数列,则要证明nn a a 111-+是常数.而n n n a a a 2211+=+,所以21111=-+n n a a .即数列}1{n a 是等差数列.又111=a ,则21)1(2111+=-+=n n a n ,所以12+=n a n . 36、等差数列前n 项和、次n 项和、再后n 项和(即连续相等项的和)仍成等差数列;等比数列前n 项和(和不为0)、次n 项和、再后n 项和仍成等比数列.类比还可以得出:等比数列的前n 项的积、次n 项的积、再后n 项的积仍成等比数列.[举例1]已知数列}{n a 是等差数列,n S 是其前n 项的和,20,884==S S ,则=12S _; 分析:注意到812484,,S S S S S --是等差数列的连续4项的和,它们成等差数列.可以得到。
2014年全国个省市高考理科数学分类汇编:三角函数
一、选择题 1、(新课标全国卷Ⅰ)8题 设)2,0(πα∈,)2,0(πβ∈,且ββαcos sin 1tan +=,则( ) A.23πβα=- B. 22πβα=- C. 23πβα=+ D. 22πβα=+2、(新课标全国卷Ⅱ)4题 钝角三角形ABC 的面积是21,2,1==BC AB ,则=AC ( ) A.5 B.5 C.2 D. 12'、(新课标全国卷Ⅱ)12题设函数mx x f πsin 3)(=.若存在)(x f 的极值点0x 满足[]22020)(m x f x <+,则m 的取值范围是( )A.),6()6,(+∞⋃--∞B. ),4()4,(+∞⋃--∞C. ),2()2,(+∞⋃--∞D. ),1()1,(+∞⋃--∞ 3、(大纲卷-广西卷)3题设︒=33sin a ,︒=55cos b ,︒=55tan c ,则( ) A.c b a >> B.a c b >> C.a b c >> D. b a c >> 4、(安徽卷)6题设函数))((R x x f ∈满足x x f x f s i n )()(+=+π.当π<≤x 0时,0)(=x f ,则=)623(πf ( ) A.21 B. 23 C.0 D. 21- 5、(湖南卷)9题已知函数)sin()(ϕ-=x x f ,且0)(320=⎰dx x f π,则函数)(x f 的图像的一条对称轴是( )A.65π=x B. 127π=x C. 3π=x D. 6π=x 6、(四川卷)3题为了得到函数x y x y 2sin )12sin(=+=的图像,只需把函数的图像上所有的点( )A.向左平行移动21个单位长度 B. 向右平行移动21个单位长度 C.向左平行移动1个单位长度 D. 向右平行移动1个单位长度7、(浙江卷)4题 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3cos 2=的图像( )A.向右平移4π个单位B. 向左平移4π个单位 C.向右平移12π个单位 D. 向左平移12π个单位8、(陕西卷)2题 函数)62cos()(π-=x x f 的最小正周期是( )A.2πB.πC. π2D. π4 9、(辽宁卷)9题将函数)32sin(π+=x y 的图像向右平移2π个单位长度,所得图像对应的函数( )A.在区间]127,12[ππ上单调递减B. 在区间]127,12[ππ上单调递增 C. 在区间]3,6[ππ-上单调递减 D. 在区间]3,6[ππ-上单调递增二、填空题1、(新课标全国卷Ⅰ)16题已知a 、b 、c 分别为△ABC 三个内角A 、B 、C 的对边,2=a ,且C b c B A b s i n )()s i n )(s i n 2(-=-+,则△ABC 面积的最大值为 .2、(新课标全国卷Ⅱ)14题函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为 . 3、(大纲卷-广西卷)16题若函数x a x x f sin 2cos )(+=在区间)2,6(ππ是减函数,则a 的取值范围是 .4、(安徽卷)11题 若将函数)42sin()(π+=x x f 的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 5、(广东卷)12题在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知,2cos cos b B c C b =+则=ba. 6、(四川卷)13题如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 m.C(用四舍五入法将结果精确到个位,参考数据: 7、(陕西卷)13题 设20πθ<<,向量)1,(cos ),cos ,2(sin θθθ==,若//,则=θtan .8(山东卷)12题在 △ABC 中,已知A tan =⋅,当6π=A 时,△ABC 的面积为 .9、(福建卷)12题在 △ABC 中,60=A ,32,4==BC AC ,则△ABC 的面积为 . 10、(天津卷)12题△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知C B a c b sin 3sin 2,41==-,则A cos 的值为 . 11、(江苏卷)5题已知函数x y cos =与)2sin(ϕ+=x y (πϕ<≤0),它们的图像有一个横坐标为3π的交点,则ϕ的值是 . 12、(江苏卷)14题若△ABC 的内角满足,sin 2sin 2sin C B A =+则C cos 的最小值是 . 三、解答题 1、(新课标全国卷Ⅰ)未考 2、(新课标全国卷Ⅱ)未考 3、(大纲卷-广西卷)17题共10分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知31tan ,cos 2cos 3==A A c C a ,求B . 4、(安徽卷)16题12分设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且3=b ,1=c ,B A 2=. (Ⅰ)求a 的值; (Ⅱ)求)4sin(π+A 的值.5、(广东卷)16题12分已知函数,),4sin()(R x x A x f ∈+=π且23)125(=πf . (1) 求A 的值; (2) 若),2,0(,23)()(πϑθθ∈=-+f f 求)43(ϑπ-f . 6、(广东卷)18题12分如图,在平面四边形ABCD 中,7,2,1===AC CD AD .(Ⅰ)求CAD ∠cos 的值; (Ⅱ)若621sin ,147cos =∠-=∠CBA BAD ,求BC 的长. BD7、(四川卷)16题12分 已知函数)43sin()(π+=x x f .(Ⅰ)求)(x f 的单调递增区间; (Ⅱ)若α是第二象限角,,2cos )4cos(54)3(απαα+=f 求ααsin cos -的值. 8、(浙江卷)18题14分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知b a ≠,3=c ,B B A A B A cos sin 3cos sin 3cos cos 22-=-.(Ⅰ)求角C 的大小; (Ⅱ)若54sin =A ,求△ABC 的面积. 9、(湖北卷)17题11分某实验室一天的温度(单位:℃)随时间t (单位:h )的变化近似满足函数关系: )24,0[,12sin12cos310)(∈--=t t t t f ππ.