规律探索解答

合集下载

五年级数学探索规律试题答案及解析

五年级数学探索规律试题答案及解析

五年级数学探索规律试题答案及解析1.边长6米的正方形花坛,在它周围每隔2米摆一盆花(四角都摆),一共要摆()A.3盆 B.12盆 C.18盆【答案】B【解析】解:6÷2+1=3+1=4(盆)4×4﹣4=16﹣4=12(盆)答:一共要摆12盆.故选:B.【点评】此题主要考查植树问题中封闭图形中:棵数=每边棵数×4﹣4的计算应用.2.找规律填数字6.25,2.5,1,,0.16.【答案】0.4.【解析】根据数列中所给数据得出:数列中的数从左向右依次除以2.5;据此解答即可.解:6.25÷2.5=2.5;2.5÷2.5=1;1÷2.5=0.4;0.4÷2.5=0.16;所以数列为:6.25,2.5,1,0.4,0.16.故答案为:0.4.【点评】解决本题的关键是根据已知数据找出变化规律,再利用规律解答.3.如图,用小棒搭成六边形,搭一个六边形要6根小棒,搭二个六边形要11根小棒,搭三个六边形要16根小棒.(1)搭四个六边形要根小棒;(2)根据上面的规律,搭n个六边形要根小棒.【答案】21,5n+1.【解析】据题意可知,摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,…那么摆n个,就有n﹣1条边是重复的,所以要用n×6﹣(n﹣1)=6n﹣n+1=5n+1根;摆4个六边形要5×4+1=21根小棒;然后再根据题意进一步解答即可.解:根据题意可得:摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,拼4个,有3条边是重复的,要6×4﹣3=21根,…摆n个要用:n×6﹣(n﹣1)=6n﹣n+1=5n+1(根);答:拼4个六边形要21根小棒,拼n个六边形要用5n+1根小棒.故答案为:21,5n+1.【点评】根据题意与图形,找出摆n个图形的规律,然后再进一步解答即可.4.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数是________。

专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题06整式中规律探索的三种考法类型一、单项式规律性问题例.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为()A.5B.3C.2D.1【答案】C【分析】先根据题意,求出前几次跳到的点的位置,发现这是一个循环,按照3、5、2、1成一个循环,再用解循环问题的方法求解.【详解】解:按照题意,第一次在1这个点,下一次就跳到3,再下一次跳到5,再下一次跳到2,2是偶数了,就逆时针跳一个点,又回到了1这个点,发现这是一个循环,3、5、2、1是一个循环,÷ ,20154=5033∴最后到2这个点.故选:C.【点睛】本题考查找规律,解题的关键是通过前几个数发现这是一个循环问题,利用解循环问题的方法求解.【变式训练1】按上面数表的规律.得下面的三角形数表:【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键.类型三、图形类规律探索例.根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.6060【答案】C【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭2020个这样的正方形需要3×2020+1=6061根火柴棒;故选C.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.【变式训练1】下列每一个图形都是由一些同样大小的三角形按一定的规律排列组成的,其中第①个图形中有5个小三角形,第②个图形中有10个小三角形,第③个图形中有16个小三角形,按此规律,则第⑨个图中小三角形的个数是()A.69B.73C.77D.83【答案】B【分析】根据已知图形得出第⑨个图形中三角形的个数的特点,据此可得答案.【详解】解:∵第①个图形中三角形的个数5=1+2×(1-1),第②个图形中三角形的个数10=5+2×1+3,第③个图形中三角形的个数16=5+2×2+3+4,第④个图形中三角形的个数23=5+2×3+3+4+5,第⑤个图形中三角形的个数31=5+2×4+3+4+5+6,……【答案】57【分析】根据每个图形增加三角形的个数,找到规律即可.【详解】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…,第n个图形中三角形的个数是1+4(n﹣1)=(4n﹣3)个,当n=15时,4n﹣3=4×15﹣3=57.故答案为:57.【点睛】本题考查了图形的变化规律,解题关键是通过图形数量的变化发现规律,并应用规律解决问题.课后训练20192020)a a -。

中考数学专题复习——规律探索(详细答案)

中考数学专题复习——规律探索(详细答案)

中考数学复习专题——规律探索一.选择题1. (2018·湖北随州·3 分)我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如 1,3, 6,10…)和“正方形数”(如 1,4,9,1,在小于 200 的数中,设最大的“三角形数”为 m ,最大的 “正方形数”为 n ,则 m +n 的值为( )A .33B .301C .386D .5712.(2018•山东烟台市•3 分)如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆 下去,第 n 个图形中有 120 朵玫瑰花,则 n 的值为( )3.(2018•山东济宁市•3 分)如图,小正方形是按一定规律摆放的,下面四个选项中的图片, 适合填补图中空白处的是( )A .B . B.C .D .4. (2018 湖南张家界 3.00 分)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…, 则 2+22+23+24+25+…+21018 的末位数字是( )A .8B .6C .4D .0二、填空题 1. (2018·湖北江汉油田、潜江市、天门市、仙桃市·3 分)如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2, △P3A2A3,…都是等2.(2018•江苏淮安•3 分)如图,在平面直角坐标系中,直线l为正比例函数y=x 的图象,点A1的坐标为(1,,过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x 轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l 于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n C n D n的面积是(92)n﹣1 .3.(2018•山东东营市•3分)如图,在平面直角坐标系中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=15x+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形.如果点A1(1,那么点A2018的纵坐标是20173()2.4.(2018•临安•3 分.)已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+ba=102×ba符合前面式子的规律,则a+b= .5. (2018•广西桂林•3分)将从1开始的连续自然数按如图规律排列:规定位于第m行,第n列的自然记为6. (2018•广西南宁•3 分)观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可 得 30+31+32+…+32018 的结果的个位数字是 .7. (2018·黑龙江龙东地区·3 分)如图,已知等边△A BC 的边长是 2,以 B C 边上的高 AB 1 为边作等边三角 形,得到第一个等边△AB 1C 1;再以等边△AB 1C 1 的 B 1C 1边上的高 AB 2 为边作等边三角形,得到第二个等边△AB 2C 2;再以等边△A B 2C 2 的B 2C 2边上的高 A B 3 为边作等边三角形,得到第三个等边△AB 3C 3;…,记△B 1CB 2 的面积为 S 1,△B 2C 1B 3 的面积为 S 2,△B 3C 2B 4 的面积为 S 3,如此下去,则 S n = .8.(2018·黑龙江齐齐哈尔·3 分)在平面直角坐标系中,点 A (3,1)在射线 O M 上,点 B (3,3)在 射线 ON 上,以 AB 为直角边作 Rt △A BA 1,以 BA 1 为直角边作第二个 Rt △BA 1B 1,以A 1B 1 为直角边作第三个 Rt△A 1B 1A 2,…,依次规律,得到 R t △B 2017A 2018B 2018,则点 B 2018 的纵坐标为 . 9.(2018•广东•3 分)如图,已B 1 作 B 1A 2∥OA 1 交双曲线于点 A 2,过 A 2 作 A 2B 2∥A 1B 1 交 x 轴于点 B 2,得到第二个等边△B 1A 2B 2;过 B 2 作 B 2A 3∥B 1A 2 交双曲线于点 A 3,过 A 3 作 A 3B 3∥A 2B 2 交 x 轴于点 B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点 B 6 的坐标 为 ( ) .nn201810. (2018•广西北海•3 分)观察下列等式: 30 = 1, 31 = 3, 32 = 9 , 33 = 27 , 34 = 81, 35= 243,…,根据其中规律可得 01220183+3+3+...3+的结果的个位数字是 。

【精品】专题07《探索规律》—2020年通用版小升初数学冲刺100专项精选题集(解析版)

【精品】专题07《探索规律》—2020年通用版小升初数学冲刺100专项精选题集(解析版)

