Abstract Simulation of faceted film growth in three dimensions microstructure, morphology a

合集下载

图像检测外文翻译参考文献

图像检测外文翻译参考文献

图像检测外文翻译参考文献(文档含中英文对照即英文原文和中文翻译)译文基于半边脸的人脸检测概要:图像中的人脸检测是人脸识别研究中一项非常重要的研究分支。

为了更有效地检测图像中的人脸,此次研究设计提出了基于半边脸的人脸检测方法。

根据图像中人半边脸的容貌或者器官的密度特征,比如眼睛,耳朵,嘴巴,部分脸颊,正面的平均全脸模板就可以被构建出来。

被模拟出来的半张脸是基于人脸的对称性的特点而构建的。

图像中人脸检测的实验运用了模板匹配法和相似性从而确定人脸在图像中的位置。

此原理分析显示了平均全脸模型法能够有效地减少模板的局部密度的不确定性。

基于半边脸的人脸检测能降低人脸模型密度的过度对称性,从而提高人脸检测的速度。

实验结果表明此方法还适用于在大角度拍下的侧脸图像,这大大增加了侧脸检测的准确性。

关键词:人脸模板,半边人脸模板,模板匹配法,相似性,侧脸。

I.介绍近几年,在图像处理和识别以及计算机视觉的研究领域中,人脸识别是一个很热门的话题。

作为人脸识别中一个重要的环节,人脸检测也拥有一个延伸的研究领域。

人脸检测的主要目的是为了确定图像中的信息,比如,图像总是否存在人脸,它的位置,旋转角度以及人脸的姿势。

根据人脸的不同特征,人脸检测的方法也有所变化[1-4]。

而且,根据人脸器官的密度或颜色的固定布局,我们可以判定是否存在人脸。

因此,这种基于肤色模型和模板匹配的方法对于人脸检测具有重要的研究意义[5-7]。

这种基于模板匹配的人脸检测法是选择正面脸部的特征作为匹配的模板,导致人脸搜索的计算量相对较大。

然而,绝大多数的人脸都是对称的。

所以我们可以选择半边正面人脸模板,也就是说,选择左半边脸或者有半边脸作为人脸匹配的模板,这样,大大减少了人脸搜索的计算。

II.人脸模板构建的方法人脸模板的质量直接影响匹配识别的效果。

为了减少模板局部密度的不确定性,构建人脸模板是基于大众脸的信息,例如,平均的眼睛模板,平均的脸型模板。

这种方法很简单。

毕业设计论文-人脸识别系统

毕业设计论文-人脸识别系统

人脸识别方法的研究目录第一章绪论第一节课题背景一课题的来源------------------------------------------------------------------------------1二人脸识别技术的研究意义------------------------------------------------------------1 第二节人脸识别技术的国内外发展概况---------------------------------------------------3一国外发展概况---------------------- --------------------------------------------------2二国内发展概况---------------------------------------------------------------------------4 第二章系统的需求分析和方案选择---------------------------------------------------------5第一节可行性分析------------------------------------------------------------------------------5 一技术可行性分析------------------------------------------------------------------------5二操作可行性分析------------------------------------------------------------------------5 第二节需求分析---------------------------------------------------------------------------------6 一应用程序的功能需求分析------------------------------------------------------------6二开发环境的需求分析------------------------------------------------------------------7三运行环境的需求分析------------------------------------------------------------------7 第三节预处理方案选择------------------------------------------------------------------------7 一设计方案原则的选择------------------------------------------------------------------7二图像文件格式选择---------------------------------------------------------------------8三开发工具选择---------------------------------------------------------------------------8四算法选择分析---------------------------------------------------------------------------8 第三章系统的概要设计------------------------------------------------------------------------9第一节各模块功能简介------------------------------------------------------------------------9 第四章系统详细设计-------------------------------------------------------------------------14第一节系统整体设计简述-------------------------------------------------------------------14第二节图像处理详细设计-------------------------------------------------------------------14 一位图详细设计-------------------------------------------------------------------------14二图像点处理详细设计----------------------------------------------------------------15(二)光线补偿算法和代码实现----------------------------------------------------------16(三)图像灰度化算法和代码实现-------------------------------------------------------18(四)高斯平滑算法和代码实现----------------------------------------------------------20(五)灰度均衡算法和代码实现----------------------------------------------------------23(六)图像对比度增强算法和代码实现-------------------------------------------------25 第三节编程时的问题解决-------------------------------------------------------------------26 第五章结构设计-------------------------------------------------------------------------------28 第六章测试-------------------------------------------------------------------------------------35 第一节测试方案选择的原则----------------------------------------------------------------35 第二节测试方案-------------------------------------------------------------------------------36 结束语----------------------------------------------------------------------------------------------------------37 致谢参考文献摘要人脸识别因其在安全验证系统、信用卡验证、医学、档案管理、视频会议、人机交互、系统公安(罪犯识别等)等方面的巨大应用前景而越来越成为当前模式识别和人工智能领域的一个研究热点。

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》篇一一、引言在当今全球化的时代,英文广告作为一种重要的信息传播方式,其影响力不容小觑。

广告中的预设(presupposition)作为一种重要的语言现象,不仅关乎语言的准确性和流畅性,更是广告语言达到理想化认知效果的关键因素。

本文将从理想化认知模型(ICM)的视角出发,对英文广告中的预设进行深入研究,探讨其如何影响广告的传播效果和受众的认知过程。

二、理想化认知模型(ICM)概述理想化认知模型(ICM)是指个体在长期的社会实践和认知过程中形成的对世界的理想化认知结构。

在语言交际中,ICM帮助我们理解和解释语言信息,构建认知框架。

在英文广告中,广告制作者会利用ICM引导受众理解和接受广告信息,从而达到广告的目的。

三、英文广告中的预设现象预设是指在交际过程中,说话者假定听话者已知或共享的信息。

在英文广告中,预设被广泛应用于引导受众理解和接受广告信息。

通过预设,广告制作者能够使广告信息更加具有针对性和有效性,使受众更容易理解和接受广告内容。

四、英文广告中的预设与理想化认知模型的关系在英文广告中,广告制作者会利用ICM构建广告的预设。

这些预设通常与受众的日常生活经验、文化背景、价值观等密切相关,使广告更加贴近受众的认知框架。

通过这种方式,广告制作者能够有效地引导受众理解和接受广告信息,从而实现广告的目的。

五、研究方法与案例分析本研究采用定性分析和定量分析相结合的方法,对英文广告中的预设进行深入研究。

我们收集了多个英文广告样本,分析了其中的预设现象及其与ICM的关系。

以一则化妆品广告为例,广告制作者通过预设女性对美的追求和对皮肤保养的关注,构建了理想的认知框架。

受众在接收广告信息时,会根据自己的ICM对这些信息进行解读和加工,从而形成对产品的认知和态度。

六、研究发现与讨论研究发现,英文广告中的预设与ICM密切相关。

广告制作者通过预设构建的认知框架与受众的ICM相契合,使受众更容易理解和接受广告信息。

框架结构的现代性与纪念性——招商局办公楼和法西奥宫比较分析

框架结构的现代性与纪念性——招商局办公楼和法西奥宫比较分析

中图分类号 TU-86 文献标识码 B 文章编号 1003-739X (2024)02-0010-05 收稿日期 2023-07-15摘 要 钢筋混凝土框架结构在现代建筑中广泛应用。

但是,现代城市中,框架结构的建筑往往带给人们单调重复的印象,缺乏纪念性。

20世纪上半叶,杨廷宝设计的招商局办公楼和特拉尼设计的法西奥宫均使用了钢筋混凝土框架结构。

两个建筑建于古典建筑与现代建筑过渡时期,特殊的历史背景使它们更能体现现代性和纪念性的结合。

该文试图通过对比这两个案例所处的场地环境、立面形象和空间组织,分析其中所体现的现代性和纪念性。

这对于框架结构建筑在现代性中体现纪念性的设计方法有借鉴价值和启发意义。

关键词 现代性 纪念性 框架结构 招商局办公楼 法西奥宫Abstract Reinforced concrete frame structure is widely used in modern architecture. However, in modern cities, the buildings with frame significance for the design method of reflecting the monumentality in frame structure architecture.Keywords Modernity, Monumentality, Reinforced concrete frame structure, The office of Zhaoshangju, Casa del FascioThe Monumentality and Modernity in Architecture with Frame Structure:Comparative Analysis on the Office of Zhaoshangju and Casa del Fascio1 重拾纪念性纪念性在古典建筑中普遍存在,而在现代建筑中却常常缺少。

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》篇一一、引言在当今全球化的时代,英文广告作为一种重要的信息传播方式,对于产品推广和品牌塑造具有不可忽视的作用。

