Recursive Code Construction for Random Networks

合集下载

老年肺腺癌脑转移预后预测模型的构建

老年肺腺癌脑转移预后预测模型的构建

·临床论著·老年肺腺癌脑转移预后预测模型的构建雷震* 王仕强 漆新伟 龙强友 刘国栋 张燕华 罗翰生 王德全△(成都市第七人民医院天府医院(成都市肿瘤医院•成都医学院附属肿瘤医院•成都市癌症防治中心)神经外科,四川 成都 610213)摘要 目的:构建老年肺腺癌脑转移预后的预测模型。

方法:选择2013年1月至2016年12月成都市第七人民医院接诊的195例肺癌患者进行研究。

模型建立前入组的142例患者为A 组,模型建立后入组的53例患者为B 组。

采用COX 风险回归模型、随机生存森林、改良递归分区分析和风险预后评估指数对患者进行预后模型的建立。

结果:COX 风险回归模型、随机生存森林、改良递归分区分析和风险预后评估指数验证结果显示在A 组中,KSE125模型的C-指数最高(77.4%),最低的OOB 和AIC 值(25.7%和28.6)。

与其他模型相比,A 组开发的KSE125模型在B 组中表现良好,并且该模型具有更高的预测能力和更低的过度配合可能性。

结论:本研究所构建的KSE125模型可准确预测老年肺腺癌脑转移患者预后,且其操作简便、易行,值得推广。

关键词:CA125;肺腺癌;脑转移;预后预测Construction of a predictive model for the prognosis of brain metastases fromlung adenocarcinoma in the elderlyLei Zhen*, Wang Shi-qiang, Qi Xin-wei, Long Qiang-you, Liu Guo-dong, ZhangYan-hua, Luo Han-sheng, Wang De-quan △(Department of Neurosurgery, Tianfu Hospital, Chengdu Seventh People's Hospital (Chengdu Cancer Hospital,Chengdu Cancer Center Affiliated to Chengdu Medical College), Chengdu 610213, China)Abstract Objective: To explore the construction of a prognostic model for brain metastasis of lung adenocarcinoma in the elderly. Methods: 195 patients with lung cancer in Chengdu Seventh People's Hospitalfrom January 2013 to December 2016 were selected for the study. All patients were divided into two groups according to the model before and after the establishment. 142 patients before the establishment of the model were group A. 53 patients after the establishment of the model were group B. COX risk regression model, random survival forest, improved recursive partition analysis and risk prognosis evaluation index were used to establish the prognosis model of group A. Results: COX risk regression model, random survival forest, modified recursive partition analysis, and risk prognosis assessment index verification results show that the C-index of the KSE125 model is the highest (77.4%), and the OOB and AIC values are the lowest (25.7% and 28.6%) in group A. Compared with other models, the KSE125 model developed by group A performs well in group B, and the model had higher predictive ability and lower possibility of over-fitting. Conclusion: The KSE125 model constructed in this study can accurately predict the prognosis of elderly patients with lung adenocarcinoma and brain metastasis, and its operation is simple and easy to implement, and it is worthy of promotion.Key words: CA125; Lung Adenocarcinoma; Brain Metastasis; Prognosis Prediction*作者简介:雷震,男,主治医师,主要从事神经外科疾病诊治及研究,Email :**************;Δ通讯作者:王德全,男,副主任医师,主要从事神经外科疾病诊治及研究,Email :135****************。

C++专业英语单词

C++专业英语单词
c++常用英语单词
c++常用英语单词 A 抽象数据类型 abstract data type abstraction 累加 accumulating
实际变元 actual argument 实际参数 actual parameter 址运算符 address operator 算法 algorithm
类型转换构造函数 type conversion constructor U 联合体 union V 变量 variable
变量作用范围 variable scope 可变条件循环 variable condition loop vinary file 虚函数 virtual
二进制补码 two’s complement 二进制文件
private
面向过程的语言 procedure-oriented language
汇编语言 programming language
程序设计
progremming
提示 prompt
函数的原形
prototype
伪代码 pseudocode
程序验证与测试 program verification and testing
流程图 flowchart 形式变元 formal argument formal parameter 友元函数 friend G 全局作用的范围 global scope 变量 global variable H 硬盘 hard disk
硬件 hardware 函数首部 header
头文件 header file

嵌套循环 nested
对象 object 操作码
运算符函数 函
引用传递 pass by

电压闪变与波动的外文翻译

电压闪变与波动的外文翻译

Measurement of a power system nominal voltage, frequency and voltage flicker parametersA.M. Alkandari a, S.A. Soliman b,*a b s t r a c t:We present, in this paper, an approach for identifying the frequency and amplitude of voltage flicker signal that imposed on the nominal voltage signal, as well as the amplitude and frequency of the nominal signal itself. The proposed algorithm performs the estimation in two steps; in the first step the original voltage signal is shifted forward and backward by an integer number of sample, one sample in this paper.The new generated signals from such a shift together with the original one is used to estimate the amplitude of the original signal voltage that composed of the nominal voltage and flicker voltage. The average of this amplitude gives the amplitude of the nominal voltage; this amplitude is subtracted from the original identified signal amplitude to obtain the samples of the flicker voltage. In the second step, the argument of the signal is calculated by simply dividing the magnitude of signal sample with the estimated amplitude in the first step. Calculating the arccosine of the argument, the frequency of the nominal signal as well as the phase angle can be computing using the least error square estimation algorithm. Simulation examples are given within the text to show the features of the proposed approach.Keywords: Power quality Nominal frequency and amplitude measurements Voltage flicker Frequency and amplitude estimation Forward and backward difference1.IntroductionV oltage flicker and harmonics are introduced to power system as a result of arc furnace operation, and power utilities are concern about their effects. As such an accurate model for the voltage flicker is needed. The definition of voltage flicker in IEEE standards is the ……impression of fluctuating brightness or color, when the frequency observed variation lies between a few hertz and the fusion frequency of image” [1]. The flicker phenomenon may be divided into two general categories, cyclic flicker and non-cyclic flicker. Cyclic flicker is repetitive one and is caused by periodic voltage fluctuations due to the operation of loads such as spot welders, compressors, or arc welders. Non-cyclic flicker corresponds to occasional voltage fluctuations, such as starting of large motors, some of loads will cause both cyclic andnon-cyclic flicker, such as arc furnace, welder, and ac choppers.Over the past three decades, many digital algorithms have been developed and tested to measure power system frequency and rate of change of frequency. Ref. [2] presents the application of the continuous Wavelet transform for power quality analysis. The transform appears to be reliable for detecting and measuring voltage sags, flicker and transients in power quality analysis. Ref. [3] pays attention to the fast Fourier transform and its pitfalls. A low pass.digital filter is used, and the effects of system voltage deviation on the voltage - flicker measurements by direct FFT are studied. The DC component leakage effect on the flicker components in the spectrum analysis of the effective value of the voltage and the windowing effect on the data acquisition of the voltage signal are discussed as well.A digital flicker meter is proposed in Ref. [6] based on forward and inverse FFT and on filtering, in the frequency domain, for the implementation of the functional blocks of simulation of lamp–eye–brain response. Refs. [5–7] propose a method based on Kalman filtering algorithms to measure the low frequency modulation of the 50/60 Hz signal. The method used, in these references, allows for random and deterministic variation of the modulation. The approach utilizes a combination of linear and non-linear Kalman filter modes.Ref. [8] presents a method for direct calculation of flicker level from digital measurements of voltage waveforms. The direct digital implementation uses Fast Fourier transform (FFT) as the first step in computation. A pruned FFT, customized for the flicker level computation, is also proposed. Presented in Ref. [9] is a static state estimation algorithm based on least absolute value error (LA V) for measurement of voltage flicker level. The waveform for the voltage signal is assumed to have, for simplicity, one flicker component. This algorithm estimates accurately the nominal voltage waveform and the voltage flicker component. An application of continuous wavelet transform (CWT) for analysis of voltage flicker-generated signals is proposed in Ref. [10] With the time-frequency localization characteristics embedded in the wavelets, the time and frequency information of a waveform can be integrally presentedRef. [11] presents an arc furnace model that implemented in the Simulink environment by using chaotic and deterministic elements. This model is obtained by solving the corresponding differential equation, which yields dynamic and multivalued v i characteristics of the arc furnace load. In order to evaluate the flicker in the simulated arc furnace voltage, the IEC flicker meter is implemented based on the IEC 1000-4-15 standard in Matlab environment.Ref. [12] presents an approach to estimate voltage flicker components magnitudes and frequencies, based on Lp norms (p = 1,2 and 1) and Taylor‟s‟ series linearization. It has been found that it is possible to design an Lp estimator to identify flicker frequency and amplitude from time series measurements. The Teager energy operator (TEO) and the Hilbert transform (HT) are introduced in Ref. [13] as effective approaches for tracking the voltage flicker levels. It has been found that TEO and HT are capable of tracking the amplitude variations of the voltage flicker and supply frequency in industrial systems with an average error 3%.Ref. [14] presents a control technique for flicker mitigation. This technique is based on the instantaneous tracking of the measured voltage envelope. The ADALINE (ADAptive LINear) neuron algorithm and the Recursive Least Square (RLS) algorithm are introduced for the flicker envelope tracking. In Ref. [15], an algorithm for tracking the voltage envelope based on calculating the energy operator of a sinusoidal waveform is presented. It is assumed that the frequency of the sinusoidal waveform is known and a lead-lag network with unity gain is used. Ref. [16] develops an enhanced method for estimating the voltage fluctuation (DV10) of the electric arc furnace (EAF). The method proposed considers the reactive power variation and also the active power variation in calculating DV10 value of ac and dc LEAFsControl and protection of power systems requires accurate measurement of system frequency. A system operates at nominal frequency, 50/60 Hz means a balance in the active power, i.e. The power generated equals the demand power plus losses. Imbalance in the active power causes the frequency to change. A frequency less than the nominal frequency means that the demand load plus losses are greater than the power generated, but a frequency greater than nominal frequency means that the system generation is greater than the load demand plus losses. As such, frequency can be used as a measure of system power balance.Ref. [17] presents a numerical differentiation-based algorithm for high-accuracy, wide-range frequency estimation of power systems. The signal, using this algorithm, includes up to 31st-order harmonic components. Ref. [18] presents a method for estimation of power frequency and its rate of change. The proposed methodaccommodates the inherent non-linearity of the frequency estimation problem. The estimator is based on a quadrature phase-look loop concept.An approach for designing a digital algorithm for local system frequency estimation is presented in Ref. [19]. The algorithm is derived using the maximum likelihood method. A recursive Newtontype algorithm suitable for various measurement applications in power system is developed in Ref. [20] and is used for power system frequency and spectra estimation. A precise digital algorithm based on discrete Fourier transforms (DFT) to estimate the frequency of a sinusoid with harmonics in real-time is proposed in Ref. [21]. This algorithm is called smart discrete Fourier transform (SDFT) that avoids the errors due to frequency deviation and keeps all the advantages of the DFT.Ref. [22] presents an algorithm for frequency estimation from distorted signals. The proposed algorithm is based on the extended complex Kalman filter, which uses discrete values of a three-phase voltage that are transformed into the well-known ab-transform Using such a transformation a non-linear state space formulation is obtained for the extended Kalman filter. This algorithm is iterative and complex and needs much computing time and uses the three-phase voltage measurements, to calculate the power system voltage frequency.Ref. [23] describes design, computational aspect, and implementation aspects of a digital signal processing technique for measuring the operating frequency of a power system. It is suggested this technique produces correct and noise-free estimates for near nominal, nominal and off-nominal frequencies in about 25 ms, and it requires modest computation. The proposed technique uses per-phase digitized voltage samples and applies orthogonal FIR digital filters with the least errors square (LES) algorithm to extract the system frequency.Ref. [24] presents an iterative technique for measuring power system frequency to a resolution of 0.01–0.02 Hz for near nominal, nominal and off-nominal frequencies in about 20 ms. The algorithm in this reference uses per-phase digitized voltage samples together with a FIR filter and the LES algorithm to extract iteratively the signal frequency.This algorithm has beneficial features including fixed sampling rate, fixed data window size and easy implementationRefs. [25,26] present a new pair of orthogonal filters for phasor computation; the technique proposed extracts accurately the fundamental component of fault voltageand current signal. Ref. [27] describes an algorithm for power system frequency estimation. The algorithm, applies orthogonal signal component obtained with use of two orthogonal FIR filters. The essential property of the algorithm proposed is outstanding immunity to both signals orthogonal component magnitudes and FIR filter gain variations. Again this algorithm uses the per-phase digitized voltage samples.Ref. [28] presents a method of measuring the power system frequency, based on digital filtering and Prony‟s estimation. The discrete Fourier transform with a variable data window is used to filter out the noise and harmonics associated with the signal. The results obtained using this algorithm are more accurate than when applying the method based on the measurement of angular velocity of the rotating voltage phasor. The response time of the proposed method equals to three to four periods of the fundamental components. This method uses also per phase digitized voltage samples to compute the system frequency from harmonics polluted voltage signal. Ref. [29] implements a digital technique for the evaluation of power system frequency. The algorithm is suitable for microprocessor implementation and uses only standard hardware. The algorithm works with any relative phase of the input signal and produces a new frequency estimate for every new input sample. This algorithm uses the orthogonal sine and cosine- filtering algorithm..A frequency relay, which is capable of under/over frequency and rate of change of frequency measurements using an instantaneous frequency-measuring algorithm, is presented in Ref. [30]. It has been shown that filtering the relay input signal could adversely affect the dynamic frequency evaluation response. Misleading frequency behavior is observed in this method, and an algorithm has been developed to improve this behavior. The under/over frequency function of the relay will cause it to operate within 30 ms.Digital state estimation is implemented to estimate the power system voltage amplitude and normal frequency and its rate of change. The techniques employed for static state estimation are least errors square technique [31–33], least absolute value technique [34–36]. While linear and non-linear Kalman filtering algorithms are implemented for tracking the system operating frequency, rate of change of frequency and power system voltage magnitude from a harmonic polluted environment of the system voltage at the relay location. Most of these techniques use the per-phasedigitized voltage samples, and assume that the three-phase voltages are balanced and contain the same noise and harmonics, which is not the case in real-time, especially in the distribution systems, where different single phase loads are supplied from different phases.An approach for identifying the frequency and amplitude of flicker signal that imposed on the nominal voltage signal, as well as the amplitude and frequency of the nominal signal itself is presented in this text. The proposed algorithm performs the estimation in two steps. While, in the first step the original signal is shifted forward and backward by an integer number of sample, one sample in this paper. The generated signals from such shift together with the original one are used to estimate the amplitude of the original voltage signal that composed of the nominal voltage and the flicker voltage, the average of this amplitude gives the amplitude of the nominal voltage. This amplitude is subtracted from the original identified amplitude to obtain the samples of the flicker voltage. In the second step, the argument of the signal is calculated by simply dividing the magnitude of signal sample with the estimated amplitude in step one. Computing the arccosine of the argument, the frequency of the nominal signal as well as the phase angle can be calculated using the least error square estimation algorithm. Simulation examples are given within the text to show the features of the proposed approach.2. Flicker voltage identificationGenerally speaking, the voltage during the time of flicker can be expressed as [2]:where AO is the amplitude of the nominal power system voltage, xO is the nominal power frequency, and /O is the nominal phase angle. Furthermore, Ai is the amplitude of the flicker voltage, xfi its frequency, and /fi its phase angle and M is the expected number of flicker voltage signal in the voltage waveform. This type of voltage signal is called amplitude modulated (AM) signal.2.1. Signal amplitude measurement::The first bracket in Eq. (1) is the amplitude of the signal, A(t) which can be written as:As such Eq. (1) can be rewritten asAssume that the signal is given forward and backward shift by an angle equals an integral number of the sampling angle. Then Eq. (3) can be written in the forward direction as:While for the backward direction, it can be written as:where h is the shift angle and is given byN is the number of samples required for the shift, fO is the signal frequency and m is the total number of samples over the data window size. Using Eqs. (4)–(6), one obtainsThe recursive equation for the amplitude A(k) is given by:Having identified the amplitude A(k), the amplitude of the nominal voltage signal of frequency x O can be calculated, just by taking the average over complete data window size as:Having identified the power signal amplitude AO, then the flicker voltage components can be determined by;This voltage flicker signal can be written as;where DT is the sampling time that is the reciprocal of the sampling frequency.2.2. Measurement of flicker frequencyWithout loss of generality, we assume that the voltage flicker signal has only one component given by, i = 1To determine the flicker amplitude Vf1(k) and the frequency xf1 from the available m samples, we may use the algorithm explained in Ref. [9]. The frequency is calculated fromWhile the amplitude can be calculated as:In the above equations v0 are the fist and second derivative of the flicker signal, they can be calculated, using the central forward and backward difference [9] as:2.3. Nominal voltage signal frequency and phase angleThe signal argument can be calculated fromwhere AR(k) is given byIn the above equation W0, u are the two parameters to be estimated from the available m samples of the argument AR(k). At least two samples are required for such a linear estimation.Eq. (17) can be written, for m samples, asIn vector form, Eq. (19) can be written as:where Z is m 1 measurements vector for the argument samples, H is m 2 measurements matrix the element of this matrix depend on the sampling time, sampling frequency, X is the 2 1 parameters vector to be estimated and f is m 1 error vector to be minimized. The minimum of f based on least error squares occurs when:The above two equations give directly the frequency and phase angle, in closed forms, for the signal under study. To have a practical approach those formulas should not be sensitive to noise and harmonics. One way to reduce those sensitivities is to use of least error squares algorithm, as we explained in Eq. (21), for the frequency estimation in the paper. In the following section we offer examples from the area of power system voltage flickers that can be considered as amplitude modulated signals.puter experimentsThe above algorithm is tested using amplitude modulated signal with one voltage flicker signal given by;The signal is sampled at 10000 Hz and is giving a forward shift and backward shift by one sample, h = 7.2 and 1000 samples are used. The power system voltage, 50 Hz signal, amplitude is estimated using the algorithm explained earlier, using Eqs. (8) and (9), and it has been found to that the proposed algorithm is succeeded in estimating this amplitude with great accuracy and is found be AO = 1.0. Fig. 1 gives the actualvoltage signal, the tracked signal and the voltage signal amplitude. Examining this figure reveals the following:The power voltage signal amplitude, 50 Hz, is almost 1 p.u., the average value of A(t), as that calculated using Eq. (9).The proposed technique tracked the actual signal exactly.The flicker signal frequency is estimated using 200 samples only with Eq. (13). Fig. 2 gives the estimated flicker voltage frequency at each sampling step. Examining this figure reveals that the proposed algorithm estimates the flicker frequency with great accuracy. The spikes, in these curves, are due to the value of the voltage flicker signal at this time of sampling which is very small, and looking to Eq. (13) one can notice that to calculate the frequency we divide by this value ceeded to estimate the flicker amplitude, except at the points of spikes, as we explained earlier in the frequency estimation.Another example has been solved, where the voltage signal has two flicker signals with different amplitude and frequency. The voltage signal in this case is given by The signal is sampled at 500 Hz and is giving a forward shift and backward shift by one sample, h = 7.2 and 500 samples are used. The voltage nominal amplitude is estimated using the technique explained earlier and has found to be one per unit, and the tracking voltage, using this technique, tracks the signal exactly as shown in Fig. 4.4.ConclusionsAn approach for identifying the frequency and amplitude of flicker signal that imposed on the nominal voltage signal, as well as the amplitude and frequency of the nominal signal itself is presented in this paper. The proposed algorithm performs the estimation in two steps; in the first step the original signal is shifted forward and backward by an integer number of sample, at least one sample. The new generated signals from such a shift together with the original one is used to estimate the amplitude of the original voltage signal that composed of the nominal voltage and theflicker voltage. The average of this amplitude gives the amplitude of the nominal voltage; this amplitude is subtracted from the original identified amplitude to obtain the samples of the flicker voltage. The frequency of the flicker voltage is calculated using the forward and backward difference for the first and second derivatives for the voltage flicker signal.In the second step, the argument of the signal is calculated by simply dividing the magnitude of signal sample with the estimated amplitude in step one. Calculating the arccosine of the argument, the frequency of the nominal signal as well as the phase angle can be calculated using the least error square estimation algorithm. Simulation examples are given. It has been shown that the proposed algorithm is succeeded in estimating the voltage flicker frequency and amplitude as well as the amplitude and frequency of the power voltage signal.The proposed algorithm can be used off-line as well as on-line. In the on-line mode we recommend the usage of a digital lead- lag circuit. Wile in the off-line mode; just shift the registration counter on sample in the backward direction and another on in the forward direction to obtain the required sample of the data window size.电力系统的额定电压,频率和电压闪变参数的测量摘要我们提出,在本文中,用于识别施加于标称电压信号电压闪变信号,以及标称信号本身的振幅和频率的频率和幅度的方法。