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于11℃,则在那段时间实验室需要降温? 10、(陕西卷)16题12分△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .(Ⅰ)若a 、b 、c 成等差数列,证明:)sin(2sin sin C A C A +=+; (Ⅱ)若a 、b 、c 成等比数列,求B cos 的最小值. 11、(江西卷)16题12分已知函数)2cos()sin()(θϑ+++=x a x x f ,其中R a ∈,)2,2(ππϑ-∈.(Ⅰ)当4,2πθ==a 时,求)(x f 在区间],0[π上的最大值与最小值;(Ⅱ)若)2(πf =0,1)(=πf ,求a ,θ的值.12、(重庆卷)17题共13分,(Ⅰ)小问5分,(Ⅱ)8分 已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (Ⅰ)求ϖ和ϕ的值; (Ⅱ)若43)2(=αf (326παπ<<),求)23cos(πα+的值. 13、(山东卷)16题12分已知向量),,2(sin ),2cos ,(n x x m ==函数x f ⋅=)(,且)(x f y =的图像过点(3,12π)和点(2,32-π). (Ⅰ)求n m ,的值(Ⅱ)将)(x f y =的图像向左平移ϕ(0<ϕ<π)个单位后得到函数)(x g y =的图像,若)(x g y =的图像上各最高点到点(0,3)的距离的最小值为1,求)(x g y =的单调递增区间.14、(福建卷)16题13分已知函数21)cos (sin cos )(-+=x x x x f . (Ⅰ)若20πα<<,且22sin =α,求)(αf ; (Ⅱ)求函数)(x f 的最小正周期及单调递增区间. 15、(北京卷)15题13分 如图,在△ABC 中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD . (Ⅰ)求BAD ∠sin ; (Ⅱ)求BD ,AC 的长.F16、(天津卷)15题13分 已知函数R x x x x x f ∈+-+⋅=,43cos 3)3sin(cos )(2π. (Ⅰ)求)(x f 的最小正周期; (Ⅱ)求)(x f 在闭区间]4,4[ππ-上的最大值和最小值. 17、(辽宁卷)17题12分在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且a >c .已知.3,31c o s ,2===⋅b B 求:(Ⅰ)a 和c 的值; (Ⅱ))cos(C B -的值. 18、(江苏卷)15题14分 已知),2(ππα∈,55sin =α. (1) 求)4sin(απ+的值;(2) 求)265cos(απ-的值.。
2014高考数学高频题型全掌握 3.指数函数、对数函数、幂函数(全国通用)
【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》3.指数函数、对数函数、幂函数1.(2013·九江质检)若函数f (x )=log a (x +b )的大致图象如图所示,其中a ,b 为常数,则函数g (x )=a x+b 的大致图象是( ).解析 由已知函数f (x )=log a (x +b )的图象可得0<a <1,0<b <1.则g (x )=a x +b 的图象由y =a x 的图象沿y 轴向上平移b 个单位而得到,故选B. 答案 B2.(2011·山东)若点(a,9)在函数y =3x的图象上,则tan a π6的值为 ( ).A .0B.33C .1 D. 3解析 由题意有3a=9,则a =2,∴tan a π6=tan π3= 3. 答案 D3.(2013·佛山模拟)不论a 为何值时,函数y =(a -1)2x-a2恒过定点,则这个定点的坐标是( ).A.⎝ ⎛⎭⎪⎫1,-12B.⎝ ⎛⎭⎪⎫1,12C.⎝ ⎛⎭⎪⎫-1,-12D.⎝⎛⎭⎪⎫-1,124.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( ).A .[2-2,2+2]B .(2-2,2+2)C .[1,3]D .(1,3)解析 f (a )=g (b )⇔e a-1=-b 2+4b -3⇔e a =-b 2+4b -2成立,故-b 2+4b -2>0,解得2-2<b <2+ 2. 答案 B5.(2013年天津河西模拟)已知函数f (x )的定义域为R ,若存在常数m >0,对任意x ∈R ,有|f (x )|≤m |x |,则称f (x )为F 函数.给出下列函数:①f (x )=x 2;②f (x )=sin x +cos x ;③f (x )=xx 2+x +1;④f (x )是定义在R 上的奇函数,且满足对一切实数x 1,x 2均有|f (x 1)-f (x 2)|≤2|x 1-x 2|.其中是F 函数的序号为( ) A .②④ B .①③ C .③④D .①②解析:据F 函数的定义可知,由于|f (x )|≤m |x |⇒|fx ||x |≤m ,即只需函数|f x ||x |存在最大值,函数即为F 函数.易知①②不符合条件;对于③,|f x ||x |=1x 2+x +1=1⎝ ⎛⎭⎪⎫x +122+34≤43,为F 函数;对于④,据题意令x 1=x ,x 2=0,由于函数为奇函数,故有f (0)=0,则有|f (x )-f (0)|≤2|x -0|⇔|f (x )|≤2|x |,故为F 函数.综上可知③④符合条件. 答案:C。
2014年高考数学基本题型、思路、方法和结论大梳理(五)
N )成等差数列,设 为数列( )的前”项 卯 +咒,若 {以 }满 足 以l< 口2< 3< 以4< a 5,且 “ > n 对 ≥ 8 恒 成 立 ,求 实 数 a 的 取 值
和 ,求 T 的 取 值 范 围
范 围 ;
(4) 已知 数 列 {口 ):“ 一 3n 一 (9+ 口) +6+2a( ∈N )的 第 4项取得 最 小值 ,求 实
1 + …
+ ("∈N )的 最 小 项 ·
方 法 1 利 用 a n4 1 一 an 与 0 的 关 系
基 本 想 法 数 列 是 一 种 特 殊 的 函 数 , 所 以数 列 问题 可转 化 为 函 数 问题 .但 数 列 是 定 义 域为 N 的 函数 ,所 以 它 又 有 特 殊 的 处
例 2 设 不等式 nzz+6 +c> o的 解 集 求解 .
为 ( ,卢),-g,中 J8> >0,求 不等 式 CX +6 +
(2)一 次不 等式 恒 成 立 问题 :① 若 不等
n< 0的 解 集 .
式 nz+6≥0对 任意 .27∈[ ,,z]恒 成 立 ,则 有
方 法 若 不等 式 “z @bx+c> O的解
型 、思 路 、 方法 和 结论 大梳 理 (五 )
龙 艳 文
数 列 的 最值 与 单调 性 问题
(或 与 1的关 系 ,其 中 an> 0)判 断数 列 的
“
单 调 性 .
(1)求 数 N )的 最 值 ;
:“ 一
( ∈
方 法 2 若第 项 为数 列 {a )的最 大
≤。等价于I f( x)g(x 。’
。.