广告语言作为连接消费者与产品的桥梁,其表达方式和语言结构对于引导消费者认知和态度具有重要影响。

理想化认知模型(ICM)作为一种重要的认知理论,为研究英文广告中的预设提供了新的视角。

本文旨在探讨理想化认知模型视域下英文广告中的预设现象,分析其特点、作用及影响。

二、理想化认知模型(ICM)概述理想化认知模型是一种心理结构,它通过人们的知识、信仰、价值观和期望等心理因素,对现实世界进行理解和解释。

在语言交际中,ICM影响着人们的理解和表达方式。

在英文广告中,广告制作者通过运用ICM,构建出一种理想的消费场景和产品形象,以吸引消费者的注意力和兴趣。

三、英文广告中的预设研究预设是语言交际中的一种重要现象,它通过语言符号和语境等手段,为交际双方提供了一种共享的认知背景。

在英文广告中,预设的作用尤为突出。

广告制作者通过运用预设,将消费者的认知引向一种理想化的消费场景和产品形象,从而激发消费者的购买欲望。

四、理想化认知模型与英文广告中的预设关系在理想化认知模型的指导下,英文广告中的预设具有以下特点:1. 理想化场景的构建:广告制作者通过运用预设,构建出一种理想的消费场景,包括产品使用场景、消费者形象等。

这种场景往往具有吸引力、舒适性和浪漫感,使消费者产生购买欲望。

2. 产品形象的塑造:通过预设,广告制作者将产品塑造成一种理想化的形象,包括产品的外观、性能、品质等。

这种形象往往具有独特性、优越性和可靠性,使消费者对产品产生信任感。

3. 价值观的传递:广告制作者通过预设传递出一种理想的价值观,这种价值观往往与消费者的价值观相契合,从而增强消费者的认同感和归属感。

五、研究方法与案例分析本文采用定性和定量相结合的研究方法,通过收集和分析英文广告语料库中的广告文本,探讨理想化认知模型在英文广告中的运用及其对预设的影响。

[硕士学位论文] 真实感三维人脸建模及表情动画技术的研究

[硕士学位论文] 真实感三维人脸建模及表情动画技术的研究

分类号:TP391.41学校代码:10699密级:学号:016066156西 北 工 业 大 学硕 士 学 位 论 文(学位研究生)题目:真实感三维人脸建模及表情动画技术的研究作者: 张 翀指导教师:郝重阳 专业技术职务:教 授 学科(专业):信号与信息处理答辩日期:学位授予日期:2004年2月摘 要人脸是人类相互表达情感的重要部分。

在计算机虚拟世界中,虚拟人脸是虚拟人表情达意的载体。

人脸的造型和表情动画作为虚拟现实技术和计算机图形学中的一个分支已有30年历史了,随着影视技术、游戏娱乐、虚拟环境、远程通信、辅助医疗、刑事鉴别等方面应用的日益广泛,这一研究领域越来越受到人们的关注。

假如以往的趋势为未来的发展指明了方向的话,接下来的几年对人脸造型和表情的研究将会更令人兴奋!顺应这样的时代潮流,本论文对真实感人脸的三维建模技术及表情动画技术进行了研究。

论文的工作和成果主要有:1.在真实感三维人脸建模方面提出了一种简单有效的由正、侧面照片重建特定人脸三维模型的新方法。

采用多分辨率技术构造纹理无缝拼接图,然后把三维网格模型投影到圆柱面上并展开,根据二维图象变形技术中特征点匹配算法的数学思想,将匹配公式进行改进后应用于模型网格点的适配,在作了一定假设后推导出逆向圆柱映射的计算公式,再将适配后的柱面网格映射回去,最后进行纹理映射生成真实感的特定人脸的三维模型。

2.在人脸表情动画方面:基于Waters的几何肌肉模型定制了一个具有17个肌肉向量的人脸模型的动画结构,用非线性插值来模拟肌肉的简单运动;同时,采用旋转变换来模拟其它的表情控制参数,例如下巴的张开角、眼帘的张开角等。

从而简单而有效地实现了人脸表情。

由于人脸造型和表情动画技术研究的难度和学位论文工作的时限等原因,上述工作和成果只是局部和基础性的,但其有效性和实用价值也是可见的。

关键词:多分辨率图象分解 圆柱映射 图象变形 特征线 纹理映射 逆向圆柱映射 肌肉向量 FACSAbstractHuman face is the window of communication in real world, and virtual face is of the same importance in virtual world. Therefore, the construction and animation of realistic human facial models is always attractive to researchers in computer graphics, and as an identifiable area of the latter in the past 30 years, facial modeling and animation has been devoted to significant efforts with many dozens of research papers published. Its applications include such diverse fields as character animation for films and advertising, computer games, virtual reality, teleconferencing, user-interface, surgical facial planning, and criminal discrimination. Yet no perfectly realistic facial model and animation has ever been generated by computer, it remains one of the most fundermental, and as well the most difficult problem in computer graphics.The goal of the thesis work is to automate the challenging task of creating realistic facial models of individuals and generating basic expression animation.Modeling: This thesis develops a method different from traditional techniques that begins with the cylindrical projection of a generic model and its seamless global texture map using multiresolution technique, and then automatically fit the unwrapped cylindrical projected mesh to the texture map with an improved algorithm that based on 2D morphing to specify corresponding feature points(or lines). Finally, we propose a formula of inverse cylindrical projection to recompose the deformed mesh, and after the texture mapping a photo-realistic individual facial model is created.Expression animation: Based on Water’s muscle model, 17 muscle vectors are presented to simulate facial muscles’ motion by nonlinear interpolation. Meanwhile, some other parameters, for example, open of jaw and eyelids, could simply be substituted by rotation transform. Through these control parameters’ interaction, highly natural looking animations have been able to generated.The work and achievement in this thesis is just fundamental and pilot study, while it can be exploited in many applications such as natural andintelligent human-machine interfaces, virtual collaboration work, virtual learning and teaching, and so on.Key words: Multiresolution, cylindrical projection, image warpping, feature line, texture mapping, inverse cylindrical projection, muscle vector, FACS目 录摘要 (I)Abstract (II)第一章绪论 (1)§1.1 选题背景 (1)§1.2 研究意义及应用 (2)§1.3 研究难点 (3)§1.4 本文的研究内容及目标 (3)§1.5 本文的章节安排 (4)第二章人脸造型和表情动画技术回顾 (5)§2.1 人脸造型和表情动画方法的分类 (5)1 人脸造型的研究 (5)2 人脸表情动画的研究 (7)§2.2 本章小结 (9)第三章头部基本结构和形状 (11)§3.1头部骨骼结构 (11)1 脑颅 (12)2 面颅 (12)§3.2 头部的比例关系 (13)§3.2 眼鼻口耳的形体结构 (13)§3.4 人脸的面部肌肉组织 (15)1 肌肉组织的基础知识 (15)2 人脸的面部肌肉组织 (15)第四章基于正、侧面照片的人脸模型生成 (18)§4.1 从二维图像中提取深度信息 (18)1 立体视觉 (18)2 三维重建 (19)§4.2 从正、侧面照片重建三维人脸 (20)1 预处理:人脸图象的规范化和一般人脸模型的整体调整 (21)2 基于多分辨率图象分解技术的纹理拼接 (22)3 基于线对的二维图象变形方法 (27)4 从一般人脸模型到特定人脸模型的变形适配 (30)§4.3 本章小结 (34)第五章肌肉驱动的脸部表情动画 (36)§5.1基于几何肌肉模型的人脸表情动画技术 (36)§5.2 基于图象的人脸表情动画技术 (39)§5.3肌肉驱动的人脸表情实现 (40)1 几何肌肉模型 (40)2 实验结果 (42)§5.4 本章小结 (43)第六章总结与展望 (45)§6.1总结 (45)§6.2 待改进和完善之处 (46)§6.3 研究工作展望 (46)参考文献 (48)致谢 (53)读研期间完成的学术论文 (54)第一章 绪论随着计算机图形学的不断发展,三维制作技术也得到了迅速的发展,并且被广泛的应用到了社会生产的各个领域。