[生活]计算机专业英语词汇缩写大全

[生活]计算机专业英语词汇缩写大全

[生活]计算机专业英语词汇缩写大全计算机专业英语词汇缩写大全计算机专业英语词汇缩写大全(J-Z)2010年01月06日星期三 12:47J J2EE — Java 2 Enterprise Edition J2ME — Java 2 Micro Edition J2SE — Java 2 Standard Edition JAXB — Java Architecture for XML Binding JAX-RPC — Java XML for Remote Procedure Calls JAXP — Java API for XML Processing JBOD — Just a Bunch of Disks JCE — Java Cryptography Extension JCL — Job Control Language JCP — Java Community Process JDBC — Java Database Connectivity JDK — Java Development KitJES — Job Entry SubsystemJDS — Java Desktop SystemJFC — Java Foundation Classes JFET — Junction Field-Effect Transistor JFS — IBM Journaling File System JINI — Jini Is Not InitialsJIT — Just-In-TimeJMX — Java Management Extensions JMS — Java Message Service JNDI — Java Naming and Directory Interface JNI — Java Native InterfaceJPEG — Joint Photographic Experts Group JRE — Java Runtime Environment JS — JavaScriptJSON — JavaScript Object NotationJSP — Jackson Structured Programming JSP — JavaServer PagesJTAG — Joint Test Action Group JUG — Java Users Group JVM — Java Virtual Machine jwz — Jamie ZawinskiKK&R — Kernighan and Ritchie KB — KeyboardKb — KilobitKB — KilobyteKB — Knowledge BaseKDE — K Desktop Environment kHz — KilohertzKISS — Keep It Simple, Stupid KVM — Keyboard, Video, Mouse LL10N — LocalizationL2TP — Layer 2 Tunneling Protocol LAMP — Linux Apache MySQL Perl LAMP — Linux Apache MySQL PHP LAMP — Linux Apache MySQL Python LAN —Local Area Network LBA — Logical Block Addressing LCD — Liquid Crystal Display LCOS — Liquid Crystal On Silicon LDAP — Lightweight Directory Access ProtocolLE — Logical ExtentsLED — Light-Emitting Diode LF — Line FeedLF — Low FrequencyLFS — Linux From Scratch lib — libraryLIF — Low Insertion Force LIFO — Last In First Out LILO — Linux LoaderLKML — Linux Kernel Mailing List LM — Lan ManagerLGPL — Lesser General Public License LOC — Lines of CodeLPI — Linux Professional Institute LPT — Line Print Terminal LSB — Least Significant Bit LSB — Linux Standard Base LSI — Large-Scale IntegrationLTL — Linear Temporal Logic LTR — Left-to-RightLUG — Linux User Group LUN — Logical Unit Number LV — Logical VolumeLVD — Low Voltage Differential LVM — Logical Volume Management LZW — Lempel-Ziv-Welch MMAC — Mandatory Access Control MAC — Media Access Control MAN —Metropolitan Area Network MANET — Mobile Ad-Hoc Network MAPI —Messaging Application Programming InterfaceMb — MegabitMB — MegabyteMBCS — Multi Byte Character Set MBR — Master Boot RecordMCA — Micro Channel Architecture MCSA — Microsoft Certified Systems AdministratorMCSD — Microsoft Certified Solution DeveloperMCSE — Microsoft Certified Systems Engineer MDA — Mail Delivery AgentMDA — Model-Driven Architecture MDA — Monochrome Display Adapter MDF — Main Distribution FrameMDI — Multiple Document Interface ME — [Windows] Millennium Edition MF — Medium FrequencyMFC — Microsoft Foundation Classes MFM — Modified Frequency Modulation MGCP — Media Gateway Control Protocol MHz — Megahertz MIB — Management Information Base MICR — Magnetic Ink Character Recognition MIDI — Musical Instrument Digital Interface MIMD —Multiple Instruction, Multiple Data MIMO — Multiple-Input Multiple-Output MIPS — Million Instructions Per Second MIPS — Microprocessor without Interlocked Pipeline StagesMIS — Management Information Systems MISD — Multiple Instruction, Single Data MIT — Massachusetts Institute of Technology MIME —Multipurpose Internet Mail ExtensionsMMDS — Mortality Medical Data System MMI — Man Machine Interface. MMIO — Memory-Mapped I/OMMORPG — Massively Multiplayer Online Role-Playing GameMMU — Memory Management Unit MMX — Multi-Media Extensions MNG —Multiple-image Network Graphics MoBo — MotherboardMOM — Message-Oriented Middleware MOO — MUD Object OrientedMOSFET — Metal-Oxide Semiconductor FET MOTD — Message Of The Day MPAA — Motion Picture Association of America MPEG — Motion Pictures Experts Group MPL — Mozilla Public License MPLS —Multiprotocol Label Switching MPU — Microprocessor Unit MS — Memory StickMS — MicrosoftMSB — Most Significant Bit MS-DOS — Microsoft DOSMT — Machine TranslationMTA — Mail Transfer AgentMTU — Maximum Transmission Unit MSA — Mail Submission Agent MSDN — Microsoft Developer Network MSI — Medium-Scale Integration MSI — Microsoft InstallerMUA — Mail User AgentMUD — Multi-User DungeonMVC — Model-View-ControllerMVP — Most Valuable Professional MVS — Multiple Virtual Storage MX — Mail exchangeMXF — Material Exchange Format NNACK — Negative ACKnowledgement NAK — Negative AcKnowledge Character NAS — Network-Attached Storage NAT — Network Address Translation NCP — NetWare Core ProtocolNCQ — Native Command Queuing NCSA — National Center for Supercomputing ApplicationsNDPS — Novell Distributed Print Services NDS — Novell Directory Services NEP — Network Equipment Provider NEXT — Near-End CrossTalk NFA — Nondeterministic Finite Automaton GNSCB — Next-Generation Secure Computing BaseNFS — Network File SystemNI — National InstrumentsNIC — Network Interface Controller NIM — No Internal Message NIO — New I/ONIST — National Institute of Standards and TechnologyNLP — Natural Language Processing NLS — Native Language Support NP — Non-Deterministic Polynomial-TimeNPL — Netscape Public License NPU — Network Processing Unit NS —NetscapeNSA — National Security Agency NSPR — Netscape Portable Runtime NMI — Non-Maskable Interrupt NNTP — Network News Transfer Protocol NOC — Network Operations Center NOP — No OPerationNOS — Network Operating System NPTL — Native POSIX Thread Library NSS — Novell Storage Service NSS — Network Security Services NSS —Name Service SwitchNT — New TechnologyNTFS — NT FilesystemNTLM — NT Lan ManagerNTP — Network Time Protocol NUMA — Non-Uniform Memory Access NURBS — Non-Uniform Rational B-Spline NVR - Network Video Recorder NVRAM — Non-Volatile Random Access Memory OOASIS — Organization for the Advancement of StructuredInformation StandardsOAT — Operational Acceptance Testing OBSAI — Open Base Station Architecture InitiativeODBC — Open Database Connectivity OEM — Original Equipment Manufacturer OES — Open Enterprise ServerOFTC — Open and Free Technology Community OLAP — Online Analytical Processing OLE — Object Linking and Embedding OLED — Organic LightEmitting Diode OLPC — One Laptop per Child OLTP — Online Transaction Processing OMG — Object Management Group OO — Object-Oriented OO — Open OfficeOOM — Out of memoryOOo — OOP — Object-Oriented Programming OPML — Outline Processor Markup Language ORB — Object Request Broker ORM — Oject-Relational Mapping OS — Open SourceOS — Operating SystemOSCON — O'Reilly Open Source Convention OSDN — Open Source Developer Network OSI — Open Source Initiative OSI — Open Systems Interconnection OSPF — Open Shortest Path First OSS — Open Sound SystemOSS — Open-Source SoftwareOSS — Operations Support System OSTG — Open Source Technology Group OUI — Organizationally Unique Identifier PP2P — Peer-To-PeerPAN — Personal Area Network PAP — Password Authentication Protocol PARC — Palo Alto Research Center PATA — Parallel ATAPC — Personal ComputerPCB — Printed Circuit BoardPCB — Process Control BlockPCI — Peripheral Component Interconnect PCIe — PCI ExpressPCL — Printer Command Language PCMCIA — Personal Computer Memory Card InternationalAssociationPCM — Pulse-Code ModulationPCRE — Perl Compatible Regular Expressions PD — Public Domain PDA — Personal Digital Assistant PDF — Portable Document Format PDP — Programmed Data Processor PE — Physical ExtentsPEBKAC — Problem Exists Between Keyboard And ChairPERL — Practical Extraction and Reporting LanguagePGA — Pin Grid ArrayPGO — Profile-Guided Optimization PGP — Pretty Good PrivacyPHP — PHP: Hypertext Preprocessor PIC — Peripheral Interface Controller PIC — Programmable Interrupt Controller PID — Proportional-Integral-Derivative PID — Process IDPIM — Personal Information Manager PINE — Program for Internet News & EmailPIO — Programmed Input/Output PKCS — Public Key Cryptography Standards PKI — Public Key Infrastructure PLC — Power Line Communication PLC — Programmable Logic Controller PLD — Programmable Logic Device PL/I — Programming Language One PL/M — Programming Language for MicrocomputersPL/P — Programming Language for Prime PLT — Power Line Telecoms PMM — POST Memory ManagerPNG — Portable Network Graphics PnP — Plug-and-PlayPoE — Power over EthernetPOP — Point of PresencePOP3 — Post Office Protocol v3 POSIX — Portable Operating System Interface POST — Power-On Self TestPPC — PowerPCPPI — Pixels Per InchPPP — Point-to-Point Protocol PPPoA — PPP over ATMPPPoE — PPP over EthernetPPTP — Point-to-Point Tunneling Protocol PS — PostScriptPS/2 — Personal System/2PSU — Power Supply UnitPSVI — Post-Schema-Validation Infoset PV — Physical VolumePVG — Physical Volume GroupPVR — Personal Video RecorderPXE — Preboot Execution Environment PXI — PCI eXtensions for Instrumentation QQDR — Quad Data RateQA — Quality AssuranceQFP — Quad Flat PackageQoS — Quality of ServiceQOTD — Quote of the DayQt — Quasar ToolkitQTAM — Queued Teleprocessing Access Method RRACF — Resource Access Control Facility RAD — Rapid Application Development RADIUS — Remote Authentication Dial In User Service RAID — Redundant Array of Independent Disks RAID — Redundant Array of Inexpensive Disks RAIT — Redundant Array of Inexpensive Tapes RAM —Random Access MemoryRARP — Reverse Address Resolution Protocol RAS — Remote Access ServiceRC — Region CodeRC — Release CandidateRC — Run CommandsRCS — Revision Control SystemRDBMS — Relational Database Management SystemRDF — Resource Description Framework RDM — Relational Data Model RDS — Remote Data ServicesREFAL — REcursive Functions Algorithmic LanguageREST — Representational State Transfer regex — Regular Expression regexp — Regular Expression RF — Radio FrequencyRFC — Request For CommentsRFI — Radio Frequency Interference RFID — Radio Frequency Identification RGB — Red, Green, BlueRGBA — Red, Green, Blue, Alpha RHL — Red Hat LinuxRHEL — Red Hat Enterprise Linux RIA — Rich Internet Application RIAA — Recording Industry Association of AmericaRIP — Raster Image Processor RIP — Routing Information Protocol RISC — Reduced Instruction Set Computer RLE — Run-Length Encoding RLL — Run-Length LimitedRMI — Remote Method Invocation RMS — Richard Matthew Stallman ROM — Read Only MemoryROMB — Read-Out Motherboard RPC — Remote Procedure Call RPG —Report Program Generator RPM — RPM Package ManagerRSA — Rivest Shamir Adleman RSI — Repetitive Strain Injury RSS —Rich Site Summary, RDF Site Summary, or Really SimpleSyndicationRTC — Real-Time ClockRTE — Real-Time EnterpriseRTL — Right-to-LeftRTOS — Real Time Operating System RTP — Real-time Transport Protocol RTS — Ready To SendRTSP — Real Time Streaming Protocol SSaaS — Software as a Service SAN — Storage Area NetworkSAR — Search And Replace[1]SATA — Serial ATASAX — Simple API for XMLSBOD — Spinning Beachball of Death SBP-2 — Serial Bus Protocol 2 sbin — superuser binarySBU — Standard Build UnitSCADA — Supervisory Control And Data AcquisitionSCID — Source Code in Database SCM — Software Configuration Management SCM — Source Code Management SCP — Secure Copy SCPI — Standard Commands for Programmable Instrumentation SCSI — Small Computer System Interface SCTP — Stream Control Transmission Protocol SD — Secure DigitalSDDL — Security Descriptor Definition LanguageSDI — Single Document InterfaceSDIO — Secure Digital Input OutputSDK — Software Development KitSDL — Simple DirectMedia LayerSDN — Service Delivery NetworkSDP — Session Description ProtocolSDR — Software-Defined RadioSDRAM — Synchronous Dynamic Random Access MemorySDSL — Symmetric DSLSE — Single EndedSEAL — Semantics-directed Environment Adaptation Language SEI — Software Engineering InstituteSEO — Search Engine OptimizationSFTP — Secure FTPSFTP — Simple File Transfer ProtocolSFTP — SSH File Transfer ProtocolSGI — Silicon Graphics, IncorporatedSGML — Standard Generalized Markup LanguageSHA — Secure Hash AlgorithmSHDSL — Single-pair High-speed Digital Subscriber LineSIGCAT — Special Interest Group on CD-ROM Applications andTechnologySIGGRAPH — Special Interest Group on GraphicsSIMD — Single Instruction, Multiple DataSIMM — Single Inline Memory ModuleSIP — Session Initiation ProtocolSIP — Supplementary Ideographic PlaneSISD — Single Instruction, Single Data SLED — SUSE LinuxEnterprise Desktop SLES — SUSE Linux Enterprise Server SLI — Scalable Link Interface SLIP — Serial Line Internet Protocol SLM — Service Level Management SLOC — Source Lines of Code SPMD — Single Program, Multiple Data SMA — SubMiniature version A SMB — Server Message Block SMBIOS — System Management BIOS SMIL — Synchronized Multimedia Integration LanguageS/MIME — Secure/Multipurpose Internet Mail ExtensionsSMP — Supplementary Multilingual Plane SMP — Symmetric Multi-Processing SMS — Short Message Service SMS — System Management Server SMT — Simultaneous Multithreading SMTP — Simple Mail Transfer Protocol SNA — Systems Network Architecture SNMP — Simple Network Management Protocol SOA — Service-Oriented Architecture SOE — Standard Operating Environment SOAP — Simple Object Access Protocol SoC — System-on-a-ChipSO-DIMM — Small Outline DIMM SOHO — Small Office/Home OfficeSOI — Silicon On InsulatorSP — Service PackSPA — Single Page Application SPF — Sender Policy Framework SPI —Serial Peripheral Interface SPI — Stateful Packet Inspection SPARC —Scalable Processor Architecture SQL — Structured Query Language SRAM —Static Random Access Memory SSD — Software Specification Document SSD - Solid-State DriveSSE — Streaming SIMD Extensions SSH — Secure ShellSSI — Server Side Includes SSI — Single-System Image SSI — Small-Scale Integration SSID — Service Set Identifier SSL — Secure Socket Layer SSP — Supplementary Special-purpose Plane SSSE — Supplementary Streaming SIMD Extensionssu — superuserSUS — Single UNIX Specification SUSE — Software und System-Entwicklung SVC — Scalable Video Coding SVG — Scalable Vector Graphics SVGA — Super Video Graphics Array SVD — Structured VLSI Design SWF —Shock Wave FlashSWT — Standard Widget Toolkit Sysop — System operatorTTAO — Track-At-OnceTB — TerabyteTcl — Tool Command Language TCP — Transmission Control Protocol TCP/IP — Transmission Control Protocol/Internet ProtocolTCU — Telecommunication Control Unit TDMA — Time Division Multiple Access TFT — Thin Film Transistor TI — Texas Instruments TLA — Three-Letter Acronym TLD — Top-Level DomainTLS — Thread-Local Storage TLS — Transport Layer Security tmp —temporaryTNC — Terminal Node Controller TNC — Threaded Neill-Concelman connector TSO — Time Sharing OptionTSP — Traveling Salesman Problem TSR — Terminate and Stay Resident TTA — True Tap AudioTTF — TrueType FontTTL — Transistor-Transistor Logic TTL — Time To LiveTTS — Text-to-SpeechTTY — TeletypeTUCOWS — The Ultimate Collection of Winsock SoftwareTUG — TeX Users GroupTWAIN - Technology Without An Interesting NameUUAAG — User Agent Accessibility Guidelines UAC — User Account Control UART — Universal Asynchronous Receiver/Transmitter UAT — User Acceptance Testing UCS — Universal Character SetUDDI — Universal Description, Discovery, and Integration UDMA — Ultra DMAUDP — User Datagram Protocol UE — User ExperienceUEFI — Unified Extensible Firmware Interface UHF — Ultra High Frequency UI — User InterfaceUL — UploadULA — Uncommitted Logic Array UMA — Upper Memory AreaUMB — Upper Memory BlockUML — Unified Modeling Language UML — User-Mode LinuxUMPC — Ultra-Mobile Personal Computer UNC — Universal Naming Convention UPS — Uninterruptible Power Supply URI — Uniform Resource Identifier URL — Uniform Resource Locator URN — Uniform Resource Name USB — Universal Serial Bus usr — userUSR — U.S. RoboticsUTC — Coordinated Universal Time UTF — Unicode Transformation FormatUTP — Unshielded Twisted Pair UUCP — Unix to Unix CopyUUID — Universally Unique Identifier UVC — Universal Virtual Computer Vvar — variableVAX — Virtual Address eXtension VCPI — Virtual Control Program Interface VR — Virtual RealityVRML — Virtual Reality Modeling Language VB — Visual BasicVBA — Visual Basic for Applications VBS — Visual Basic Script VDSL — Very High Bitrate Digital Subscriber LineVESA — Video Electronics Standards AssociationVFAT — Virtual FATVFS — Virtual File SystemVG — Volume GroupVGA — Video Graphics ArrayVHF — Very High FrequencyVLAN — Virtual Local Area Network VLSM — Variable Length Subnet Mask VLB — Vesa Local BusVLF — Very Low FrequencyVLIW - Very Long Instruction Word— uinvac VLSI — Very-Large-Scale Integration VM — Virtual MachineVM — Virtual MemoryVOD — Video On DemandVoIP — Voice over Internet Protocol VPN — Virtual Private Network VPU — Visual Processing Unit VSAM — Virtual Storage Access Method VSAT — Very Small Aperture Terminal VT — Video Terminal?VTAM — Virtual Telecommunications Access MethodWW3C — World Wide Web Consortium WAFS — Wide Area File ServicesWAI — Web Accessibility Initiative WAIS — Wide Area Information Server WAN — Wide Area NetworkWAP — Wireless Access Point WAP — Wireless Application Protocol WAV — WAVEform audio format WBEM — Web-Based Enterprise Management WCAG — Web Content Accessibility Guidelines WCF — Windows Communication Foundation WDM — Wavelength-Division Multiplexing WebDAV — WWW Distributed Authoring and VersioningWEP — Wired Equivalent Privacy Wi-Fi — Wireless FidelityWiMAX — Worldwide Interoperability for Microwave AccessWinFS — Windows Future Storage WINS- Windows Internet Name Service WLAN — Wireless Local Area Network WMA — Windows Media Audio WMV — Windows Media VideoWOL — Wake-on-LANWOM — Wake-on-ModemWOR — Wake-on-RingWPA — Wi-Fi Protected Access WPAN — Wireless Personal Area Network WPF — Windows Presentation Foundation WSDL — Web Services Description Language WSFL — Web Services Flow Language WUSB — Wireless Universal Serial Bus WWAN — Wireless Wide Area Network WWID — World Wide Identifier WWN — World Wide NameWWW — World Wide WebWYSIWYG — What You See Is What You Get WZC — Wireless Zero Configuration WFI — Wait For InterruptXXAG — XML Accessibility Guidelines XAML — eXtensible Application Markup LanguageXDM — X Window Display Manager XDMCP — X Display Manager Control Protocol XCBL — XML Common Business Library XHTML — eXtensible Hypertext Markup Language XILP — X Interactive ListProc XML —eXtensible Markup Language XMMS — X Multimedia SystemXMPP — eXtensible Messaging and Presence ProtocolXMS — Extended Memory SpecificationXNS — Xerox Network Systems XP — Cross-PlatformXP — Extreme ProgrammingXPCOM — Cross Platform Component Object ModelXPI — XPInstallXPIDL — Cross-Platform IDLXSD — XML Schema Definition XSL — eXtensible Stylesheet Language XSL-FO — eXtensible Stylesheet Language Formatting Objects XSLT — eXtensible Stylesheet Language TransformationsXSS — Cross-Site ScriptingXTF — eXtensible Tag Framework XTF — eXtended Triton Format XUL —XML User Interface Language YY2K — Year Two ThousandYACC — Yet Another Compiler Compiler YAML — YAML Ain't Markup Language YAST — Yet Another Setup Tool ZZCAV — Zone Constant Angular Velocity ZCS — Zero Code Suppression ZIF — Zero Insertion ForceZIFS — Zero Insertion Force Socket ZISC — Zero Instruction Set Computer ZOPE — Z Object Publishing Environment ZMA — Zone Multicast Address。