@注 意考 虑分母 不 为 0的情 况. 。
2014年高考数学模块题型总复习 3.2 等差数列
3.2等差数列1.等差数列的概念若数列{a n }从第二项起,每一项与它的前一项的差等于同一个常数,则数列{a n }叫等差数列.这个常数叫等差数列的公差,常用字母d 表示,定义的数学表达式为a n-1-a n =d(n ∈N*). 2.等差数列的通项公式a n =a 1+(n-1)d,推广:a n =a m +(n-m)d,变式:a 1=a n -(n-1)d,d=11n a a n --=n m a a n m --. 3.等差中项:若a 、b 、c 成等差数列,则b 称a 与c 的等差中项,且b=2a c +,a 、b 、c 成等差数列是2b=a+c 的充要条件.4.等差数列的前n 项和S nS n =1()2n n a a +=na 1+(1)2n n -d=na n -12(n-1)nd,变式:n S n =12n a a + =12n a a a n ++⋯+=a 1+(n-1)·2d =a n +(n-1)·(-2d ). 5.等差数列的性质(1)若m 、n 、p 、q ∈N*,且m+n=p+q,则对于等差数列有等式a m +a n =a p +a q ;(2)序号成等差数列的项依原序构成的数列,则新数列成等差数列;(3)S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列; (4){n S n}也是一个等差数列; (5)在等差数列{a n }中,若项数为2n,则S 偶-S 奇=nd;若项数为2n-1,则S 奇=na n ,S 偶=(n-1)a n ;(6)等差数列的增减性:d>0时为递增数列,且当a 1<0时,前n 项和S n 有最小值;d<0时为递减数列,且当a 1>0时,前n 项和S n 有最大值.(7)设数列是等差数列,且公差为d,若项数为偶数,设共有2n 项,则①S 偶-S 奇=nd;②S S 奇偶=1n n a a +; 若项数为奇数,设共有2n-1项,则①S 奇-S 偶=a n =a 中;②S S 奇偶=1n n - 1.已知数列{a n }中,a n+1=a n +12且a 1=2,则a 2011等于 ( ) (A)1005 (B)1006 (C)1007 (D)10082.已知数列{a n }为等差数列且a 1+a 7+a 13=4π,则tan(a 2+a 12)的值为 ( ) (A)3 (B)±3 (C)-33(D)-3 3.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 3n ,则数列{b n }的前9项和=__________. 4.已知等差数列的前n 项和为S n ,若a 4=18-a 5,则S 8=___________.题型1五个基本量的有关计算例1(1)在等差数列{a n }中,a 2=2,a 3=4,则a 10等于( )(A)12 (B)14 (C)16 (D)18(2)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=_________ .(3)等差数列{a n }、{b n }的前n 项和分别为S n 、T n ,且n n S T =7453n n +-,则使得n na b 为整数的正整数n 的个数是( )(A)3 (B)4 (C)5 (D)6变式训练1(1)设{a n }为等差数列,公差d=-2,S n 为其前n 项和.若S 10=S 11,则a 1等于 ( )(A)18 (B)20 (C)22 (D)24(2)设S n 是等差数列{a n }(n ∈N*)的前n 项和,且a 1=1,a 4=7,则S 5=_________.(3)已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k=_________题型2等差数列性质的应用例2(1)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=____________.(2)在等差数列{a n }中,a 6=a 3+a 8,则S 9等于 ( )(A)0 (B)1(C)-1 (D)以上都不对变式训练2(1)在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-12a 8的值为 ( )(A)4 (B)6 (C)8 (D)10(2)S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,a 5=_______.题型3等差数列的判定或证明例3 设数列{a n }满足a 1=0且111n a +--11na -=1. (1)求{a n }的通项公式;(2)设b n = 11n an +-,S n =1n k =∑bk ,证明S n <1.变式训练3(1)在数列{a n }中,a 1=1,a n+1=2a n +2n .设b n =12nn a -,证明:数列{b n }是等差数列.题型4等差数列前n 项和S n 的最值例4(1)设等差数列{a n }的前n 项和为S n ,若a 1=-15,a 4+a 6=-6,则当S n 取最小值时,n 等于 ( )(A)5 (B)7 (C)5或6 (D)6或7(2)等差数列{}n a 前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k=_______.变式训练4(1)若{a n}是等差数列,首项a1>0,a2003+a2004>0,a2003·a2004<0则使数列{a n}的前n项和S n>0成立的最大的自然数n是 ( )(A)4005 (B)4006 (C)4007 (D)4008(2)已知等差数列{a n}中,公差d>0,a2009,a2010是方程x2-3x-5=0的两个根,那么使得前n项和S n 为负值且绝对值最大的n的值是________.巩固练习1.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k等于 ( )(A)8 (B)7 (C)6 (D)52.已知数列{a n}的前n项和为Sn,且满足:a1=a(a≠0),a n+1=rS n(n∈N*,r∈R,r≠-1).(1)求数列{a n}的通项公式;(2)若存在k∈N*,使得S k+1,S k,S k+2成等差数列,判断:对于任意的m∈N*,且m≥2,a m+1,a m,a m+2是否成等差数列,并证明你的结论.3.数列{a n}的首项为3,{b n}为等差数列且b n=a n+1-a n(n∈N*).若b3=-2,b10=12,则a8等于 ( )(A)0 (B)3 (C)8 (D)114.设函数f(x)满足f(n+1)=2()2f n n(n∈N*)且f(1)=2,则f(20)为 ( )(A)95 (B)97 (C)105 (D)1925.数列{a n}满足a1=1,a n+1=(n2+n-λ)a n(n=1,2,3,…),λ是常数.(1)当a2=-1时,求λ及a3的值;(2)数列{a n}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.。
2014年高考数学高频考点 必考点题型
2014年高考数学必考考点题型命题热点一 集合与常用逻辑用语集合这一知识点是高考每年的必考内容,对集合的考查主要有三个方面:一是集合的运算,二是集合间的关系,三是集合语言的运用. 在试卷中一般以选择题的形式出现,属于容易题.集合知识经常与函数、方程、不等式等知识交汇在一起命题,因此应注意相关知识在解题中的应用.常用逻辑用语也是每年高考的必考内容,重点考查:充分必要条件的推理判断、四种命题及其相互关系、全称命题与特称命题等,在试卷中一般以选择题的形式出现,属于容易题和中档题,这个考点的试题除了考查常用逻辑用语本身的有关概念与方法,还与其他数学知识联系在一起,所以还要注意知识的灵活运用。
