5-1数列的概念
第5篇 第1讲 数列的概念与简单表示法
诊断基础知识
突破高频考点
培养解题能力
2.三个防范 一是注意数列不仅有递增、递减数列,还有常数 列、摆动数列,如(4). 二是数列的通项公式不唯一,如 (3) 中还可以表示为 an =
1,n为奇数, 0,n为偶数.
三是已知 Sn 求 an 时,一定要验证 n=1 的特殊情形,如(5).
所以an=3×2n-1-2.
诊断基础知识
突破高频考点
培养解题能力
规律方法
给出 Sn 与 an 的递推关系,求 an ,常用思路是:一
是利用Sn-Sn-1=an(n≥2)转化为an的递推关系,再求其通项 公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系, 再求an.
诊断基础知识
突破高频考点
培养解题能力
诊断基础知识
突破高频考点
培养解题能力
解析 (1)由题意得, 当 n≥2 时, an=a1+(a2-a1)+(a3-a2)+„ n-12+n nn+1 +(an-an-1)=2+(2+3+„+n)=2+ = 2 + 2 1. 1×1+1 又 a1=2= +1,符合上式, 2 nn+1 因此 an= +1. 2
诊断基础知识
突破高频考点
培养解题能力
考点二 由an与Sn的关系求通项an
【例 2】
(2012· 广东卷 ) 设数列 {an} 的前 n 项和为 Sn ,数列
{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*. (1)求a1的值; (2)求数列{an}的通项公式.
诊断基础知识
突破高频考点
培养解题能力
诊断基础知识
突破高频考点
培养解题能力
an+1+1 (2)an+1=3an+2,即 an+1+1=3(an+1),即 =3, an+1 a2+1 a3+1 a4+1 an+1+1 法一 =3, =3, =3,„, =3.将这些 a1+1 a2+1 a3+1 an+1 an+1+1 n 等式两边分别相乘得 =3 . a1+1 an+1+1 n 因为 a1=1,所以 =3 ,即 an+1=2×3n-1(n≥1),所以 1+1 an=2×3n 1-1(n≥2),又 a1=1 也满足上式,故 an=2×3n 1-
5-1第一节 数列的概念与简单表示法(2015年高考总复习)
第22页
返回导航
第五章
第一节
高考总复习模块新课标
新课标A版数学
听课记录
(1)各项减去 1 后为正偶数,所以 an=2n+1.
(2)每一项的分子比分母少 1,而分母组成数列 21,22,23,24,„, 2n-1 所以 an= n . 2 (3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各 项绝对值的分母组成数列 1,2,3,4,„;而各项绝对值的分子组成 的数列中,奇数项为 1,偶数项为 3,即奇数项为 2-1,偶数项为
第8页
返回导航
第五章
第一节
高考总复习模块新课标
新课标A版数学
5.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn,通项公式为 an, 则
S1 an= Sn-Sn-1
n=1, n≥2.
考源教学资源网
第9页
返回导航
第五章
第一节
高考总复习模块新课标
第五章
第一节
高考总复习模块新课标
新课为 N*的特殊的函数,所以函数的单调性、周期 性在数列中是应用的重点,对于数列的单调性、周期性的判断可 类比函数的单调性与周期性的判断方法.
考源教学资源网
第11页
返回导航
第五章
第一节
高考总复习模块新课标
题型二
由 an 与 Sn 的关系求通项公式
2 【例 2】 (2013· 江西卷)正项数列{an}的前 n 项和 Sn 满足:Sn
-(n2+n-1)Sn-(n2+n)=0. (1)求数列{an}的通项公式 an; n+1 (2)令 bn= 2 2,数列{bn}的前 n 项和为 Tn.证明:对于任 n+2 an 5 意的 n∈N ,都有 Tn< . 64
高中数学必修5课件:第2章2-5-1等比数列的前n项和
数学 必修5
第二章 数列
4.在等比数列{an}中,a3-a1=8,a6-a4=216,Sn=40. 求公比q,a1及n.
解析: 显然公比q≠1,由已知可得:
a1q2-a1=8, aa11q115---qaq1nq=3=4201,6,
a1=1, 解得q=3,
n=4.
数学 必修5
第二章 数列
等比数列前n项和的基本运算
第二章 数列
新课引入
一个穷人到富人那里去借钱,原以为富人会不愿意,哪知富 人一口应承了下来,但提出了如下条件:在 30 天中,每天借给穷 人 10 万元.借钱第一天,穷人还 1 分钱,第二天,还 2 分钱,以 后每天所还的钱数都是前一天的 2 倍,30 天后,互不相欠.穷人 听后觉得很划算,本想一口气定下来,但又想到富人平时是吝啬 出了名的,怕上当受骗,所以很为难.本节课我们来想个办法帮 助这个穷人.
数学 必修5
第二章 数列
(2)由题意知:SS奇 奇+ -SS偶 偶= =- 802,40, ∴SS奇 偶= =- -8106, 0. ∴公比q=SS偶 奇=--18600=2.
答案: (1)28
数学 必修5
第二章 数列
用错位相减法求数列的和
求和Sn=x+2x2+3x3+…+nxn.
[思路点拨]
[规范解答] (1)当x=0时,Sn=0.
∴aa111111- -- -qqqq36= =7262, 3.
① ②
②÷①得1+q3=9,∴q=2.
将q=2代入①中得a1=12, ∴an=a1qn-1=12·2n-1=2n-2,即an=2n-2.
数学 必修5
第二章 数列
(3)由Sn=
a11-qn 1-q
北师大版高二数学上册必修5第一章数列第一课数列的概念课件(共21张PPT)
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
2022数学第五章数列第一节数列的概念与简单表示法教师文档教案文
第一节数列的概念与简单表示法授课提示:对应学生用书第88页[基础梳理]1.数列的有关概念概念含义数列按照一定顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项a n与n之间的关系能用公式a n=f(n)表示,这个公式叫作数列的通项公式前n项和数列{a n}中,S n=a1+a2+…+a n叫作数列的前n项和2。
数列的表示方法列表法列表格表示n与a n的对应关系图像法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n+1=f(a n)或a1,a2和a n+1=f(a n,a n-1)等表示数列的方法3.a n与S n的关系若数列{a n}的前n项和为S n,则a n=错误!4.数列的分类1.与函数的关系:数列是一种特殊的函数,定义域为N+或其有限子集数列的图像是一群孤立的点.2.周期性:若a n+k=a n(n∈N+,k为非零正整数),则{a n}为周期数列,k为{a n}的一个周期.[四基自测]1.(基础点:数列的项)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,不是{a n}的项的是()A.21B.33C.152 D.153答案:C2.(基础点:数列递推关系)在数列{a n}中,a1=1,a n=1+错误!(n≥2),则a4=()A.错误!B.错误!C.错误!D.错误!答案:B3.(基础点:数列的前n项和)设S n为数列{a n}的前n项和,已知S4=0,a5=5,则S5为________.答案:54.(易错点:数列的通项公式)数列1,错误!,错误!,错误!,错误!,…的一个通项公式a n=________.答案:错误!授课提示:对应学生用书第89页考点一数列的项与通项公式挖掘1判断通项公式/ 自主练透[例1](1)下列公式可作为数列{a n}:1,2,1,2,1,2,…,的通项公式的是()A.a n=1 B.a n=错误!C.a n=2-错误!D.a n=错误![解析]由a n=2-错误!可得a1=1,a2=2,a3=1,a4=2,…。
高中数学苏教版选修2-3第1章《计数原理》(1-5-1)ppt课件
+
C
2 5
(2x)3·-23x2
2
+
C
3 5
(2x)2·-23x2
3
+
C
4 5
(2x)-23x24+C55-23x25 =32x5-120x2+18x0-1x345+480x57 -3224x310.