2020年通用版小升初数学冲刺100专项精选题集专题07 规律探索一.选择题1.用小棒按下面的规律摆三角形,摆n个三角形用()根小棒.A.2n+1 B.2(n﹣1)C.3+2n【解答】解:根据题干分析可得,当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1(根)答:摆n个三角形需要2n+1根小棒.故选:A.2.用同样长的小棒摆出如下的图形.照这样继续摆,摆第6个图形用了()根小棒.A.20 B.25 C.24【解答】解:由图可知:图形1的小棒根数为5;图形2的小棒根数为9;图形3的小棒根数为13;…由该搭建方式可得出规律:图形标号每增加1,小棒的个数增加4,所以可以得出规律:第n个图形需要小棒5+4(n﹣1)=4n+1根,当n=6时,需要小棒:4×6+1=25(根)答:摆第6个图形用了25根小棒.故选:B.3.在一次运动会上,小优按照3个红气球,2个黄气球,1个绿气球的顺序,把气球连接起来装饰运动场.如果照她这样做,第2019个气球应该是()色.A.红B.黄C.绿D.以上都有可能【解答】解:2019÷(3+2+1)=2019÷6=336(组)……3(个)所以第2019个气球与第3个气球一样,为红色.故选:A.4.1÷7的商的小数部分第101位上的数字是()A.4 B.7 C.1 D.5【解答】解:1÷7=0.142857…,循环节是142857,6位数,101÷6=16 (5)因此,小数点后第101位上的数字就是循环节的第5个数字,所以第101位数字是5.故选:D.5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆…依此规律,第10个图形中小圆的个数为()A.136 B.114 C.112 D.106【解答】解:10×11+4=110+4=114(个)答:第10个图形中小圆的个数为114个.故选:B.6.按如图方式摆放桌子和椅子.当摆放8张桌子时,可以坐()人.A.30 B.32 C.34 D.36【解答】解:6+4×(8﹣1)=6+4×7=6+28=34(人)答:当摆放8张桌子时,可以坐34人.故选:C.7.如图,一张小长桌可以坐6人,两张小长桌排成一排可以坐10人.食堂有10张这样的桌子,如果排成一排,可以坐()人.A.40 B.42 C.44 D.60【解答】解:根据题意得:n张桌子并起来坐(2+4n)人;10张桌子并成一排可以坐的人数:2+4×10=2+40=42(人)答:10张桌子并成一排可以坐42人.故选:B.8.小王利用计算机设计了一个计算程序,输入和输出的数据如表:输入… 1 2 3 4 5 …输出……那么,当输入数据是8时,输出的数据是()A.B.C.D.【解答】解:输入8,输出数的分子就是8;分母是:82+1=64+1=65输出的数就是.故选:C.二.填空题9.玩搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如下图所示.搭第8阶段一共需要积木24个.【解答】解:根据题干分析可得:第n阶段,积木个数是3n;当n=8时,3×8=24(个),答:第8阶段有24个积木.故答案为:24.10.观察算式,按规律填数.5×9=4555×99=5445555×999=5544455555×9999=5554444555555×99999=5555444445.【解答】解:5×9=4555×99=5445555×999=5544455555×9999=5554444555555×99999=5555444445故答案为:5555444445.11.如图,围绕一张方桌可以坐8人,把两张方桌并起来可以坐12人,三张方桌并起来可以坐16人……照这样,5张方桌并成一排可以坐24人.n张方桌并成一排可以坐(4n+4)人.【解答】解:8+4×4=24(人)8+4(n﹣1)=4n+4(人)答:5张方桌并起来坐24人,n张方桌并成一列可以坐(4n+4)人.故答案为:24,(4n+4).12.像如图这样用小棒摆六边形.照这样的规律摆下去,摆8个六边形需要41根小棒,摆n个六边形需要(5n+1)根小棒.【解答】解:根据题干分析可得:摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;摆8个需要5×8+1=41(根);摆n个六边形需要:(5n+1)根小棒.故答案为:41,(5n+1).13.把边长1厘米的正方形纸片,按下面的规律拼成长方形(如图).周长分别是4厘米,6厘米,8厘米,10厘米……那么,用10个正方形拼成的长方形周长是22厘米.【解答】解:1个正方形的周长4厘米=4+(1﹣1)×2(厘米)2个正方形拼成的长方形周长6厘米=4+(2﹣1)×2(厘米)3个正方形拼成的长方形周长8厘米=4+(3﹣1)×2(厘米)4个正方形拼成的长方形周长10厘米=4+(4﹣1)×2(厘米)得出规律,n个正方形拼成的长方形周长为4+(n﹣1)×2(厘米)所以10个正方形拼成的长方形周长为:4+(10﹣1)×2=4+9×2=4+18=22(厘米)答:用10个正方形拼成的长方形的周长是22厘米.故答案为:22.14.用小棒搭图形(如图):搭1个六边形要6根小棒,搭2个要11根,搭3个要16根……照这样,搭n 个六边形要(5n+1)根小棒;106根小棒可以搭21个六边形.【解答】解:根据题意可得:摆1个用6根;摆2个,有一条边是重复的,所以用2×6﹣1=11根,摆3个,有两条边是重复的,所以用3×6﹣2=16根,拼4个,有3条边是重复的,要6×4﹣3=21根,…摆n个要用:n×6﹣(n﹣1)=6n﹣n+1=5n+1(根),5n+1=1065n=105n=21;答:搭n个六边形要(5n+1)根小棒;106根小棒可以搭21个六边形.故答案为:(5n+1),21.15.“转化”是解决问题的常用策略之一,有时画图可以帮助我们找到转化的方法,例如借助如图,可以将算式转化成:1﹣=;也可以将算式3+6+12+24+48+96+192转化成:192×2﹣3=381.【解答】解:=1﹣=3+6+12+24+48+96+192=192×2﹣3=384﹣3=381故答案为:1,,,192×2,3,381.16.找规律填数.0.19+0.9×0.9=11.18+9.8×0.9=1011.17+98.7×0.9=100111.16+987.6×0.9=10001111.15+9876.5×0.9=1000011111.14+98765.4×0.9=100000.【解答】解:0.19+0.9×0.9=11.18+9.8×0.9=1011.17+98.7×0.9=100111.16+987.6×0.9=10001111.15+9876.5×0.9=1000011111.14+98765.4×0.9=100000故答案为:111.16;9876.5;11111.14;98765.4.三.判断题17.按△△□□□〇△△□□□〇△△□□□〇……的规律排列,第103个图形是〇.×(判断对错)【解答】解:103÷6=17(个循环)…1个所以第103个图形是第18循环的第一个图形,与第一个循环的第一个图形相同,是△.所以原题”第103个图形是〇“说法错误.故答案为:×.18.如图,第五个点阵中点的个数是17个.√(判断对错)【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n﹣3)(个)……第五个点阵中点的个数:4×5﹣3=20﹣3=17(个)答:第五个点阵中点的个数是17个.所以原说法正确.故答案为:√.19.…,第五个点阵中点的个数是1+4×5=21.错误.(判断对错)【解答】解:根据题干分析可得:第n点阵的点数=1+(n﹣1)×4,n=5时,点数个数为:1+(5﹣1)×4=17.所以原题说法错误.故答案为:错误.20.按照1、4、7、10的排列规律,第5个数是13.√(判断对错)【解答】解:10+3=13所以按照1、4、7、10的排列规律,第5个数是13得说法是正确的;故答案为:√.21.若一列数为:2,4,6,8,10,……96,98,100,则这列数的和是2550.√(判断对错)【解答】解:2+4+6+8+10+…+100===2550所以原题计算正确.故答案为:√.四.计算题22.(1)用计算器计算下面各题,你能发现什么规律?9×9+9=99×9+9=999×9+9=9999×9+9=(2)根据上面的规律,直接写出下面各题的得数.99999×9+9=999999×9+9=9999999×9+999999999×9+9=【解答】解:(1)9×9+9=9099×9+9=900999×9+9=90009999×9+9=90000(2)99999×9+9=900000999999×9+9=90000009999999×9+9=9000000099999999×9+9=90000000023.先计算,再思考后完成填空.根据:=,=,=…可以得出:=【解答】解:﹣=,﹣=,﹣=……=﹣+﹣+﹣+﹣+﹣+﹣=﹣=.故答案为:,,,.24.请你学着填一填.11﹣9=1+1 17﹣9=7+115﹣9=5+114﹣9=4+ 112﹣9=2+116﹣9=6+1【解答】解:11﹣9=1+1 17﹣9=7+115﹣9=5+114﹣9=4+1 12﹣9=2+116﹣9=6+1故答案为:1;5,5,1;1;1;16,6,1.