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》范文

《理想化认知模型视域下英文广告中的预设研究》篇一一、引言在当今全球化的背景下,英文广告作为一种重要的传播工具,在商业活动中扮演着至关重要的角色。

广告的目的是通过特定的信息传递和表达方式,激发消费者的购买欲望,进而实现产品的销售。

在这个过程中,理想化认知模型(ICM)起着至关重要的作用。

ICM帮助人们理解世界、处理信息,而广告中的预设则是在这个过程中起着引导和影响的作用。

本文将从理想化认知模型的视域出发,探讨英文广告中的预设现象。

二、理想化认知模型(ICM)理想化认知模型是人们对世界事物进行理解和解释的一种认知框架,是人们认知世界的基础和核心。

在处理信息时,人们会根据自身的经验、文化背景和认知模式等因素,构建起一种理想化的认知模型。

这种模型能够帮助人们更好地理解和处理信息,从而做出正确的决策。

三、英文广告中的预设广告是一种特殊的语言形式,其目的是通过特定的信息传递和表达方式,引导消费者的认知和决策。

在英文广告中,预设是一种重要的语言现象。

预设是指广告文本中隐含的、未明确表达的信息和意义,这些信息和意义在广告的传播过程中起着引导和影响的作用。

通过预设,广告可以更好地吸引消费者的注意力,激发消费者的购买欲望。

四、理想化认知模型与英文广告中的预设在英文广告中,预设与理想化认知模型之间存在着密切的关系。

广告创作者会根据目标受众的理想化认知模型,选择合适的语言和表达方式,构建起一种符合受众期待的预设。

这种预设能够帮助广告更好地吸引消费者的注意力,激发消费者的购买欲望。

同时,广告中的预设也会影响受众的认知和决策,使受众在接受信息的过程中形成一种理想化的认知模型。

五、研究方法与案例分析本文采用定性和定量相结合的研究方法,通过对英文广告文本的分析和受众的调查,探讨广告中的预设现象。

以某品牌化妆品的英文广告为例,该广告通过使用积极的词汇、描绘理想化的生活场景等方式,构建起一种符合目标受众期待的理想化认知模型。

通过调查发现,这种理想化的认知模型对受众的购买决策产生了积极的影响。

写一篇对于面部识别技术的认识英语作文

写一篇对于面部识别技术的认识英语作文

写一篇对于面部识别技术的认识英语作文Facial recognition technology, also known as face recognition technology, is a biometric technology that analyzes and identifies individuals based on their facial features. It has gained significant attention and widespread use in recent years due to its potential applications in various fields. In this article, we will explore the concept of facial recognition technology, its benefits, and potential concerns.Firstly, let's delve into how facial recognition technology works. It involves capturing an individual's facial image or video and analyzing it using various algorithms. These algorithms extract unique facial features such as the distance between the eyes, the shape of the nose, and the contour of the face. These features are then converted into a numerical code, commonly referred to as a faceprint or facial template. This code is compared against a database of known faces to identify the individual.One of the key benefits of facial recognition technology is its potential to enhance security and safety. It can be used in surveillance systems to identify and track individuals in real-time, aiding in the prevention and investigation of criminal activities. For example, it can help law enforcement agencies in identifying suspects or locating missing persons. Additionally, facial recognition technology can be integrated into access control systems, replacing traditional methods such as ID cards or passwords, providing a more secure and convenient way of authentication.Moreover, facial recognition technology has found applications in various industries. In the retail sector, it can be used to analyze customer demographics and behavior, helping businesses tailor their marketing strategies and improve customer experiences. In the healthcare industry, it can assist in patient identification, reducing the risk of medical errors and improving the efficiency of healthcare delivery. Furthermore, facial recognition technology has been utilized in the entertainment industry for personalized experiences, such as unlocking exclusive content or customizing avatars in video games.However, despite its potential benefits, facial recognition technology also raises concerns regarding privacy and ethical implications. The collection and storage of facialdata raise questions about data protection and potential misuse. There are concerns that the technology may be used for mass surveillance, infringing on individuals' right to privacy. Additionally, there have been cases of misidentification or bias in facial recognition systems, particularly when it comes to individuals from diverse racial or ethnic backgrounds. This highlights the importance of ensuring the accuracy and fairness of these systems through rigorous testing and regulation.In conclusion, facial recognition technology holds great promise in various domains, ranging from security to personalized experiences. Its ability to analyze and identify individuals based on their facial features has revolutionized many industries. However, it is crucial to address the concerns surrounding privacy and ethical considerations to ensure its responsible and beneficial use. Striking a balance between innovation and safeguarding individual rights will be key in harnessing the full potential of facial recognition technology.。

人脸识别外文文献

人脸识别外文文献

Method of Face Recognition Based on Red-BlackWavelet Transform and PCAYuqing He, Huan He, and Hongying YangDepartment of Opto-Electronic Engineering,Beijing Institute of Technology, Beijing, P.R. China, 10008120701170@。

cnAbstract。

With the development of the man—machine interface and the recogni—tion technology, face recognition has became one of the most important research aspects in the biological features recognition domain. Nowadays, PCA(Principal Components Analysis) has applied in recognition based on many face database and achieved good results. However, PCA has its limitations: the large volume of computing and the low distinction ability。

In view of these limitations, this paper puts forward a face recognition method based on red—black wavelet transform and PCA. The improved histogram equalization is used to realize image pre-processing in order to compensate the illumination. Then, appling the red—black wavelet sub—band which contains the information of the original image to extract the feature and do matching。

图像超分辨率重建算法研究文献综述

图像超分辨率重建算法研究文献综述

图像超分辨率重建算法研究文献综述毕业设计(论文)题目:图像超分辨率重建算法研究专业(方向):电子信息工程文献综述1.引言超分辨率概念最早出现在光学领域。

在该领域中,超分辨率是指试图复原衍射极限以外数据的过程。

Toraldo di Francia在1955年的雷达文献中关于光学成像第一次提出了超分辨率的概念。

复原的概念最早是由J.L.Harris和J.w.Goodman分别于1964年和1965年提出一种称为Harris-Goodman频谱外推的方法。

这些算法在一些假设条件下得到较好的仿真结果,但实际应用中效果并不理想。

Tsai &Huang首先提出了基于序列或多帧图像的超分辨率重建问题。

1982年D.C.C.Youla和H.Webb在总结前人的基础上,提出了凸集投影图像复原(Pocs)方法。

1986年,S.E.Meinel提出了服从泊松分布的最大似然复原(泊松-ML)方法。

1991年和1992年,B.R.Hunt和PJ.Sementilli在Bayes分析的基础上,提出了泊松最大后验概率复原(泊松-MAP)方法,并于1993年对超分辨率的定义和特性进行了分析,提出了图像超分辨率的能力取决于物体的空间限制、噪声和采样间隔。

伴随着计算机技术、信息处理技术和视觉通信技术的高速发展,人类进入了一个全新的信息化时代。

人们所能够获取的知识量呈爆炸式的增长,因此迫切的要求信息处理技术不断的完善和发展,以便能够为人们提供更加方便、快捷和多样化的服务。

数字图像及其相关处理技术是信息处理技术的重要内容之一,在很多领域得到了越来越广泛的应用。

对于数字图像在一些情况下一般要求是高分辨图像,如:医学图像要求能够显示出那些人眼不能辨别出的细微病灶;卫星地面要求卫星图像至少能够辨别出人的脸相;有些检测识别控制装置需要足够高分辨率的图像才能保证测量和控制的精度。

因此提高图像分辨率是图像获取领域里追求的一个目标。

但是通过改善成像装置硬件的分辨力来提高图像的分辨能力是有限的也是不切实际的。

人脸识别技术设计研究(毕业设计论文)

人脸识别技术设计研究(毕业设计论文)
2.人脸随年龄而改变,随着年龄的增长,皱纹的出现和面部肌肉的松弛使得人脸的结构和纹理都将发生改变;
3.人脸有易变化的附加物,例如改变发型,蓄留胡须或者佩戴帽子和眼镜等饰物;
4.人脸特征遮掩,人脸全部、部分遮掩将会造成错误识别;
5.人脸图像的畸变,由于光照、视角、摄取角度不同,可能会造成图像的灰度畸变、角度旋转等,降低了图像质量,增大了识别难度。
3.入口控制。需要入口控制的范围很广,它可以是重要人物居住的住所、保存重要信息的单位,只要人类觉得安全性比较重要的地点都可以进行入口控制,比较常用的检查手段是核查证件。人员出入频繁时,保安人员再三检查证件是很麻烦的,而且证件安全性也不高。在一些保密要求非常严格的部门,除了证件外,已经使用了生物特征识别手段,如指纹识别、掌纹识别、虹膜识别和语音识别等。人脸识别与这些技术相比,具有直接、方便和友好的特点。当前计算机系统的安全管理也备受重视,通常使用由字符和数字组成的口令(Password)进行使用者的身份验证,但口令可能被遗忘,或被破解,如果将人脸作为口令,则既方便又安全。
摘 要
人脸识别是一个具有很高理论和应用价值的研究课题。人脸是人类视觉中最为普遍的模式,它所反映的视觉信息在人与人的交流和交往中有着及其重要的作用意义。人脸的特殊性,使得人脸识别技术成为最具潜力的身份识别方式。人脸识别技术应用广泛,并且日益受到人们的广泛关注并成为模式识别领域研究的热点。同时人脸识别又是一个复杂和困难的课题,其原因有:人脸是由复杂的三维曲面构成的可变形体,难以用数学描述;所有的人脸结构高度相似,而人脸图像又易受年龄和成像条件的影响。人脸识别涉及的技术很多,其中关键的是特征提取和分类方法,本文就以此为重点进行了相关研究。
所以很难从有限张人脸图像中提取出反映人脸内在的、本质的特征。另外人脸识别还涉及模式识别、图像处理、计算机视觉、生理学和心理学等学科领域。这诸多因素使得人脸识别至今仍是一个有待深入研究,极富挑战性的课题。同时一个成功的、具有商用价值的快速的人脸识别系统将会给社会带来极大的影响。

《2024年模糊的边界_电影中的触感影像与具身体验研究》范文

《2024年模糊的边界_电影中的触感影像与具身体验研究》范文

《模糊的边界_电影中的触感影像与具身体验研究》篇一模糊的边界_电影中的触感影像与具身体验研究一、引言电影作为一种视觉艺术形式,一直以来都在探索与拓展观众的情感体验边界。