代码审计工具Findbugs自动检查CheckList及配置方法

代码审计工具Findbugs自动检查CheckList及配置方法

代码审计工具Findbugs自动检查CheckList及配置方法
代码审计工具Findbugs是一个应用比较广泛的开源代码审计工具,如果开发团队利用好了这个工具,能够很大程度上提高软件产品的安全性。

而且重要的是Free。

首先,介绍一下安全审计配置文件的位置,网上都没有这方面的资料,我自己找了几个小时才找到。

这个配置文件不在安装文件夹,也不再Eclipse软件的文件夹,而是在具体项目的工作空间workspace中,具体位置是:workspace\.metadata\.plugins\edu.umd.cs.findbugs.plugin.eclipse\.fbprefs。

(以点开始的文件夹,还这么多层目录,很隐蔽!!!)
这个文件中,选中要审计的项目其配置值会是“TURE”,配置为不审计的项会是“FALSE”。

我们可以通过在工作中逐渐确定哪些安全项一定要检查,哪些不需要检查,确定之后,整个开发团队使用同一个配置文件,从而实现标准化、自动化地审查开发团队的代码。

自然语言处理及计算语言学相关术语中英对译表(M~Z)

自然语言处理及计算语言学相关术语中英对译表(M~Z)

machine dictionary 机器词典machine language 机器语⾔machine learning 机器学习machine translation 机器翻译machine-readable dictionary (MRD) 机读辞典Macrolinguistics 宏观语⾔学Markov chart 马可夫图Mathematical Linguistics 数理语⾔学maximum entropy 熵M-D (modifier-head) construction 偏正结构mean length of utterance (MLU) 语句平均长度measure of information 讯习测度 [信息测度] memory based 根据记忆的mental lexicon ⼼理词汇库mental model ⼼理模型mental process ⼼理过程 [智⼒过程;智⼒处理] metalanguage 超语⾔metaphor 隐喻metaphorical extension 隐喻扩展metarule 律上律 [元规则]metathesis 语⾳易位Microlinguistics 微观语⾔学middle structure 中间式结构minimal pair 最⼩对Minimalist Program 微⾔主义MLU (mean length of utterance) 语句平均长度modal 情态词modal auxiliary 情态助动词modal logic 情态逻辑modifier 修饰语Modular Logic Grammar 模组化逻辑语法modular parsing system 模组化句法剖析系统modularity 模组性(理论)module 模组monophthong 单元⾳monotonic 单调monotonicity 单调性Montague Grammar 蒙泰究语法 [蒙塔格语法] mood 语⽓morpheme 词素morphological affix 构词词缀morphological decomposition 语素分解morphological pattern 词型morphological processing 词素处理morphological rule 构词律 [词法规则] morphological segmentation 语素切分Morphology 构词学Morphophonemics 词⾳学 [形态⾳位学;语素⾳位学] morphophonological rule 形态⾳位规则Morphosyntax 词句法Motor Theory 肌动理论movement 移位MRD (machine-readable dictionary) 机读辞典MT (machine translation) 机器翻译multilingual processing system 多语讯息处理系统multilingual translation 多语翻译multimedia 多媒体multi-media communication 多媒体通讯multiple inheritance 多重继承multistate logic 多态逻辑mutation 语⾳转换mutual exclusion 互斥mutual information 相互讯息nativist position 语法天⽣假说natural language ⾃然语⾔natural language processing (NLP) ⾃然语⾔处理natural language understanding ⾃然语⾔理解negation 否定negative sentence 否定句neologism 新词语nested structure 套结构network 路neural network 类神经路Neurolinguistics 神经语⾔学neutralization 中⽴化n-gram n-连词n-gram modeling n-连词模型NLP (natural language processing) ⾃然语⾔处理node 节点nominalization 名物化nonce 暂⽤的non-finite ⾮限定non-finite clause ⾮限定式⼦句non-monotonic reasoning ⾮单调推理normal distribution 常态分布noun 名词noun phrase 名词组NP (noun phrase) completeness 名词组完全性object 宾语{语⾔学}/物件{资讯科学}object oriented programming 物件导向程式设计 [⾯向对向的程序设计] official language 官⽅语⾔one-place predicate ⼀元述语on-line dictionary 线上查询词典 [联机词点]onomatopoeia 拟声词onset 节⾸⾳ontogeny 个体发⽣Ontology 本体论open set 开放集operand 运算元 [操作对象]optimization 化 [化]overgeneralization 过度概化overgeneration 过度衍⽣paradigmatic relation 聚合关系paralanguage 附语⾔parallel construction 并列结构Parallel Corpus 平⾏语料库parallel distributed processing (PDP) 平⾏分布处理paraphrase 转述 [释意;意译;同意互训]parole ⾔语parser 剖析器 [句法剖析程序]parsing 剖析part of speech (POS) 词类particle 语助词PART-OF relation PART-OF 关系part-of-speech tagging 词类标注pattern recognition 型样识别P-C (predicate-complement) insertion 述补中插PDP (parallel distributed processing) 平⾏分布处理perception 知觉perceptron 感觉器 [感知器]perceptual strategy 感知策略performative ⾏为句periphrasis ⽤独⽴词表达perlocutionary 语效性的permutation 移位Petri Net Grammar Petri 语法philology 语⽂学phone 语⾳phoneme ⾳素phonemic analysis 因素分析phonemic stratum ⾳素层Phonetics 语⾳学phonogram ⾳标Phonology 声韵学 [⾳位学;⼴义语⾳学] Phonotactics ⾳位排列理论phrasal verb 词组动词 [短语动词]phrase 词组 [短语]phrase marker 词组标记 [短语标记]pitch ⾳调pitch contour 调形变化Pivot Grammar 枢轴语法pivotal construction 承轴结构plausibility function 可能性函数PM (phrase marker) 词组标记 [短语标记] polysemy 多义性POS-tagging 词类标记postposition ⽅位词PP (preposition phrase) attachment 介词依附Pragmatics 语⽤学Precedence Grammar 优先顺序语法precision 精确度predicate 述词predicate calculus 述词计算predicate logic 述词逻辑 [谓词逻辑]predicate-argument structure 述词论元结构prefix 前缀premodification 前置修饰preposition 介词Prescriptive Linguistics 规定语⾔学 [规范语⾔学] presentative sentence 引介句presupposition 前提Principle of Compositionality 语意合成性原理privative ⼆元对⽴的probabilistic parser 概率句法剖析程式problem solving 解决问题program 程式programming language 程式设计语⾔ [程序设计语⾔] proofreading system 校对系统proper name 专有名词prosody 节律prototype 原型pseudo-cleft sentence 准分裂句Psycholinguistics ⼼理语⾔学punctuation 标点符号pushdown automata 下推⾃动机pushdown transducer 下推转换器qualification 后置修饰quantification 量化quantifier 范域词Quantitative Linguistics 计量语⾔学question answering system 问答系统queue 伫列radical 字根 [词⼲;词根;部⾸;偏旁]radix of tuple 元组数基random access 随机存取rationalism 理性论rationalist (position) 理性论⽴场 [唯理论观点]reading laboratory 阅读实验室real time 即时real time control 即时控制 [实时控制]recursive transition network 递回转移路reduplication 重迭词 [重复]reference 指涉referent 指称对象referential indices 指标referring expression 指涉词 [指⽰短语]register 暂存器 [寄存器]{资讯科学}/调⾼{语⾳学}/语⾔的场合层级{社会语⾔学} regular language 正规语⾔ [正则语⾔]relational database 关联式资料库 [关系数据库]relative clause 关系⼦句relaxation method 松弛法relevance 相关性Restricted Logic Grammar 受限逻辑语法resumptive pronouns 复指代词retroactive inhibition 逆抑制rewriting rule 重写规则rheme 述位rhetorical structure 修辞结构rhetorics 修辞学robust 强健性robust processing 强健性处理robustness 强健性schema 基朴school grammar 教学语法scope 范域 [作⽤域;范围]script 脚本search mechanism 检索机制search space 检索空间searching route 检索路径 [搜索路径]second order predicate ⼆阶述词segmentation 分词segmentation marker 分段标志selectional restriction 选择限制semantic field 语意场semantic frame 语意架构semantic network 语意路semantic representation 语意表征 [语义表⽰]semantic representation language 语意表征语⾔semantic restriction 语意限制semantic structure 语意结构Semantics 语意学sememe 意素Semiotics 符号学sender 发送者sensorimotor stage 感觉运动期sensory information 感官讯息 [感觉信息]sentence 句⼦sentence generator 句⼦产⽣器 [句⼦⽣成程序]sentence pattern 句型separation of homonyms 同⾳词区分sequence 序列serial order learning 顺序学习serial verb construction 连动结构set oriented semantic network 集合导向型语意路 [⾯向集合型语意路] SGML (Standard Generalized Markup Language) 结构化通⽤标记语⾔shift-reduce parsing 替换简化式剖析short term memory 短程记忆sign 信号signal processing technology 信号处理技术simple word 单纯词situation 情境Situation Semantics 情境语意学situational type 情境类型social context 社会环境sociolinguistics 社会语⾔学software engineering 软体⼯程 [软件⼯程]sort 排序speaker-independent speech recognition ⾮特定语者语⾳识别spectrum 频谱speech ⼝语speech act assignment ⾔语⾏为指定speech continuum ⾔语连续体speech disorder 语⾔失序 [⾔语缺失]speech recognition 语⾳辨识speech retrieval 语⾳检索speech situation ⾔谈情境 [⾔语情境]speech synthesis 语⾳合成speech translation system 语⾳翻译系统speech understanding system 语⾳理解系统spreading activation model 扩散激发模型standard deviation 标准差Standard Generalized Markup Language 标准通⽤标⽰语⾔start-bound complement 接头词state of affairs algebra 事态代数state transition diagram 状态转移图statement kernel 句核static attribute list 静态属性表statistical analysis 统计分析Statistical Linguistics 统计语⾔学statistical significance 统计意义stem 词⼲stimulus-response theory 刺激反应理论stochastic approach to parsing 概率式句法剖析 [句法剖析的随机⽅法] stop 爆破⾳Stratificational Grammar 阶层语法 [层级语法]string 字串[串;字符串]string manipulation language 字串操作语⾔string matching 字串匹配 [字符串]structural ambiguity 结构歧义Structural Linguistics 结构语⾔学structural relation 结构关系structural transfer 结构转换structuralism 结构主义structure 结构structure sharing representation 结构共享表征subcategorization 次类划分 [下位范畴化]subjunctive 假设的sublanguage ⼦语⾔subordinate 从属关系subordinate clause 从属⼦句 [从句;⼦句]subordination 从属substitution rule 代换规则 [置换规则]substrate 底层语⾔suffix 后缀superordinate 上位的superstratum 上层语⾔suppletion 异型[不规则词型变化]suprasegmental 超⾳段的syllabification ⾳节划分syllable ⾳节syllable structure constraint ⾳节结构限制symbolization and verbalization 符号化与字句化synchronic 同步的synonym 同义词syntactic category 句法类别syntactic constituent 句法成分syntactic rule 语法规律 [句法规则] Syntactic Semantics 句法语意学syntagm 句段syntagmatic 组合关系 [结构段的;组合的] Syntax 句法Systemic Grammar 系统语法tag 标记target language ⽬的语⾔ [⽬标语⾔]task sharing 课题分享 [任务共享] tautology 套套逻辑 [恒真式;重⾔式;同义反复] taxonomical hierarchy 分类阶层 [分类层次] telescopic compound 套装合并template 模板temporal inference 循序推理 [时序推理] temporal logic 时间逻辑 [时序逻辑] temporal marker 时貌标记tense 时态terminology 术语text ⽂本text analyzing ⽂本分析text coherence ⽂本⼀致性text generation ⽂本⽣成 [篇章⽣成]Text Linguistics ⽂本语⾔学text planning ⽂本规划text proofreading ⽂本校对text retrieval ⽂本检索text structure ⽂本结构 [篇章结构]text summarization ⽂本⾃动摘要 [篇章摘要] text understanding ⽂本理解text-to-speech ⽂本转语⾳thematic role 题旨⾓⾊thematic structure 题旨结构theorem 定理thesaurus 同义词辞典theta role 题旨⾓⾊theta-grid 题旨格token 实类 [标记项]tone ⾳调tone language ⾳调语⾔tone sandhi 连调变换top-down 由上⽽下 [⾃顶向下]topic 主题topicalization 主题化 [话题化]trace 痕迹Trace Theory 痕迹理论training 训练transaction 异动 [处理单位]transcription 转写 [抄写;速记翻译]transducer 转换器transfer 转移transfer approach 转换⽅法transfer framework 转换框架transformation 变形 [转换]Transformational Grammar 变形语法 [转换语法] transitional state term set 转移状态项集合transitivity 及物性translation 翻译translation equivalence 翻译等值性translation memory 翻译记忆transparency 透明性tree 树状结构 [树]Tree Adjoining Grammar 树形加接语法 [树连接语法] treebank 树图资料库[语法关系树库]trigram 三连词t-score t-数turing machine 杜林机 [图灵机]turing test 杜林测试 [图灵试验]type 类型type/token node 标记类型/实类节点type-feature structure 类型特征结构typology 类型学ultimate constituent 终端成分unbounded dependency ⽆界限依存underlying form 基底型式underlying structure 基底结构unification 连并 [合⼀]Unification-based Grammar 连并为本的语法 [基于合⼀的语法] Universal Grammar 普遍性语法universal instantiation 普遍例式universal quantifier 全称范域词unknown word 未知词 [未定义词]unrestricted grammar ⾮限制型语法usage flag 使⽤旗标user interface 使⽤者界⾯ [⽤户界⾯]Valence Grammar 结合价语法Valence Theory 结合价理论valency 结合价variance 变异数 [⽅差]verb 动词verb phrase 动词组 [动词短语]verb resultative compound 动补复合词verbal association 词语联想verbal phrase 动词组verbal production ⾔语⽣成vernacular 本地话V-O construction (verb-object) 动宾结构vocabulary 字汇vocabulary entry 词条vocal track 声道vocative 呼格voice recognition 声⾳辨识 [语⾳识别]vowel 母⾳vowel harmony 母⾳和谐 [元⾳和谐]waveform 波形weak verb 弱化动词Whorfian hypothesis Whorfian 假说word 词word frequency 词频word frequency distribution 词频分布word order 词序word segmentation 分词word segmentation standard for Chinese 中⽂分词规范word segmentation unit 分词单位 [切词单位]word set 词集working memory ⼯作记忆 [⼯作存储区]world knowledge 世界知识writing system 书写系统X-Bar Theory X标杠理论 ["x"阶理论]Zipf's Law 利夫规律 [齐普夫定律]。

计算机编程英语词汇大全

计算机编程英语词汇大全

index 复合索引、组合索引(for database) composite key 复合键、组合键(for database) composition 复合、组合41.concept 概念concrete 具体的concrete class 具体类concurrency 并发、并发机制constraint 约束(for database) configuration 配置、组态connection 连接(for database) connection pooling 连接池43.console 控制台constant 常量construct 构件、成分、概念、构造(for language)constructor (ctor) 构造函数、构造器container 容器containment 包容context 环境、上下文control 控件45.cookie (不译)copy 拷贝CORBA 通用对象请求中介架构(Common Object Request Broker Architecture) cover 覆盖、涵盖create/creation 创建、生成crosstab query 交叉表查询(for database)CRTP (curiously recurring template pattern)CTS (common type system )通用类型系统47.cube 多维数据集(for database)cursor 光标cursor 游标(for database)custom 定制、自定义random number 随机数range 范围、区间rank 等级raw 未经处理的49.data 数据data connection 数据连接(for database)Data Control Language (DCL) 数据控制语言(DCL) (for database)Data Definition Language (DDL) 数据定义语言(DDL) (for database)data dictionary 数据字典(for database)data dictionary view 数据字典视图(for database)data file 数据文件(for database)data integrity 数据完整性(for database)51.data manipulation language (DML)数据操作语言(DML) (for database) data mart 数据集市(for database)data pump 数据抽取(for database)data scrubbing 数据清理(for database)reflection 反射refresh data 刷新数据(for database)regular expression 正则表达式relational database 关系数据库53.data source 数据源(for database)Data source name (DSN) 数据源名称(DSN) (for database)data warehouse 数据仓库(for database)dataset 数据集(for database)database 数据库(for database)database catalog 数据库目录(for database)database diagram 数据关系图(for database)database file 数据库文件(for database)55.database object 数据库对象(for database)database owner 数据库所有者(for database)database project 数据库工程(for database)database role 数据库角色(for database)database schema 数据库模式、数据库架构(for database) database script 数据库脚本(for database)data-bound 数据绑定(for database)data-aware control 数据感知控件(for database)57.data member 数据成员、成员变量dataset 数据集(for database)data source 数据源(for database)data structure 数据结构data table 数据表(for database)datagram 数据报文DBMS (database management system)数据库管理系统(for database) DCOM (distributed COM)分布式COM59.dead lock 死锁(for database)deallocate 归还debug 调试debugger 调试器decay 退化decision support 决策支持declaration 声明declarative referential integrity (DRI) 声明引用完整性(DRI) (for database) deduction 推导61.DEFAULT constraint 默认约束(for database)default database 默认数据库(for database)default instance 默认实例(for database)default result set 默认结果集(for database)default 缺省、默认值defer 推迟definition 定义delegate 委托delegation 委托63.dependent namedeploy 部署dereference 解引用dereference operator (提领)运算子derived class 派生类design by contract 契约式设计design pattern 设计模式destroy 销毁destructor(dtor) 析构函数、析构器65.device 设备DHTML (dynamic HyperT ext Markup Language)动态超文本标记语言dialog 对话框digest 摘要digital 数字的DIME (Direct Internet Message Encapsulation)直接Internet消息封装directive (编译)指示符directory 目录67.dirty pages 脏页(for database)dirty read 脏读(for database)disassembler 反汇编器DISCO (Discovery of Web Services)Web Services的查找disk 盘dispatch 调度、分派、派发(我喜欢“调度”)DISPID (Dispatch Identifier) 分派标识符distributed computing 分布式计算distributed query 分布式查询(for database)69.DNA (Distributed interNet Application) 分布式网间应用程序document 文档DOM (Document Object Model) 文档对象模型dot operator (圆)点操作符driver 驱动(程序)DTD (document type definition) 文档类型定义double-byte character set (DBCS) 双字节字符集(DBCS)dump 转储dump file 转储文件71. dynamic cursor 动态游标(for database) dynamic filter 动态筛选(for database)dynamic locking 动态锁定(for database)dynamic recovery 动态恢复(for database)dynamic snapshot 动态快照(for database)dynamic SQL statements 动态SQL语句(for database) dynamic assembly 动态装配件、动态配件dynamic binding 动态绑定73.EAI (enterprise application integration)企业应用程序集成(整合)EBCO (empty base class optimization) 空基类优化(机制)e-business 电子商务EDI (Dlectronic Data Interchange) 电子数据交换efficiency 效率efficient 高效end-to-end authentication 端对端身份验证end user 最终用户75.engine 引擎entity 实体encapsulation 封装enclosing class 外围类别(与巢状类别nested class有关) enum (enumeration) 枚举enumerators 枚举成员、枚举器equal 相等equality 相等性equality operator 等号操作符77.error log 错误日志(for database) escape code 转义码escape character 转义符、转义字符exclusive lock 排它锁(for database)explicit transaction 显式事务(for database) evaluate 评估event 事件event driven 事件驱动的event handler 事件处理器79.evidence 证据exception 异常exception declaration 异常声明exception handling 异常处理、异常处理机制exception-safe 异常安全的exception specification 异常规范exit 退出facility 设施、设备81.explicit 显式explicit specialization 显式特化export 导出expression 表达式fat client 胖客户端feature 特性、特征fetch 提取field 字段(java)field 字段(for database)83.field length 字段长度(for database) file 文件filter 筛选(for database) finalization 终结firewall 防火墙finalizer 终结器firmware 固件flag 标记85.flash memory 闪存flush 刷新font 字体foreign key (FK) 外键(FK) (for database) form 窗体formal parameter 形参forward declaration 前置声明forward-only 只向前的forward-only cursor 只向前游标(for database) 87.fragmentation 碎片(for database)framework 框架full specialization 完全特化function 函数function call operator (即operator ()) 函数调用操作符function object 函数对象function overloaded resolution 函数重载决议functionality 功能function template 函数模板functor 仿函数89. GAC (global assembly cache)全局装配件缓存、全局配件缓存GC (Garbage collection) 垃圾回收(机制)、垃圾收集(机制) game 游戏generate 生成generic 泛化的、一般化的、通用的generic algorithm 通用算法genericity 泛型getter (相对于setter)取值函数91. global 全局的global object 全局对象global scope resolution operator 全局范围解析操作符grant 授权(for database) granularity 粒度group 组、群group box 分组框GUI 图形界面GUID (Globally Unique Identifier) 全球唯一标识符93.hand shaking 握手handle 句柄handler 处理器hard-coded 硬编码的hard-copy 截屏图hard disk 硬盘hardware 硬件write-only 只写95. window 窗口window function 窗口函数window procedure 窗口过程Windows authentication Windows身份验证word 单词word processor 字处理器wrapper 包装、包装器write enable 写启用(for database)write-ahead log 预写日志(for database)wizard 向导2.hash table 散列表、哈希表header file 头文件heap 堆help file 帮助文件hierarchy 层次结构、继承体系hierarchical data 阶层式数据、层次式数据hook 钩子Host (application) 宿主(应用程序)4.hot key 热键hyperlink 超链接HTML (HyperT ext Markup Language) 超文本标记语言HTTP pipeline HTTP管道HTTP (HyperT ext Transfer Protocol) 超文本传输协议icon 图标IDE (Integrated Development Environment) 集成开发环境IDL (Interface Definition Language) 接口定义语言identifier 标识符idle time 空闲时间6.if and only if 当且仅当IL (Intermediate Language) 中间语言、中介语言image 图象IME 输入法immediate base 直接基类immediate derived 直接派生类immediate updating 即时更新(for database) implicit transaction 隐式事务(for database)8.incremental update 增量更新(for database) index 索引(for database) implement 实现implementation 实现、实现品implicit 隐式import 导入increment operator 增加操作符infinite loop 无限循环10.interpreter 解释器infinite recursive 无限递归Information 信息infrastructure 基础设施inheritance 继承、继承机制inline 内联inline expansion 内联展开initialization 初始化initialization list 初始化列表、初始值列表initialize 初始化12. inner join 内联接(for database)in-place active 现场激活instance 实例instantiated 具现化、实体化(常应用于template) 具现体、具现化实体(常应用于template)integrate 集成、整合integrity 完整性、一致性integrity constraint 完整性约束(for database)。