(最右面两个算式的答案不唯一)25.算一算,想一想,探索规律有发现.11×11=111×111=1111×1111=11111×11111=111111×111111=【解答】解:11×11=121111×111=123211111×1111=123432111111×11111=123454321111111×111111=12345654321……由此发现规律:=12......(n﹣1)n(n﹣1) (21)26.已知:=+=+=+利用上面的规律计算:1+﹣+﹣+﹣.【解答】解:1+﹣+﹣+﹣=1+﹣(+)+(+)﹣(+)+(+)﹣(+)=1+﹣﹣++﹣﹣++﹣﹣=1﹣=27.按照如图方式摆放餐桌和椅子.(1)1张餐桌可坐6人,2张餐桌可坐10人,4张餐桌可坐18人.(2)按此规律摆下去,m张餐桌可坐(4m+2)人.20张餐桌可坐82人.【解答】解:(1)1张餐桌:4×1+2=6(人)2张餐桌:4×2+2=10(人)3张餐桌:4×3+2=14(人)4张餐桌:4×4+2=18(人)(2)m张餐桌:(4m+2)人20张餐桌:4×20+2=82人答:4张餐桌可坐18人;按此规律摆下去,m张餐桌可坐(4m+2)人.20张餐桌可坐82人.故答案为:(1)18;(2)(4m+2),82.28.找规律,并计算.1﹣=,﹣=,﹣=,…根据这个规律计算:1﹣﹣﹣﹣﹣.【解答】解:1﹣﹣﹣﹣﹣=﹣====五.应用题29.五(1)班同学用彩球装点教室庆祝元旦.这些彩球是按4个红气球、3个黄气球和2个蓝气球顺序依次排列的.第50个气球是什么颜色?【解答】解:4+3+2=9(个)50÷9=5(组)……5(个)第50个气球与第5个气球颜色一样,为黄色.答:第50个气球是黄色.30.马路边栽了一排树,每两棵柳树之间栽了两棵杏树,你知道第48棵树是什么树吗?【解答】解:48÷(1+2)=48÷3=16(个)答:第48棵树是杏树.31.一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人.【解答】解:1张桌子可坐2×1+4=6人,2张桌子拼在一起可坐2×4+2=10人,3张桌子拼在一起可坐4×3+2=14人,…所以五张桌子坐4×5+2=22人,…那么n张桌子坐(4n+2)人.当共有50人时,4n+2=504n=48n=12答:这样共12张桌子拼起来可以坐50人.32.小明用面积为1cm2的正方形卡纸拼摆图形.(1)像这样拼下去,第(5)个图形要用多少张小正方形卡纸?(2)如果要在第n个图形的外围用铁丝镶上一圈边框,至少需要多少厘米铁丝?【解答】解:(1)由分析可知,第(5)个图形要用多少张小正方形卡纸是:6+2×5=6+10=16(张)答:第(5)个图形要用16张小正方形卡纸.(2)由分析可知,第n个图形的周长是10+2n因此,如果要在第n个图形的外围用铁丝镶上一圈边框,至少需要(10+2n)厘米铁丝答:至少需要(10+2n)厘米铁丝.33.按照下面的规律摆,一共摆了28个图形,第28个图形是什么?其中摆了多少个△?【解答】解:28÷3=9(组)……1(个)2×9+1=18+1=19(个)答:第28个图形是△,其中摆了19个△.34.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.(1)若把4张这样的餐桌拼接起来,四周分别可坐18.人:若把8张这样的餐桌拼接起来,四周分别可坐34人.(2)若有餐的人数有90人,则这样的餐桌需要多少张?【解答】解:根据分析可得,第n张餐桌,需要可坐(2+4n)人.(1)2+4×4=18(人)2+4×8=34(人)答:若把4张这样的餐桌拼接起来,四周分别可坐18人.若把8张这样的餐桌拼接起来,四周分别可坐34人.(2)2+4n=904n=88n=22答:若有餐的人数有90人,则这样的餐桌需要22张.故答案为:18,34.35.彩色气球一共150个,把它们排成这样的一串,排列规律如图,最后一个气球是什么颜色?【解答】解:规律:除了第一个橘色气球,以后都是4个颜色一个周期.150﹣1=149(个)149÷4=37(组)……1(个)→蓝色答:最后一个气球是蓝色.36.一组图形按这样的规律排列,第42个是什么?第50个是什么图形?【解答】解:每6个图形看成一组,42÷6=7没有余数,说明第42个图形是第7组的最后一个,是椭圆形;50÷6=8 (2)余数是2,所以第50个图形是第9组的第2个,是三角形.答:第42个是椭圆形,第50个是三角形.六.操作题37.找规律填一填,画一画.(1)、.(2)3、6、9、12、15、18.(3)80、40、20、10、5.(4)1、3、9、27、81、243.【解答】解:(1)(2)3×5=153×6=18(3)40÷2=2010÷2=5(4)9×3=2781×3=243故答案为:,;15,18;20,5;27,243.38.找规律,画一个.【解答】解:根据分析可得,39.○△□个表示一个数字,观察如图图与数的关系,画出(54)对应的图.【解答】解:由分析可知:三角形表示3,圆形表示5,正方形表示4,先写外面的图表示的数,再写里面的图表示的数;则54对应的图是:.故答案为:.40.按规律接着画.①▽△▽△▽△②③〇□△〇□△〇□△【解答】解:如图:规律接着画.①▽△▽△▽△②③〇□△〇□△〇□△故答案为:▽△;;〇□△;;.41.仔细观察,第四幅图应画什么图形?【解答】解:仔细观察,第四幅图应画什么图形(画法如下):42.根据图形填数,并说说你的发现.照这样接着画下去:第6个图形有6个灰色小正方形,有18个蓝色小正方形第10个图形有10个灰色小正方形,有26个蓝色小正方形第n个图形有n个灰色小正方形,有8+(n﹣1)×2个蓝色小正方形.【解答】解:由分析可知:第1个图形有1个灰色小正方形,有8个蓝色小正方形;第2个图形有个灰色小正方形,有10个蓝色小正方形;第3个图形有3个灰色小正方形,有12个蓝色小正方形;第4个图形有4个灰色小正方形,有14个蓝色小正方形;…由此得出:第n个图形的有n个灰色小正方形,有8+(n﹣1)×2个蓝色小正方形;第6个图形有6个灰色小正方形,有8+(6﹣1)×2=18个蓝色小正方形第10个图形有10个灰色小正方形,有8+(10﹣1)×2=26个蓝色小正方形第n个图形有n个灰色小正方形,有8+(n﹣1)×2个蓝色小正方形.故答案为:6;18;10;26;n;8+(n﹣1)×2.43.请你接着画一画.并想一想这样的10张桌子连在一起可以坐44人.【解答】解:由图示,摆放1张,2张,3张,…桌子,放的椅子数依次是8,12,16,…8=4×1+412=4×2+416=4×3+4那么,摆放n张餐桌应放的椅子数为:4n+4.当n=10时,4×10+4=40+4=44(人)答:10张桌子可以坐44人.故答案为:44.七.解答题44.找规律,按要求操作:(1)在横线上画出相应的图形..(2)如图,△□☆△□☆△□☆……,第137个图形是□.【解答】解:(1)第一个图形小黑点个数为:12=1(个)第二个图形小黑点的个数为:22=4(个)第三个图形小黑点的个数为:32=9(个)……第n个图形小黑点的个数为:n2个如图所示:(2)137÷3=45 (2)所以与第二个图形一样是□.答:第137个图形是□.故答案为:□.45.按照规律接着画出第4幅图.第10幅图中一共有100个点.【解答】解:如图:第一个图形小黑点的个数为:1个第二个图形小黑点的个数为:1+3=4(个)第三个图形小黑点的个数为:1+3+5=9(个)第四幅图小黑点的个数为:1+3+5+7=16(个)……第n个图形小黑点的个数为:1+3+5+……+(2n﹣1)=n2(个)……第10幅图小黑点的个数为:1+3+……+(2×10﹣1)=102=100(个)答:第10幅图中一共有100个点.故答案为:100.46.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入… 1 2 3 4 5 …输出……(1)当输入的数据是8时,输出的数据是多少?(2)当输入的数据是n时,输出的数据是多少?【解答】解:(1)当输入的数据是8时,输出的分子就是8,分母是82+1=65 那么输出的数就是.答:输出的数据是.(2)当输入的数据是n时,输出的分子就是n,分母是n2+1,那么输出的数就是.答:输出的数据.47.观察下列各数排列规律:,,,,,,,,,…求:(1)排在第几个位置?(2)第100个位置上是哪个数?【解答】解:(1)25×(25+1)÷2+11=25×26÷2+11=325+11=336答:排在第336个位置.(2)分母为14的真分数有13个,1+2+3+4+5+…+13=91,第100个的分母为15,第92个为,第93个为,…第100个数是.答:第100个位置上是.48.有同样大小的红、白、黑珠共151个,按先5个红的、4个白的、3个黑的顺序排列着.(1)第151个珠是什么颜色的?(2)这151个珠中白珠共有多少个?【解答】解:(1)151÷(5+4+3)=151÷12=12(组)…7(个)所以第151个珠是第13周期的第7个,是白色的珠子;答:第151个珠是白色的.(2)4×12+2=48+2=50(个);答:这151个珠中白珠共有50个.。