在众多电影艺术元素中,触感影像与具身体验显得尤为引人注目。

它们通过细腻的影像语言和深度的情感体验,为观众带来了超越视觉的感官冲击。

本文将探讨电影中触感影像的呈现方式及其与具身体验的关系,以期揭示其独特的艺术价值和社会意义。

二、触感影像的呈现方式1. 镜头语言与触感表达电影中的镜头语言是传达触感影像的重要手段。

通过运用特写、慢动作、晃动等镜头技巧,电影可以将触感的细腻变化呈现在观众眼前。

例如,通过特写镜头捕捉人物肌肤的微妙变化,或者通过慢动作展现触感动作的细节,使观众感受到触感的真实与细腻。

2. 音效与触感体验除了视觉元素外,音效在电影中也是传达触感影像的重要手段。

通过运用环境音效、人物声音等元素,电影可以营造出具有真实感的触感体验。

例如,在雨天场景中,通过模拟雨滴落在地面的声音,使观众感受到雨滴触感的真实。

三、具身体验的深入探究具身体验是指观众在观看电影过程中所产生的情感与认知体验。

电影中的触感影像通过视觉和听觉等多种感官刺激,使观众产生身临其境的感觉,从而加深了具身体验的深度和广度。

1. 情感共鸣与具身体验电影中的触感影像往往能够引发观众的共鸣,使观众在情感上产生共鸣。

这种共鸣不仅体现在情感层面上,更深入到了具身体验层面。

观众在观看过程中会不自觉地代入自己,将自己置于影片情节之中,从而产生深刻的具身体验。

2. 空间感知与具身体验电影中的空间感知也是具身体验的重要组成部分。

通过运用各种镜头技巧和音效元素,电影可以营造出具有真实感和沉浸感的空间环境。

观众在观看过程中会感受到自己仿佛置身于影片所呈现的空间之中,从而产生强烈的空间感知和具身体验。

四、触感影像与具身体验的关系触感影像与具身体验之间存在着密切的关系。

一方面,触感影像通过视觉和听觉等多种感官刺激,为观众提供了丰富的情感体验和空间感知;另一方面,具身体验又进一步加深了观众对触感影像的理解和感受。

多模态视角下对《肖申克的救赎》的海报阐释

多模态视角下对《肖申克的救赎》的海报阐释

多模态视角下对《肖申克的救赎》的海报阐释作者:徐晴晴来源:《传媒论坛》2020年第13期摘要:随着信息技术的蓬勃发展,各种非言语符号应运而生,因此如何解读各种非言语符号所表达的意义也就成为了学术研究的焦点。

对此,在系统功能语言学的基础上,再结合自身研究,Kress和van Leeuwen提出了视觉语法,从此为图像符号的研究开辟了一条全新的道路。

電影海报以电影的有关内容为素材,其中包括楚文字以外的多种模态,因而经常被学界视为多模态语篇的典型代表,引起了各学者的广泛关注。

因此,本研究以《肖申克的救赎》的美国版海报作为研究对象,在系统功能语言学和视觉语法的理论框架之下,探讨电影海报中的不同模态如何共同建构意义,各模态之间的关系,以及这些模态如何反应影片的主题和内涵,以提高对电影海报内涵的辨读能力,最终实现海报的宣传功能。

关键词:多模态;视觉语法;电影海报中图分类号:G206 文献标识码:A 文章编号:2096-5079 (2020) 13-0-03多模态语篇是指运用听觉、视觉、触觉等多种感觉,运用语言、图像、声音、动作等多种符号资源进行交际的现象。

电影海报中包含多种模态,是典型的多种模态共同构建意义的多模态语篇。

本文以系统功能语言学和视觉语法作为理论基础,对《肖申克的救赎》的美国版海报进行多模态分析,旨在提高对电影海报的认知水平,更好地实现海报的票房宣传和向社会传达其价值观的重要功能。

一、多模态语篇分析的理论框架(一)系统功能语法的三大“元功能”根据韩礼德的观点,语言系统中有三个用于表示功能意义的元功能,即概念功能、人际功能和语篇功能,这三大元功能对于理解语篇具有重要意义。

同时,对语言三大“元功能”的理解,对于电影海报中文字模态的分析也颇为关键。

概念功能指的是语言对人们在现实世界中各种经历的表达,其目的是要传递新信息,交流听者不知道的内容。

人际功能指语言所具有的表达讲话者的身份,地位,态度,动机及其对事物的推断等方面的功能。

面部表情皱纹的力学模型

面部表情皱纹的力学模型
在制作角色动画过程中,三维几何造型和变形是一个重要而困难的问题。许多研究 者在如何实现三维角色形状的再现和变形上做了极大的努力。一般来说,我们可以将它 们的模型分为两个类别:曲面模型和层次模型。
曲面模型在概念上非常简单,它包含了一副骨架和外面的蒙皮。许多多边形平面或 样条曲面面片构成了整个模型的蒙皮。这种模型存在的问题,一是需要输入大量的点, 而这项工作通常是非常单调乏味的;另一个问题是难于控制关节处曲面的真实过渡形 态,很容易产生奇异的和不规则的形状。在3D Max和Maya等三维软件中,主要用 NURBS曲面建模方法建立人的面部模型,NURBS的表面由一系列的曲线和控制点确 定。制作方法如下:首先绘制各截面的轮廓线,用这些轮廓线来反映人物造型各个部位 的特征,然后根据这些曲线创建表面,得到大致的人物造型各个部位的特征,然后根据 这些曲线创建表面,得到大致的脸部模型,再分别创建眼部、耳部等细节部分的轮廓线, 最后将眼部等细节部分与开始的脸部模型结合使其成为一个整体“Ⅲ“m…。
provided the base for simulating the wrinkles offacial expression animation.
Key words facial expression animation;wrinkles;buckling

河北大学
学位论文原创性声明
本人郑重声明: 所呈交的学位论文,是本人在导师指导下进行的研究工作 及取得的研究成果。尽我所知, 除了文中特别加以标注和致谢的地方外,论文 中不包含其他人已经发表或撰写的研究成果,也不包含为获得河北大学或其他教 育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何 贡献均己在论文中作了明确的说明并表示了致谢。

关于变脸电影的英语作文

关于变脸电影的英语作文

关于变脸电影的英语作文Face-changing films have captivated audiences for decades, offering a unique and captivating cinematic experience. These films, which feature characters who can seamlessly transform their physical appearance, have become a staple of the entertainment industry, showcasing the incredible creativity and technical prowess of filmmakers. In this essay, we will explore the fascinating world of face-changing films, examining their history, their impact on the audience, and their broader cultural significance.The concept of face-changing has deep roots in various cultural traditions around the world. From the ancient Chinese art of Bian Lian, where performers can rapidly change their masks on stage, to the shape-shifting abilities of mythical creatures in folklore, the idea of transforming one's face has long captured the human imagination. It is no surprise, then, that this concept has found its way into the world of cinema, where filmmakers have harnessed the power of special effects and storytelling to bring these extraordinary feats to life on the silver screen.One of the earliest examples of face-changing films can be traced back to the 1920s, with the release of the silent film "The Man Who Laughs" directed by Paul Leni. In this film, the protagonist, Gwynplaine, is disfigured with a permanent grin, a condition that becomes a central part of the story's exploration of identity and the human experience. While not a true "face-changing" film in the modern sense, "The Man Who Laughs" laid the groundwork for the genre, demonstrating the emotional and narrative potential of altering a character's physical appearance.As the film industry evolved, so too did the techniques and technologies used to create face-changing effects. The 1960s saw the rise of pioneering special effects artists like Dick Smith, who revolutionized the field with his groundbreaking work on films like "The Exorcist" and "Taxi Driver." These advancements paved the way for more ambitious and visually stunning face-changing films, such as the 1997 classic "Face/Off" directed by John Woo.In "Face/Off," actors John Travolta and Nicolas Cage play two men who literally swap faces, leading to a thrilling and emotionally complex narrative as they navigate their newfound identities. The film's innovative use of practical effects, combined with its compelling storytelling, solidified its place as a landmark in the face-changing film genre. It demonstrated the incredible potential of this cinematic device to explore themes of identity, deception, and thefluidity of the human experience.Beyond their technical achievements, face-changing films have also had a profound impact on the audience's perception of identity and the human form. By presenting characters who can seamlessly transform their appearances, these films challenge our preconceptions about the permanence of physical identity and the ways in which we define ourselves. They invite us to question the nature of identity, to consider the ways in which our outward appearance shapes our inner selves, and to grapple with the implications of such transformative power.Moreover, face-changing films have also become a powerful metaphor for broader social and cultural issues. In an era of increasing fluidity in gender expression, for example, these films can be seen as a reflection of the growing acceptance and celebration of diverse forms of identity. They offer a visual representation of the idea that identity is not fixed, but rather a fluid and multifaceted construct that can be shaped and reshaped over time.Additionally, face-changing films have also been used to explore themes of power, corruption, and the human capacity for transformation. By presenting characters who can literally wear different "faces," these films often delve into the complexities of human nature, examining the ways in which power and authority cancorrupt, and the potential for individuals to overcome their limitations and reinvent themselves.In conclusion, face-changing films have become a captivating and thought-provoking genre within the world of cinema. From their roots in cultural traditions to their contemporary manifestations, these films have consistently pushed the boundaries of what is possible on the silver screen, captivating audiences with their visual splendor and their exploration of the human condition. As technology continues to advance and filmmakers continue to push the boundaries of their craft, it is likely that the face-changing film genre will continue to evolve and captivate audiences for generations to come.。