acm算法源代码

acm算法源代码
| DIJKSTRA O(E * LOG E)............................................. 4 | BELLMANFORD单源最短路O(VE)................................... 4
| SPFA(SHORTEST PATH FASTER ALGORITHM) .............. 4 | 第K短路(DIJKSTRA)................................................... 5 | 第K短路(A*) .............................................................. 5 | PRIM求MST ..................................................................... 6 | 次小生成树O(V^2)....................................................... 6 | 最小生成森林问题(K颗树)O(MLOGM). ....................... 6 | 有向图最小树形图 ......................................................... 6
(O(NLOGN + Q)).............................................................19 | RMQ离线算法 O(N*LOGN)+O(1)求解LCA...............19 | LCA离线算法 O(E)+O(1).........................................20 | 带权值的并查集 ...........................................................20 | 快速排序 .......................................................................20 | 2 台机器工作调度........................................................20 | 比较高效的大数 ...........................................................20 | 普通的大数运算 ...........................................................21 | 最长公共递增子序列 O(N^2)....................................22 | 0-1 分数规划...............................................................22 | 最长有序子序列(递增/递减/非递增/非递减) ....22 | 最长公共子序列 ...........................................................23 | 最少找硬币问题(贪心策略-深搜实现) .................23 | 棋盘分割 .......................................................................23 | 汉诺塔 ...........................................................................23

编程英语中英文对照

编程英语中英文对照

编程英语中英文对照Data Structures 基本数据结构Dictionaries 字典Priority Queues 堆Graph Data Structures 图Set Data Structures 集合Kd-Trees 线段树Numerical Problems 数值问题Solving Linear Equations 线性方程组Bandwidth Reduction 带宽压缩Matrix Multiplication 矩阵乘法Determinants and Permanents 行列式Constrained and Unconstrained Optimization 最值问题Linear Programming 线性规划Random Number Generation 随机数生成Factoring and Primality Testing 因子分解/质数判定Arbitrary Precision Arithmetic 高精度计算Knapsack Problem 背包问题Discrete Fourier Transform 离散Fourier变换Combinatorial Problems 组合问题Sorting 排序Searching 查找Median and Selection 中位数Generating Permutations 排列生成Generating Subsets 子集生成Generating Partitions 划分生成Generating Graphs 图的生成Calendrical Calculations 日期Job Scheduling 工程安排Satisfiability 可满足性Graph Problems -- polynomial 图论-多项式算法Connected Components 连通分支Topological Sorting 拓扑排序Minimum Spanning Tree 最小生成树Shortest Path 最短路径Transitive Closure and Reduction 传递闭包Matching 匹配Eulerian Cycle / Chinese Postman Euler回路/中国邮路Edge and Vertex Connectivity 割边/割点Network Flow 网络流Drawing Graphs Nicely 图的描绘Drawing Trees 树的描绘Planarity Detection and Embedding 平面性检测和嵌入Graph Problems -- hard 图论-NP问题Clique 最大团Independent Set 独立集Vertex Cover 点覆盖Traveling Salesman Problem 旅行商问题Hamiltonian Cycle Hamilton回路Graph Partition 图的划分Vertex Coloring 点染色Edge Coloring 边染色Graph Isomorphism 同构Steiner Tree Steiner树Feedback Edge/Vertex Set 最大无环子图Computational Geometry 计算几何Convex Hull 凸包Triangulation 三角剖分Voronoi Diagrams Voronoi图Nearest Neighbor Search 最近点对查询Range Search 范围查询Point Location 位置查询Intersection Detection 碰撞测试Bin Packing 装箱问题Medial-Axis Transformation 中轴变换Polygon Partitioning 多边形分割Simplifying Polygons 多边形化简Shape Similarity 相似多边形Motion Planning 运动规划Maintaining Line Arrangements 平面分割Minkowski Sum Minkowski和Set and String Problems 集合与串的问题Set Cover 集合覆盖Set Packing 集合配置String Matching 模式匹配Approximate String Matching 模糊匹配Text Compression 压缩Cryptography 密码Finite State Machine Minimization 有穷自动机简化Longest Common Substring 最长公共子串Shortest Common Superstring 最短公共父串DP——Dynamic Programming——动态规划recursion —— 递归编程词汇A2A integration A2A整合abstract 抽象的abstract base class (ABC)抽象基类abstract class 抽象类abstraction 抽象、抽象物、抽象性access 存取、访问access level访问级别access function 访问函数account 账户action 动作activate 激活active 活动的actual parameter 实参adapter 适配器add-in 插件address 地址address space 地址空间address-of operator 取地址操作符ADL (argument-dependent lookup)ADO(ActiveX Data Object)ActiveX数据对象advanced 高级的aggregation 聚合、聚集algorithm 算法alias 别名align 排列、对齐allocate 分配、配置allocator分配器、配置器angle bracket 尖括号annotation 注解、评注API (Application Programming Interface) 应用(程序)编程接口app domain (application domain)应用域application 应用、应用程序application framework 应用程序框架appearance 外观append 附加architecture 架构、体系结构archive file 归档文件、存档文件argument引数(传给函式的值)。

基于稀疏表达的人脸遮挡物去除

基于稀疏表达的人脸遮挡物去除

基于稀疏表达的人脸遮挡物去除吴从中;刘渠芬;詹曙【摘要】Face recognition technology is one of the most promising biometric technologies .Glasses , scarves and other obstructions have great impact on face recognition .In order to improve the recogni‐tion rate of the occluded face images ,a new occlusion removal method based on sparse representation is presented .In this method ,the sparse coefficients for the human face images with occlusion in the training sets are obtained .Then the images are reconstructed with the obtained coefficients to get the unoccluded face images .The experimental results show that this method can effectively remove the frontal occlusion and improve the rate of face recognition .%人脸识别技术是目前最具发展潜力的生物特征识别技术之一。

眼镜、围巾等遮挡物的存在对人脸识别系统的识别率影响很大,为了提高有遮挡的正面人脸图像的识别率,文章提出了基于稀疏表达分类的去除遮挡的方法。

该方法对于有遮挡的人脸图像先求出其在无遮挡人脸图像训练集上的稀疏系数,再根据求得的稀疏系数进行恢复重建,得到去遮挡的人脸图像。

通信原理专业英文词汇

通信原理专业英文词汇
频分双工
FDM
Frequency Division Multiplexing
频分复用
FDMA
Frequency Division Multiple Access
频分多址
FEC
Forward Error Correction
前向纠错
Fed
Free Euclidean Distance
自由欧式距离
FH
Frequency-Hopping
网络节点接口
NRZ
Non Return-to-Zero
不归零
OFDM
Orthogonal Frequency Division Multiplexing
正交频分复用
OSI/RM
the Reference Model of Open Systems Interconnection
开放系统互联参考模型
OOK
低密度奇偶校验
LED
Light-Emitting Diode
发光二极管
LPC
Linear Prediction coding
线性预测编码
LPF
Lowpass Filter
低通滤波器
MAN
Metropolitan Area Network
城域网
MASK
M-ary AmplitudeShift Keying
离散傅里叶变换
(FFT
Fast Fourier Transform
快速傅里叶变换)
DM( )
Delta Modulation
增量调制
DPCM
Differential Pulse Code Modulation
差分脉(冲编)码调制

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语读书破万卷下笔如有神信息论与编码理论bits (binary digits)比natural digits自然entropy function熵函数Theories ofInformationprobability vector可能向conditional entropy条件熵and Codingdiscrete memory channel离散记忆信transition probability过渡可能性output产marginal distritution边际分布介绍第一章mutual information互信heuristic启发joint entropy联合熵Introduction Chapter 1 Venn diagram维恩Markov chain马尔可夫链information theory信息definite function限定函coding theory编码理tandem串emit发data-processing configuration数据过程配bit字convex combination凸组binary二进manipulation操binary symmetric source二进制对称shorthand速记binary symmetric channel二进制对称信communication system通信系统raw bit error probability 原始字节错误率continuous source outputs 连续信息输出encode编码coder 编码员bit error probability 字节错误率map 映射noise 噪音destination目标redundant 冗余data-processing theorem 数据过程定理cross check 相互校验discrete quantization 离散量化codding algorithm 编码算法refinement /精炼改进error pattern 错误模式density密度synthesis 综合mean value theorem 中值定理Hamming code汉明码superficial resemblance 表面相似single-error-correcting code 单独错误校正码mesh网格rate速率differential entropy 微分熵binary entropy function 二进制熵函数Jensen inequality 琴生不等式capacity能量determinate channel确定信道channel coding theory信道编码理论第二章信息理论Information TheoryChapter 2读书破万卷下笔如有神第三章离散无记忆信第四章离散无记忆信源和扭曲道和容量成本率方程方程Chapter 4 Discrete DiscreteMemoryless Sources and Memory less Channels Chapter 3their Rate-Distortion Equations and their Capacity-Cost Equationssource alphabetinput sign system源字母输入符号系discrete memoryless sourcesoutput sign system输出符号系离散无记忆信source statisticsimagine想统计object signmemoryless assumption目标符无记忆假distortionaverage cost平均成扭distortion measurecapacity-cost equation扭曲容量成本方average distortiontest-source平均扭验证源test channeln-dimensional admissible test sources维容许验证测试通distortion rate扭曲admissible cost容许成source coding theorem源编码定r-symmetry对backwards test channel向后测试通道rate of system系统比率Hamming distortion measure 哈莫名扭曲度rates above channel capacity 超过信道容量率error probability distortion rate 错误扭曲率length 长data-compression theorem 数据压缩定理bits per symbol 每个符号的比特destination symbols 目的符号decoding rule 编码规则data compression scheme 数据压缩系统distinct code 区别代码penalty function 罚函数indicator function 指示函数unrestricted sum 无限制和random coding 随机编码inner sum内部和expected value期望值weak law of large numbers 弱大数定律decoding sphere 编码范围第五章高斯信道和信源Chapter 5 Gaussian Channel and Sourcevoltage 伏特transmit 传送signal信号.读书破万卷下笔如有神source statisticswatts信源统rate of transmissiondissipate传送耗conflictjoule焦冲source-channel coding theoremwhite Gaussian noise process白高斯噪声过理noise spectral density噪声错误密data-processing theorem数据传输定bandwidth带intermediate vector中间向band-limited波段限worst-case distortion最坏扭power-limited功率限per-symbol basis每个符号基n-th capacity-cost function项容量成decomposition分函transmitted codingsquared-error传送编平方错affordoinkoverallcapacity-costfunction总的容量成本负density数噪声密tradeoff交arithmetic-geometric average value几何均算realizable region可实现区Gaussiandiscrete-timememoryless离散时间无记standpoint观点source高斯信源mean-squared error criterion第一部分访问gaussion distribution 高斯分布per-symbol均值平方错误标准第七章Gaussiansource高斯信源每个符先进标题per-symbol mean-squared distortion号均值平方扭曲Chapter 7 Survey of Advanced Topics for 信道编码第六章信源-Part One理论twin pearls孪生珍珠finite Abelian commutative group有限阿贝尔交换群Source-Channel Coding Theory Chapter 6 ergodic random process各态经历随机过程information source 信息源entropy熵noisy source 噪声源additive ergodic noise channel添加各态噪音信data processing 道数据处理asymptotic average property quantization 量子化渐进线均分性质Gaussian process modulation 高斯过程调节multiterminal channel successive block多终端信道连续块feedback emit channel output symbols反馈发出信道输出符号seeder 发送人one-to-one correspondence 一对一通信receiver接受人test source 实验来源multi-access channel 多通道信道source sequence 信源序列erasure symbol 擦掉符号destination sequence 目的序列contradiction矛盾读书破万卷下笔如有神rate比率practical standpoint实际观broadcast channel广播信generator matrix生成矩capacity region容量区row space行空high degree of symmetry 高对称parity-check matrix奇偶校验矩test sources测试信canonical form规范形input signal channel输入符号信error pattern错误模global maximum全局最coset傍additive ergodic noise添加各态噪symmetric channel对称信reliability exponent of channel信道的可靠性Hamming wight汉明table lookupcritical rate关键表格查standard arraylinear code线性标准排italicizedtime-varying convolutional强时间改变卷积metric spaceencoder-channel-decoder度量空编信译Hamming distanceouter channel汉明距外部信interectinner code内部编穿minimum weightouter code最小权外部编single-error-correctingweak converse弱颠单错误校perfect codesstrong converse强颠完全repetition codesterm术重复binary Hamming codesrate of transmission二进制汉明传输detecterror exponent错误指检e-correctingstrong similarity电子校强近H-detectingrather duality选择两重检Fparity-check matrixdistortion rate theory扭曲率理类似校验矩double-error-detectingsource coding method源编码双错误检weight enumeratorsingle-letter distortion measure单字母扭曲度权重计数homomorphismimplication含同multiplicative groupconfiguration轮趋于增加组indeterminate error probability 错误可能性不确定half-plane bound 半平面界reception接待discrete-time stable离散时间稳定高第九章循环码斯信源stable Gaussian sequence 稳定高斯序列spectral density 谱密度Chapter 9 Cyclic Codes tree codes树码burst errors突发性错误definition of innocuous-appearing 表面无害定理cyclic shift 循环位移第八章线性码trivial cyclic 一般循环no-information code无信息码Linear codesChapter 8读书破万卷下笔如有神depth-3 interleavingsingle-parity-check code单等价校验度交interleaving operationno-equivalent code无等价交错操elaborate algorithmright cyclic shift右循环位复杂算Fire codegenerating function法尔母函Fire constructiongenerator polynomial法尔结生成多项burst-trapping algorithmreciprocal爆发阻塞算互惠burst-error-correcting codecyclic property爆发错误校正循环性decomposition分left-justified左对transmitted codeword传送编trap陷阱,阻shift-register encoder转换登记编burst-error pattern爆发错误模flip-flops adders突变加法Meggitt lemma米戈蒂引constant multipliers常数乘法shift-register切换显delay延circuit环impulse response脉冲响leftmost flip-flop y香最左面的突state vector状态向量state polynomial 状态多项式input stream 输入流reverse order 反顺序第十章农码和相关linear recursion 线性递归rightmost flip-flop 最右面的突变的码mod-2 adder 模2加法器cyclic 循环two-field二域Chapter 10 Shannon Codes and Related primitive polynomial 原始多项式Codes decoding cycle 译码循环circular journey 循环旅程Shannon code香农码lower shift register 低位移寄存器Vandermonde determinant theory范德蒙德行列式burst-error-correcting 突发错误校正理论pattern 模式original parity-check matrix 初始相同检验矩burst description 突发描述阵location 位置minimal polynomial 最小多项式ambiguity 含糊不清key equation关键方程zero run零操作discrete Fourier transform 离散傅里叶变换burst-error correcting code 突发错误校正码time-domain 时间领域Abramson bounds 阿布拉门逊界frequency-domain 频数领域strict Abramson bound严格阿布拉门逊subtlety 细致界time shift 时间转换weak Abramson bound 弱阿布拉门逊界phase shift 相位转换Reiger bound Reiger界support set 支撑集合loose松散evaluator polynomial 评估多项式Abramson code 阿布拉门逊码formal derivative规范派生interleaving 交错frequency-domain recursion 频数主导递归De-interleaving交错De读书破万卷下笔如有神frequency-domainsubscript下频数Golay codelocator polynomial戈莱定位多项extended Golay codeerror pattern扩展戈莱错误模byte implementationtwisted error pattern字节工扭曲错误模table loopreduced mode表复原模error location错误定位error-evaluator polynomial 错误评估多项式Euclid algorithm 欧几里得算法第十一章卷积码quotient 份额facilitate促进time-domain approach 时间主导方法Chapter 11 Convolution Codes error-locator 错误定位器trial and error 试错法matrix polynomial矩阵多项pseudocode fragment伪码片shift-register approach转移登记方recursion递scalar matrix纯量矩abnormal反state-diagram approach状态图方elaborate theory复杂理memory记忆,内multiple-error-correcting linear code多倍错误校正constraint length约束长性k-tudecode character代码字L-th section截平maximum-distance separable codes最大距离可分state-diagram状态interpolation property插值法性track轨道,足information set信息集trellis diagram格子interpolation algorithm插值算survivors幸存recursive completion递归结Viterbi decoding algorithm维特比译码算pseudocode伪path weight enumerator路权重concatenated coding 连锁elaborate labels复杂burst-error-correction爆发错误校complete path enumerator完全路径depict描error events错误时间unfactor 非因子first error probability 最早错误可能性flaw缺陷bit error probability 比特错误可能性erasure symbol 擦掉符号free distance自由距离transmitted symbol 传递符号sequential decoding algorithm 连续译码算法enlarge扩大tree diagram 树形图minimum-distance decoding 最小距离译码binary tree 二进制树erasure set擦除集合bifurcation 分枝erasure-location polynomial擦除位置多项式abandoned 抛弃errors and erasures-locator-polynomial错误擦除位置多stack algorithm 栈算法项式Fano algorithm 法诺算法errors-and-erasures-evaluator 错误擦除评估多different lengths 差异长度polynomial项式flowchart流程图modified syndrome polynomial 修正综合多项式polynomial multiplication多项式乘法.读书破万卷下笔如有神第十二章变量长度源编码Chapter 12 Variable-length Source Codingmethod of variable-length source 变量长度源编码coding法string of length k 长度串kempty string 空字符串substring子串。