题型训练21 规律探索题(答案)

题型训练21  规律探索题(答案)

题型训练21 规律探索题(1页) 命题点1 数式规律探索1. 3(n-2)(或3(n-1)+1) 【解析】通过观察得出:依次为1,4,7,…,的一列数是首项为1,公差为3的等差数列,所以第n 个数为:1+(n-1)×3=3n-2.2. 41400-3. 82+92+722=732【解析】∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+(8×9)2=(8×9+1)2,即82+92+722=732.【技巧点拨】观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的数的平方,然后写出即可.4. a 10-b 20【解析】∵第1个多项式为:a 1+b 2×1,第2个多项式为:a 2-b 2×2,第3个多项式为:a 3+b 2×3,第4个多项式为:a 4-b 2×4,…∴第n 个多项式为:a n +(-1)n+1b 2n,∴第10个多项式为:a 10-b 20.5 .1212+-n x n 【解析】首先观察发现分母上的:3,5,7,9,…的规律是:2n+1,再观察发现分子上的规律是:12-n x ,∴依照此规律第n 个数据是1212+-n x n .6.66 【解析】本题是一个规律探究性题目,第一位同学的报数为3,第二位同学报数为2,第三位同学报数为53,第四位报数为64……则第十位同学报数为1210,所以从第一位同学报数到第十位同学报数的积为567891011123266.345678910⨯⨯⨯⨯⨯⨯⨯⨯⨯=【技巧点拨】解答本题可以用错位相消法和数字规律发现隔一个数之间前面一个数的分子和后一个数的分母可以约分.7.8. 738 【解析】观察图中的数字得出框中右下角的数字计算分别为:2=1×1+1,30=3×9+3, 130=5×25+5,350=7×49+7,所以在最后一个空格中填上适当的数字为:9×81+9=738. 命题点2 图形规律探索1.(8052,0)2.【解析】∵第一个正方形的边长为1,第2个正方形的边长为()1=,第3个正方形的边长为()2=,…,第n个正方形的边长为()n﹣1,∴第n个正方形的面积为:[()2]n﹣1=,则第n个等腰直角三角形的面积为:×=,故第n个正方形与第n个等腰直角三角形的面积和S n=+=.3.(9,6)正东(或右)2n+14.25. (﹣×4n ﹣1,4n)【解析】 6. (2,﹣4)【解析】如图所示,点P 6与点P 重合,∵2013÷6=335…3,∴点P 2013是第336循环组的第3个点,与点P 3重合,∴点P 2013的坐标为(2,﹣4).第6题解图 7. 2()3n8.【解析】∵点B 1是面积为1的等边△OBA 的两条中线的交点,∴点B 1是△OBA 的重心,也是内心,∴∠BOB 1=30°,∵△OB 1A 1是等边三角形,∴∠A 1OB=60°+30°=90°,∵每构造一次三角形,OB i 边与OB 边的夹角增加30°,∴还需要(360﹣90)÷30=9,即一共1+9=10次构造后等边△OB n A n 的边OA n 与等边△OBA 的边OB 第一次重合,∴构造出的最后一个三角形为等边△OB 10A 10.如图,过点B 1作B 1M ⊥OB 于点M ,∵cos ∠B 1OM=cos30°==,∴===,即=,∴=()2=,即S △OB1A1=S △OBA =,同理,可得=()2=,即S △OB2A2=S △OB1A1=()2=,…,∴S △OB10A10=S △OB9A9=()10=,即构造出的最后一个三角形的面积是第8题解图【技巧点拨】本题考查了等边三角形的性质,三角函数的定义,相似三角形的判定与性质等知识,有一定难度.根据条件判断构造出的最后一个三角形为等边△OB 10A 10及利用相似三角形的面积比等于相似比的平方,得出△OB 1A 1与△OBA 的面积比为,进而总结出规律是解题的关键.9. 4n 【解析】∵四边形A 0B 1A 1C 1是菱形,∠A 0B 1A 1=60°,∴△A 0B 1A 1是等边三角形. 设△A 0B 1A 1的边长为m 1,则B 1(,);代入抛物线的解析式中得:()2=,解得m 1=0(舍去),m 1=1;故△A 0B 1A 1的边长为1,同理可求得△A 1B 2A 2的边长为2,…依此类推,等边△A n ﹣1B n A n 的边长为n ,故菱形A n ﹣1B n A n C n 的周长为4n .10. 120【解析】本题考查探究问题.解题思路: 由第一个图形可得共有1+2=3个小五角星,第二个图形中共有3×2+2=8个小五角星,第三个图形中共有4×3+3=15,第四个图形中共有5×4+4=24,由此可猜想第10个图形中共有11×10+10=120. 11. 1-n 43【解析】本题综合考查平行四边形的性质及三角形中位线的性质及规律探究.因为平行四边形对角线互相平分,所以其分割的四个三角形的面积相等,所以S ⊿OCD =4,又因为点M 1、N 1、P 1分别为线段OD 、DC 、OC 的中点,根据三角形中位线的性质,S ⊿M 1N 1P 1=41⊿OCD =1,依次类推,S ⊿M 2N 2P 2=41S ⊿M 1N 1P 1=41,……,S ⊿M n-1N n-1P n-1=41n-2,S ⊿M n N n P n =41n-1,所以S n -S n-1=41n-1-41n-2=1-n 43-。

六年级数学探索规律试题答案及解析

六年级数学探索规律试题答案及解析

六年级数学探索规律试题答案及解析1.找规律填数。

(1)5,9,14,20,27,()44;(2)7.897,7.892,7.887,()【答案】35 7.882【解析】(1)观察这几个数可以发现5+4=9,9+5=14,14+6=20,20+7=27,所以,下一个数是27+8=35,然后35+9=44;(2)观察这三个数可以发现依次减0.005,因此,第三个数是7.882。

2.一次大型运动会上,工作人员按照3个红气球、2个黄气球、1个绿气球的顺序把气球穿起来装饰运动场,那么第2014个气球是( )色的。

(填“红”、“黄”或“绿”)【答案】黄【解析】本题是一种有规律的排列,找到其中的规律是解本题的关键。

根据题意描述的“3红2黄1绿”,我们就会发现这样的规律:每(3+2+1)个气球即6个气球为1组,要求第2014个气球的颜色,只要确定它是第几组的第几个即可。

因为2014÷6=335……4,所以第2014个气球是第336组的第4个气球,再根据“3红2黄1绿”的顺序可知,它是黄色的。

3.观察下列等式,按以下各式成立的规律,写出第12个等式是()。

9×0+1=01,9×1+2 = 11,9×2 + 3 = 21,9×3 + 4 = 31,9×4 + 5 = 41【答案】9×11+12=111【解析】本题考查的是算式的规律。

应认真观察算式中的特点,从中发现规律,再按要求完成本题。

此类算式的特点是:第一个算式是9乘以0加1;第二个算式是9乘以1加2;第三个算式是9乘以2加3;……,所以第n个算式应该是9乘以(n-1)加n,即9(n-1)+n。

当n=12时,等式是:9×11+12=111。

4.庆祝“六一”,某幼儿园举行用火柴棒摆“金鱼”的比赛,其中摆的1条、2条、3条“金鱼”如下图所示:按照上面的规律,摆100条“金鱼”需用火柴棒的根数为()。

七年级数学(上)探索规律类-问题及答案

七年级数学(上)探索规律类-问题及答案

七年级数学(上)探索规律类 问题班级 学号 姓名 成绩一、数字规律类:1、一组按规律排列的数:41,93,167,2513,3621,…… 请你推断第9个数是 .2、(2005年山东日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;…………由此规律知,第⑤个等式是 .3、(2005年内蒙古乌兰察布)观察下列各式;①、12+1=1×2 ;②、22+2=2×3; ③、32+3=3×4 ;………请把你猜想到的规律用自然数n 表示出来 。

4、(2005年辽宁锦州)观察下面的几个算式:①、1+2+1=4; ②、1+2+3+2+1=9; ③、1+2+3+4+3+2+1=16;④、1+2+3+4+5+4+3+2+1=25,……根据你所发现的规律,请你直接写出第n 个式子 5、(2005年江苏宿迁)观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ) A .1 B . 2 C .3 D .4 6、(2005年山东济南市)把数字按如图所示排列起来,从上开始,依次为第一行、第二行、第三行、……,中间用虚线围的一列,从上至下依次为1、5、13、25、……,则第10个数为________。