预测 1. 已知集合{}2|20A x x x =->,集合(,)B a b =,且B A ⊆,则a b -的取值范围是A.(2,)-+∞B.[2,)-+∞C.(,2)-∞-D.(,2]-∞-解析:化简A 得{}{}2|20|02A x x x x x =->=<<,由于B A ⊆,所以02a b ≥⎧⎨≤⎩,于是2a b -≥-,即a b -的取值范围是[2,)-+∞,故选B.动向解读:本题考查集合间的关系,考查子集的概念与应用、不等式的性质等,解答时注意对集合进行合理的化简.预测2. 若集合1|2,A x x R x ⎧⎫=<∈⎨⎬⎩⎭,{}3|log (1)B x y x ==-,则A B 等于 A.φ B.1(,1)2 C. 1(,0)(,1)2-∞ D. 1(,1]2 解析:依题意{}1|0,|12A x x x B x x ⎧⎫=<>=<⎨⎬⎩⎭或,所以A B = 1(,0)(,1)2-∞ .故选C.动向解读:本题考查集合的基本运算、函数的定义域、不等式的解法等问题,是高考的热点题型.在解决与函数定义域、值域、不等式解集相关的集合问题时,要注意充分利用数轴这一重要工具,通过数形结合的方法进行求解.预测3. 已知命题:[0,],cos 2cos 02p x x x m π∃∈+-=为真命题,则实数m 的取值范围是 A. 9[,1]8-- B. 9[,2]8- C. [1,2]- D. 9[,)8-+∞解析:依题意,cos 2cos 0x x m +-=在[0,]2x π∈上恒成立,即cos 2cos x x m +=.令2219()cos 2cos 2cos cos 12(cos )48f x x x x x x =+=+-=+-,由于[0,]2x π∈,所以cos [0,1]x ∈,于是()[1,2]f x ∈-,因此实数m 的取值范围是[1,2]-,故选C.动向解读:本题考查全称命题与特称命题及其真假判断,对于一个全称命题,要说明它是真命题,需要经过严格的逻辑推理与证明,要说明它是一个假命题,只要举出一个反例即可;而对于特称命题,要说明它是一个真命题,只要找到一个值使其成立即可,而要说明它是一个假命题,则应进行逻辑推理与证明.预测4. “0a ≤”是“不等式20x ≥对任意实数x 恒成立”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:不等式20x ≥对任意实数x 恒成立,则有20a ∆==≤,又因为0a ≥,所以必有0a =,故“0a ≤”是“不等式20x ≥对任意实数x 恒成立”的必要不充分条件.故选B.动向解读:本题考查充分必要条件的推理判断,这是高考的一个热点题型,因为这类问题不仅能够考查逻辑用语中的有关概念与方法,还能较好地考查其他相关的数学知识,是一个知识交汇的重要载体.解答这类问题时要明确充分条件、必要条件、充要条件的概念,更重要的是要善于列举反例.命题热点二 函数与导数函数是高中数学的主线,是高考考查的重点内容,主要考查:函数的定义域与值域、函数的性质、函数与方程、基本初等函数、函数的应用等,在高考试卷中,一般以选择题和填空题的形式考查函数的性质、函数与方程、基本初等函数等,以解答题的形式与导数交汇在一起考查函数的定义域、单调性以及函数与不等式、函数与方程等知识.其中函数与方程思想、数形结合思想等都是考考查的热点.高考对导数的考查主要有以下几个方面:一是考查导数的运算与导数的几何意义,二是考查导数的简单应用,例如求函数的单调区间、极值与最值等,三是考查导数的综合应用.导数的几何意义以及简单应用通常以客观题的形式出现,属于容易题和中档题;而对于导数的综合应用,则主要是和函数、不等式、方程等联系在一起以解答题的形式进行考查,例如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题.预测1. 函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定A .有最小值B .有最大值C .是减函数D .是增函数解析:函数()f x 图像的对称轴为x a =,依题意有1a <,所以()()2f x a g x x a x x==+-,()g x 在上递减,在)+∞上递增,故()g x 在(1,)+∞上也递增,无最值,选D.动向解读:本题考查二次函数、不等式以及函数的最值问题.对于二次函数,高考有着较高的考查要求,应熟练掌握二次函数及其有关问题的解法.在研究函数的单调性以及最值问题时,要善于运用基本不等式以及函数(0)p y x p x=+>的单调性进行求解. 预测2. 如图,当参数λ分别取12,λλ时,函数2()(0)1x f x x x λ=≥+的部分图像分别对应曲线12,C C ,则有A.120λλ<<B. 210λλ<<C.120λλ<< D. 210λλ<< 解析:由于函数2()1x f x xλ=+的图像在[0,)+∞上连续不间断,所以必有120,0λλ>>.又因为当1x =时,由图像可知122211λλ>++,故12λλ<,所以选A. 动向解读:本题考查函数的图像问题,这是高考考查的热点题型,其特点是给出函数图象,求函数解析式或确定其中的参数取值范围.解决这类问题时,要善于根据函数图象分析研究函数的性质,从定义域、值域、对称性、单调性、经过的特殊点等方面获取函数的性质,从而确定函数的解析式或其中的参数取值范围.预测3. 已知函数()x f x e mx =-的图像为曲线C ,若曲线C 不存在与直线12y x =垂直的切线,则实数m 的取值范围是 A. 12m ≤- B. 12m >- C. 2m ≤ D. 2m > 解析:'()x f x e m =-,曲线C 不存在与直线12y x =垂直的切线,即曲线C 不存在斜率等于2-的切线,亦即方程2x e m -=-无解,2x e m =-,故20m -≤,因此2m ≤.动向解读:本题考查导数的几何意义,这是高考对导数考查的一个重要内容和热点内容,涉及曲线的切线问题都可考虑利用导数的几何意义解决,求解这类问题时,要始终以“切点”为核心,并注意对问题进行转化.预测4. (理科)已知函数 为R 上的单调函数,则实数a 的取值范围是A .[1,0)-B .(0,)+∞C .[2,0)-D .(,2)-∞-解析:若()f x 在R 上单调递增,则有02021a a a >⎧⎪+>⎨⎪+≤⎩,a 无解;若()f x 在R 上单调递减,则有02021a a a <⎧⎪+>⎨⎪+≥⎩,解得10a -≤<,综上实数a 的取值范围是[1,0)-.故选A.动向解读:本题考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.解决这类问题时,要特别注意:分段函数在R 上单调递增(减),不仅要求函数在每一段上都要单调递增(减),还应满足函数在分段点左侧的函数值不大于(不小于)分段点右侧的函数值.(文科) 已知函数()()()210(2)0x ax x f x a e x ⎧+≥⎪=⎨-<⎪⎩为R 上的单调函数,则实数a 的取值范围是A. (2,3]B.(2,)+∞C.(,3]-∞D.(2,3)解析:若()f x 在R 上单调递增,则有02021a a a >⎧⎪->⎨⎪-≤⎩,解得23a <≤;若()f x 在R 上单调递减,则有02021a a a <⎧⎪-<⎨⎪-≥⎩,a 无解,综上实数a 的取值范围是(2,3].动向解读:本题考查分段函数、函数的单调性以及分类讨论思想,这些都是高考的重要考点.解决这类问题时,要特别注意:分段函数在R 上单调递增(减),不仅要求函数在每一段上都要单调递增(减),还应满足函数在分段点左侧的函数值不大于(不小于)分段点右侧的函数值.预测5. (理科)设函数)1ln()(2++=x b x x f ,其中0≠b .(1)若12b =-,求)(x f 在[1,3]的最小值;(2)如果()f x 在定义域内既有极大值又有极小值,求实数b 的取值范围;(3)是否存在最小的正整数N ,使得当N n ≥时,不等式311lnn n n n+->恒成立. 解析:(1)由题意知,)(x f 的定义域为),1(+∞-, 12b =-时,由2/122212()2011x x f x x x x +-=-==++,得2x =(3x =-舍去), 当[1,2)x ∈时,/()0f x <,当(2,3]x ∈时,/()0f x >,所以当[1,2)x ∈时,()f x 单调递减;当(2,3]x ∈时,()f x 单调递增,所以min ()(2)412ln3f x f ==-; (2)由题意2/22()2011b x x b f x x x x ++=+==++在),1(+∞-有两个不等实根,即2220x x b ++=在),1(+∞-有两个不等实根,设()g x =222x x b ++,则480(1)0b g ∆=->⎧⎨->⎩,解之得102b <<; (3)对于函数())1ln(2+-=x x x f ,令函数())1ln()(233++-=-=x x x x f x x h ,则()1)1(31123232/+-+=++-=x x x x x x x h ,()0),0[/>+∞∈∴x h x 时,当, 所以函数()x h 在),0[+∞上单调递增,又),0(,0)0(+∞∈∴=x h 时,恒有()0)0(=>h x h ,即)1ln(32++<x x x 恒成立.取),0(1+∞∈=n x ,则有23111ln n n n n+>-恒成立. 显然,存在最小的正整数N=1,使得当N n ≥时,不等式23111ln n n n n +>-恒成立. 动向解读:函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法.(文科)已知函数()3ln a f x ax x x=+-.(1)当2a =时,求函数()f x 的最小值;(2)若()f x 在[2,]e 上单调递增,求实数a 的取值范围.