法二
2x-23x2
5=
4x3-35 32x10
1.5 二项式定理
1.5.1 二项式定理
【课标要求】
1.能熟练运用通项公式求二项展开式中指定的项(如常 数项、有理项等).
2.能正确区分“项”、“项的系数”和“二项式系数” 等概念.
【核心扫描】
1.二项式定理,掌握通项公式.(重点)
2.用二项式定理进行有关的计算和证明.(难点)
自学导引 1.二项式定理
=
1 32x10
[C
0 5
(4x3)5+C
1 5
(4x3)4(-3)+C
2 5
(4x3)3·(-3)2+C
3 5
(4x3)2·(-3)3+C
4 5
(4x3)(-3)4+C
5 5
(-3)5]=
1 32x10
(1
024x15-3 840x12+5 760x9-4 320x6+1 620x3-243)=32x5-120x2
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/8/29
最新中小学教学课件
24
谢谢欣赏!
2019/8/29
最新中小学教学课件
25
规律方法 熟练掌握二项式(a+b)n的展开式,是解答好
与二项式有关问题的前提条件.当二项式较复杂时,可 先将式子化简,然后再展开.
高考数学一轮复习第五章数列5.1数列的概念与简单表示法课件理
【知识梳理】 1.数列的有关概念
概念
含义
数列 数列的项 数列的通项
按照_一__定__顺__序__排列的一列数
数列中的_________ 每一个数
数列{an}的第n项an
概念 通项公式 前n项和
含义
数列{an}的第n项an与n之间的关系能用 公式_a_n=_f_(_n_)_表示,这个公式叫做数列 的通项公式
将第一项看成 这样,先不考虑符号,则分母为3,5, 7,9,…可归纳为 233 n, +1,分子为3,8,15,24,…将其每一项
加1后变成4,9,16,25,…可归纳为(n+1)2,综上,数列的
通项公式an= 1nn1211nn22n.
2n1
2n1
③把数列改写成 1, 0, 1, 0, 1, 0分, 1母, 0依, 次为 12345678
答案:(1)5 030 (2)
5k 5k 1
2
【加固训练】
1.数列
则 是该数列的 ( )
2,5, 2 2, 2 5
A.第6项
B.第7项
C.第10项
D.第11项
【解析】选B.原数列可写成
因为
所以20=2+(n-1)×3,所以n=27, . 5,8, 2 5 20,
2.根据下图5个图形及相应点的个数的变化规律,猜测 第n个图中有________个点.
1,2,3,…,而分子1,0,1,0,…周期性出现,因此数列 的通项可表示为
an
12[11n1]11n1.
n
2n
④将数列统一为 3,5,7,对9 ,于分子3,5,7,9,…, 2 5 10 17
数列的概念(基础)
数列的概念与简单表示法要点一、数列的概念数列概念:按照一定顺序排列着的一列数称为数列. 要点诠释:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数叫做这个数列的项.各项依次叫做这个数列的第1项,第2项,…;排在第n 位的数称为这个数列的第n 项.其中数列的第1项也叫作首项;项在数列中的位置序号称为项数.要点诠释:数列的项与项数是两个不同的概念。
数列的项是指数列中的某一个确定的数,而项数是指这个数在数列中的位置序号.类比集合中元素的三要素,数列中的项也有相应的三个性质: (1)确定性:一个数是否数列中的项是确定的; (2)可重复性:数列中的数可以重复;(3)有序性:数列中的数的排列是有次序的.数列的一般形式可以写成:1a ,2a ,3a ,…,n a ,…,或简记为{}n a .其中n a 是数列的第n 项.要点诠释:{}n a 与n a 的含义完全不同,{}n a 表示一个数列,n a 表示数列的第n 项. 要点二、数列的分类 根据数列项数的多少分: 有穷数列:项数有限的数列. 无穷数列:项数无限的数列. 根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列。
递减数列:从第2项起,每一项都小于它的前一项的数列。
常数数列:各项相等的数列。
摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 要点三、数列的通项公式与前n 项和数列的通项公式表示,那么这个公式就叫做这个数列的通项公式.如数列:0,1,23,…的通项公式为1n a n =-(*n N ∈);1,1,1,1,…的通项公式为1n a =(*n N ∈);1,12,13,14,…的通项公式为1n a n=(*n N ∈);要点诠释:(1)并不是所有数列都能写出其通项公式; (2)一个数列的通项公式有时是不唯一的。
5-1数列专题训练+解析几何
即方程t Bt C 0有解
解法探究: 例:已知数列an 满足a1 1, a2 3, an 2 3an1 2an (n N ) 求数列an 的通项公式。 即取x 1,y 2
则{an1 an }是首项为a2 a1 2,公比为 2 的等比数列 则a n 1 a n 2
2(1 2 n 1 ) an 1 2 n 2 an 2 n 1 1 2 x 1 x 2
n 1 n
累加
则有 , n an 1 an 2
消去a n 1,可得a n 2 1
n
注:若 t 2 Bt C 0有两异根x、y(即x, y有两组解) 方程思想 则可得到两个等比数列,分别求其通项,再由方程组求出 an
a n=3 2 n n 3
n 2
变式探究Ⅳ:
若已知数列相邻三项的递推关系式,又 如何求其通项公式呢? 可化为an2 3an1 2an 0 例:已知数列an 满足a1 1, a2 3, an 2 3an1 2an (n N ) 1与2是方程t 3t 2 0的两根 求数列an 的通项公式。
由①-②得
an 3
n 1
2
n 1
1
类型七:特征根法求数列通。
(条件:若 an 的相邻两项关系式可化为: Aan1 an Ba n1 Can D 0 ( A 0) 可用这种方法;(其中方程 Ax ( B C ) x D 0
an 的通项公式。
方法:可直接应用公式 (n 1) S1 an 求解 S n S n 1 (n 2)
类型四: S n,求an 知
例:已知二次函数 y f ( x)的图象经过原点,其导函数 均在函数 y f ( x )的图象上,求数列a n 的通项公式。
高二数学复习考点知识讲解与提升练习1 数列的概念
高二数学复习考点知识讲解与提升练习第01讲 数列的概念一、数列及相关概念1、定义:按一定顺序排成的一列数叫做数列。
数列中的每一个数都叫做这个数列的项,数列中的每一项都和项的序数有关,各项依次叫做这个数列的第1项,第2项,… ,第n 项,… 注:数列与数集的区别:数集中的元素具有无序性和互异性,而数列的主要特征是有序性,而且数列的项可以重复出现。
2、数列的一般形式可以写成:123,,,,,,n a a a a 其中n a 是数列的第n 项,n 是n a 的序数,上面的数列可简单记作{}n a 。
3、函数思想:数列可以看成是定义在自然数集或其子集上的函数。
函数与数列的联系与区别: 一方面,数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题,即用共性来解决特殊问题. 另一方面,还要注意数列的特殊性(离散型),由于它的定义域是N ,因而它的图象是一系列孤立的点,而不像我们前面所研究过的初等函数一般都是连续的曲线,因此在解决问题时,要充分利用这一特殊性,如研究单调性时,由数列的图象可知,只要这些点每个比它前面相邻的一个高(即1n n a a ->),则图象呈上升趋势,即数列递增,即{}n a 递增⇔1n n a a +>对任意的()n n N *∈都成立.类似地,有{}n a 递减⇔1n n a a +<对任意的()n n N *∈都成立.二、数列的表示方法解析法、图像法、列举法、递推法.三、数列的分类有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;1. 有穷数列:项数有限.2. 无穷数列:项数无限.3. 递增数列:对于任何n N *∈,均有1n n a a +>.4. 递减数列:对于任何n N *∈,均有1n n a a +<.5. 摆动数列:例如:-1,1,-1,1,-1,1, …….6. 常数数列:例如:6,6,6,6,…….四、数列的通项公式定义:如果数列{}n a 的第n 项与n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注:⑴并不是所有数列都能写出其通项公式,如数列1,1.4,1.41,1.414,….;⑵一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,…它的通项公式可以是n a2)1(11+-+=n n a ,也可以是|21cos |π+=n a n .一、求数列通项公式【例1】 ,52,21,32,1的一个通项公式是。