关于变脸艺术的英语作文

关于变脸艺术的英语作文

关于变脸艺术的英语作文In the heart of a bustling city, where the skyscrapers kissed the clouds and the traffic was a symphony of honks and screeches, there was a place where time seemed to standstill—a small, unassuming theater tucked away in an alleythat smelled faintly of popcorn and dreams. This was the home of the "Face Changers," a troupe of performers who were masters of an ancient art that had been passed down through generations.The curtain rose on a stage bathed in a soft, golden glow, and the audience hushed in anticipation. The first act was a young man, dressed in the traditional robes of a Chinese scholar, his face painted with a mask of serenity. As the music began, a haunting melody that echoed through the theater, he began to move. His hands, delicate as abutterfly's wings, fluttered through the air, and with each movement, his face transformed.From the scholar's serene visage to the fierce countenance of a warrior, from the cunning smirk of atrickster to the sorrowful gaze of a lost soul, the audience watched in awe. It was as if they were witnessing the very essence of human emotion being painted before their eyes. The "Face Changers" were not just performers; they were storytellers, each face telling a different tale.The young man was soon joined by others, each with theirown set of faces, each with their own story to tell. Therewas the beautiful maiden whose face could shift frominnocence to seduction in the blink of an eye, the wise old sage whose visage held the wisdom of the ages, and the mischievous child whose face was a canvas of mischief and joy.But the true marvel of the "Face Changers" was not justin the art of their faces, but in the art of their hearts. They were not simply changing their faces; they were channeling the very souls of the characters they portrayed. Each face was a window into a different world, a different life, a different story.As the performance reached its climax, the stage wasfilled with a kaleidoscope of faces, each one more vivid and compelling than the last. The audience was on the edge oftheir seats, their hearts pounding in time with the music,their eyes glued to the stage.And then, as quickly as it had begun, it was over. The curtain fell, the lights came up, and the audience was leftin a state of wonder and awe. They had witnessed somethingtruly magical, something that transcended the boundaries of time and space.The "Face Changers" had not just performed a show; they had taken the audience on a journey through the human soul, a journey that would stay with them long after they left the theater. And as they walked out into the bustling city, their hearts filled with the echoes of the performance, they knew that they had been a part of something truly extraordinary.。

学术论文:人脸老化模拟方法研究 (可编辑文本)

学术论文:人脸老化模拟方法研究 (可编辑文本)
The main motivation of this thesis iS to combine the similarity
principle to:(1)study the law of changes in facial aging process;(2) establishce and design algorithm for aging
characteristics and the primary basis for exchange and mutual recognition in people’S daily lives.As people age,facial features have changed significantly,which make the human face recognition automatic is more
从上个世纪七十年代至今,国内外关于人像处理的研究成果很多,最早基于 物理学的老化模拟,是在传统物理几何基础上,充分考虑人脸的生理上的特征以 后,对人脸肌肉模型和物理模型的扩展。1974年Parkenl利用400多个顶点250 多个多边形为人脸建模,形成人脸研究的雏形,1982他瞳1提出人脸表情的参数模 型,目前得到广泛应用。Pittenger和Shaw口’41研究了可能影响人脸轮廓随年龄 变化的各种显著因素,如重力等,发现人脸颅骨的老化是个弹性变化的复杂过程, 而心型线老化带来的人脸轮廓的变化是判断人脸年龄的重要依据。Mark悔1和 Bruce等∞3将这种方法应用于三维人脸的老化模拟。Pitanguy等n3基于人体测量 学理论,发现年龄变化和某些面部器官的几何参数之间存在某种非线性的关系, 可用二次多项式很好的进行拟合。Leta等陋1根据Pitanguy等定义的年龄参数和 变化规律,采用多项式插值的方法对源图像变形得到在不同目标年龄的图像。最 近Ramanathan等呻1综合考虑了人体测量学和心理学中关于人脸老化或生长的因 素,提出了一种颅面生长模型。Hutton等n们则基于人脸的3D网格建立了人脸的 形状模型,并在形状模型空间中采用核平滑的方法建立了生长轨线,基于生长轨 线可以重构出任意目标年龄的人脸的形状,实现人脸的老化模拟。C.Choin订利用 主元分析(Principal Component AnalysiS。PCA)和3D人脸形状模型的方法, 将人脸变化分为幼年、中年、老年三个阶段,分别进行学习以模拟人脸老化效果。 Wun2J31针对3维人脸皮肽进行了老化模拟,Bergn41则侧重研究了面部轮匝肌的老 化。Boissieux等¨叫也进行了类似的工作。上述这些方法主要侧重于对人脸面部 结构中的某一部分或某些部分进行物理建模和研究,再利用年龄段间的变化差异 重构出未来人像,因而图像真实性不强。

无所不艺术:用杂志图片和真实人脸拼贴出怪异表情

无所不艺术:用杂志图片和真实人脸拼贴出怪异表情

无所不艺术:用杂志图片和真实人脸拼贴出怪异表情
2013.04.04 , 12:48 pm , 3,429 pv
两位法国艺术家Bruno Metra和Laurence Jeanson拍摄了一组照片,看起来怪异仿佛经过了整容。

他们从杂志上剪下脸的各部分,贴到模特的眼睛上,嘴唇上,鼻子上营造出新的面部表情,为时尚增加了一抹趣色。

从结果看,这些照片中人的五官跟杂志上挖空下来的还蛮搭的,只不过添了几分诡异。

Bruno Metra和Laurence Jeanson从杂志上剪下脸的各部分,贴到模特的眼睛上,嘴唇上,鼻子上营造出新的面部表情
这些照片中人的五官跟杂志上挖空下来的还有点搭
俩艺术家为这组照片命名为ID,他们试图传达这样的观点:美丽不光是天然的也可以是经人调整处理的。

45岁的专业摄影师Bruno Metra说:“我们受到其它肖像图片的狂轰滥炸。

杂志,电影和电视一直致力塑造推广成为社会审美取向的五官规范。


“化妆,穿衣打扮,行为举止展现出了一个人的外貌。

我和Laurence着迷于媒体的力量,好奇于它是怎样影响人们身份认同的。

我们的这种表现手法去掉了一些真实的五官,让模特们隐去自己的真
实部分,以便塑造另一个自我。

我们试图削弱外貌的束缚,重塑身份认同。


[shixinxin via dailymail]。

大型商业建筑表皮的媒介化特征

大型商业建筑表皮的媒介化特征

大型商业建筑表皮的媒介化特征【摘要】本文从视觉文化下的媒介发展视角出发,通过实例分析,探讨了媒介发展对当代商业建筑表皮的影响。

【关键词】图像;影像;数字;表皮;媒介当代视觉文化下的媒介发展大致分为三个时期:图像媒体,影像媒体以及数字媒体。

这些发展时期不是截然的分开,而是以新媒体的出现为划分依据,这些媒体类型目前在我国同时存在。

媒介的发展进步对社会产生了巨大的影响,同时影响到了商业建筑领域。

一、静态图像媒体的影响当代静态图像媒体的主要形式有:广告、杂志和视觉艺术下的各种图像视觉存在,而对商业建筑表皮影响最大的仍是广告。

下面我们来分析不同历史时期的广告与商业建筑的关系。

1.1 悬帜和悬壶在古代,酒旗作为酒家的标志,胡芦作为药铺的标志;“悬旗”“悬壶”是历史上最早的“招牌广告”。

世界上最早的印刷广告是我国北宋刘家针铺广告,而西方最早的是1473年英国人威廉·坎克斯制作的宗教宣传广告。

封建社会的广告形式是以文字为主的附属于建筑之上,基本上不能对商业建筑的发展构成影响。

1.2结构表皮——油漆招牌80年代商品经济发展刚起步,商业建筑基本沿袭的是现代主义建筑的功能至上形式,广告业开始起步,在百货大楼上面除了招牌和一些简单的文字促销条幅之外,看不见任何图像和广告。

招牌制作方面曾经在一段时期内使用手工油漆招牌,此时全国各地的百货店立面招牌都请文化或者政界名人题字落款,让招牌店放大制版后手工制作。

1.3橱窗式表皮——巨幅图像电脑喷绘技术的出现,已完全替代过去的人工绘制,使广告画面形象逼真,色彩艳丽,并极大的增强了户外广告的视觉冲击效果和价值,为近年来建筑立面巨幅广告的高速发展创造了条件。

当今商业建筑表皮上都预留设计大型橱窗供广告业主制作商业广告;首先在建筑表皮设计时就精心安排,利用视觉传达原理进行整体外观设计,以铝塑板和金属板等轻型材料做边框,并可以随时更换内容;闲置的时候也不影响美观效果,解决了以前的商业建筑表皮上乱贴乱搭,放任自由的广告问题。