高三英语计算机编程单选题50题

高三英语计算机编程单选题50题

高三英语计算机编程单选题50题1. In a software development project, when you want to create a new variable to store an integer value, which of the following is the correct keyword in many programming languages?A. varB. intC. strD. bool答案:B。

解析:在许多编程语言中,“int”是用于声明整数类型变量的关键字。

选项A“var”通常是一种更通用的变量声明方式,但不特定表示整数类型。

选项C“str”是用于声明字符串类型的变量,用于存储文本数据。

选项D“bool”是用于声明布尔类型的变量,用于表示真或假的值。

2. When debugging a program, you find an error that occurs when the program tries to access an element in an array that doesn't exist. What is this type of error called?A. Syntax errorB. Runtime errorC. Compile - time errorD. Logical error答案:B。

解析:运行时错误是指程序在运行期间发生的错误,如访问不存在的数组元素这种情况。

选项A语法错误是指代码违反了编程语言的语法规则,在编译阶段就会被发现。

选项C编译时错误也是在编译过程中发现的错误,通常与语法或编译环境有关。

选项D 逻辑错误是指程序的逻辑存在问题,导致结果不符合预期,但不是这种访问不存在元素的错误类型。

3. In object - oriented programming, what is a class?A. A single instance of an objectB. A blueprint or template for creating objectsC. A method that operates on objectsD. A variable that stores object references答案:B。

具有伪装图像像素不扩展的_2_2_视觉密码方案_王洪君

具有伪装图像像素不扩展的_2_2_视觉密码方案_王洪君

2) C1 、C0 中的任何矩阵的任意 q < k 行“或”运算的结果具有相同的汉明重。 条件 1) 称为对比度条件,条件 2) 称为安全性条件。安全性条件确保了任意少于 k 幅分享图像的叠
加都不能获得原始秘密图像的任何信息。
1. 2 像素不扩展方案
在 1. 1 节所描述的方案中,C0 和 C1 可分别由矩阵 S0 和 S1 的所有列变换得到,称 S0 和 S1 为基本矩 阵,S0 代表白色像素的分享方案,S1 为黑色像素的分享方案。例如: 对一个( 2,2) 视觉密码方案,S0 和
Abstract: To solve the problems of pixel expansion and meaningless of shadow images. a new ( 2,2 ) visual cryptography scheme is proposed,in which the shadow images with a certain significance are the same size as the original secret image. In this method,to share a pixel,one of the columns in the basis matrices is chosen at random. Each element in the chosen column is distributed to corresponding shadow images. This method is to use the frequency of white pixels in the black and white areas of the recovered image for interpreting black and white pixels by human visual system. The frequency of white pixels in the white area of recovered image will be higher than that in the black area. The recovered image has good visual effectiveness and security. Experimental results confirm the effectiveness of the scheme. Key words: visual cryptography; basic matrix; shadow image; secret image

(2021年整理)编程常用英语词汇大全

(2021年整理)编程常用英语词汇大全

编程常用英语词汇大全编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(编程常用英语词汇大全)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为编程常用英语词汇大全的全部内容。

编程常用英语词汇大全很实用的编程英语词库,共收录一千五百余条词汇。

第一部分:application 应用程式应用、应用程序application framework 应用程式框架、应用框架应用程序框架architecture 架构、系统架构体系结构argument 引数(传给函式的值)。

叁见 parameter 叁数、实质叁数、实叁、自变量array 阵列数组arrow operator arrow(箭头)运算子箭头操作符assembly 装配件assembly language 组合语言汇编语言assert(ion) 断言assign 指派、指定、设值、赋值赋值assignment 指派、指定赋值、分配assignment operator 指派(赋值)运算子 = 赋值操作符associated 相应的、相关的相关的、关联、相应的associative container 关联式容器(对应 sequential container)关联式容器atomic 不可分割的原子的attribute 属性属性、特性audio 音讯音频A。

I。

人工智慧人工智能background 背景背景(用於图形着色)後台(用於行程)backward compatible 回溯相容向下兼容bandwidth 频宽带宽base class 基础类别基类base type 基础型别(等同於 base class)batch 批次(意思是整批作业)批处理benefit 利益收益best viable function 最佳可行函式最佳可行函式(从 viable functions 中挑出的最佳吻合者)binary search 二分搜寻法二分查找binary tree 二元树二叉树binary function 二元函式双叁函数binary operator 二元运算子二元操作符binding 系结绑定bit 位元位bit field 位元栏位域bitmap 位元图位图bitwise 以 bit 为单元逐一bitwise copy 以 bit 为单元进行复制位元逐一复制位拷贝block 区块,区段块、区块、语句块boolean 布林值(真假值,true 或 false)布尔值border 边框、框线边框brace(curly brace) 大括弧、大括号花括弧、花括号bracket(square brakcet)中括弧、中括号方括弧、方括号breakpoint 中断点断点build 建造、构筑、建置(MS 用语)build-in 内建内置bus 汇流排总线business 商务,业务业务buttons 按钮按钮byte 位元组(由 8 bits 组成)字节cache 快取高速缓存call 呼叫、叫用调用callback 回呼回调call operator call(函式呼叫)运算子调用操作符(同 function call operator)candidate function 候选函式候选函数(在函式多载决议程序中出现的候选函式)chain 串链(例 chain of function calls)链character 字元字符check box 核取方块 (i。

C语言常用符号与英文

C语言常用符号与英文

C 语言常用符号与英文c 语言的符号含义main(){int w=4,x=3,y=2,z=1; printf("%d\n"):优质解答举例: a=1; b=2;a>b?a:b // 判断表达式a>b 的真假,真则返回a 的值,假则返回b 的值 s*=s //与s=s*s 一样 s+=3 // 与s=s+3一样&&是与,||是或 &是位与,|是位或|就是按住shift 在按回车上面一个按钮 两下就是|| int a =2; int b = 3;a |= b;这个意思就是说a = a|b;(a 和b 的按位或运算)同理 a +=b;就是a = a+b; 明白意思没啊占位符,分别是整数、字符、浮点数 用法:(加入n =3) printf("%d",n);其中n 为你要显示的数值,方式按照“%d ”即 整型显示,结果为 3如果写的是printf("%f",n);则按照浮点显示 则显示结果可能为 3.0000C 有固定含义与用法称为关键字(32个单词)1.数据类型关键字(8个):...int , short , long, signed, unsigned...char (字符) , float (浮动;浮点数), double (双精度浮点数) 2.程序控制关键字(10个): ..1) 分支结构: .if , else, switch, case (机箱;案例), default (默认), break (暂停;间断) ..2) 循环结构:.do , while, for, continue 3.函数及数据存储关键字(6个):...void (空白的;作废) , return, auto, register, static, extern 4.构造数据类型关键字(5个):...struct, union, enum, typedef, sizeof5.其它3个不常用(3个)...goto, const, volatile以上共32个,基本按其学习顺序分类排列.除此之外,由用户定义,称为标识符,可以用以定义变量等.c中常用的英文单词可以说是三种一是关键字,也可以说是保留字如main for int if else等.这个必须记住二是函数名,这个可能不是完全的单词,是几个单词的组合、缩写、变体等等如scanf printf strstr sin getwindow等三是自己命名的变量,这个是为了好读程序如sum一般是指加法的和等等C语言常用词汇表--------------------------第1章--------------------------include 包含,包括stdio :standard input output 标准输入输出printf 打印,输出void 空main 主要的number 数量,数字在程序中也略写成num--------------------------第2 章--------------------------scanf 扫描,输入char 字符int 整型float 单精度浮点型double 双精度浮点型getchar 得到(输入)一个字符putchar 输出一个字符flag 旗帜,标记first 第一次,第一个second 第二result 结果grade 等级age 年龄sex 性别gender 性别operator 操作符,也略写成op line 行local 本地的row 列sum 和string 字符串paramter 参数project 项目有时也略写proj precision 精确度point 点pointer 指针variable 变量long 长整型short 短整型page 页数price 价格amount 数量height 高度high 高width 宽度level 水平length 长度define 定义minutes 分product 积flush 冲洗,fflush-清内存refresh 刷新--------------------------第3章--------------------------if 如果else 否则case 条件switch 跳转score 分数discount 折扣total 总计size 大小sizeof 字节大小cost 花费pay 支付area 面积rate 速度,比率,价格data 数据default 默认,缺省constant 常量console 控制台column 列在程序中也略写作col remainder 剩余的,余数--------------------------第4章-------------------------- expression 表达式calculate 计算在程序中也略写作calcsyntax 语法computer 计算symbol 符号step 步骤source 源loop 循环even number 偶数odd number 奇数--------------------------第5章--------------------------while 当…的时候digits 数位up 上low 低others 其他的square 正方形start 开始star 星end 结束for 循环关键字break 休息,停止continue 继续--------------------------第6章--------------------------array 数组employee 职员在程序中也略写成emp max 最大值min 最小值point 指向pointer 指针student 学生,在程序中也略写成stu find 寻找search 搜索insert 插入delete 删除,在程序中也略写成del address 地址,在程序中也略写成addr enter 回车,进入press 点击,按value 值convert 转换index 索引,序号password 密码,在程序中也略写成pwd change 改变,变化--------------------------第7章--------------------------datatype 数据类型array 数组rate 比率student 学生-------------------------- 第8章-------------------------- pointer 指针number 变量value 值-------------------------- 第9章-------------------------- function 函数globle 全局的,全球的exit 退出display 显示show 展示,显示random 随机scope 范围power 能量,动力,数学函数求幂-------------------------- 第10章-------------------------- auto 自动的static 静态的format 格式increment 增加scope 范围--------------------------第11章-------------------------- department 部门,在程序中也略dpt string 字符串initial 初始化,在程序中也略写成initalert 警告,警示warn 警告--------------------------第12章--------------------------struct 结构tab 水平制表符,标签IDE(integrated Development Environment) 集成开发环境ascending order 升序descending order 降序division 除法argument 在程序中也略写成arg argsC语言必背单词英文中文---- include 包含(导入头文件) stdio.h 输入输出头文件void 不返回任何值main 主要printf 打印、输出IDE(Integrated Development Environment)集成开发环境--------source File 源文件warning 警告Project 工程------ int 整数short int 短整型unsigned short int 无符号短整型long int 长整型float 浮点型double 双精度char 字符型scanf 输入函数getchar() 接受字符函数putchar() 输出字符函数variable 变量Compiler 编译器Area 面积Date type 数据类型Console 控制台Declaration 声明Initialization 初始化------ TRUE 真FALSE 假if 如果else 否则Sizeof 所占内存字节数------ Switch 分之结构case 与常值匹配break 跳转default 缺省、默认------ While 当到循环do…while 直到循环for 已知次数循环continue 结束本次循环进行下一次迭代Counter 计数器fflush()清除缓冲区函数------ Array 数组dimension 维数Single Dimensional Array 一维数组Double Dimensional Array 二维数组Multiplication dimensional Array 多维数组sorting 排序Bubble sort 冒泡排序Ascending order 升序Descending order 降序subscript 下标Step 步长Row 行column 列traverse 遍历------ pointer 指针Address 地址Base Address 基地址Memory Member 内在单元Relational operator 关系运算符Arithmetic operator 算术运算符Assignment operator 赋值运算符Logical operator 逻辑运算符------ function 函数Build-in function 内置函数User Defined Function 自定义函数Recursive function 递归函数Random 随机数power 幂prototype 原型void 空值Called function 被调函数Calling function 调用函数return 返回------ scope 作用域Parameter 参数Parameterized function 参数化函数Local variable 局部变量Global variable 全局变量static 静态变量auto 自动变量Register 寄存器变量extern 外部变量Formal parameter 形式参数Actual parameter 实际参数Call by reference 传值调用Call by value 引用调用------ String 字符串String literal 字符串常量sequence 序列queue 队列Puts() 把字符串数组输出到显示器Gets() 从标准键盘输入读入一个字符串string.h 存放字符串函数的头文件strlen() 计算字符串的长度strcpy() 复制字符串strcmp() 字符串比较strcat() 字符串连接------ struct 定义结构stack 栈structure 结构Structured programming 结构化程序member 成员算法 algorithm 机器语言machine language 运算与逻辑单元ALU 内存单元 memory unit分析 analysis 微处理器microprocessor应用软件application software 模型model汇编程序assembler面向对象的语言object-oriented language汇编语言assembler language 操作码opcode备份件backup copies 操作系统operating system位bit面向过程的语言procedure-oriented language引导boot 程序设计progremming字节bytes 汇编语言programming language伪代码pseudocode 类class细化refinement 编写代码coding循环结构repetition 编译型语言compiled language编译程序compiler 辅存secondary storage计算机程序computer program 选择结构selection控制单元 control unit 顺序结构sequence文档编写documentation 软件software软盘floppy diskette软件开发过程software development procedure流程图flowchart 软件工程software engineering硬盘hard disk 软件维护software maintenance硬件hardware 源代码soure code高级语言high-level language 源程序source program输入/输出单元 I/O unit 语法syntax调用invocation 系统软件system software循环结构iteration 测试testing解释型语言interpreted language二进制补码two’s complement解释程序interpreter 低级语言low-level language抽象abstraction 累加accumulating参数argument 自减运算符decrement operator算术运算符arithmetic operators 参数argument赋值语句assignment statement 赋值运算符assignment operators 综合性associativity 类型转换cast原子数据类型atomic data value 编译时错误compile-time error字符值character values 记数counting类class 对齐justificating注释comments 逻辑错误logic error数据类型data type 左值lvalue声明语句declaration statement 魔术数magic number定义语句definition statement 数学头文件mathematical library 双精度数double-precision number 八进制octal转义序列escape sequence 已命名常数named constant表达式expression 桌面检查desk checking浮点数floating-point number 域宽操纵符field width manipulator 函数function 回显打印echo printing头文件header file 十六进制hexadecimal标识符identifier程序验证与测试program verification and testing整数值iteger value 自增运算符 increment operator关键字keyword 实现implement操纵符manipulator 提示prompt混合表达式mixed-mode expression 运行时错误run-time error 助记符mnemonic 右值rvalue模块module 符号常数symbolic constant取模运算符modulus operator 语法错误syntax error优先级 preccedence 跟踪tracing变量variable 类型转换type conversions(注:可编辑下载,若有不当之处,请指正,谢谢!)。