解析:(1)当2a =时,2()23ln f x x x x =+-,定义域为(0,)+∞. 2'2223232()2x x f x x x x --=--=,令'()0f x =,得2x =(12x =-舍去),当x 变化时,()f x ,'()f x 的变化情况如下表:所以函数()f x 在2x =时取得极小值,同时也是函数在定义域上的最小值(2)53ln 2f =-.(2)由于'23()a f x a x x =--,所以由题意知,'23()0a f x a x x=--≥在[2,]e 上恒成立. 即2230ax x a x --≥,所以230ax x a --≥在[2,]e 上恒成立,即231x a x ≥-.令23()1x g x x =-,而2'2233()(1)x g x x --=-,当[2,]x e ∈时'()0g x <,所以()g x 在[2,]e 上递减,故()g x 在[2,]e 上得最大值为(2)2g =,因此要使231x a x ≥-恒成立,应有2a ≥. 动向解读:函数、导数、不等式的综合问题是近几年高考的一个热点题型,这类问题以“参数处理”为主要特征,以“导数运用”为主要手段,以“函数的单调性、极值、最值”为结合点,往往涉及到函数、导数、不等式、方程等多方面的知识,需要综合运用等价转换、分类讨论、数形结合等重要数学思想方法.命题热点三 立体几何与空间向量(理科)高考对立体几何与空间向量的考查主要有三个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系;三是考查利用空间向量解决立体几何问题:例如利用空间向量证明线面平行与垂直、利用空间向量求空间角等.在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.(文科)高考对立体几何的考查主要有两个方面:一是考查空间几何体的结构特征、直观图与三视图;二是考查空间点、线、面之间的位置关系,线面平行、垂直关系的证明等;在高考试卷中,一般有1~2个客观题和一个解答题.多为容易题和中档题.预测1.若一个底面是正三角形的直三棱柱的正视图如图所示,则其侧面积等于A B .2C .D .6解析:由正视图可知该三棱柱的底面边长等于2,高是1,所以其侧面积等于3216S =⨯⨯=,故选D.动向解读:三视图是高考的热点内容,几乎每年必考,除了考查对简单几何体的三视图的判断外,更多地是以三视图为载体考查几何体的体积、表面积的计算,在由三视图中给出的数据得出原几何体的有关数据时,要充分利用三视图“主左一样高、主俯一样长、俯左一样宽”的性质.预测2.平面α与平面β相交,直线m α⊥,则下列命题中正确的是A. β内必存在直线与m 平行,且存在直线与m 垂直B. β内不一定存在直线与m 平行,不一定存在直线与m 垂直C. β内不一定存在直线与m 平行,但必存在直线与m 垂直D. β内必存在直线与m 平行,却不一定存在直线与m 垂直解析:假设l αβ= ,由于m α⊥,所以必有m l ⊥,因此在β内必存在直线l 与m 垂直;当αβ⊥时,可存在直线与m 平行,当α与β不垂直时,在β内一定不存在直线与m 平行.故选B. 动向解读:本题考查空间中线面、面面的平行与垂直关系的判断,其特点是以符号语言给出,考查对相关定理的理解与运用,解决这类问题时,要熟练掌握相关的定理,善于利用一些常见的几何体作为模型进行判断,还要善于举出反例对命题进行否定.预测3.(理科)正△ABC 的边长为4,CD 是AB 边上的高,,E F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A DC B --.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E DF C --的余弦值;(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.解:法一:(I )如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF //AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(II )∵AD ⊥CD ,BD ⊥CD ,∴∠ADB 是二面角A —CD —B 的平面角,∴AD ⊥BD ,∴AD ⊥平面BCD ,取CD 的中点M ,这时EM ∥AD ,∴EM ⊥平面BCD , 过M 作MN ⊥DF 于点N ,连结EN ,则EN ⊥DF ,∴∠MNE 是二面角E —DF —C 的平面角.在Rt △EMN 中,EM =1,MN =23,∴tan ∠MNEcos ∠MNE =721. (Ⅲ)在线段BC 上存在点P ,使AP ⊥DE ,证明如下:在线段BC 上取点P 。
2014年高考数学分类汇编 集合与简易逻辑用语
2014年高考数学分类汇编(一) 集合与常用逻辑用语1、【2014安徽2】命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R xD. 0||,2000≥+∈∃x x R x2、【2014安徽理2】“0<x ”是“0)1ln(<+x ”的( )A 、 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3、【北京理5】.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件.D 既不充分也不必要条件4、【大纲理2】.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N =A .(0,4]B .[0,4)C .[1,0)-D .(1,0]-5、【福建理6】.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的( ) .A 充分而不必要条件.B 必要而不充分条件 .C 充分必要条件.D 既不充分又不必要条件6、【福建理14】若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ;③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.8、【湖北理3】. 设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,是“∅=B A ”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件9、【湖南理5】.已知命题22:,;:,.p x y x y q x y x y >-<->>若则命题若则在命题①p q ∧②p q ∨③()p q ∧⌝④()p q ⌝∨中,真命题是A .①③B .①④C .②③D .②④10、【江西文2】.设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤,则()R A C B =( ).(3,0)A - .(3,1)B -- .(3,1]C -- .(3,3)D -11、【江西文6】.下列叙述中正确的是( ).A 若,,a b c R ∈,则2"0"ax bx c ++≥的充分条件是2"40"b ac -≤.B 若,,a b c R ∈,则22""ab cb >的充要条件是""a c >.C 命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥”.D l 是一条直线,,αβ是两个不同的平面,若,l l αβ⊥⊥,则//αβ12、【辽宁5】.设,,a b c 是非零向量,已知命题P :若0a b •=,0b c •=,则0a c •=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝13、【山东理(2)】设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB = (A )[0,2](B )(1,3)(C )[1,3)(D )(1,4)14、【陕西理8】.原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假15、【新课标(3)】函数()f x 在0x=x 处导数存在,若()00p f 0::x q x x '==:是()f x 的极值点,则p 是q(A )充分必要条件 (B )充分不必要条件(C )必要不充分条件 (D) 既充分也不必要条件16、【浙江文2】、设四边形ABCD 的两条对角线AC ,BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件17、【浙江理2】已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件18、【广东8】.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90 C.120 D.13019、【福建文16】. 已知集合{}{}2,1,0,,=c b a ,且下列三个关系:①2≠a ②2=b ③0≠c 有且只有一个正确,则________10100=++c b a。