高考数学一轮复习 第五章 数列 5.1 数列的概念与简单表示法课件 理 高三全册数学课件
=__-___1n___.
2021/12/8
第二十八页,共六十三页。
【解析】 (1)当 n=1 时,a1=S1=2(a1-1),可得 a1=2, 当 n≥2 时,an=Sn-Sn-1=2an-2an-1, ∴an=2an-1, ∴数列{an}为首项为 2,公比为 2 的等比数列, 所以 an=2n.
2 . 若 数 列 {an} 的 前 n 项 和 为 Sn , 通 项 公 式 为 an , 则 an = S1,n=1, Sn-Sn-1,n≥2,n∈N*.
3.三种必会方法 (1)叠加法:对于 an+1-an=f(n)型,若 f(1)+f(2)+…+f(n)的和是可 求的,可用多式相加法求得 an.
2021/12/8
第三十六页,共六十三页。
2.若将“an+1=an+n+1”改为“an+1=2an+3”,如何求解?
解:设递推公式 an+1=2an+3 可以转化为 an+1-t=2(an-t), 即 an+1=2an-t,解得 t=-3.故 an+1+3=2(an+3).令 bn=an+3, 则 b1=a1+3=5,且bbn+n 1=aan+n+1+33=2.所以{bn}是以 5 为首项,2 为公比的等比数列.所以 bn=5×2n-1,故 an=5×2n-1-3.
2021/12/8
第三十四页,共六十三页。
考向三 由递推关系求通项公式
n2+n+2
【例 3】 设数列{an}中,a1=2,an+1=an+n+1,则 an=____2____.
【解析】 由条件知 an+1-an=n+1, 则 an=(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)+a1=(2 +3+4+…+n)+2=n2+2n+2.
2021/12/8
5-1第一节 数列的概念与简单表示法练习题(2015年高考总复习)
第一节 数列的概念与简单表示法时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.按数列的排列规律猜想数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式,a n =(-1)n +1·2n 2n +1,故a 10=-2021.答案 C2.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于( ) A .4 B .2 C .1D .-2解析 由题可知S n =2(a n -1), 所以S 1=a 1=2(a 1-1),解得a 1=2.又S 2=a 1+a 2=2(a 2-1),解得a 2=a 1+2=4. 答案 A3.(2014·济南模拟)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( )A .44B .3×44+1C .3×44D .44+1 解析 由a n +1=3S n (n ≥1)得a n +2=3S n +1,两式相减得a n +2-a n +1=3a n +1,∴a n +2=4a n +1,即a n +2a n +1=4,a 2=3S 1=3,∴a 6=a 244=3×44.答案 C4.数列{a n }的前n 项积为n 2,那么当n ≥2时,a n =( ) A .2n -1 B .n 2 C.(n +1)2n 2D.n 2(n -1)2解析 设数列{a n }的前n 项积为T n ,则T n =n 2, 当n ≥2时,a n =T n T n -1=n 2(n -1)2. 答案 D5.(2014·江西八校联考)将石子摆成如下图的梯形形状.即数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a 2 012-5=( )A .2 018×2 012B .2 018×2 011C .1 009×2 012D .1 009×2 011解析 因为a n -a n -1=n +2(n ≥2),所以a n =5+(n +6)(n -1)2,所以a 2 012-5=1 009×2 011.答案 D6.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 014的值是( )A .8B .6C .4D .2解析 ∵a 1a 2=2×7=14,∴a 3=4,4×7=28,∴a 4=8,4×8=32,∴a 5=2,2×8=16,∴a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,∴从第三项起,a n 的值成周期排列,周期数为6,2 014=335×6+4,∴a 2 014=a 4=8.答案 A二、填空题(本大题共3小题,每小题5分,共15分)7.已知数列{a n }满足a st =a s a t (s ,t ∈N *),且a 2=2,则a 8=________.解析 令s =t =2,则a 4=a 2×a 2=4,令s =2,t =4,则a 8=a 2×a 4=8.答案 88.已知数列1,12,21,13,22,31,14,23,32,41,…,则56是此数列中的第________项.解析 将数列分为第1组1个,第2组2个,…,第n 组n 个,(11),(12,21),(13,22,31),…,(1n ,2n -1,…,n 1),则第n 组中每个数分子分母的和为n +1,则56为第10组中的第5个,其项数为(1+2+3+…+9)+5=50.答案 509.(2013·湖南卷)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________. 解析 本题考查数列的通项及求和.令n =3得S 3=-a 3-123,① 令n =4得S 4=a 4-124,② 由②-①得a 3=-116.当n 为偶数时,S n =a n -12n ,③ S n -1=-a n -1-12n -1,④③-④得a n -1=-12n ,⑤ 将⑤代入④得S n -1=-12n ,故n 为奇数时,a n =-12n +1,S n =-12n +1;当n 为奇数时,S n =-a n -12n , ∴S n -1+a n =-a n -12n ,∴S n -1=0,即当n 为偶数时,S n =0,故S 1,S 3,S 5,…,S 99构成了以S 1=-14为首项,14为公比的等比数列.∴S 1+S 2+…+S 100=S 1+S 3+…+S 99=-14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14501-14=13⎝ ⎛⎭⎪⎫12100-1. 答案 -116 13⎝ ⎛⎭⎪⎫12100-1三、解答题(本大题共3小题,每小题10分,共30分) 10.已知数列{a n }的通项公式为a n =n 2-5n +4.(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 解 (1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2或3.∴数列有两项是负数.(2)∵a n =n 2-5n +4=(n -52)2-94的对称轴方程为n =52,又n ∈N *,∴n =2或3时,a n 有最小值,其最小值为a 2=a 3=-2.11.已知数列{a n }满足a 1=1,a n >0,S n 是数列{a n }的前n 项和,对任意n ∈N *,有2S n =p (2a 2n +a n -1)(p 为常数).(1)求p 和a 2,a 3的值; (2)求数列{a n }的通项公式.解 (1)令n =1得2S 1=p (2a 21+a 1-1). 又a 1=S 1=1,得p =1;令n =2,得2S 2=2a 22+a 2-1.又S 2=1+a 2, 得2a 22-a 2-3=0,a 2=32或a 2=-1(舍去), ∴a 2=32; 令n =3,得2S 3=2a 23+a 3-1.又S 3=52+a 3,得2a 23-a 3-6=0,a 3=2或a 3=-32(舍去),∴a 3=2.(2)由2S n =2a 2n +a n -1,得2S n -1=2a 2n -1+a n -1-1(n ≥2),两式相减,得2a n =2(a 2n -a 2n -1)+a n -a n -1,即(a n +a n -1)(2a n -2a n -1-1)=0.∵a n >0,∴2a n -2a n -1-1=0,即a n -a n -1=12(n ≥2). 