第1行 1第2行 -2 3第3行 -4 5 -6第4行 7 -8 9 -10(第6题图) 第5行 11 -12 13 -14 15 ……………… (第7题图) 7、(05年江苏省金湖实验区)已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成如上所示的形式:按照上述规律排下去,那么第10行从左边数第5个数等于 . 二、图形规律类: 8、(2005年云南玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到1条 2条 3条 图1 图2 图 3 O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索--图形规律(解析版)-中考数学重难点题型专题汇总

规律探索-中考数学重难点题型专题汇总图形规律1.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是A.B.C.D.【答案】D【解析】由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有,故选D.【名师点睛】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.2.将字母“C”,“H”按照如图所示的规律摆放,依次下去,则第4个图形中字母“H”的个数是()A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,第3个图中H的个数为4+2×2,第4个图中H的个数为4+2×3=10,故选:B.【点睛】本题考查了规律型:图形的变化类,通过列举每个图形中H 的个数,找到规律:每个图形比上一个图形多2个H 是解题的关键.3.把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为()A.15B.13C.11D.9【答案】C 【分析】根据第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,算出第⑥个图案中菱形个数即可.【详解】解:∵第①个图案中菱形的个数:1;第②个图案中菱形的个数:123+=;第③个图案中菱形的个数:1225+⨯=;…第n 个图案中菱形的个数:()121n +-,∴则第⑥个图案中菱形的个数为:()126111+⨯-=,故C 正确.故选:C.【点睛】本题主要考查的是图案的变化,解题的关键是根据已知图案归纳出图案个数的变化规律.4.如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解析】根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.5.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21n个图案中黑色三角形的个数为1+2+3+4+……+n,据此可得第⑤个图案中黑色三角形的个数.【解析】∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.Y Y-=()6.观察下列树枝分杈的规律图,若第n个图树枝数用n Y表示,则94A.4152⨯B.4312⨯C.4332⨯D.4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21nn Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B.【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.7.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.41【分析】第1个图中有5个正方形,第2个图中有9个正方形,第3个图中有13个正方形,……,由此可得:每增加1个图形,就会增加4个正方形,由此找到规律,列出第n 个图形的算式,然后再解答即可.【详解】解:第1个图中有5个正方形;第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n 个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.8.在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11AOB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为()A.()202020202,2-B.()202120212,2C.()202020202,2⨯D.()201120212,2-【答案】C【分析】由题意,点A 每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.解:由题意,点A 每6次绕原点循环一周,20216371......5÷= ,2021A ∴点在第四象限,202120212OA =,202160xOA ∠=︒,∴点2020A 的横坐标为20212020122=2⨯,纵坐标为20212020=3222-⨯-,()2020202020212,2A ∴,故选:C.【点睛】本题考查坐标与图形变化-旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.9.如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n 个正方形多个小正方形.【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可.【解析】∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n 个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n 个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.10.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有__________个〇.【答案】6058【解析】由图可得,第1个图象中〇的个数为:1+3×1=4,第2个图象中〇的个数为:1+3×2=7,第3个图象中〇的个数为:1+3×3=10,第4个图象中〇的个数为:1+3×4=13,…∴第2019个图形中共有:1+3×2019=1+6057=6058个〇,故答案为:6058.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.11.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n=__________.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2-1=3个.第3幅图中有2×3-1=5个.第4幅图中有2×4-1=7个.…可以发现,每个图形都比前一个图形多2个.故第n幅图中共有(2n-1)个.当图中有2019个菱形时,2n-1=2019,n=1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.12.观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n的值为____________.【答案】不存在【分析】首先根据n=1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n;然后根据n=1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可.【详解】解:∵n=1时,“•”的个数是3=3×1;n=2时,“•”的个数是6=3×2;n=3时,“•”的个数是9=3×3;n=4时,“•”的个数是12=3×4;……∴第n 个图形中“•”的个数是3n;又∵n=1时,“○”的个数是1=1(11)2⨯+;n=2时,“○”的个数是32=n=3时,“○”的个数是3(31)62⨯+=,n=4时,“○”的个数是4(41)102⨯+=,……∴第n 个“○”的个数是()12n n +,由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴-=①,()1320222n n n +-=②解①得:无解解②得:1255,22n n +-==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.13.将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275【分析】首先得到前n个图形中每个图形中的黑色圆点的个数,得到第n个图形中的黑色圆点的个数为()12n n+,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,第n个图形中的黑色圆点的个数为()1 2n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,,其中每3个数中,都有2个能被3整除,33÷2=161,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【点睛】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.14.如图,3条直线两两相交最多有3个交点,4条直线两两相交最多有6个交点,按照这样的规律,则20条直线两两相交最多有______个交点【答案】190【分析】根据题目中的交点个数,找出n条直线相交最多有的交点个数公式:1(1) 2n n-.【详解】解:2条直线相交有1个交点;3条直线相交最多有1123322+==⨯⨯个交点;4条直线相交最多有11236432++==⨯⨯个交点;5条直线相交最多有1123410542+++==⨯⨯个交点;⋯20条直线相交最多有12019190 2⨯⨯=.故答案为:190.【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n条直线相交最多有1(1) 2n n-.15.如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n+1【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可.【详解】解:由图可知:拼成第一个图形共需要3根火柴棍,拼成第二个图形共需要3+2=5根火柴棍,拼成第三个图形共需要3+2×2=7根火柴棍,拼成第n 个图形共需要3+2×(n-1)=2n+1根火柴棍,故答案为:2n+1.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.16.如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3+ +n=()12n n +,列一元二次方程求解可得.【详解】解:∵第1个图形中黑色三角形的个数1,第2个图形中黑色三角形的个数3=1+2,第3个图形中黑色三角形的个数6=1+2+3,第4个图形中黑色三角形的个数10=1+2+3+4,……∴第n 个图形中黑色三角形的个数为1+2+3+4+5+ +n=()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去),∴第20个图形共有210个小球.故答案为:20.【点睛】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n.17.如图,由两个长为2,宽为1的长方形组成“7”字图形ABCDEF,其中顶点A 位于x 轴上,顶点B,D 位于y 轴上,O 为坐标原点,则OB OA的值为__________.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F 1,摆放第三个“7”字图形得顶点F 2,依此类推,…,摆放第n 个“7”字图形得顶点F n-1,…,则顶点F 2019的坐标为__________.【答案】(1)12;(2)606255(,【解析】(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴OB DC OA BC =,∵DC=1,BC=2,∴OB OA =12,故答案为:12.(2过C 作CM⊥y 轴于M,过M 1作M 1N⊥x 轴,过F 作FN 1⊥x 轴.根据勾股定理易证得BD ==CM=OA=5,DM=OB=AN=5,∴C(5),∵AF=3,M 1F=BC=2,∴AM 1=AF-M 1F=3-2=1,∴△BOA≌ANM 1(AAS),∴NM 1=OA=255,∵NM 1∥FN 1,∴1111251553M N AM FN AF FN ==,,∴FN 1=655,∴AN 1=355,∴ON 1=OA+AN 1=253555555+=,∴F(555,655),同理,F 1(857555,F 2(55,),F 3(1459555,),F 4(17510555,),…F 2019),即(【名师点睛】此题考查了平面图形的有规律变化,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键18.如图,正方形1ABCB 中,AB =,AB 与直线l 所夹锐角为60︒,延长1CB 交直线l 于点1A ,作正方形1112A B C B ,延长12C B 交直线l 于点2A ,作正方形2223A B C B ,延长23C B 交直线l 于点3A ,作正方形3334A B C B ,…,依此规律,则线段20202021A A =________.【答案】20203【分析】利用tan30°计算出30°角所对直角边,乘以2得到斜边,计算3次,找出其中的规律即可.【详解】∵AB 与直线l 所夹锐角为60︒,正方形1ABCB 中,AB =,∴∠11B AA =30°,∴11B A =1B A∴111=2=2(3AA -;∵11B A =1,∠122B A A =30°,∴22B A =11B A tan30°=33133⨯=,∴2112=23A A -⨯;∴线段20202021A A =202112020332(33-⨯=,故答案为:2020)3.【点睛】本题考查了正方形的性质,特殊角三角函数值,含30°角的直角三角形的性质,规律思考,熟练进行计算,抓住指数的变化这个突破口求解是解题的关键.19.如图,菱形ABCD 中,120ABC ∠=︒,1AB =,延长CD 至1A ,使1DA CD =,以1AC 为一边,在BC 的延长线上作菱形111ACC D ,连接1AA ,得到1ADA ∆;再延长11C D 至2A ,使1211D A C D =,以21A C 为一边,在1CC 的延长线上作菱形2122A C C D ,连接12A A ,得到112A D A ∆……按此规律,得到202020202021A D A ∆,记1ADA ∆的面积为1S ,112A D A ∆的面积为2S ……202020202021A D A ∆的面积为2021S ,则2021S =_____.【答案】40382【分析】由题意易得60,1BCD AB AD CD ∠=︒===,则有1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,进而根据等边三角形的面积公式可得134S =,2S =242n n S -=,然后问题可求解.【详解】解:∵四边形ABCD 是菱形,∴1AB AD CD ===,//,//AD BC AB CD ,∵120ABC ∠=︒,∴60BCD ∠=︒,∴160ADA BCD ∠=∠=︒,∵1DA CD =,∴1DA AD =,∴1ADA ∆为等边三角形,同理可得112A D A ∆…….202020202021A D A ∆都为等边三角形,过点B 作BE⊥CD 于点E,如图所示:∴3sin 2BE BC BCD =⋅∠=,∴1121133244A D BE A S D =⋅==,同理可得:2222133244S A D ==⨯=,2233233444S A D ==⨯=∴由此规律可得:242n n S -=,∴2202144038202122S ⨯-==⋅;故答案为40382【点睛】本题主要考查菱形的性质、等边三角形的性质与判定及三角函数,熟练掌握菱形的性质、等边三角形的性质与判定及三角函数是解题的关键.20.将一些相同的“〇”按如图所示的规律依次摆放,观察每个“龟图”的“〇”的个数,则第30个“龟图”中有___________个“〇”.【答案】875【分析】设第n 个“龟图”中有a n 个“〇”(n 为正整数),观察“龟图”,根据给定图形中“〇”个数的变化可找出变化规律“a n =n 2−n+5(n 为正整数)”,再代入n=30即可得出结论.【详解】解:设第n 个“龟图”中有a n 个“〇”(n 为正整数).观察图形,可知:a 1=1+2+2=5,a 2=1+3+12+2=7,a 3=1+4+22+2=11,a 4=1+5+32+2=17,…,∴a n =1+(n+1)+(n −1)2+2=n 2−n+5(n 为正整数),∴a 30=302−30+5=875.故答案是:875.【点睛】n =n 2−n+5(n 为正整数)”是解题的关键.21.下面各图形是由大小相同的三角形摆放而成的,图①中有1个三角形,图②中有5个三角形,图③中有11个三角形,图④中有19个三角形…,依此规律,则第n 个图形中三角形个数是_______.【答案】21n n +-【分析】此题只需分成上下两部分即可找到其中规律,上方的规律为(n-1),下方规律为n 2,结合两部分即可得出答案.【详解】解:将题意中图形分为上下两部分,则上半部规律为:0、1、2、3、4……n-1,下半部规律为:12、22、32、42……n 2,∴上下两部分统一规律为:21n n +-.故答案为:21n n +-.【点睛】本题主要考查的图形的变化规律,解题的关键是将图形分为上下两部分分别研究22.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示.【解析】第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n 个图案有(3n+1)个三角形.故答案为:(3n+1).23.如图,四边形ABCD 是矩形,延长DA 到点E,使AE=DA,连接EB,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)【分析】先求得△EF 1D 的面积为1,再根据等高的三角形面积比等于底边的比可得EF 1F 2的面积,EF 2F 3的面积,…,EF n﹣1F n 的面积,以及△BCF n 的面积,再根据面积的和差关系即可求解.【解析】∵AE=DA,点F 1是CD 的中点,矩形ABCD 的面积等于2,∴△EF 1D 和△EAB 的面积都等于1,∵点F 2是CF 1的中点,∴△EF 1F 2的面积等于12,同理可得△EF n﹣1F n 的面积为12n−1,∵△BCF n 的面积为2×12n ÷2=12n ,∴△EF n B 的面积为2+1﹣1−12−⋯−12n−1−12n =2﹣(1−12n )=2n +12n .故答案为:2n +12n .。