2014高考数学知识点
2014高考数学知识点2014年的高考数学试卷是考查学生对数学知识点的掌握和应用能力的重要考试。
下面,我将为您详细介绍2014年高考数学试卷涉及的主要知识点。
知识点一:函数与方程在2014年的高考数学试卷中,函数与方程是一个非常重要的知识点。
学生需要掌握函数的概念、性质和图像,并能够解一元一次方程、一元二次方程、一次不等式、二次不等式等各种类型的方程。
此外,还需要了解函数与方程在实际问题中的应用,例如利用函数关系解决实际问题、求函数的最值等。
知识点二:三角函数三角函数也是2014年高考数学试卷中的重点内容。
学生需要了解正弦函数、余弦函数、正切函数等各种三角函数的定义、性质以及它们的图像。
同时,还需要能够解三角方程和三角不等式,并能够应用三角函数解决实际问题,如求角度、求距离等。
知识点三:数列与数学归纳法数列与数学归纳法也是2014年高考数学试卷中的重要知识点。
学生需要了解数列的概念、性质和求和公式,并能够判断数列的特点,如等差数列、等比数列等。
此外,还需要掌握数学归纳法的基本原理和应用,以解决数列问题。
知识点四:立体几何立体几何是2014年高考数学试卷中的必考知识点之一。
学生需要了解各种立体几何的基本概念,如球体、圆柱体、锥体等,并能够计算立体几何的表面积和体积。
此外,还需要掌握立体几何在实际问题中的应用,如计算容积、表面积等。
知识点五:概率与统计概率与统计也是2014年高考数学试卷中的重点知识点。
学生需要了解概率的基本概念、性质和计算方法,并能够解决概率问题,如计算事件的概率、计算样本空间等。
同时,还需要了解统计的基本概念和方法,如频数、频率、均值、中位数等,并能够分析和解释统计数据。
通过对2014年高考数学试卷的分析,我们可以看出,数学知识点的掌握是高考数学考试的核心要求。
只有对这些知识点有深入的理解和熟练的应用,才能在考试中取得好成绩。
因此,我们应该注重对这些知识点的学习和巩固,并进行大量的练习,以提高自己的数学水平和解题能力。
2014高考数学高频题型全掌握系列24大专题(全国通用)
【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》 1.集合与常用逻辑用语1错误!未指定书签。
.(2013北京西城高三二模)已知集合{1,2,3,4,5}的非空子集A 具有性质P :当a A ∈时,必有6a A -∈.则具有性质P 的集合A 的个数是( )A .8B .7C .6D .5 B有条件可知有1,必有5;有2必有4;3可单独在一起.满足题意的子集有{3}、{ 1,5}、{ 2,4}、{3,1,5}、{3,2,4}、{3,1,5,2,4}、{1,5,2,4},共7个.选B.2错误!未指定书签。
.(2013北京海淀二模)集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则AB =( )A .(,0-∞)B .(,1]-∞C .[1,2]D .[1,)+∞B{}|(1)(2)0{21}A x x x x x =-+≤=-≤≤,所以A B ={1}x x ≤,即选B.3.(2013年福建数学(理))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( )A.*,A N B N == B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C.{|01},A x x B R =<<= D.,A Z B Q == D根据题意可知,令()1f x x =-,则A 选项正确;令55(13)()228(1)x x f x x ⎧+-<≤⎪=⎨⎪-=-⎩,则B 选项正确; 令1()tan ()2f x x π=-,则C 选项正确;故答案为D .错误!未指定书签。
5.(2013年高考上海卷(理))设常数a R ∈,集合{|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ⋃=,则a 的取值范围为( )(A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞(D) [2,)+∞B.【解答】集合A 讨论后利用数轴可知,111a a ≥⎧⎨-≤⎩或11a a a ≤⎧⎨-≤⎩,解答选项为B .6.命题“若函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数,则log a 2<0”的逆否命题是( )A .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数B .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数C .若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数D .若log a 2<0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数 【答案】A【解析】由互为逆否命题的关系可知,原命题的逆否命题为:若log a 2≥0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内不是减函数. 故选择A.7.(2011上海卷²理)设{a n }是各项为正数的无穷数列,A i 是边长为a i ,a i +1的矩形的面积(i =1,2,…),则{A n }为等比数列的充要条件为( ) A .{a n }是等比数列B .a 1,a 3,…,a 2n -1,…或a 2,a 4,…,a 2n ,…是等比数列C .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n ,…均是等比数列D .a 1,a 3,…,a 2n -1,…和a 2,a 4,…,a 2n …均是等比数列,且公比相同 【答案】D【解析】∵A i =a i a i +1,若{A n }为等比数列, 则A n +1A n =a n +1a n +2a n a n +1=a n +2a n 为常数, 即A 2A 1=a 3a 1,A 3A 2=a 4a 2,….∴a 1,a 3,a 5,…,a 2n -1,…和a 2,a 4…,a 2n ,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q ,则A n +1A n =a n +2a n=q ,从而{A n }为等比数列. 故选择D.【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》2.函数的概念及其性质1错误!未指定书签。
2014年高考数学数列
2014年全国高考数学试题分类汇编(数列)1.【2014·全国卷Ⅱ(文5)】等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A2.【2014·全国大纲卷(理10)】等比数列{}n a 中,452,5a a ==,则数列{lg }n a 的前8项和等于 ( )A .6B .5C .4D .3 【答案】C .3.【2014·全国大纲卷(文8)】设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C. 63 D. 64 【答案】C4.【2014·北京卷(理5)】设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 .D 既不充分也不必要条件【答案】D5.【2014·天津卷(文5)】设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和.若124,,S S S 成等比数列,则1a =( )(A )2 (B )-2 (C )12 (D )12- 【答案】D .6.【2014·福建卷(理3)】等差数列{}n a 的前n 项和n S ,若132,12a S ==,则6a =( ) .8A .10B .12C .14D 【答案】C7.【2014·辽宁卷(文9)】设等差数列{}n a 的公差为d ,若数列1{2}n a a为递减数列,则( )A .0d >B .0d <C .10a d >D .10a d <【答案】D8.【2014·陕西卷(理文4)】根据右边框图,对大于2的整数N ,得出数列的通项公式是( ).2n A a n = .2(1)n B a n =- .2n n C a = 1.2n n D a -=【答案】C9.【2014·重庆卷(理2)】对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列【答案】D10.【2014·重庆卷(文2)】在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D【答案】B11.【2014·全国卷Ⅱ(文16)】数列{}n a 满足1+n a =n a -11,2a =2,则1a =_________.【答案】2112.【2014·安徽卷(理12)】数列{}a n 是等差数列,若1a 1+,3a 3+,5a 5+构成公比为q 的等比数列,则q =________. 【答案】1q =。