R包的分类介绍

R包的分类介绍

R的包分类介绍1.空间数据分析包1)分类空间数据(Classes for spatial data)2)处理空间数据(Handling spatial data)3)读写空间数据(Reading and writing spatial data)4)点格局分析(Point pattern analysis)5)地质统计学(Geostatistics)6)疾病制图和地区数据分析(Disease mapping and areal dataanalysis)7)生态学分析(Ecological analysis)2.机器学习包1)神经网络(Neural Networks)2)递归拆分(Recursive Partitioning)3)随机森林(Random Forests)4)Regularized and Shrinkage Methods5)Boosting6)支持向量机(Support Vector Machines)7)贝叶斯方法(Bayesian Methods)8)基于遗传算法的最优化(Optimization using Genetic Algorithms)9)关联规则(Association Rules)10)模型选择和确认(Model selection and validation)11)统计学习基础(Elements of Statistical Learning)3.多元统计包1)多元数据可视化(Visualising multivariate data)2)假设检验(Hypothesis testing)3)多元分布(Multivariate distributions)4)线形模型(Linear models)5)投影方法(Projection methods)6)主坐标/尺度方法(Principal coordinates / scaling methods)7)无监督分类(Unsupervised classification)8)有监督分类和判别分析(Supervised classification anddiscriminant analysis)9)对应分析(Correspondence analysis)10)前向查找(Forward search)11)缺失数据(Missing data)12)隐变量方法(Latent variable approaches)13)非高斯数据建模(Modelling non-Gaussian data)14)矩阵处理(Matrix manipulations)15)其它(Miscellaneous utitlies)4.药物(代谢)动力学数据分析5.计量经济学1)线形回归模型(Linear regression models)2)微观计量经济学(Microeconometrics)3)其它的回归模型(Further regression models)4)基本的时间序列架构(Basic time series infrastructure)5)时间序列建模(Time series modelling)6)矩阵处理(Matrix manipulations)7)放回再抽样(Bootstrap)8)不平等(Inequality)9)结构变化(Structural change)10)数据集(Data sets)1.R分析空间数据(Spatial Data)的包主要包括两部分:1)导入导出空间数据2)分析空间数据功能及函数包:1)分类空间数据(Classes for spatial data):包sp(/web/packages/sp/index.html)为不同类型的空间数据设计了不同的类,如:点(points),栅格(grids),线(lines),环(rings),多边形(polygons)。

rrcf构造方法

rrcf构造方法

rrcf构造方法
RRCF(Random Recursive Cutting Forest)构造方法是一种基于随机递归切割森林的异常检测算法。

其构造过程如下:
1.从原始训练集合中无放回地抽取样本子集。

2.每次划分都从样本中随机选择一个属性q,再从该属性中随机选择一个划分的值p,该p值介于属性q
的最大与最小值之间。

3.根据属性q与值p,划分当前样本子集。

小于值p的样本作为当前节点的左孩子,大于p值的样本作
为当前的右孩子。

4.重复步骤2和3,递归构建每个节点的左、右孩子节点,直到满足终止条件为止。

通常,终止条件为所
有节点均只包含一个样本或多个相同的样本,或者树的深度达到了限定的高度。

在RRCF构造过程中,特征选择时以每个特征f的数据分布区间长度(f.max-f.min)作为选取该特征进行分割的概率。

算法利用节点处样本在各个特征上的数据分布区间长度的和代表该节点的权重,并定义了RRCF上节点间的距离,即节点u、v间的距离表示为两节点的最小公共祖先的节点权重。

最后,对异常点做了结构性的假设,将树上每个叶子点的深度之和定义成树的复杂度,从而检测出异常点。

1。

动态符号执行中路径搜索策略的研究与实现

动态符号执行中路径搜索策略的研究与实现

摘要摘要作为一种动态的程序分析技术,动态符号执行凭借高代码覆盖率、自动化计算输入值、分析结果准确等优点,已被广泛应用于软件测试和验证领域。

路径搜索是动态符号执行过程中的核心操作,是影响程序动态符号执行效率和代码覆盖率的关键因素。

传统的路径深度优先搜索是一种常用的路径搜索策略,但该策略存在一些不足之处:(1)路径空间爆炸问题;(2)可能存在“饥饿路径”;(3)程序检测的代码覆盖率增速缓慢;(4)运行时占用大量存储空间。

为了解决传统路径搜索中存在的问题,本文对现有的动态符号执行路径搜索方法进行研究,给出了一种基于控制流图(Control Flow Graph, CFG),结合分支覆盖优先搜索、条件语句优先的随机搜索和路径深度优先搜索的动态符号执行路径搜索策略。

本文主要贡献包括以下三点。

1. 研究了符号执行和动态符号执行的基本理论,以及现有的动态符号执行主流路径搜索方法,提出一种新的动态符号执行路径搜索策略,从四个方面解决传统路径搜索中存在的问题。

(1)构造与待检测程序源码的底层虚拟机中间表示(LLVM Intermediate Representation, LLVM-IR)相对应的CFG,以CFG代替符号执行树指导路径搜索,缓解复杂程序中因循环结构和函数递归调用造成的路径空间爆炸问题。

(2)综合分支覆盖优先、条件语句优先和路径深度优先的路径搜索方式,设置符号值求解范围,避免程序执行陷入“路径饥饿”状态。

(3)在保证动态符号执行高路径覆盖率的前提下,以最少的程序执行次数,获得最大的行覆盖率和分支覆盖率,加快代码覆盖率提升速度。

(4)仅存储程序下次执行的输入值及相关信息,相较于存储完整的路径约束,所需存储空间大幅减少。

2. 设计实现路径搜索模块,并集成LLVM-IR插桩模块,开发了相应的动态符号执行工具,用于对建模、仿真和验证语言(Modeling, Simulation and Verification Language, MSVL)编译器生成的LLVM-IR程序进行动态符号执行,为MSVL程序的验证工作提供执行路径。

强化学习代码之4×4网格问题

强化学习代码之4×4网格问题

强化学习代码之4×4⽹格问题前⾔问题描述该问题主要是进⾏策略评估,得出等概率随机选择的策略下的状态值函数问题描述:某⼀智能体在4×4的⽹格中⾏⾛,⾮终点状态为{1,2,..,14},终点状态为左上⾓和右下⾓的两个格⼦。

在任意⾮终点状态下,可能动作为上下左右。

⾛出⽹格,则待在原地不动;到达终点状态后,游戏结束。

在某⼀时间步骤,所有可能转移得到的⽴即奖赏为-1。

**123 4567 891011 121314**问题假设:游戏模型简洁明了,⽆其它假设。

问题分析:状态(16个⽅格,有两个状态是终点状态,值函数不更新其余变负即可)、动作(上下左右,注意边际地区的位置不变其余⾏加⼀列加⼀)、转移规则代码实现策略迭代⼀般分为“双矩阵”迭代策略评估、“原位更新”迭代策略评估。

重点依然是贝尔曼⽅程的应⽤,主要区别在于“双矩阵”迭代策略评估先利⽤之前的值把所有的都更新⼀次再进⾏下⼀步的计算,“原位更新”迭代策略评估直接将上⼀次更新的值应⽤在之后的估计中(直接原位覆盖)。