基于非刚体运动光流算法的面部表情识别

基于非刚体运动光流算法的面部表情识别

Facial Expression Recognition Based on Optical Flow Techniques for Non rigid Motion Analysis
YA N G G uo Liang 1, 2 WA N G Z hi Liang 2 WA GN G uo Jiang 2 CH EN Feng Jun 2
3. 1 面部表情特征提取 本文采用上 述光 流算 法计 算面 部表 情图 像序 列 的光 流 场。同时 , 采用主成分分析法 ( P CA) 对光流场进行压缩 , 得到 面部表情图像特征流。 3. 1. 1 、 自适应选取 考虑到 、 控制目标函数附加约束中的一阶或二阶散度、 旋度项 , 或 越大 , 则对应的散度或旋度样条约束对光流估计 的贡献越大, 反之亦然。所以, 、 的选择必须充分考虑到运动 物体的运动特性。为此, 本文对 、 进行自适应选取。 对一阶 div cur l 约束下的光流算法 , 选择 | div V | | cur lV | = , = ( 11) | divV | + | cur lV | | divV | + | cur lV | 对二阶 div cur l 约束下的光流算法 , 选择 | divV | | cur lV | = , = ( 12) | divV | + | cur lV | | div V | + | cur lV | 3. 1. 2 光流数值解的进一步限制 方程 ( 7) 、 ( 10) 解的 稳定 性取 决于 矩阵 A 。 如果 A 的 条 件数很大 , 则方程 ( 7 ) 、 ( 10 ) 为病 态方程 , 其解 不稳定 , 计算 出 的光流场不可靠。为此 , 本文做如下处理 : ( 1) 如果 cond( A ) < ( 为阈值 ) , 则按照 ( 7 ) 或 ( 10 ) 式计 算光流 ; ( 2) 如果 cond( A ) , 则 V n+ 1 = V n 。 3 . 1 . 3 基于光流法的特征提取 至此 , 可以总结光流法提取面部表情特征流的算法如下 : ( 1) 图像预处理 , 如去噪、 图像归一化 ; ( 2) 计算图像中各点的一阶、 二阶梯度 ; ( 3) 设定初始光流场 ( u, v) = ( 0, 0) 和初始 、、 值 ; ( 4) 判断迭代是否到 达预定 步数 , 若到达 , 则转 ( 6 ) , 否 则 判断 cond( A ) < 是否成立 , 若成立 , 则 按照式( 7) 或 ( 10) 计算 光流 V n+ 1 , 若 cond( A ) 则转 ( 5 ) ; ( 5) 按照 ( 11) 或 ( 12 ) 式 重新计算 、, 并转( 4) ; ( 6) 采用 PCA 法对光流场降维 , 得到面部表情特征流。 3. 2 HMM BP 混合分类器设计 H M M 尽管具有 很强的时 间信 息处理 能力 , 但 是也有 自 身缺点 : 由于训 练算 法的 限制 , 使 得它 对模 式的 识别 能力 较 差 ; 其次 , H M M 的拓 扑结构和观测向量概率密度函数形 式的 先验选 择 往 往 和 实 际 有 出 入 ; 认 为 状 态 序 列 由 一 个 一 阶 M ar kov 链产生也不一定妥 当等等。 与 H M M 相比 , BP 神 经 网络却具有很强的模 式分类 能力 , 且对输 入的统 计特性 不必 作出先验假设。 为了充分利 用 H M M 和 BP 神经 网络 的优点 , 本 文构 建 了基于 HM M 和 BP 网络的混合分类器 , 把 BP 网络作为二次 分类器。首先利用面 部表 情特征 流训 练 H M M , 然 后把各 个 H M M 输出概 率组 合成一 个新 的向 量 , 并 把它 作为 BP 网 络 的输入信号 , 训练 BP 网络分类器。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Simulation of faceted film growth in threedimensions:microstructure,morphology and texturePeter Smerekaa,*,Xingquan Li b ,Giovanni Russo c ,D.J.SrolovitzdaDepartment of Mathematics,University of Michigan,525East University Ave,Ann Arbor,MI 48109-1109,USAbDepartment of Physics,University of Michigan,Ann Arbor,MI 48109,USAcDepartment of Mathematics,University of Catania,ItalydDepartment of Mechanical and Aerospace Engineering,Princeton University,Princeton,NJ 08544,USAReceived 28September 2004;received in revised form 3November 2004;accepted 6November 2004Available online 22December 2004AbstractWe present the results of a series of simulations of the growth of polycrystalline,faceted films in three spatial dimensions.The simulations are based upon the assumptions of the well known van der Drift model in which the growth rate of each surface is fixed only by its crystallographic orientation.The simulation method is based upon the level-set formalism and the only input are the relative velocities of the different facets.We focus specifically on cubic crystals that expose only {111}and {001}facets,such as diamond.Results are presented for the temporal evolution of the surface morphology,microstructure,mean grain size,grain size distribution,and crystallographic texture.The mean grain size and surface roughness increase with film thickness h as h 2/5,in agree-ment with theoretical results.The grain size distribution is self-similar.The films all exhibit a columnar microstructure and a fiber texture that sharpens as the film grows.The orientation of the texture is determined by the facet growth velocity ratio.The new simulation method is equally applicable to any type of faceted film growth.Ó2004Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.Keywords:Thin-film growth;Level-set method;Microstructure;Morphology1.IntroductionThe growth of polycrystalline films is central to a wide range of modern technologies.In fact,outside of the microelectronics industry,most technologically important films and coatings are polycrystalline rather than single crystals or amorphous (polycrystalline films are also widely used in microelectronics).A wide range of techniques has been employed to grow polycrystalline films,including electron beam deposition,molecular beam epitaxy,chemical vapor deposition,magnetron sputtering,etc.In many cases,the resultant films arestrongly faceted,generally exhibiting faces correspond-ing to low index crystallographic planes.The growth rate of the different facets may depend on several fac-tors,including their inclination relative to the deposition flux,sticking coefficients,site specific reaction rates,etc.In this paper,we examine the situation in which the growth rate (velocity)of each facet depends only on the crystallographic orientation of the facet.This is interface-limited growth and is common in,for example,the chemical vapor deposition (CVD)of diamond.This idealization of the growth process was suggested by van der Drift [1](it is often referred to as the van der Drift model)and even earlier by Kolmogorov [8].In this pa-per,we perform a series of simulations of the growth of polycrystalline,faceted films and examine the implications of this model for the evolution of the1359-6454/$30.00Ó2004Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.actamat.2004.11.013*Corresponding author.Tel.:+17347635724;fax:+17347630937.E-mail address:psmereka@ (P.Smereka).Acta Materialia 53(2005)1191–1204microstructure and morphology of such films in three spatial dimensions using a level-set technique.In many film growth scenarios,such as diamond CVD,the film develops a fiber texture (i.e.,a particular crystallographic direction is normal to the substrate,but the crystal orientation of the film grains parallel to the substrate is random).For example,if each grain has its Æ111ædirection oriented normal to the substrate,such a crystal has a Æ111æfiber texture.The development of a fiber texture during polycrystalline film growth is a natu-ral consequence of the van der Drift [1],faceted growth model.In this model,each crystallite or grain grows with each crystallographically equivalent facet moving with a known normal velocity until a facet meets the surface of another growing crystallite.When surfaces of different grains meet,a grain boundary is formed.We will assume that the resultant grain boundaries are immobile.A fiber texture develops because the edges of faceted crystallites grow faster than faces and corners grow faster than edges.If we consider a substrate on which are placed infinitesimally small crystallites with random orienta-tions,the ones with the corners pointing normal to the substrate will have the largest growth velocity perpendic-ular to the substrate.Since these crystallites or grains grow fastest,they will outgrow their neighboring grains and,hence,win the growth competition.As time pro-ceeds the growth front is increasingly composed of grains with these fastest growing orientations –this is the fiber texture.This process is sometimes referred to as geomet-ric selection.Thompson [2]discusses these issues in his re-view article on polycrystalline films.Wild et al.[3,4],Dammers and Radelaar [6],Paritosh et al.[7]developed algorithms for simulating the growth of faceted crystals based on the van der Drift model in two dimensions.Dammers and Radelaar demonstrated that the average grain size,d ,grows as d $ffiffiffih p ,where h is the film thickness.Paritosh et al.[7]did a more de-tailed study and showed,among other things,that the earlier results were valid for different types of faceted crystals.They also found that the grain size distribution was invariant upon scaling the grain size with the film height.We also note that Kolmogorov [8]and Thijssen et al.[9]predicted that in two dimensions d $ffiffiffih p as h !1on theoretical grounds.In three dimensions,Thi-jssen [10]predicted d $h 2/5.In addition,Thijssen [10]performed computations on a simplified version of the van der Drift model and showed that they were in agree-ment with his analytical prediction.In these computa-tions,Thijssen considered the crystallites as cones or cubes.The growth front of the polycrystalline film was first approximated as the outer envelope of all such cones or cubes.The difficulty with this approximation is that one crystal can interpenetrate through another crystal and then unphysically re-emerge.Thijssen over-came this difficulty by tagging crystal tops that have dis-appeared.Tagged tops are not allowed to re-emerge,but other parts of the crystal have the possibility to re-emerge.The computations were in agreement with the prediction that d $h 2/5.Barrat et al.[11]used crystal shapes as shown in Fig.1and approximated the growing film as the outer envelope of the individual crystals.One drawback of both these approaches is that information about the grain boundaries is lost.In this paper,we extend the earlier simulations of fac-eted,polycrystalline growth from two to three space dimensions while retaining a general description of fac-eting and grain shape and avoiding the interpenetration problems inherent in early three-dimensional ap-proaches.The earlier two-dimensional simulations were performed using a method that tracks the evolution of the surfaces during film growth.Such an approach is much more difficult to apply in three dimensions be-cause of the increased topological complexity.To our knowledge,no such three-dimensional algorithm has ever been developed that fully implements the van der Drift model.In the present paper,we extend the level set method for faceted polycrystal growth originally developed by Russo and Smereka [12]that altogether avoids issues of topological complexity.We then apply this model to the case of chemical vapor deposition of polycrystalline diamond films.Specifically,we examine the evolution of the surface morphology,polycrystalline grain structure,grain size distribution and crystallo-graphic texture.2.DiamondIn the paper,we shall focus on the case of a cubic material that exhibits only {001}and {111}facets,as1192P.Smereka et al./Acta Materialia 53(2005)1191–1204appropriate for diamond[3,4,6,7,11].In cubic crystals, all{001}surfaces are identical and all{111}are iden-tical.Wild et al.