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08整式中规律探索的三种考法类型一、数字类规律探索问题-,A B.30,D C.29,BA.29【答案】A【分析】观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用【答案】4【分析】由题意知,第一次输出的结果是4,第二次输出的结果是1,第四次输出的结果是4,第五次输出的结果是=⨯+,进而可得第2023次输出的结果.202336741【详解】解:由题意知,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,……,∴可知三次为一个循环,=⨯+,∵202336741∴第2023次输出的结果是4,故答案为:4.【点睛】本题考查了程序流程图与有理数计算,规律探究.解题的关键在于根据推导一般性规律.【变式训练1】按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【答案】C【分析】分三种情况讨论,当输入n经过一次运算即可得到输出的结果为656,当输入n经过两次运算即可得到输出的结果为656,当输入n经过三次运算即可得到输出的结果为656,再列方程,解方程即可得到答案.【详解】解:当输入n经过一次运算即可得到输出的结果为656,51556∴+=,n∴=5655,nn∴=131.当输入n经过两次运算即可得到输出的结果为656,()∴++=5511656,n∴+=26.51131,n∴=n当输入n经过三次运算即可得到输出的结果为656,()∴+++=n555111656,⎡⎤⎣⎦()∴++=5126,n5511131,∴+=5n∴=.n综上:开始输入的n值可能是5或26或131.故选:C.【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.课后训练A.31B.49C.62D 【答案】BA.13-B.2【答案】CA.73B.81C.91D.109【答案】C【分析】根据图形,将每个图形分为上下两部分,分别数出每个图形两部分中菱形的个数,总结出数量变化的一般规律即可.【详解】解:由图可知:第一个图形:上面由3个菱形,下面有0个菱形,第二个图形:上面有6个菱形,下面有1个菱形,A .62B .70【答案】B 【分析】观察图形得到第1个五边形数为1,第为14712++=,第4个五边形数为14710+++A .31B .32C .63D .64【答案】C 【分析】根据图形,可以得到正方形个数的变化特点,从而可以得到图⑤中正方形的个数.【详解】解:由图可得,第①个图形中正方形的个数为:212321+==-,第②个图形中正方形的个数为:23122721++==-,第③个图形中正方形的个数为:23412221521+++==-,…则第⑤个图形中正方形的个数为:62164163-=-=,故选:C .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现正方形个数的变化特点,求出图⑤中正方形的个数.7.下列图形都是由大小相同的小正方形按一定规律组成的,其中第①个图形中有1个小正方形,第②个图形中有5个小正方形,第③个图形中有11个小正方形,…,按此规律排列下去,第⑦个图形中的小正方形个数为()个A .40B .49C .55D .71【答案】C 【分析】由已知图形中点的分布情况知:横放是图形序号的平方减去1,竖着摆放的数与序号相同,再进行相加即可.【详解】解:根据图形可得第①个图案正方形个数为:21111=-+;第②个图案正方形个数为:2532212=+=-+;第③个图案正方形个数为:21183313=+=-+;第④个图案正方形个数为:219154414=+=-+;所以,第⑦个图形中的小正方形个数为271755-+=(个)故选:C【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.如图1,AE 是O 的直径,点B 、C 、D 将半圆分成四等分,把五位同学分别编为序号1、2、3、4、5按顺序站在半圆的五个点上,现把最右边的5号同学调出,站到2号和3号两位同学之间,再把最右边的4号同学调出,站到1号和2号两位同学之间,得到图2,称为“1次换序”.接着按同样的方法,把最右边的3号同学调出,站到4号和2号两位同学之间,再把最右边的5号同学调出,站到1号和4号两位同学之间,得到图3,称为“2次换序”.以此类推……;若从图1开始,经过“n 次换序”后,得到的顺序与图1相同,则n 的值可以是()A .11B .12C .13D .14【答案】B 【分析】先得到前4次换序后的结果,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:1次换序后,得到的顺序为1,4,2,5,3,2次换序后,得到的顺序为1,5,4,3,2,3次换序后,得到的顺序为1,3,5,2,4,4次换序后,得到的顺序为1,2,3,4,5,由此可知,每经过4次换序,得到的顺序与图1相同,即此时4n k =(k 为正整数),观察四个选项可知,只有选项B 符合题意,故选:B .【点睛】本题考查了图形类规律探索,正确归纳类推出一般规律是解题关键.。