就是\(Q\)矩阵存⼀个还是两个的区别。

原位更新收敛速度⽐双矩阵的更新⽅式快。

代码和之前那个Gridworld很相似,甚⾄更加简单了⼀点。

######################################################################## Copyright (C) ## 2016 Shangtong Zhang(zhangshangtong.cpp@) ## 2016 Kenta Shimada(hyperkentakun@) ## Permission given to modify the code as long as you keep this ## declaration at the top ########################################################################from __future__ import print_functionimport numpy as npimport matplotlib.pyplot as pltfrom matplotlib.table import TableWORLD_SIZE = 4 #⽹格尺⼨REWARD = -1.0 #奖励ACTION_PROB = 0.25 #选择各动作的概率world = np.zeros((WORLD_SIZE, WORLD_SIZE))# left, up, right, down 动作集actions = ['L', 'U', 'R', 'D']#定义状态转换nextState = []for i in range(0, WORLD_SIZE):nextState.append([])for j in range(0, WORLD_SIZE):next = dict()if i == 0:next['U'] = [i, j]else:next['U'] = [i - 1, j]if i == WORLD_SIZE - 1:next['D'] = [i, j]else:next['D'] = [i + 1, j]if j == 0:next['L'] = [i, j]else:next['L'] = [i, j - 1]if j == WORLD_SIZE - 1:next['R'] = [i, j]else:next['R'] = [i, j + 1]nextState[i].append(next)#状态空间states = []for i in range(0, WORLD_SIZE):for j in range(0, WORLD_SIZE):if (i == 0 and j == 0) or (i == WORLD_SIZE - 1 and j == WORLD_SIZE - 1):continueelse:states.append([i, j])#画表格函数def draw_image(image):fig, ax = plt.subplots()ax.set_axis_off()tb = Table(ax, bbox=[0,0,1,1])nrows, ncols = image.shapewidth, height = 1.0 / ncols, 1.0 / nrows# Add cellsfor (i,j), val in np.ndenumerate(image):# Index either the first or second item of bkg_colors based on# a checker board patternidx = [j % 2, (j + 1) % 2][i % 2]color = 'white'tb.add_cell(i, j, width, height, text=val,loc='center', facecolor=color)# Row Labels...for i, label in enumerate(range(len(image))):tb.add_cell(i, -1, width, height, text=label+1, loc='right',edgecolor='none', facecolor='none')# Column Labels...for j, label in enumerate(range(len(image))):tb.add_cell(-1, j, width, height/2, text=label+1, loc='center',edgecolor='none', facecolor='none')ax.add_table(tb)plt.show()# for figure 4.1while True:# keep iteration until convergencenewWorld = np.zeros((WORLD_SIZE, WORLD_SIZE))for i, j in states:for action in actions:newPosition = nextState[i][j][action]# bellman equationnewWorld[i, j] += ACTION_PROB * (REWARD + world[newPosition[0], newPosition[1]]) if np.sum(np.abs(world - newWorld)) < 1e-4:print('Random Policy')draw_image(np.round(newWorld, decimals=1))print(newWorld)breakprint(newWorld)world = newWorld。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X iv:086.365v2[cs.IT]28Jul28Recursive Code Construction for Random Networks Vitaly Skachek Claude Shannon Institute University College Dublin Belfield,Dublin 4,Ireland E-mail:vitaly.skachek@ucd.ie Abstract We present a modification of K¨o tter-Kschischang codes for random networks (these codes were also studied by Wang et al.in the context of authentication problems).The new codes have higher information rate,while maintaining the same error-correcting capabilities.An efficient error-correcting algorithm is presented for these codes.1Background The area of network coding has emerged since the work of Ahlswede et al.[1].It was shown that sending coded information over the network yields an ad-vantage in bandwidth utilization compared with the classical routing sce-nario.Further,the use of network coding for correction of errors in the in-formation sent over the network was suggested in [2].This approach relied,however,on the knowledge of the network topology.In [5],a new approach for error-correcting network coding was suggested.It was assumed that the network topology is not known.Further,the en-coded information was represented by vector subspaces of some vector space.So-called codes for random networks were constructed and a correspond-ing decoder was presented in that work,that uses some ideas from classical1Reed-Solomon codes and decoders.Essentially,the analogous construction was proposed several years earlier in the context of authentication codes[11].In[4]and[9],the connections between matrix codes in the rank metric[3] (see also[7])and the codes for random networks were established.In partic-ular,the code construction in[5](and[11])is a lifting of the matrix codes in[3].A construction of spread codes was presented in[6].Very recently,inde-pendently of the present of work,a generalization of codes in[9]was presented in[8].The respective codes in[8]have higher information rate than the codes in[5].In this work,we modify the construction in[5],[11].Our codes have the same error-correcting capability as the codes in[5],while the information rate of our codes is higher.This construction can be viewed as a generalization of construction in[6].On the other hand,this construction can be viewed as a special case of construction in[8].An efficient decoding algorithm is presented for a special case of our codes,it uses the decoder in[5]as a subroutine.By contrast,no efficient decoding algorithm for the codes in[8] was given.2Notations and Previous ResultsLet W be a vector space over afinitefield F q and let V,U⊆W be linear subspaces of W.We use the notation dim(V)for the dimension of V.We denote the sum of U and V as U+V={u+v:u∈U,v∈V}.If U∩V=∅, then for any w∈U+V there is a unique representation w=u+v,where u∈U and v∈V.In this case we say that U+V is a direct sum,and denote it as U⊕V.It is easy to check that dim(U⊕V)=dim(U)+dim(V).For a vector set S⊆W,we use the notation span(S)to denote a linear span of the vectors in S.We also use the notation0m to denote all-zero vector of length m,for any integer m.Below,we recall the construction in[5].Let F=F q m be an extensionfield of F q,m>1.Then,F is a vector space over F q.Let{α1,α2,···,αℓ}⊆F be a set of linearly independent elements in F.We denoteA =span {α1,α2,···,αℓ}andW= A ⊕F={(v1,v2):v1∈ A ,v2∈F}.2For a vector v ∈W ,sometimes we may write v =(v 1,v 2),where v 1∈ A and v 2∈F (any such vector v can be viewed as an (ℓ+m )-tuple over F q ).For a vector space V ⊆W we define a projection of V on F asV |F ={v 2∈F :(v 1,v 2)∈V }.We use the notation P (W,ℓ)for the set of all subspaces of W of dimension ℓ.For U,V ∈W ,let d (U,V )=dim(U )+dim(V )−2dim(U ∩V )be a distance between U and V in the Grassmanian metric (see [5]).Let F k[x ]denote the set of linearized polynomials over F of degree at most q k −1,k ≥1.Define the mapping E :F k [x ]→P (W,ℓ)asE (f (x ))=span {(α1,f (α1)),···,(αℓ,f (αℓ))} ∈P (W,ℓ).The code K is defined in [5]asK = E (f (x )):f (x )∈F k [x ] .Below,we might sometimes use the notation K [ℓ+m,ℓ,k ]for the code K with the parameters as above.It was shown in [5]that |K|=q mk .It was also shown there,that for all U,V ∈K ,U =V ,it holds that dim(U ∩V )≤k −1,and so d (U,V )≥2(ℓ−k +1).Therefore,the minimum distance of K is at least 2(ℓ−k +1).Singleton-type upper bound on the maximum size of K ,A q (ℓ+m,ℓ,k ),was derived in [5].The bound can be written asA q (ℓ+m,ℓ,k )≤ m +k k q,(1)where m +kk q =k −1 i =0q m +k −i −1ℓk q.3Finally,the Johnson-type bound was presented in[10],as belowA q(ℓ+m,ℓ,k)≤ qℓ+m−1qℓ−1−1··· qℓ+m−k+1−1ℓ)operations over F q m.3Code ConstructionIn this section,we define a new code,based on the construction in[5],[11]. Let m≥ℓ≥k.We use the notation C[ℓ+m,ℓ,k](for a sake of simplicity, sometimes we will use the notation C instead)to define this new random net-work code defined by vector subspaces in the ambient space W of dimension ℓ+m,such that for any V∈C,dim(V)=ℓ,and for any V∈C and U∈C, dim(U∩V)≤k−1.Let N(ℓ+m,ℓ,k)= C[ℓ+m,ℓ,k] for all m,ℓ,k.We pick some code parameters m,ℓand k.Let hℓ+m be an integer, 0≤hℓ+m≤k−1.This hℓ+m is a design parameter which can be optimized later.Next,we recursively define the code C[ℓ+m,ℓ,k].•Boundary condition:m<2(ℓ−hℓ+m)orℓ−hℓ+m<k(in which case K[m,ℓ−hℓ+m,k]does not exist).We define C=K[ℓ+m,ℓ,k].•Recursive step:assume that C[m,ℓ−hℓ+m,k]={Uσ⊆F:σ=1,2,···,N(m,ℓ−hℓ+m,k)}.Let{eσ1,eσ2,···,eσℓ−hℓ+m }⊆F be a basisof Uσ.–If hℓ+m=0,then we set Sσ=∅for allσ∈N.4–Otherwise,forσ=1,2,···,⌊ℓ/hℓ+m⌋,we define sets of vectorsSσ= (αj,0m):j=(σ−1)hℓ+m+1,(σ−1)hℓ+m+2,···,σhℓ+m .In addition,forσ=1,2,···,N(m,ℓ−hℓ+m,k),we defineTσ= (0ℓ,eσj):j=1,2,···,ℓ−hℓ+m .Let.(2) tℓ+m= min{⌊ℓ/hℓ+m⌋,N(m,ℓ−hℓ+m,k)}if hℓ+m>0N(m,ℓ,k)if hℓ+m=0We define vector spaces Vσ∈P(W,ℓ),forσ=1,2,···,tℓ+m,as Vσ=.Finally,we span(Sσ∪Tσ).We also define a set B={Vσ}σ=1,2,···,tℓ+m define a code C as C=K[ℓ+m,ℓ,k]∪B.4Code Parameters4.1Recursive Formula for the Number of Codewords The code C as above is obviously a set of subspaces of dimensionℓin the space W of dimensionℓ+m.The number of codewords in C is given by the recursive relationN(ℓ+m,ℓ,k)=q mk+tℓ+m,(3) where tℓ+m is given by(2).The boundary conditions areN(ℓ+m,ℓ,k)= K[ℓ+m,ℓ,k] =q mk if m<2(ℓ−hℓ+m)orℓ−hℓ+m<k.