故{a n }是首项为1,公差为12的等差数列,得a n =12(n +1).12.(2014·青岛模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *).(1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值. 解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n ,① a 1+2a 2+3a 3+…+na n =n +12a n +1,② ②-①得na n =n +12a n +1-n2a n , 即(n +1)a n +1=3na n ,(n +1)a n +1na n=3.∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2). ∴na n =2·3n -2,∴a n =2n ·3n -2(n ≥2).∵a 1=1,∴a n =⎩⎨⎧1,n =1,2n ·3n -2,n ≥2.(2)a n ≤(n +1)λ⇔λ≥a n n +1,由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n (n ≥2,n ∈N *),a n n +1=132·1f (n ), 则f (n +1)-f (n )=2(n +1)(1-n )2·3n +1<0,∴1f (n +1)>1f (n )(n ≥2),又132·1f (2)=13及a 12=12,∴所求实数λ的最小值为13.。
第5章《数列》(第1节)ppt 省级一等奖课件
第五章 数列
5.已知数列{an}的通项公式为 an=pn+qn,且 a2=32,a4=23,则
a8=________.
解析
由已知得24pp++qq24==3232,,解得pq==142,.
则 an=14n+2n,故 a8=94.
答案
9 4
第五章 数列
[关键要点点拨] 1.对数列概念的理解
(2014·安阳模拟)设 Sn 为数列{an}的前 n 项和,若不等 式 a2n+Sn2n2≥ma21对任意等差数列{an}及任意正整数 n 都成立,
则实数 m 的最大值为
()
1
1
A.4
B.5
C.1
D.无法确定
第五章 数列
【思路导析】 将已知不等式用 an 与 a1 表示后分离参数 m 转化为 函数的最值问题求解. 【解析】 因为 Sn=12n(a1+an), 所以原不等式可化为 a2n+41(a1+an)2≥ma21. 若 a1=0,则原不等式恒成立; 若 a1≠0,则有 m≤54aan12+21aan1+41,
第五章 数列
满足条件 项数 有限 项数 无限
an+1 > an an+1 < an an+1=an
其中 n∈N*
第五章 数列
3.数列的通项公式: 如果数列{an}的第n项与 序号n 之间的关系可以用一个式子 来表示,那么这个公式叫做这个数列的通项公式.
第五章 数列
二、数列的递推公式 如果已知数列{an}的首项(或前几项),且 任一项an 与它 的 前一项an-1 (n≥2)(或前几项)间的关系可用一个公式 来表示,那么这个公式叫数列的递推公式.
第五章 数列
2.数列的函数特征 数列是一个定义域为正整数集N*(或它的有限子集{1,2, 3,…,n})的特殊函数,数列的通项公式也就是相应的 函数解析式,即f(n)=an(n∈N*).
第一节 数列的概念与简单表示方法
第六章数列(必修5)第一节数列的概念与简单表示方法高考概览:1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式);2.了解数列是自变量为正整数的一类函数.[知识梳理]1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类(3)数列的表示法 数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. [辨识巧记]1.一个重要关系数列是一种特殊的函数,在研究数列问题时,既要注意函数方法的普遍性,又要考虑数列方法的特殊性.2.两个特殊问题(1)对于数列与周期性有关的题目,关键是找出数列的周期.(2)求数列最大项的方法:①利用数列{a n }的单调性;②解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1, [双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( )(2)一个数列中的数是不可以重复的.( )(3)所有数列的第n 项都能使用公式表达.( )(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.( )[答案] (1)× (2)× (3)× (4)√2.(必修5P 31例3改编)在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5=( )A.32B.53C.85D.23[解析] 由a 1=1,a n =1+(-1)na n -1(n ≥2),得a 2=1+1=2,a 3=1-12=12,a 4=1+2=3,a 5=1-13=23.故选D.[答案] D3.已知数列{a n }为32,1,710,917,…,则可作为数列{a n }的通项公式的是( )A .a n =n -1n 2+1B .a n =n +1n 2+1C .a n =2n +1n 2+1D .a n =2n -1n 2+1[解析] 由32,55,710,917,…,归纳得a n =2n +1n 2+1,故选C. [答案] C4.已知数列,1,3,5,7,…,2n -1,…,则35是它的( )A .第22项B .第23项C .第24项D .第28项[解析] 由35=45=2×23-1,可知35是该数列的第23项.故选B.[答案] B5.已知数列{a n }的前n 项和S n =3+2n ,则a n =________. [解析] ∵S n =3+2n ,∴S n -1=3+2n -1(n ≥2),a n =S n -S n -1=2n -1(n ≥2). 而a 1=S 1=5,∴a n =⎩⎪⎨⎪⎧ 5,n =1,2n -1,n ≥2. [答案] ⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2考点一 归纳数列通项公式【例1】 写出下面各数列的一个通项公式:(1)12,34,78,1516,3132,…;(2)-1,32,-13,34,-15,36,…;(3)23,-1,107,-179,2611,-3713,…;(4)3,33,333,3333,….[解] (1)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(2)奇数项为负,偶数项为正,故通项公式的符号因数为(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)n n .也可写为a n =⎩⎪⎨⎪⎧ -1n ,n 为奇数,3n ,n 为偶数.(3)偶数项为负,而奇数项为正,故通项公式中必含有因子(-1)n +1,观察各项绝对值组成的数列,从第3项到第6项可见,分母分别由奇数7,9,11,13组成,而分子则是32+1,42+1,52+1,62+1,按照这样的规律,第1、2两项可改写为12+12+1,-22+12·2+1, 所以a n =(-1)n +1n 2+12n +1. (4)将数列各项改写为:93,993,9993,99993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,….所以a n =13(10n -1).(1)根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n 或(-1)n +1来调整.[对点训练]1.下列关于星星的图案构成一个数列,该数列的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n (n +2)2[解析] 从图中可观察星星的构成规律,n =1时,有1个;n =2时,有3个;n =3时,有6个;n =4时,有10个;…∴a n =1+2+3+4+…+n =n (n +1)2.故选C.[答案] C2.已知数列{a n }的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( )A .a n =(-1)n -1+1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数 C .a n =2sin n π2D .a n =cos(n -1)π+1[解析] 对于选项C ,a 3=2sin 3π2=-2≠2,故选C.