中考数学复习指导:探索规律型问题归类解析

中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习含答案

中考数学必考题型《规律探索》分类专项练习类型一 数式规律1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为14尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________.第2题图41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1)2,∴第8行最后一个数为8×92=36=6,则第9行从左至右第5个数是36+5=41.3. 观察下列关于自然数的式子:第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ …根据上述规律,则第2019个式子的值是______.8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=12,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________.63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个13的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×164=63364. 类型二 图形规律5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,…,已知A (1,3),A 1(2,3),A 2(4,3),A 3(8,3),B (2,0),B 1(4,0),B 2(8,0),B 3(16,0).观察每次变换前后的三角形的变化,按照变换规律,则点A n 的坐标是________.第5题图(2n,3)【解析】∵A(1,3),A1(2,3),A2(4,3),A3(8,3),…,∴纵坐标不变,为3,横坐标都和2有关,为2n,即点An的坐标是(2n,3).6. 如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2019次后,点P的坐标为________.第6题图(6058,1)【解析】∵铁片OABC为正方形,A(3,0),P(1,2),∴正方形铁片OABC 的边长为3,如解图第一个循环周期内的点P1,P2,P3,P4的坐标分别为(5,2),(8,1),(10,1),(13,2),每增加一个循环,对应的点的横坐标就增加12.而2019÷4=504……3,即504个循环周期后点P2016的横坐标为504×12+1=6049,纵坐标为2,所以点P2019的横坐标为6049+9=6058,纵坐标为1.故P2019(6058,1).第6题解图7. 如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P 的坐标是________.第7题图(2019,-1) 【解析】∵圆的半径都为1,∴半圆的周长=π,以时间为点P 的下标.观察发现规律:P 0(0,0),P 1(1,1),P 2(2,0),P 3(3,-1),P 4(4,0),P 5(5,1),…,∴P 4n (4n ,0),P 4n +1(4n +1,1),P 4n +2(4n +2,0),P 4n +3(4n +3,-1).∵2019÷4=504……3,∴第2019秒时,点P 的坐标为(2019,-1).8. 如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为________.第8题图(-1,-1) 【解析】∵菱形OABC 的顶点O (0,0),B (2,2),∴BO 与x 轴的夹角为45°,∵菱形的对角线互相垂直平分,∴点D是线段OB的中点,∴点D的坐标是(1,1),∵菱形绕点O逆时针旋转,每秒旋转45°,360°÷45°=8,∴每旋转8秒,菱形的对角线交点就回到原来的位置(1,1),∵60÷8=7……4,∴第60秒时是把菱形绕点O 逆时针旋转了7周回到原来位置后,又旋转了4秒,即又旋转了4×45°=180°,∴点D 的对应点落在第三象限,且对应点与点D关于原点O成中心对称,∴第60秒时,菱形的对角线交点D的坐标为(-1,-1).9. 如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是________.第9题图3n-13【解析】由题可知,∠MON=60°,设B n到ON的距离为h n,∵正六边形A1B1C1D1E1F1的边长为1,∴A1B1=1,易知△A1OF1为等边三角形,∴A1B1=OA1=1,∴OB1=2,则h1=2×32=3,又∵OA2=A2F2=A2B2=3,∴OB2=6,则h2=6×32=33,同理可得:OB3=18,则h3=18×32=93,…,依此可得OB n=2×3n-1,则h n=2×3n -1×32=3n -1 3.∴B n 到ON 的距离h n = 3n -1 3.10. 如图,正方形AOBO 2的顶点A 的坐标为A (0,2),O 1为正方形AOBO 2的中心;以正方形AOBO 2的对角线AB 为边,在AB 的右侧作正方形ABO 3A 1,O 2为正方形ABO 3A 1的中心;再以正方形ABO 3A 1的对角线A 1B 为边,在A 1B 的右侧作正方形A 1BB 1O 4,O 3为正方形A 1BB 1O 4的中心;再以正方形A 1BB 1O 4的对角线A 1B 1为边,在A 1B 1的右侧作正方形A 1B 1O 5A 2,O 4为正方形A 1B 1O 5A 2的中心;…;按照此规律继续下去,则点O 2018的坐标为________.第10题图(21010-2,21009) 【解析】由A (0,2)和A 1(2,4)可知直线AA 1的解析式为y =x +2,由图可知点A 1,A 2,…,A n 的纵坐标分别为22,23,…,2n +1,将y =2n +1代入y =x +2,得2n +1=x +2,∴x =2n +1-2,∴点A n 的坐标为(2n +1-2,2n +1),由图可知O 2n 横坐标与A n 的横坐标相同,O 2n 纵坐标是A n 的纵坐标的12,∴O 2n 的坐标为(2n +1-2,2n),∴当n =1009时,O 2018的坐标为(21010-2,21009). 真题反馈:1. 观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.2. 如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为( )A.671 B.672 C.673 D.6743. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A.43 B.45 C.51 D.534. 请你计算:(1-x)(1+x),(1-x)(1+x+x2),…,猜想(1-x)(1+x+x2+…+x n)的结果是( ).A. 1-x n+1B. 1+x n+1C. 1-x nD. 1+x n5. 如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2019次变换后,正方形ABCD的对角线交点M的坐标变为().A. (-2012,2)B. (-2012,-2)C. (-2013,-2)D. (-2013,2)6. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.7. 观察下列数据:-2,52,-103,174,-265,…,它们是按一定规律排列的,依照此规律,第11个数据是.8. 正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=x+1和x轴上,则点B6的坐标是.9. 如图,将若干个正三角形、正方形和圆按一定规律从左向右排列,那么第2015个图形是.10. 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,…,第n 次碰到矩形的边时的点为P n,则点P3的坐标是;点P2 019的坐标是.11.观察下列关于自然数的等式:32-4×12=5 ①52-4×22=9 ②72-4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.12.(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图(1)写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)(2)如图(2),在▱ABCD中,对角线焦点为O,A1,B1,C1,D1分别是OA,OB,OC,OD的中点,A2,B2,C2,D2分别是OA1,OB1,OC1,OD1的中点,…,以此类推.若▱ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形(3)反映的规律,猜猜l可能是多少?(1)(2) (3)。

第33章 规律探索型问题

第33章 规律探索型问题

第三十三章 规律探索型问题12.(2012山东省滨州,12,3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A .52012﹣1B .52013﹣1C .D .【解析】设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013,因此,5S ﹣S=52013﹣1, S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值. (2012广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数. 【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2012年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2012个数的绝对值是2012,值偶数项是负数,故填-2012. 【答案】-2012【点评】本题是找规律的问题,确定符号是本题的难点.20.(2012贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。

解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n个图案中共有1+3+5+…+(2n-1)=2)121(-+nn=n2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n个图案的正方形的个数的表达式是解题的关键.18.(2012贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b+(n为非负整数)的展开式中a按次数从大到小排列的项的系数.例如222()2a b a ab b+=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b+=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b+的展开式.4()a b+=▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b+=++++,故填432234464a ab a b ab b++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2012山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A 2012在射线上. 【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环, 2012=16×125+12,所以点A 2012所在的射线和点12A 所在的直线一样。

专题一--图形规律探索题

专题一--图形规律探索题

图中有7张黑色正方形纸片,…,按此规律排列下去,第⑥个图中黑色正方
形纸片旳张数为
( B)
A. 11
B. 13
C. 15
D. 17
第2题图
3. (2023随州)我们将如图所示旳两种排列形式旳点旳个数分别称作“三角形
数”(如1,3,6,10,…)和“正方形数”(如1,4,9,16,…),在不大于
200旳数中,设最大旳“三角形数”为m,最大旳“正方形数”为n,则m+n
【解答】解:∵第一个图形有 2+1×2=4 个, 第二个图形有 2+2×3=8 个, 第三个图形有 2+3×4=14 个, 第四个图形有 2+4×5=22 个, … ∴第 n 个图形共有:2+n×(n+1)=n2+n+2. 故答案为:n2+n+2.
6. (2023潍坊)如图,自左至右,第1个图由1个正六边形、6个正方形和6个 等边三角形构成;第2个图由2个正六边形、11个正方形和10个等边三角形 组成;第3个图由3个正六边形、16个正方形和14个等边三角形构成;…; 按照此规律,第n个图中正方形和等边三角形旳个数之和为 9n+3 个.
动到⊙O上旳点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上旳
点A3处;再向左沿着与射线A3O夹角为60°旳方向运动到⊙O上旳点A4处;…;
按此规律运动到点A2023处,则点A2023与点A0间旳距离是
( A)
A. 4
B. 2 C. 2 3
D. 0
解:如图,∵⊙O旳半径=2, 由题意得,
A. 32023
B. 32023
C. ( 3 )2023
D. ( 3 )2023

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索(含答案)