2014高考数学高频题型全掌握 4.函数图像与函数方程(全国通用)
【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌握系列》4.函数图像与函数方程1.(河北省质检)函数y =e sin x(-π≤x ≤π)的大致图象为 ( ).解析 因-π≤x ≤π,由y ′=e sin x cos x >0,得-π2<x <π2.则函数y =e sin x 在区间⎝⎛⎭⎫-π2,π2上为增函数,排除A 、B 、C ,故选D. 答案 D2.(西安模拟)如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是 ( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C. 答案 C3.(2012·江西)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI 的面积S =FG ×GH +12FI ×EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x3-2x 2+26,其图象不可能是一条线段,故排除C ,D. (2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC 底面FGC 上的高h =EC sin 45°=22(1-x ),∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1,∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A. 答案 A4.(广州市调研)对任意x ∈R ,函数f (x )表示-x +3,32x +12,x 2-4x +3中的最大的一个,则f (x )的最小值是( ).A .2B .3C .8D .-1解析 画出函数y =-x +3,y =32x +12,y =x 2-4x +3在同一坐标系中的图象,则函数f (x )的图象为图中实线部分(如图).当x =1时,f (x )取最小值2.答案 A。
2014年高考数学
2014年高考数学2014年高考数学试题一、单选题1. 设函数 f(x) = (1+x)/(1-x),则 f(x) + f(1/x) 的值为()A. (1+x)/(1-x)B. (1-x)/(1+x)C. (1+x^2)/(1-x^2)D. (1-x^2)/(1+x^2)2. 已知函数 f(x) = 2cos(x) + 1,g(x) = cos(2x),则 f(x) + g(x) 的最小正周期为()A. πB. 2πC. 3πD. 4π3. 在平面直角坐标系中,动点 P 的坐标关系式为 x^2 + y^2 - 2x + 4y + 4 = 0,则点 P 的轨迹为()A. 直线B. 抛物线C. 椭圆D. 双曲线4. 函数 f(x) = (ax^2 + b)/(x + 1)^2 在点 x = 1 处有可去间断点,则 a 和 b 的值分别为()A. 1,2B. -1,-2C. -1,2D. 1,-25. 已知函数 f(x) 为奇函数,且 f(x) + f'(x) = e^x,则求 f(x) 的表达式为()A. -0.5e^xB. -e^xC. 0.5e^xD. e^x二、多选题1. 若α,β为第一象限内两个无关的锐角,则下列关系成立的是()A. sin (α + β) = sinα + sinβB. cos (α + β) = cosα + cosβC. tan (α + β) = tanα + tanβD. cot (α + β) = cotα + cotβ2. 已知集合 A = {2, 4, 6},B = {3, 6, 9},则集合 A × B = ()A. {(2,3),(2,6),(2,9),(4,3),(4,6),(4,9),(6,3),(6,6),(6,9)}B. {(2,3),(4,6),(6,9)}C. {(3,2),(6,4),(9,6)}D. {(2,6),(4,9),(6,3)}三、解答题1. 已知数列 {an} 满足 a1 = 2,an = (3 + an-1)/(1 - 2an-1),求 an 的表达式。
2014年高考数学题型分析
2014年高考数学题型分析D全省文理科考生的数学成绩最高分均未超过140分,平均成绩也有较大幅度的下降。
2010年理科类三角函数二小一大共20分,立体几何三小一大共27分,解析几何二小一大共22分,数列一小一大共17分,组合、二项式、概率二小一大共22分,代数、函数等六小一大共42分,其中选择题12个题中,仍是8个较容易、2个中等、2个较难。
填空题中2题较容易、一个中等、一个较难,选择填空题的难度与2009年相当,变化不大,得分也大致相同。
今年选择题8~12题中皆有较大运算量,花了不少时间却不一定选对,影响了后面题目的解答,尤其是第11题,要证明难度大,填空题第16题虽是常规题,但要求空间思维能力较强,填对的不多。
2010年6个大题中,难度都有不同程度的增加,且在原考题基础上都有一定变化。
三角函数题变化不大,若考生对平面几何的概念清楚,解题迎刃而解,仍是以正弦定理、边角关系、和角公式等为主,平均分略有下降,从4.4分下降到4分。
数列题第一问较简单,第二问证明方法很多,不等式缩小得太小,考生做的较好,但不完整,考分略有增加,平均分从3.58分增加到4.23分.立体几何题难度与2009年近似,仅由于直三棱柱图形平放,同学们没有注意图形的变化,该题第一问较简单,向量代数方法及传统方法都可以解决,但有些同学仍抓不住关键,叙述不清,影响得分,第二问传统方法太难;图形中要引入6条辅助线,向量代数的方法较简单,其难度与09年相当,平均分略有下降,从3.98分降到3.33分.但比08年的7.30分及07年的6.98分仍下降较多。
概率应用题变化大,学生对题目理解不透,第一问就无法求解,即使能求但由于不规范,不设事件,不说明字母A、B表示的事件,仅给一个算式,虽答案正确但得分不高,第二、三问考生理解不透,不会分析,得分不多,全省高分不多,概率题中哪些该叙述,哪些事件该说明,解答过程哪些不能省,哪些可以省略,考生一直未重视,平均分下降最多,从5.88分降至2.58分,08年最低保险费题平均分1.57分,是近几年平均分较低的一年,解析几何双曲线题第一问并不难,第二问证明过三点的圆与x 轴相切的题型新颖,考生抓不住要点,答题思路不对,全省仅有三人得满分,且高分也不多,考生基本知识不牢固,平均分从3.36分下降到2.36分,但仍比08年的1.92分略高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高考数学题型归纳:圆锥曲线1、直线与圆锥曲线的位置关系:①、要解决直线与圆锥曲线的位置关系问题,通常把直线方程与圆锥曲线方程联立,消去y(或消去x)得到关于x(或关于y)的一元二次方程,再考查其△,从而确定直线与圆锥曲线的的交点个数:(1)若△<0,则直线与圆锥曲线没有公共点;②若△=0,则直线与圆锥曲线有唯一的公共点;③若△>0,则直线与圆锥曲线有两个不同的公共点;②、从几何角度来看:直线与圆锥曲线的位置关系对应着相交(有两个交点)、相切(有一个公共点)、相离(没有公共点)三种情况;这里特别要注意的是:当直线与双曲线的渐近线平行时、当直线与抛物线的对称轴平行时,属于相交的情况,但只有一个公共点。
3、直线与圆锥曲线相交的中点弦的的问题,常用的求解方法有两种:①、设直线方程为y=kx+m,代入到圆锥曲线方程之中,消元后得到一元二次方程,再利用根与系数的关系去处理(由于直线方程与圆锥曲线方程均未定,因而通常计算量较大);②、利用点差法:例如在椭圆内有一定点P(x0,y0),求以P为中点的弦的直线方程时,可设弦的两端点为A(x1,y1)、B(x2,y2) ,则A、B满足椭圆方程,即有两式相减再整理可得:(x1+x2) (x1-x2)a2 = - (y1+y2) (y1-y2)b2;从而可化出k= y1-y2x1-x2 = (x1+x2) (y1+y2)•-b2a2 = x0y0•-b2a2;对于双曲线也可求得:k= y1-y2x1-x2 = (x1+x2) (y1+y2)•b2a2= x0y0•b2a2;抛物线也可用此法去求解,值得注意的是,求出直线方程之后,要根据图形加以检验。