(4)Please note that if K[m,ℓ−hℓ+m,k]=∅,we get N(m+ℓ,ℓ,k)>q mk,thus having more codewords compared with the construction in[5].Otherwise, we have N(m+ℓ,ℓ,k)=q mk.54.2Optimization of hℓ+mNext,let us discuss the choice of the parameter hℓ+m.We are interested in hℓ+m that maximizes tℓ+m in(2).Note,however,thatN(m,ℓ−hℓ+m,k)≥q(m−ℓ+hℓ+m)·k,where the right-hand side is an increasing function of hℓ+m.Forfixed m,ℓand k,the function⌊ℓ/hℓ+m⌋does not increase with hℓ+m.Therefore,we have the following lemma.Lemma4.1If for some h=0,1,···,k−2,ℓ⌋.The number of codewords corresponding to the selec-h+1tion hℓ+m=h is either⌊ℓ⌋.h+1Theorem4.2Letℓ+m,ℓand k be the parameters of the code C,and let hℓ+m=h be the smallest value that maximizes the number of words in C. In addition,assume that one of the following holds:(C1)ℓ≥4,k=1;(C2)ℓ≥3,k≥2.If h>0,then m<2(ℓ−h),and so C[m,ℓ−h,k]does not exist.Proof.Consider the code C[ℓ+m,ℓ,k].Assume that it is constructed recursively from the code C[m,ℓ−h,k]for some0≤h≤k−1,as it was described in the previous section.The later code exists only ifm≥2(ℓ−h).(5)6Next,assume also that the smallest optimal value of hℓ+m is h>0.Then, hℓ+m=h−1is not an optimal value,and so we have⌊ℓ/h⌋>q(m−ℓ+h−1)·k,due to Lemma4.1(with respect to h−1instead of h).This can be rewritten aslog q(⌊ℓ/h⌋)>(m−ℓ+h−1)·k.We substitute(5)to obtain thatlog q(⌊ℓ/h⌋)>(ℓ−h−1)·k.(6) Next,we obtain a contradiction,by showing that(6)does not hold for any h,1≤h≤ℓ−1.Indeed,consider the following four cases.•Case h>ℓ/2.The LHS of(6)is zero,while the RHS is non-negative.•Case h=1.Then,(6)is rewritten aslog q(ℓ)>(ℓ−2)·k.This is false for allℓand k satisfying either(C1)or(C2).•Case h=ℓ/2.Then,(6)is rewritten aslog q(2)>(ℓ/2−1)·k.This is also false forℓand k satisfying either(C1)or(C2).•Case1<h<ℓ/2.The second derivative of the function k(ℓ−h−1)(ina variable h)is0,while the second variable of the function log q(ℓ/h)(ina variable h)is positive for1<h<ℓ/2.In addition,for the endpointsof that interval,k(ℓ−h−1)≥log q(ℓ/h).Therefore,this relation is also true for the whole interval.We obtain a contradiction.The contradiction follows from the assump-tion(5).Therefore,the only possible situation is that m<2(ℓ−h).74.3Explicit Formula for the Number of CodewordsIf all hℓ+m’s in the construction are zeros for allℓand m,then tℓ+m= N(m,ℓ,k).Therefore,(3)becomesN(ℓ+m,ℓ,k)=q mk+N(m,ℓ,k),and thusN(ℓ+m,ℓ,k)=q mk+q(m−ℓ)k+···+q(r+ℓ)kq(ℓ+m)k−q(r+ℓ)k=Since v∈V,we may write for someσ,1≤σ≤tℓ+m,for some b i∈F q (for i=1,2,···,hℓ+m)and c i∈F q(for i=1,2,···,ℓ−hℓ+m):v=hℓ+mi=1b i·(α(σ−1)hℓ+m+i,0m)+ℓ−hℓ+m i=1c i·(0ℓ,eσi)= hℓ+m i=1b iα(σ−1)hℓ+m+i,ℓ−hℓ+m i=1c i eσi .In particular,we haveℓi=1a iαi=hℓ+m i=1b iα(σ−1)hℓ+m+i.Since allαi’s are linearly independent,it follows thata i=b i−(σ−1)hℓ+m if(σ−1)hℓ+m+1≤i≤σhℓ+m0otherwise. Finally,we obtain that every v∈U∩V can be written asv=hℓ+mi=1b i·(α(σ−1)hℓ+m+i,f(α(σ−1)hℓ+m+i)).Therefore,dim(U∩V)≤q hℓ+m≤q k−1.3.U,V∈B.Take any v∈U∩V,v=0.Since v∈U,we may write forsomeσ,1≤σ≤tℓ+m,for some a i∈F q(for i=1,2,···,hℓ+m)and for some d i∈F q(for i=1,2,···,ℓ−hℓ+m):v=hℓ+mi=1a i·(α(σ−1)hℓ+m+i,0ℓ)+ℓ−hℓ+m i=1d i·(0m,eσi)= hℓ+m i=1a iα(σ−1)hℓ+m+i,ℓ−hℓ+m i=1d i eσi .(7)9Since v∈V,we may write for someτ,1≤τ≤tℓ+m,τ=σ,for some b i∈F q(for i=1,2,···,hℓ+m)and for some c i∈F q(for i= 1,2,···,ℓ−hℓ+m):v=hℓ+mi=1b i·(α(τ−1)hℓ+m+i,0ℓ)+ℓ−hℓ+m i=1c i·(0m,eτi)= hℓ+m i=1b iα(τ−1)hℓ+m+i,ℓ−hℓ+m i=1c i eτi .(8) By comparing thefirst part of v in(7)and(8),we obtainhℓ+mi=1a iα(σ−1)hℓ+m+i=hℓ+m i=1b iα(τ−1)hℓ+m+i.However,sinceα(σ−1)hℓ+m+i ’s andα(τ−1)hℓ+m+i’s are all different andlinearly independent,we obtain that all a i=b i=0for i=1,2,···,hℓ+m.From the second part of v in(7)and(8),we obtainℓ−hℓ+mi=1d i·eσi=ℓ−hℓ+m i=1c i·eτi.Therefore,v=(0ℓ,u),where u∈Uσ∩Uτ.Since,for allσandτ, dim(Uσ∩Uτ)≤k−1,it follows that dim(U∩V)≤k−1.5Decoding5.1Simple CaseBelow,we present a recursive decoding algorithm for the code C,when h i=0 (for all i).A decoding algorithm for the code K was presented in[5].Suppose that V∈K is transmitted over the operator channel(see[5]for details).Suppose also that an(ℓ−κ+γ)-dimensional subspace U of W is received,where dim(U∩V)=ℓ−κ.We use a modification of the decoding algorithm in[5]10as follows.Given a received vector space U of W,the decoder is able to recover a single V∈K wheneverκ+γ<ℓ−k+1.If the decoding fails,the decoder returns a special error message‘?’(such a modification is straight-forward).We will denote this decoder D Kℓ+m,ℓ,k:W→K[ℓ+m,ℓ,k]∪{‘?’}.Now,suppose that V∈C is transmitted over the operator channel,and an (ℓ−κ+γ)-dimensional subspace U of W is received,and dim(U∩V)=ℓ−κ. We will denote the decoder for the code C as Dℓ+m,ℓ,k:W→C[ℓ+m,ℓ,k]∪{‘?’}.The decoder is summarized in Figure1.If the decoding fails,the decoder returns an error message‘?’.As we show in the sequel,the decoder Dℓ+m,ℓ,k is able to recover V∈C from U∈W given thatκ+γ<ℓ−k+1.Figure1:Decoder Dℓ+m,ℓ,k for the code C.Theorem5.1Let V be transmitted over the operator channel and let U be received.In addition,let dim(V)=ℓ,dim(U)=ℓ−κ+γ,dim(U∩V)=ℓ−κ.Then,the decoder in Figure1is able to recover the original codeword V∈C from U given thatκ+γ<ℓ−k+1.Proof.There are two cases.If V∈K,then the claim follows immediately from the correctness of the decoder in[5].Therefore,we assume that V∈B. In that case,by the definition of B,V=span {(0,eσ1),(0,eσ2),···,(0,eσℓ)} ={0ℓ}⊕V′,11whereV′=span {eσ1,eσ2,···,eσℓ} ∈C[m,ℓ,k]for someσ.In particular,V is isomorphic to V′and dim(V)=dim(V′).Let U′=U|F.Obviously,dim(U′)≤dim(U)=ℓ−κ+γ.We also have thatℓ−κ=dim(U∩V)≤dim(U′∩V′)(in particular,for any v∈U∩V,the projection of v on its last m coordinates lies in U′∩V′,and for v=u∈U∩V, the projections of u and v on the last m coordinates yield different vectors, since the only puctured coordinates are zero-coordinates).We haved(U′,V′)=dim(U′)+dim(V′)−2dim(U′∩V′)=(dim(U′)−dim(U′∩V′))+(dim(V′)−dim(U′∩V′))≤((ℓ−κ+γ)−(ℓ−κ))+(ℓ−(ℓ−κ))=κ+γ.Note that V′∈C[m,ℓ,k].The decoder D m,ℓ,k is able to correct any error pattern of size less thanℓ−k+1.Therefore,given thatκ+γ<ℓ−k+1, the decoder D m,ℓ,k will recover V′from U′.Finally,V is easily obtained as {0ℓ}⊕V′.Next,we turn to estimate the time complexity of the decoder Dℓ+m,ℓ,k.We denote the decoding time of this decoder applied to C[ℓ+m,ℓ,k]as T(ℓ+m,ℓ). Recall,that the time complexity of the algorithm D Kℓ+m,ℓ,k was shown in[5]to be O((ℓ+m)2)operations over F q m(sinceℓ≤m,this complexity is O(m2)). Then,the following recurrent relation holds:T(ℓ+m,ℓ)≤O (ℓ+m)2 +T(m,ℓ).The boundary condition is T(ℓ+m,ℓ)=O((ℓ+m)2)when m<2ℓ.We obtain thatT(ℓ+m,ℓ)=O (ℓ+m)2·mℓ .5.2General CaseConsider the case where hℓ+m=0for some m,ℓ.In this case,|B|≤ℓ.Then, the algorithm in Figure1can be modified as follows.First,the decoder D Kℓ+m,ℓ,k is applied to the input U∈W.If that decoder fails,then V/∈K,12and so one should look for V∈B such that d(U,V)<ℓ−k+1.This can be done by checking at most O(ℓ)“candidates”V∈B.If one of them lies at the distance less thanℓ−k+1from U,then this V is the codeword to be returned.If there is no such V,the failure‘?’is returned.The resulting time complexity is a sum of the two following values:•Time complexity of the decoder D Kℓ+m,ℓ,k.•Time complexity of at mostℓapplications of the algorithm for com-puting distances between two vector subspaces.Computing the distances between two vector subspaces can be done in a straight-forward manner by calculating the dimension of their intersection. It can also be done(for q=2)by an algorithm presented in[8,Sec.3.4]. AcknowledgementsThis work was supported in part by the Claude Shannon Institute for Discrete Mathematics,Coding and Cryptography(Science Foundation Ireland Grant 06/MI/006).The author would like to thank his colleagues in the Claude Shannon Institute:Carl Bracken,Eimear Byrne,Marcus Greferath,Russell Higgs,Nadya Markin,Gary McGuire and Alexey Zaytsev for stimulating discussions and advices.The author would also like to thank Emina Soljanin for helpful discussions.References[1]R.Ahlswede,N.Cai,S.Y.R.Li,and R.W.Yeung,Networkinformationflow,IEEE rm.Theory,vol.46,no.4,pp.1204–1216,July2000.[2]N.Cai,R.W.Yeung,Network coding and error correction,Proc.IEEE Inform.Theory Workshop,pp.119-122,Oct.2002.[3]E.M.Gabidulin,Theory of codes with maximal rank distance,Prob-lems of Information Transmission,vol.21,pp.1-12,July1985.13[4]M.Gadouleau,Z.Yan,Constant-rank codes and their connectionto constant-dimension codes,submitted to IEEE Trans.On Inform.Theory,available online at /abs/0803.2262.[5]R.K¨o tter,F.R.Kschischang,Coding for errors and erasures inrandom network coding,submitted to IEEE Trans.On Inform.Theory, available as arXiv report arXiv:cs/0703061v2.[6]F.Manganiello,E.Gorla,and J.Rosenthal,Spread codes andspread decoding in network coding,to appear in Proc.IEEE Intern.Symposium on Inform.Theory,Toronto,Canada,July2008.[7]R.M.Roth,Maximum-rank array codes and their application to criss-cross error correction,IEEE rm.Theory,vol.37,no.2,pp.328-336,March1991.[8]N.Silberstein,T.Etzion,Coding Theory in Projective Space,Ph.D.Research Proposal,Technion,Haifa,Israel,May2008,available online at /abs/0805.3528.[9]D.Silva, F.R.Kschischang,and R.K¨o tter,A rank-metric approach to error-control in random network coding,sub-mitted to IEEE Trans.on Inform.Theory,available online at /abs/0711.0708.[10]S.T.Xia, F.W.Fu,Johnson type bounds on constant dimensioncodes,submitted,available online at /abs/0709.1074.[11]H.W ang,C.Xing,and R.Safavi-Naini,Linear authenticationcodes:bounds and constructions,IEEE Trans.On Inform.Theory,vol.49,pp.866–873,April2003.14。

相关文档
最新文档