[答案] C考点二 S n 与a n 的关系【例2】 (1)已知数列{a n }的前n 项和S n =3n 2-2n ,求数列{a n }的通项公式.(2)已知数列{a n }的前n 项和S n =23a n +13,求数列{a n }的通项公式.[思路引导] 利用a n =S n -S n -1(n ≥2)转化→验证n =1→确定结果[解] (1)当n =1时,a 1=S 1=3×12-2×1=1;当n ≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5.∵a 1=1也适合上式,∴a n =6n -5. (2)由S n =23a n +13得,当n ≥2时,S n -1=23a n -1+13,两式相减整理得:当n ≥2时,a n =-2a n -1.又n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,∴a n =(-2)n -1.[拓展探究] (1)若把本例(1)中“S n =3n 2-2n ”改为“S n =3n 2-2n +1”,其他条件不变,数列{a n }的通项公式是________.(2)本例(2)中条件改为a 1=-1,a n +1=S n S n +1,则S n =__________.[解析] (1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=(3n 2-2n +1)-[3(n -1)2-2(n -1)+1]=6n -5.∵a 1=2不适合上式,∴a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2. (2)由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n-1S n +1=1, 即1S n +1-1S n =-1.又1S 1=-1, 所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列, 所以1S n=-1+(n -1)×(-1)=-n , 即S n =-1n .[答案] (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)-1n已知S n 求a n 的一般步骤(1)当n =1时,由a 1=S 1求a 1的值.(2)当n ≥2时,由a n =S n -S n -1,求得a n 的表达式.(3)检验a 1的值是否满足(2)中的表达式,若不满足,则分段表示a n .(4)写出a n 的完整表达式.[对点训练]已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)=(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1).(2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2. 考点三 数列的函数性质【例3】 (1)(2018·内蒙古阿拉善左旗月考)已知数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2018等于( ) A .1 B .-1 C .-12 D .-2(2)已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. [思路引导] (1)递推a 1,a 2,a 3,a 4等→确定数列{a n }的周期→求值[解析] (1)∵a 1=1,a n +1=-1a n +1,∴a 2=-1a 1+1=-12,a 3=-1a 2+1=-2,a 4=-1a 3+1=1.由上述可知该数列为周期数列,其周期为3.又∵2018=3×672+2,∴a 2018=a 2=-12.故选C.(2)解法一:(定义法)因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1) (*).因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.解法二:(函数法)设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数集上的函数f (n )为增函数,故只需满足f (1)<f (2),即λ>-3.[答案] (1)C (2)λ>-3(1)周期数列的常见形式: ①所给递推关系中含有三角函数,利用三角函数的周期性;②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列.(2)利用数列与函数之间的特殊关系,将数列的单调性转化为相应函数的单调性,利用函数的性质求解参数的取值范围,但要注意数列通项中n 的取值范围.[对点训练]1.数列{a n }中,a 1=2,a 2=3,a n +1=a n -a n -1(n ≥2),那么a 2019=( )A .1B .-2C .3D .-3[解析] 因为a n =a n -1-a n -2(n ≥3),所以a n +1=a n -a n -1=(a n -1-a n -2)-a n -1=-a n -2,所以a n +3=-a n ,所以a n +6=-a n +3=a n ,所以{a n }是以6为周期的周期数列.因为2019=336×6+3,所以a 2019=a 3=a 2-a 1=3-2=1.故选A.[答案] A2.(2018·山东济宁期中)已知数列{a n }满足a n =⎩⎪⎨⎪⎧a n -2,n <4,(6-a )n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)[解析] 因为对任意的n ∈N *都有a n <a n +1成立,所以数列是递增数列,因此⎩⎪⎨⎪⎧ 1<a ,6-a >0,a <(6-a )×4-a ,解得1<a <4.故选A.[答案] A课后跟踪训练(三十四)基础巩固练一、选择题1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( )A.(-1)n +12B .cos n π2 C.n +12πD .cos n +22π [解析] 令n =1,2,3,…,逐一验证四个选项,易得D 正确.故选D.[答案] D2.(2019·福建福州八中质检)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2017=( )A .1B .0C .2017D .-2017[解析] ∵a 1=1,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2017=a 1=1.故选A.[答案] A3.某数列{a n }的前四项为0,2,0,2,给出下列各式:①a n =22[1+(-1)n ];②a n =1+(-1)n ;③a n =⎩⎪⎨⎪⎧2(n 为偶数),0(n 为奇数).其中可作为{a n }的通项公式的是( )A .①B .①②C .②③D .①②③[解析] 把每个式子中的前四项算出来与已知对照一下即可.[答案] D4.数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( )A .103 B.8658 C.8258 D .108[解析] 根据题意并结合二次函数的性质可得a n =-2n 2+29n +3=-2⎝ ⎛⎭⎪⎫n -2942+3+8418, ∴n =7时,a n 取得最大值,最大项a 7的值为108.故选D.[答案] D5.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则a 10=( )A .64B .32C .16D .8[解析] 由a n +1·a n =2n ,所以a n +2·a n +1=2n +1,故a n +2a n=2,又a 1=1,可得a 2=2,故a 10=25=32.故选B.[答案] B二、填空题6.在数列-1,0,19,18,…,n -2n 2,…中,0.08是它的第________项.[解析] 令n -2n 2=0.08,得2n 2-25n +50=0,即(2n -5)(n -10)=0.解得n =10或n =52(舍去).[答案] 107.(2019·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________. [解析] ∵S n =a 1(4n -1)3,a 4=32, ∴255a 13-63a 13=32,∴a 1=12.