4、解决直线与圆锥曲线问题的一般方法是:①、解决焦点弦(过圆锥曲线的焦点的弦)的长的有关问题,注意应用圆锥曲线的定义和焦半径公式;②、已知直线与圆锥曲线的某些关系求圆锥曲线的方程时,通常利用待定系数法;③、圆锥曲线上的点关于某一直线的对称问题,解决此类问题的方法是利用圆锥曲线上的两点所在的直线与对称直线垂直,则圆锥曲线上两点的中点一定在对称直线上,再利用根的判别式或中点与曲线的位置关系求解。
典型例题考点一:求圆锥曲线的标准方程、离心率、准线方程等.利用待定系数法求出相应的a,b,p等.例1.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.【名师点睛】:充分认识椭圆中参数a,b,c,e的意义及相互关系,在求标准方程时,已知条件常与这些参数有关.考点2:圆锥曲线的几何性质由方程来讨论其性质.例2:设F1、F2为椭圆的两个焦点,P为上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求的值.思路分析:由已知,F1不是直角顶点,所以只要对P、F2中哪一个是直角顶点分两种情况即可.解法1:由已知,|PF1|>|PF2|,|PF1|+|PF2|=6,|F1F2|= ,若∠PF2F1为直角,则|PF1|2=|PF2|2+|F1F2|2,可解得:|PF1|= ,|PF2|= ,这时.若∠F2PF1为直角,则|PF1|2+|PF2|2=|F1F2|2,可解得:|PF1|=4,|PF2|=2,这时.【名师点睛】:由椭圆的方程,熟练准确地写出其几何性质(如顶点,焦点,长、短轴长,焦距,离心率,焦半径等)是应对考试必备的基本功;在解法2中设出了P点坐标的前提下,还可利用|PF1|=a+ex,|PF2|=a-ex来求解.考点3:有圆锥曲线的定义的问题利用圆锥曲线的第一、第二定义求解.1、椭圆的第一定义:我们把平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e= (02、.双曲线的定义第一定义:平面内与两个定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.即||MF1|-|MF2||=2a(<|F1F2|).M为动点,F1、F2为定点,a为常数.第二定义:平面内到定点F的距离和到定直线的距离的比等于常数(大于1)的点的轨迹叫做双曲线,即=e(e>1).F为直线l外一定点,动点到定直线的距离为d,e为大于1的常数.3、 1.抛物线的定义平面内到一定点和到一定直线的距离相等的点的轨迹叫做抛物线.定点为抛物线的焦点,定直线为抛物线的准线.例3:已知某椭圆的焦点F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个焦点为B,且=10,椭圆上不同两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列.(1)求该椭圆的方程;(2)求弦AC中点的横坐标.思路分析:因为已知条件中涉及到椭圆上的点到焦点的距离,所以可以从椭圆的定义入手.解:(1)由椭圆的定义及已知条件知:2a=|F1B|+|F2B|=10,所以a=5,又c=3,故b=4.故椭圆的方程为.由点B(4,y0)在椭圆上,得|F2B|=|y0|= ,因为椭圆的右准线方程为,离心率.所以根据椭圆的第二定义,有.因为|F2A|,|F2B|,|F2C|成等差数列,+ ,所以:x1+x2=8,从而弦AC 的中点的横坐标为例4:已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为63,短轴一个端点到右焦点的距离为3.(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为32,求△AOB面积的最大值.解:(1)设椭圆的半焦距为c,依题意∴b=1.∴所求椭圆方程为x23+y2=1.(2)设A(x1,y1),B(x2,y2),①当AB⊥x轴时,|AB|=3,②当AB与x轴不垂直时,设直线AB的方程为y=kx+m.由已知|m|1+k2=32,得m2=34(k2+1),把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2-3=0∴x1+x2=-6km3k2+1,x1x2=3(m2-1)3k2+1.∴|AB|2=(1+k2)(x2-x1)2=(1+k2)36k2m2(3k2+1)2-12(m2-1)3k2+1=12(k2+1)(3k2+1-m2)(3k2+1)2=3(k2+1)(9k2+1)(3k2+1)2学=3+12k29k4+6k2+1=3+129k2+1k2+6(k≠0)≤3+122×3+6=4.当且仅当9k2=1k2,即k=±33时等号成立|AB|=2.当k=0时,|AB|=3,综上所述,|AB|max=2.∴当|AB|最大时,△AOB面积取最大值,S=12×|AB|max×32=32.【名师点睛】:在以直线与双曲线的知识为背景前提下,结合相应的平面几何知识点到直线距离、两直线的交点问题等来解决有关的三角形面积,交点坐标问题。
深刻体会代数法来解决解析几何的思想实质。
考点5:轨迹问题求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2)定义法若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求(3)相关点法根据相关点所满足的方程,通过转换而求动点的轨迹方程(4)参数法若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性要注意区别“轨迹”与“轨迹方程”是两个不同的概念根据已知条件求出轨迹方程,再由方程说明轨迹的位置、形状、大小等特征.例5. 设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程。
【解析】:由知Q,M,P三点在同一条垂直于x轴的直线上,故可设,,,则,即①再设,由,即,解得②将①代入②式,消去得③【名师点睛】:对于解析几何问题,首先要建系设点然后结合几何中的性质进行求解运算。
同时要注意圆的参数方程的运用,对于轨迹方程的求解要注意查漏补缺。
考点6:与圆锥曲线有关的定值、最值问题建立目标函数,转化为函数的定值、最值问题.例6:已知直线与椭圆相交于A、B两点.(1)若椭圆的离心率为,焦距为2,求线段AB的长; (2)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.解:(1)∴椭圆的方程为…2分联立…5分(II)【名师点睛】:本试题先直接发球轨迹方程,然后运用一问的结论进一步研究第二问,充分利用圆锥曲线的定义和余弦定理,结合不等式的思想来得到不等式关系,从而得到相关的结论。
主要是体会焦点三角形的运用。
【名师点睛】:设椭圆上动点坐标为(x,y),用该点的横坐标将距离d表示出来,利用求函数最值的方法求d的最小值.考点7:与圆锥曲线有关的对称问题利用中心对称以及轴对称的概念和性质来求解或证明.例7:已知直线l:y=x+m,m∈R。
(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。
本小题主要考查直线、圆、抛物线等基础知识,考查运算求解能力,考查函数与方程思想,数形结合思想,化归与转化思想、分类与整合思想,满分13分。
【解析】:法一:(I)依题意:点的坐标为,因为所以,解得,即点的坐标为(0,2)。
从而圆的半径故所求圆的方程为。
(II)因为直线的方程为所以直线的方程为由得,(1)当=1,即=0时,直线与抛物线C相切;(2)当,即时,直线与抛物线C不相切;综上,当=1,直线与抛物线C相切;当,直线与抛物线C不相切;法二:(I)设所求圆的半径为,则圆的方程可设为,依题意,所求圆与直线相切于点,则,解得所以所求圆的方程为(II)同解法一。
【名师点睛】:本题是典型的求圆锥曲线方程的问题,解法一,将A、B两点坐标代入圆锥曲线方程,两式相减得关于直线AB斜率的等式,再利用对称点所连线段被对称轴垂直平分来列式求解;解法二,用韦达定理突破训练1、如图,设是圆珠笔上的动点,点D是在轴上的投影,M为D上一点,且(Ⅰ)当的在圆上运动时,求点M的轨迹C的方程;(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的长度。
【解析】:(Ⅰ)设M的坐标为,的坐标为由已知得在圆上,即C的方程为(Ⅱ)过点(3,0)且斜率为的直线方程为,设直线与C的交点为,将直线方程代入C的方程,得,即。