[3,4]showed that an isolated crystallite growing with afixed ratio of the{001}to{111}facet normal velocity will evolve into a series of invariant shapes that are known as idiomorphs.This ratio is tra-ditionally written asa¼ffiffiffi3p V001V111:ð1ÞThe procedure for determining this shape is identical to that used to determine the equilibrium shape of a crystal via the Wulffconstruction,except that the sur-face free energy vectors are replaced with the orienta-tion dependent growth velocity.Hence,idiomorphs are also referred to as kinetic Wulffshapes.The presence of facets in the present model implies the existence of cusps in the growth velocity versus surface orienta-tion plot.The variation of the shape of these idiom-orphs with a is shown in Fig.1.For a61,the idiomorphs are all cubes composed of{001}facets. For a P3,the idiomorphs are octahedra delimited by{111}facets.For1<a<3,the idiomorphs are cubo-octahedron,exposing both{001}and{111}fac-ets.For1<a<1.5,the idiomorphs exhibit six octago-nal{001}facets and eight triangular{111}facets. For 1.5<a<3,the idiomorphs exhibit six square {001}facets and eight hexagonal{111}facets.For the special case of a=1.5only square{001}and tri-angular{111}facets are present.These geometric con-structions are useful in interpreting the polycrystalline microstructures.Further,our computations will show that an interesting morphological bifurcation occurs in the polycrystallinefilms at a=1.5.The microstructure of a polycrystallinefilm is deter-mined by the growth competition between adjacent grains and thefilm morphology is dictated by the orien-tations and relative positions of the surviving grains (with orientation playing a much more important role). One expects that crystallites whose orientation is such that the fastest growing direction is perpendicular to the substrate will outgrow the crystallites with other ori-entations,as discussed above.The variation of the fast-est growing direction with a is indicated by the arrows in Fig.1.It is convenient to express this direction relative to theÆ001ædirection using the two polar angles,h and/from spherical coordinates.Paritosh,et al.[7] present the following expression for the fastest growing direction:h max¼tanÀ1ffiffiffi2p%54:73 ,a61,tanÀ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5a2À12aþ9p,16a63,tanÀ13ÀaÀÁ,36a63,0,a P38>>>>><>>>>>:ð2Þand/max¼p,a61,tanÀ13À2aaÀÁ,16a632,0,a P3:8><>:ð3ÞOne can use these expressions to show that the fastestgrowing direction is of the type:h h k l ifastest¼h111i,a61,h h11i,16a63,h0k1i,326a63,h001i,a P3,8>>><>>>:ð4Þwhereh¼3À2aa,k¼3Àaa,and l¼1:For example,if a¼3,thefiber texture isÆ011æ.Eq.(4)was presented in[5,24,25].Eq.(4),combined with Fig.1,can be used tomake several important predictions regarding themicrostructure in the long time limit within the vander Drift model framework.For example,thefilmwill develop afiber texture where thefiber axis is gi-ven by(4).When a61,the idiomorph is a cube delimited by{001}facets.The longest vectors from the center ofthe idiomorph to any point on its surface are in theÆ111ædirections.Hence,we expect the microstructureto have aÆ111æfiber texture and expose{001}facetson its surface.As a is slightly increased,thefibertexture will remain close toÆ111æ,but the surfacemicrostructure will change dramatically.It will pre-dominantly show facets with normals nearly perpendic-ular to this direction,namely the triangular{111}facets(note the small triangular{111}facets in thesecond idiomorph from the left in Fig.1).As a in-creases to 1.5,thefiber texture will change fromÆ111ætoÆ011æand the surface microstructure willevolve into a mixture of{111}and{001}facets(seethe third idiomorph from the left in Fig.1).As a isfurther increased to just less than3,the surface micro-structure will become dominated by square{001}facets and thefiber texture will change fromÆ011ætoclose toÆ001æ.For a P3,thefiber texture will remainÆ001æ,but the surface will be composed only of{111}facets.In the next section,we present the level set methodthat we use to evolve three-dimensional,faceted,poly-crystallinefilms to determine microstructure and mor-phology.The simulations not only verify the abovediscussion,but also provide images of the microstruc-ture and morphology that can be directly compared withexperimental plan view and cross-sectional micrographsas well as detailed information on texture and grain sizeevolution.P.Smereka et al./Acta Materialia53(2005)1191–120411933.Simulation methodWe now outline the derivation of our simulation method;first,for a single crystal.The method is based on two main ideas:the level set method and the Wulffconstruction.3.1.Level set methodWefirst discuss the level set method,originally devel-oped by Osher and Sethian[13].In this method,the interface of crystal,C,is the surface on which the smooth scalarfield,u,is zero:C¼f uðx,tÞ¼0g:We shall assume that the crystal exists where thefield u<0and there is a vacuum or vapor in the region u>0,exterior to the crystal.If the velocity of the surface in the direction of its normal,v n,is known,then the time evolution of u is given byo uo tþv n jr u j¼0:For an introduction to this method the reader is referred to the books by Sethian[14]and Osher and Fedkiw[15] and the review article by Smereka and Sethian[16].The unit normal to the interface is given byn¼r u jr u j:Therefore,if the normal velocity is a function of direc-tion,v n=c(n),the time evolution of u is given by the le-vel set equationo u o t þcr ujr u jjr u j¼0:ð5ÞIn our model we are assuming that the normal velocity v n is only a function of the normal n to the surface.This assumption may be a good approximation in many cases.There are some circumstances in which such approximation is not a good one.For example,if the crystals form a closed region containing vapor,then it is clear that the crystal cannot grow,since chemical va-por deposition is inhibited on the surface of such region. Here we neglect such effect.We note in Eq.(5)the interface velocity,v n=c(n),has been extended into three dimensions.Therefore,Eq.(5) can be solved on afixed grid and the surface of the crys-tal is found using iso-surface rendering graphics software.It is clear that if we wish to evolve a crystal in three space dimensions,we must solve the level set equation in three dimensions,even though its surface is two-dimensional.This can be rather expensive in terms of computer time and memory since we must update u at every location whether it is needed or not.We defer the discussion about how to efficiently use this method to later in the paper.The major remaining issue is how to implement the level set method to describe and evolve faceted crystals.3.2.Kinetic WulffshapeIf we know the surface velocity for all possible surface normals,the location of the interface can be determined from_x¼cðnÞn:ð6ÞThis equation has a long history and the reader is re-ferred to the articles by Taylor et al.[17],Osher and Merriman[18],Peng et al.[19]and the references therein.The important discovery made by Wulff[20] and Frank[21]is that if the crystallite shape evolves as described by Eq.(6),the shape will evolve asymp-totically into the Wulffshape.The Wulffshape is the Legendre transform of c or equivalently the inner con-vex hull of c,as proved by Soravia[14]and Osher and Merriman[18].More precisely,Osher and Merriman proved that the unique viscosity solution of Eq.(5) asymptotically approaches the Wulffshape of c(n). From a practical point of view this means that if one solves Eq.(5)with an upwind method(see,for example[13–16]),the zero level or contour will ap-proach the Wulffshape.In particular,if we start with a Wulffshape and evolve it using Eq.(5),its shape will not change as it grows.In order to use Eq.(5)for our purposes,we must find a c function so that the Wulffshapes are those as given in Fig.1.This is a type of inverse problem, which was solved by Russo and Smereka[12].Suppose we have a crystal and know the normal direction and velocities of each of its facets,n i and w i,respectively. Then we wish tofind a c(n)so that when it evolves as described by Eq.(5),the level set of u will be com-posed of facets whose normal directions and velocities are those prescribed above.This is done as follows:first we definekðnÞ¼arg maxjnÁn j,thencðnÞ¼w kðnÞþrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1ÀðnÁn kðnÞÞ2q,ð7Þwhere r P r0,and r0is a geometric parameter that de-pend on the Wulffshape.In our computations we choose r=1.1.For initial conditions,we choose a u whose zero level set is a polyhedron with normal directions as prescribed above.We observe that when the system evolves as per Eq.