[答案] 128.已知数列{a n }满足a 1=1,a n =a 2n -1-1(n >1),则a 2017=________,|a n +a n +1|=________(n >1).[解析] 由a 1=1,a n =a 2n -1-1(n >1),得a 2=a 21-1=12-1=0,a 3=a 22-1=02-1=-1,a 4=a 23-1=(-1)2-1=0,a 5=a 24-1=02-1=-1,由此可猜想当n >1,n 为奇数时a n =-1,n 为偶数时a n =0,∴a 2017=-1,|a n +a n +1|=1.[答案] -1 1三、解答题9.(1)(2018·广东化州第二次模拟)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,求数列{a n }的通项公式.(2)已知数列{a n }的各项均为正数,S n 为其前n 项和,且对任意n∈N *,均有2S n =a n +a 2n ,求数列{a n }的通项公式.[解] (1)由log 2(S n +1)=n +1,得S n +1=2n +1,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=2n ,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2 (2)∵2S n =a n +a 2n ,当n =1时,2S 1=2a 1=a 1+a 21. 又a 1>0,∴a 1=1.当n ≥2时,2a n =2(S n -S n -1)=a n +a 2n -a n -1-a 2n -1,∴(a 2n -a 2n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1)-(a n +a n -1)=0,∴(a n +a n -1)(a n -a n -1-1)=0,∵a n +a n -1>0,∴a n -a n -1=1,∴{a n }是以1为首项,1为公差的等差数列,∴a n =n (n ∈N *).10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值.(2)若{a n }为递增数列,求实数k 的取值范围.[解] (1)由n 2-5n +4<0,解得1<n <4.∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)解法一:因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,注意比较对象,即得k >-3.解法二:因为{a n }是递增数列,则a n +1>a n ,∴(n +1)2+k (n +1)+4>n 2+kn +4.解得:k >-3.∴k 的取值范围为(-3,+∞).能力提升练11.(2019·湖南六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12[解析] ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18.那么a 5=a 3·a 2=132.故选A.[答案] A12.已知a n =n -2017n -2018(n ∈N *),则数列{a n }的前50项中最小项和最大项分别是( )A .a 1,a 50B .a 1,a 44C .a 45,a 50D .a 44,a 45[解析] a n =n -2017n -2018=n -2018+2018-2017n -2018=1+2018-2017n -2018,要使a n 最大,则需n -2018最小,且n -2018>0,∴n =45时,a n 最大.同理可得n =44时,a n 最小.故选D.[答案] D13.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.[解析] 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.[答案] 2814.(2019·河南洛阳第二次统一考试)已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足2S n =(n +1)a n (n ∈N *).(1)求数列{a n }的通项公式;(2)记b n =3n -λa 2n ,若数列{b n }为递增数列,求λ的取值范围.[解] (1)∵2S n =(n +1)a n ,∴2S n +1=(n +2)a n +1,∴2a n +1=(n +2)a n +1-(n +1)a n ,即na n +1=(n +1)a n ,∴a n +1n +1=a n n ,∴a n n =a n -1n -1=…=a 11=1, ∴a n =n (n ∈N *).(2)b n =3n -λn 2.b n +1-b n =3n +1-λ(n +1)2-(3n -λn 2)=2·3n -λ(2n +1).∵数列{b n }为递增数列,∴2·3n -λ(2n +1)>0,即λ<2·3n 2n +1. 令c n =2·3n2n +1,即c n +1c n=2·3n +12n +3·2n +12·3n =6n +32n +3>1. ∴{c n }为递增数列,∴λ<c 1=2,即λ的取值范围为(-∞,2).拓展延伸练15.(2019·陕西咸阳二模)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n 2D .a n =n 22[解析] ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2),∴a n =n 2(n ≥2),(*)又当n =1时,a 1=1×22=1,a 1=1适合(*),∴a n =n 2,n ∈N *.故选B.[答案] B16.(2019·湖南永州二模)已知数列{a n }的前n 项和S n =3n (λ-n )-6,若数列{a n }单调递减,则λ的取值范围是( )A .(-∞,2)B .(-∞,3)C .(-∞,4)D .(-∞,5)[解析] ∵S n =3n (λ-n )-6,①∴S n -1=3n -1(λ-n +1)-6,n ≥2,②①-②得a n =3n -1(2λ-2n -1)(n ≥2),当n =1时,a 1=3λ-9,不适合上式,∴a n =⎩⎪⎨⎪⎧3λ-9,n =1,3n -1(2λ-2n -1),n ≥2, ∵{a n }为单调递减数列,∴a n >a n +1(n ≥2),且a 1>a 2,∴3n -1(2λ-2n -1)>3n (2λ-2n -3)(n ≥2),且λ<2,化为λ<n +2(n ≥2),且λ<2,∴λ<2,∴λ的取值范围是(-∞,2).故选A.[答案] A。
高中数学第四章数列1第1课时数列的概念与简单表示法课件新人教A版选择性必修2
若数列{an}满足an=2n,则数列{an}是( ) A.递增数列 B.递减数列 C.常数列 【解析】选A.an+1-an=2n+1-2n=2n>0, 所以an+1>an,即{an}是递增数列.
D.摆动数列
【补偿训练】已知下列数列:
(1)0,0,0,0,0,0;
(2)0,-1,2,-3,4,-5,…;
2.已知函数f(x)=2x-2-x,数列{an}满足f(log2an)=-2n(n∈N*). (1)求数列{an}的通项公式. (2)讨论数列{an}的单调性,并证明你的结论. 【解析】(1)因为f(x)=2x-2-x,f(log2an)=-2n, 所以有2log2an-2-log2an=-2n, 即an-a1n =-2n, 所以an2 +2nan-1=0, 解得an=-n± n2+1 .
【解析】由数列中项的多少可知(1)是有穷数列,(2)(3)(4)(5)是无穷数列,根据数 列单调性的定义知(3)是递增数列,(4)是递减数列,(1)是常数列,(2)(5)是摆动数 列. 答案:(1) (2)(3)(4)(5) (3) (4) (1) (2)(5)
探究点二 用观察法求数列的通项公式
A.1,13 ,312 ,313 ,…
B.sin
π 13
,sin
2π 13
,sin
3π 13
,sin
4π 13
,…
C.-1,-12 ,-13 ,-14 ,…
D.1,2,3,4,…,30
【思维导引】(1)根据数列的定义去判断. (2)根据无穷数列和递增数列的定义逐一判断四个选项,即可得正确答案.
【解析】(1)选C.A中的{1,2,3,5,7}表示集合而不是数列,故A错,B中的两 个数列是不同的两个数列,因为1,0,-1,-2这四个数的顺序不一样,故B错 误,数列0,2,4,6,8,…,可记为{2(n-1)},而不是{2n},故D错.
【金榜教程】高考数学总复习 第5章 第1讲数列的概念与简单表示法配套课件 理 新人教A
例 3 根据下列条件,求数列的通项公式 an. (1)a1=4,an+1=n+n 2an; (2)a1=-1,an+1=an+2n. (3)a1=1,an+1=2an+1.
[审题视点] (1)可转化后利用累乘求解,(2)可利用累加法 求解,(3)可构造等比数列求解.
[解] (1)由递推关系得aan+n 1=n+n 2,
a3-a2=2×2, a2-a1=2×1, 将以上n-1个式子相加,
得 an-a1=2(1+2+…+n-2+n-1), 所以 an=a1+2×1+n-21n-1=-1+n(n-1)=n2- n-1. 当 n=1 时,a1=12-1-1=-1,也与已知 a1=-1 相 符,所以数列{an}的通项公式为 an=n2-n-1.
按项与项
递增数列 an+1____an
间的大小关 系分类
递减数列 常数列
an+1____an an+1=an
其中n∈N*
摆动数列
从第二项起,有些项大于它的前一项,有些项 小于它的前一项
(3) 通项公式:如果数列{an}的第n项与序号n之间的关系可 以用一个式子来表示,那么这个公式叫做这个数列的
________,即an=f(n).
(1) 已 知
f(1)
=
3
,
f(n
+
1)
=
fn+1 2
(n
∈
N*)
.
则
f(4)=
________.
(2)数列{an}中,an+1=2+2aan n(n∈N*),且 a7=12,则 a5=
________. (3)数列{an}中,a1=a2=1,an+2=an+1+an,则 a4=
________.
[审题视点] 先观察各项的特点,然后归纳出通项公式, 要注意项与项数的关系及项与前后项的关系.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(文)(2011·沈阳六校模考)设数列{(-1)n }的前n 项和为S n ,则对任意正整数n ,S n =( )A.n [(-1)n -1]2B.(-1)n -1+12C.(-1)n +12D.(-1)n -12[答案] D[解析] 因为数列{(-1)n }是首项与公比均为-1的等比数列,所以S n =-1-(-1)n ×(-1)1-(-1)=(-1)n -12,选D.[点评] 直接检验,S 1=-1,排除B ,C ;S 3=-1,排除A ,故选D.(理)数列{a n }的前n 项和S n =n 2+2n +1,则{a n }的通项公式为( )A .a n =2n -1B .a n =2n +1C .a n =⎩⎪⎨⎪⎧4 n =12n -1 n ≥2D .a n =⎩⎪⎨⎪⎧4 n =12n +1 n ≥2[答案] D[解析] a 1=S 1=4,n ≥2时,a n =S n -S n -1=2n +1,∴a n =⎩⎨⎧4 n =12n +1 n ≥2.2.(2011·许昌月考)已知数列{a n }的通项公式是a n =2n3n +1,那么这个数列是( )A .递增数列B .递减数列C .摆动数列D .常数列 [答案] A[解析] a n =23-2a n +3,∵n ∈N *,∴a n 随n 的增大而增大,故选A.[点评] 上面解答过程利用了反比例函数y =-1x 的单调性,也可以直接验证a n +1-a n >0.3.(文)设a n =-2n 2+29n +3,则数列{a n }中的最大项的值是( )A .107B .108C .10818 D .109[答案] B[解析] ∵a n =-2⎝⎛⎭⎪⎫n -2942+8658, ∴当n =7时,a n 最大.a 7=108.(理)如果f (a +b )=f (a )·f (b )(a ,b ∈R)且f (1)=2,则f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2012)f (2011)等于( ) A .2007 B .2008 C .2010 D .2012[答案] D[解析]令a=n,b=1,f(n+1)=f(n)·f(1),∴f(n+1)f(n)=f(1)=2,∴f(2)f(1)+…+f(2012)f(2011)=2×1006=2012.4.(文)(2011·惠州二模,天津南开中学月考)已知整数按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),……则第60个数对是()A.(5,5) B.(5,6)C.(5,7) D.(5,8)[答案] C[解析]根据题中规律知,(1,1)为第1项,(1,2)为第2项,(1,3)为第4项,…,(1,11)为第56项,因此第60项为(5,7).(理)将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是() A.34950B.35000C.35010D.35050[答案] A[解析]由“第n组有n个数”的规则分组中,各组数的个数构成一个以1为首项,公差为1的等差数列,前99组数的个数共有(1+99)992=4950个,故第100组中的第1个数是34950,选A.5.(2011·太原模拟)已知正数数列{a n}对任意p,q∈N*,都有a p +q=a p·a q,若a2=4,则a9=()A .256B .512C .1024D .502 [答案] B[解析] 依题意得a 2=a 1·a 1=4,a 1=2(a 1=-2舍去),a 4=a 2·a 2=16,a 8=a 4·a 4=16×16=256,a 9=a 1·a 8=2×256=512,故选B.6.(2010·石狮石光华侨联合中学模拟)已知数列{a n }中,a 1=1,且1a n +1=1a n+3(n ∈N *),则a 10=( ) A .28 B .33 C.133 D.128 [答案] D[解析] ∵1a n +1-1a n=3,∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=1,公差为3的等差数列,∴1a n=1+3(n -1)=3n -2,∴a n =13n -2,∴a 10=128.7.(2011·合肥三检)已知数列{a n }中,a 1=12,a n +1=1-1a n(n ≥2),则a 16=________.[答案] 12[解析] 由题可知a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,∴此数列是以3为周期的周期数列,a 16=a 3×5+1=a 1=12.8.(2011·吉林部分中学质量检测)已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________.[答案] a n =⎩⎪⎨⎪⎧-1,n =12n -1,n ≥2[解析] 当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=S 1=-1,所以a n =⎩⎨⎧-1,n =12n -1,n ≥2.1.由1开始的奇数列,按下列方法分组:(1),(3,5),(7,9,11),…,第n 组有n 个数,则第n 组的首项为( )A .n 2-nB .n 2-n +1C .n 2+nD .n 2+n +1[答案] B[解析] 前n -1组共有1+2+…+(n -1)=(n -1)(n -1+1)2=n (n -1)2个奇数,故第n 组的首项为2×n (n -1)2+1=n 2-n +1. [点评] 可直接验证,第2组的首项为3,将n =2代入可知A 、C 、D 都不对,故选B.2.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n 个图案中需用黑色瓷砖的块数为(用含n 的代数式表示)()A.4n B.4n+1C.4n-3 D.4n+8[答案] D[解析]第(1),(2),(3)个图案黑色瓷砖数依次为3×5-3=12;4×6-2×4=16;5×7-3×5=20,代入选项验证可得答案为D.3.(文)设数列{a n}的前n项和为S n,且S n=2(a n-1),则a3=() A.8B.4C.2D.1[答案] A[解析]由S1=2(a1-1)得a1=2;由S2=2(a2-1)得a2=4.由S3=2(a3-1)得,a3=8.