(5),the zero level set quickly evolves to the corre-sponding Wulffshape.This is consistent with the predic-tions of Osher and Merriman[18].1194P.Smereka et al./Acta Materialia53(2005)1191–12043.2.1.Multiple grainsSince we are interested in modeling a polycrystalline film,we must implement the method for many separate grains.Therefore,we introduce a level set function,u j,to describe the evolution of each grain j.We remind the reader that u j<0inside the grain and u j>0outside of that grain.This means that if both u i<0and u j<0at the same physical location and i¼j then the grains would overlap.This is clearly unphysical.Thus,we introduce the overlap functiongðx,tÞ¼0,if any of the u j’s overlap 1,otherwise:&The time evolution of the level set functions is theno u j o t þgðx,tÞc jr u jjr u j jjr u j j¼0:ð8ÞWe note that each grain has its own c j function since each grain has it own set of normals.We remark that the interface of the entire polycrystallinefilm can easily be computed from the individual level set functions as follows:uðx,tÞ¼minju jðx,tÞ:ð9ÞFinally we mention that if we evolve the system as per Eq.(8)with g=1and use Eq.(9),the zero level set of u will give the outer envelope of the individual grains growing without restriction.The interaction of the crys-tals is determined by the overlap function.putational issuesIn our approach,each grain has its own level set func-tion.For problems with a large number of grains this becomes very expensive both in terms of computer time and memory.However,it is clear that we only need to compute the level set function near grain surfaces.It is possible to achieve this goal since we know where each interface is located,i.e.,at u=0.Therefore,we only compute the level set function in a narrow band around each surface.This approach is called the narrow band level set method.Although we have made several impor-tant modifications specifically for this problem,we have followed the spirit of this approach as outlined by Adal-steinsson and Sethian[22]and Peng et al.[23].To fur-ther save memory we dynamically allocate memory for multiple level set functions.This helps because as the film grows some grains grow more than others and as a consequence need more memory.In addition,the nar-row band has an active part and an inactive part.The active part is where the crystals are growing and the inactive part is where the crystals have grown into each other and no further growth occurs.The inactive parts are removed from memory and stored on disk.In this way,we are able to perform computations with over 200level set functions on grids as large as 350·350·1200on a computer with1GB of RAM.In the simulation presented here,we employ peri-odic boundary conditions on the edges of the compu-tational cell in the direction parallel to the substrate plane in order to reduce the effects of afinite size com-putational domain.We have performed numerical con-vergence studies and determined that a computational mesh of size250·250produces solutions of sufficient accuracy.For our initial conditions,we placed121 very small grains(islands)at random locations on the substrate with random orientations.This was done as follows:each seed was rotated using the three Euler angles,thefirst and last were taken uniformly in[0,2p] whereas the second was such that its cosine is uniform in[À1,1].In this way the distribution of orientations is isotropic.All the seeds were of the same size and their centers were all at the same height.The average height of thefilm,h,is expressed in terms of the aver-age distance between the grains at the beginning of the simulation,d0.The results for average grain size,roughness of the surface and orientation distribution are averaged overa dozen runs.4.Surface morphology and crystallographic textureIn this section and in the next two we report the re-sults about macroscopic parameters concerning the polycrystal.Most of them,such as texture,cross-sec-tions,and grain size,are computed after the crystal is grown,by cutting slides of the crystal at a given height h,and by measuring the desired parameters from the cross-section.Surface morphology and surface rough-ness(see Section6),however,are computed during the run.Figs.2–6show the surface morphology as a function offilm thickness,h,during the growth of thefilm.Since the physics of the growth contains nothing to break the in-plane(plan view)symmetry,we characterize the crys-tallographic texture as afiber texture.To this end,we fo-cus specifically on the value of h for each grain, weighting each grain according to the projection of the surface area on the x–y plane,and constructing the cor-respondingfiber texture distribution functions.These are shown beneath the corresponding surface morphol-ogy in Figs.2–6.Examination of the texture distribution functions shows that as thefilm thickens,the texture distribution sharpens into a pronouncedfiber texture.The distribu-tion becomes sharply peaked at an orientation,h max that varies with a.To see this more clearly,we have plotted h max as a function of a in Fig.8.h max decreases from 52°to5°as a increases from1to2.9.Fig.8also showsP.Smereka et al./Acta Materialia53(2005)1191–12041195the theoretical prediction of h max (i.e.Eq.(2)).The sim-ulation data are in very good agreement with the theo-retical predictions (within the statistical error in the simulations).This suggests that the orientation of the fi-ber texture h max is accurately characterized by the assumption that h max is simply the fastest growingdirec-Fig.2.Surface morphology (upper row)and orientation distribution function (lower row)evolution for a =1.From left to right,h =0.36d 0,h =12.0d 0,and h =36.2d 0.Fig.3.Surface morphology (upper row)and orientation distribution function (lower row)evolution for a =1.1.From left to right,h =0.55d 0,h =8.0d 0,and h =27.0d 0.1196P.Smereka et al./Acta Materialia 53(2005)1191–1204tion in the idiomorph (kinetic Wulffshape)and that direction is oriented normal to the substrate.In other words,h max corresponds to the crystallographic direc-tion specified in Eq.(4).We now consider the observed polycrystalline surface morphology seen in Figs.2–6in more detail.Fig.2shows the case of a =1,where the kinetic Wulffshape (Fig.1)is a cube.The fastest growing direction(longestFig.4.Surface morphology (upper row)and orientation distribution function (lower row)evolution for a =2.From left to right,h =0.50d 0,h =11.0d 0,and h =40.0d 0.Fig.5.Surface morphology (upper row)and orientation distribution function (lower row)evolution for a =2.9.From left to right,h =0.70d 0,h =11.0d 0,and h =43.0d 0.P.Smereka et al./Acta Materialia 53(2005)1191–12041197vector from the center of the kinetic Wulffshape)is Æ111æin this case.Indeed,the surface morphology evolves such that the grains with Æ111æ-directions are normal to the plane of the surface.h max for this case (a =1)is 52°,while the analytical prediction based on the kinetic Wulffshape analysis (Eq.(2))is tan À1ffiffiffi2p ¼54:73 .Further,the surface morphology ap-pears as if it is composed of cubes viewed along the body diagonal -three flat surfaces meet at a point and each pair of planes meet at 90°.These planes are all {001}-planes,as predicted by the kinetic Wulffshape.Fig.3shows the surface morphology for the a =1.1case.The surface morphology changes dramatically with the change in a from 1.0(Fig.2)to 1.1.This may be sur-prising because the location of the peak in the orienta-tion distribution only suffered a small shift upon this change in a .For a =1.1,the surface is largely composed of triangular facets that are nearly parallel with the mean surface and no corners point out of the surface,as they did for a =1.The triangular facets are of the {111}-type and the facets bounding the triangles are of the {001}-type.Such surface morphologies were pre-viously observed in CVD diamond films;see for example Barrat and Bauer-Grosse [25]and May [26].To under-stand this surface morphology,we return to the kinetic Wulffshapes of Fig.1.For a infinitesimally larger than 1,the Æ111æcorners present in the a =1cubic kinetic Wulffshapes are replaced with small triangular {111}facets.These facets are nearly perpendicular to the fast-est growing direction (slightly offof Æ111æ:h ¼tan À1ffiffiffi2p ¼54:73 ,/=p /4)and hence they are nearly parallel to the substrate.The {001}facets bound-ing the triangles in the surface morphology can be traced to the {001}surfaces of the kinetic Wulffshape that bounds the {111}parison of the orienta-tion distribution plots in Figs.2and 3demonstrates that the texture sharpens more quickly for a =1.1than for a =1.0.Fig.4shows the surface morphology and orientation distribution function for the a =2case.The morphology is characterized by corners that poke out from the mean surface plane.Although it is not obvious from this fig-ure,the surface is composed of both {111}and {001}facets-two {111}and one {001}facet meet at each cor-ner.This morphology is consistent with the predictions drawn from the kinetic Wulffshape,as discussed above.The orientation distribution plots and Fig.8demon-strate that h max %27°from the simulations,which is in reasonable agreement with the prediction of h max =26.6°from Eq.(2).This corresponds to a Æ012æfiber texture.The results for a =2.9are shown in Fig.5.This sur-face shows pronounced square {001}facets,as com-pared with the previous figure (a =2).This surface morphology is similar to that seen in the experiments of,for example,May [26],and von Kaenel et al.[27]on CVD diamond.The square facets are parallel to the substrate and are consistent with the kinetic Wulffshape (Fig.1).In this case,the fastest growing direction (and hence the mean surface normal)is close to Æ001æFig.6.Surface morphology (upper row)and orientation distribution function (lower row)evolution for a =3.From left to right,h =0.40d 0,h =10.0d 0,and h =37.0d 0.1198P.Smereka et al./Acta Materialia 53(2005)1191–1204。

相关文档
最新文档