(理)(2011·三亚联考)已知数列{a n}的通项公式为a n=log3nn+1(n∈N*),设其前n项和为S n,则使S n<-4成立的最小自然数n等于()A.83 B.82C.81 D.80[答案] C[解析]∵a n=log3nn+1=log3n-log3(n+1),∵S n=log31-log32+log32-log33+…+log3n-log3(n+1)=-log 3(n +1)<-4,解得n >34-1=80.4.(文)在数列{a n }中,已知a n +1+a n -1=2a n (n ∈N +,n ≥2),若平面上的三个不共线的向量OA →、OB →、OC →,满足OC →=a 1005OA →+a 1006OB →,三点A 、B 、C 共线,且直线不过O 点,则S 2010等于( )A .1005B .1006C .2010D .2011 [答案] A[解析] 由条件知{a n }成等差数列, ∵A 、B 、C 共线,∴a 1005+a 1006=1,∴S 2010=2010(a 1+a 2010)2=1005(a 1005+a 1006)=1005.(理)(2011·太原模考)设数列{a n }满足a 1+2a 2=3,且对任意的n ∈N *,点列{P n (n ,a n )}恒满足P n P n +1=(1,2),则数列{a n }的前n 项和S n 为( )A .n (n -43)B .n (n -34)C .n (n -23)D .n (n -12)[答案] A[解析] 设P n +1(n +1,a n +1),则P n P n +1=(1,a n +1-a n )=(1,2),即a n +1-a n =2,所以数列{a n }是以2为公差的等差数列.又a 1+2a 2=3,所以a 1=-13,所以S n =n (n -43),选A.5.(2010·河东区模拟)设数列{a n }的前n 项和为S n ,对于所有n∈N *,S n =a 1(3n -1)2,且a 4=54,则a 1=______.[答案] 2[解析] a 4=S 4-S 3=40a 1-13a 1=27a 1=54, ∴a 1=2.6.已知数列{a n }的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *满足关系式2S n =3a n -3.(1)求数列{a n }的通项公式;(2)设数列{b n }的通项公式是b n =1log 3a n ·log 3a n +1,前n 项和为T n ,求证:对于任意的正数n ,总有T n <1.[解析](1)由已知得⎩⎨⎧2S n =3a n -32S n -1=3a n -1-3(n ≥2).故2(S n -S n -1)=3a n -3a n -1,故a n =3a n -1(n ≥2). 故数列{a n }为等比数列,且公比q =3. 又当n =1时,2a 1=3a 1-3,∴a 1=3.∴a n =3n . (2)证明:b n =1n (n +1)=1n -1n +1.∴T n =b 1+b 2+…+b n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎪⎫1n -1n +1 =1-1n +1<1.7.(文)(2010·福建文)数列{a n }中,a 1=13.前n 项和S n 满足S n +1-S n =(13)n +1(n ∈N *).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t (S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值. [解析] (1)由S n +1-S n =(13)n +1得a n +1=(13)n +1(n ∈N *)又a 1=13,故a n =(13)n(n ∈N *)从而S n =13×[1-(13)n]1-13=12[1-(13)n ](n ∈N *)(2)由(1)可得S 1=13,S 2=49,S 3=1327从而由S 1,t (S 1+S 2),3(S 2+S 3)成等差数列可得 13+3×(49+1327)=2×(13+49)t ,解得t =2. (理)(2010·吉林市质检)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n 为正整数).(1)求出数列{a n }的通项公式;(2)若对任意正整数n ,k ≤S n 恒成立,求实数k 的最大值. [解析] (1)∵3a n +1+2S n =3① ∴当n ≥2时,3a n +2S n -1=3② 由①-②得,3a n +1-3a n +2a n =0. ∴a n +1a n=13 (n ≥2).又∵a 1=1,3a 2+2a 1=3,解得a 2=13.∴数列{a n }是首项为1,公比q =13的等比数列.∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫13n -1(n为正整数)(2)由(1)知,∴S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n由题意可知,对于任意的正整数n ,恒有 k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n , ∵数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,当n =1时,数列取最小项为23,∴必有k ≤1,即实数k 的最大值为1.1.已知数列{a n }中,a 1=1,a n +1=2a na n +2(n ∈N *),则a 5等于( ) A.25 B.13 C.23 D.12 [答案] B[解析] 由a 1=1,a n +1=2a na n +2得,a 2=23,a 3=12,a 4=25,a 5=13.2.已知数列{a n }的前n 项和为S n ,且有a 1=3,4S n =6a n -a n -1+4S n -1(n ≥2),则a n =( )A .3×2n -1B .3×21-nC .3×2nD .3×2-n[答案] B [解析] 4(S n -S n -1)=4a n =6a n -a n -1,∴a n a n -1=12(n ≥2),∴a n =a 1⎝ ⎛⎭⎪⎫12n -1=3×21-n . 3.(2011·福州一模)把1,3,6,10,15,21这些数叫做三角形数,这是因为这些数目的点子可以排成一个正三角形(如图所示).则第七个三角形数是( )A .27B .28C .29D .30[答案] B[分析] 观察三角形数的增长规律,可以发现每一项与它的前一项多的点数正好是本身的序号,所以根据这个规律计算即可.[解析] 根据三角形数的增长规律可知第七个三角形数是1+2+3+4+5+6+7=28.4.(2010·烟台模拟)若数列{a n }满足a n +1=⎩⎪⎨⎪⎧ 2a n (0≤a n <12)2a n -1(12≤a n <1),且a 1=67,则a 2011的值为( )A.67B.57C.37D.17[答案] A[解析] 由a 1=67∈[12,1)知,a 2=2×67-1=57;由57∈[12,1)知,a 3=2×57-1=37;由37∈[0,12)知,a 4=2×37=67;…于是可知,数列{a n }是周期为3的数列,∴a 2011=a 1=67.故选A. [点评] 根据数列的通项公式求数列的某些特定项,一般需要研究数列的周期性,因此求解这类问题时,首先列举数列的前若干项,发现数列的周期性,再利用周期性求解.5.如图所示的程序框图,如果输入值为2010,则输出值为________.[答案] -4[解析]此程序框图计算数列{a n}的第n项,并输出,其中a1=1,a2=5,a n+2=a n+1-a n依次计算可得数列的项为:1,5,4,-1,-5,-4,1,5,4,故该数列周期为6,又2010=335×6,∴a2010=a6=-4.6.(2010·山东济宁模拟)已知数列2008,2009,1,-2008,-2009,…这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2011项之和S2011等于________.[答案]2008[解析]由题意a n+1+a n-1=a n(n≥2),a n+a n+2=a n+1,两式相加得a n+2=-a n-1,∴a n+3=-a n,∴a n+6=a n,即{a n}是以6为周期的数列.∵2011=335×6+1,a1+a2+a3+a4+a5+a6=0,∴a1+a2+…+a2011=335×0+a1=2008.。