2020年中考数学一轮专项复习——规律探索中考备考攻略规律探索型问题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题.纵观宜宾近五年中考,往往以选择题、填空题形式出现,这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖.其目的是考查收集、分析数据、处理信息的能力.所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题.规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,既考查分析、解决问题能力,也考查观察、联想、归纳能力以及探究能力和创新能力.题型可涉及填空题、选择题或解答题.中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( )A .5B .-14C .43D .451.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( )A. a 10+b 19 B .a 10-b 19 C .a 10-b 17 D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数: .3.已知:1+112+122=112,1+122+132=116,1+132+142=1112,…,根据此规律1+192+1102= .4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法:设S=1+2+22+…+22 017+22 018,①则2S=2+22+…+22 018+22 019.②②-①,得2S-S=S=22 019-1.∴S=1+2+22+…+22 017+22 018=22 019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=;(2)3+32+…+310=;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n、…,若前n行点数和为930,则n=()A.29B.30C.31D.325.将全体正奇数排成一个三角形数阵:13 57911131517192123252729………………根据以上排列规律,数阵中第25行的第20个数是()A.639B.637C.635D.633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是()A B C D6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … 火柴棒根数4710131619…(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 .8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 .中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 .,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 .5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= .6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.10.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A 和终点站B ),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x -1)个车站发给该站的邮包(x -1)个,还要装上后面行程中要停靠的(n -x )个车站的邮包(n -x )个.(1)根据题意,完成下表:车站序号 在第x 个车站启程时邮政车厢上的邮包总个数1 n -12 (n -1)-1+(n -2)=2(n -2)3 2(n -2)-2+(n -3)=3(n -3)4 3(n -3)-3+(n -4)=4(n -4)5 … … n 0(2)根据上表写出列车在第x 个车站启程时,邮政车厢上共有的邮包个数y (用x 、n 表示); (3)当n =18时,列车在第几个车站启程时邮车上的邮包个数最多?参考答案中考重难点突破数与式变化规律【典例1】(2019·达州中考)a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12.已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,a 2 019的值是( D )A .5B .-14C .43D .45【解析】∵a 1=5,a 2=11-a 1=11-5=-14,a 3=11-a 2=11-⎝⎛⎭⎫-14=45,a 4=11-a 3=11-45=5,…,∴数列以5、-14、45三个数依次不断循环.∵2 019÷3=673,∴a 2 019=a 3=45.1.一组按规律排列的多项式:a +b ,a 2-b 3,a 3+b 5,a 4-b 7,…,其中第10个式子是( B )A .a 10+b 19B .a 10-b 19C .a 10-b 17D .a 10-b 212.有一组数:12,35,510,717,926,…,请观察它们的构成形式,用你发现的规律写出第n (n 为正整数)个数:2n -1n 2+1W. 3.已知:1+112+122=112,1+122+132=116, 1+132+142=1112,…,根据此规律1+192+1102= 1190 W. 4.(2019·自贡中考)阅读下列材料:小明为了计算1+2+22+…+22 017+22 018的值,采用以下方法: 设S =1+2+22+…+22 017+22 018,① 则2S =2+22+…+22 018+22 019.② ②-①,得2S -S =S =22 019-1.∴S =1+2+22+…+22 017+22 018=22 019-1. 请仿照小明的方法解决以下问题: (1)1+2+22+…+29= ; (2)3+32+…+310= ;(3)求1+a +a 2+…+a n 的和(a >0,n 是正整数,请写出计算过程).解:(1)210-1;(2)311-12; (3)设S =1+a +a 2+…+a n ,①则aS =a +a 2+a 3+…+a n +a n +1.②②-①,得(a -1)S =a n +1-1.∴S =a n +1-1a -1,即1+a +a 2+…+a n =an +1-1a -1.点阵变化规律【典例2】如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2、4、6、…、2n 、…,若前n 行点数和为930,则n =( B )A .29B .30C .31D .32【解析】设前n 行的点数和为S ,则S =2+4+6+…+2n =(2n +2)n2=n (n +1). 若S =930,则n (n +1)=930,即(n +31)(n -30)=0,∴n 1=-31(不合题意,舍去),n 2=30.5.将全体正奇数排成一个三角形数阵:1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 … … … … … …根据以上排列规律,数阵中第25行的第20个数是( A ) A .639 B .637 C .635 D .633循环排列规律【典例3】观察下列图形,并判断照此规律从左向右第2 018个图形是( B )A B C D【解析】根据题意可知前面4个笑脸循环出现,因为2 018÷4=504……2,所以第2 018个图形是循环出现到第2个图形.6.如图是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:正方形个数 1 2 3 4 5 6 … n火柴棒根数4 7 10 13 16 19 … 3n +1(2)某同学用若干根火柴棒按如图的方式摆图案,摆完了第1个后,摆第2个,接着摆第3个,第4个,…,当他摆完第n 个图案时剩下了20根火柴棒,要刚好摆完第(n +1)个图案还差2根.问最后摆的图案是第几个图案?解:(1)见上表;(2)由3(n +1)+1=22,解得n =6. ∴这位同学最后摆的图案是第7个图案.图形生长变化规律【典例4】(2019·内江中考)如图,将△ABC 沿着过BC 的中点D 的直线折叠,使点B 落在AC 边上的B 1处,称为第一次操作,折痕DE 到AC 的距离为h 1;还原纸片后,再将△BDE 沿着过BD 的中点D 1的直线折叠,使点B 落在DE 边上的B 2处,称为第二次操作,折痕D 1E 1到AC 的距离记为h 2;按上述方法不断操作下去……经过第n 次操作后得到折痕D n -1E n -1,到AC 的距离记为h n .若h 1=1,则h n 的值为( C )A .1+12n -1 B .1+12nC .2-12n -1 D .2-12n【解析】根据相似三角形的性质,对应高的比等于相似比,得出h 2=1+12h 1,依次得出h 3、h 4、…、h n ,再对h n 进行计算变形即可.,7.(2019·广元中考)如图,过点A 0(0,1)作y 轴的垂线交直线l :y =33x 于点A 1,过点A 1作直线l 的垂线,交y 轴于点A 2,过点A 2作y 轴的垂线交直线l 于点A 3,…,这样依次下去,得到△A 0A 1A 2、△A 2A 3A 4、△A 4A 546、…,其面积分别记为S 1、S 2、S 3、…,则S 100为( D )A .⎝⎛⎭⎫332100B .(33)100C .33×4199D .33×2395与坐标有关的规律【典例5】如图,已知A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),…,则点A 2018的坐标为 (505,505) .【解析】根据各个点(点A 1和第四象限内的点除外)分别位于象限的角平分线上,逐步探索出下标和各点坐标之间的关系,根据规律推出点A 2 018的坐标.通过观察可得序号是4的倍数的点在第三象限,由2 018÷4=504……2,得点A 2 018在第一象限,其横、纵坐标都为(2 018-2)÷4+1=505.,8.(2019·攀枝花中考)正方形A 1B 1C 1A 2、A 2B 2C 2A 3、A 3B 3C 3A 4、…按如图所示的方式放置,点A 1、A 2、A 3、…和点B 1、B 2、B 3、…分别在直线y =kx +b (k >0)和x 轴上.已知点A 1(0,1),点B 1(1,0),则点C 5的坐标是 (47,16) W.中考备考过关1.某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,⎩⎨⎧x k =x k -1+1-5⎝⎛⎭⎫⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,y k =y k -1+⎣⎡⎦⎤k -15-⎣⎡⎦⎤k -25,[a]表示非负实数a 的整数部分,如[2.6]=2,[0.2]=0.按此方案,第2 019棵树种植点的坐标为( D )A .(5,2 019)B .(6,2 020)C .(3,403)D .(4,404)2.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…按如图所示的方式放置,点A 1、A 2、A 3、…和点C 1、C 2、C 3、…分别在直线y =kx +b (k >0)和x 轴上,已知B 1(1,1),B 2(3,2),则点B n 的坐标是 (2n -1,2n -1) W.,(第2题图)) ,(第3题图))3. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 1 838 个.4.(2019·广安中考)如图,在平面直角坐标系中,点A 1的坐标为(1,0),以OA 1为直角边作Rt △OA 1A 2,并使∠A 1OA 2=60°;再以OA 2为直角边作Rt △OA 2A 3,并使∠A 2OA 3=60°;再以OA 3为直角边作Rt △OA 3A 4,并使∠A 3OA 4=60°……按此规律进行下去,则点A 2 019的坐标为 (-22 017,22 0173) W.5.符号“f ”表示一种运算,它对一些数的运算结果如下:(1)f (1)=0,f (2)=1,f (3)=2,f (4)=3,…;(2)f ⎝⎛⎭⎫12=2,f ⎝⎛⎭⎫13=3,f ⎝⎛⎭⎫14=4,f ⎝⎛⎭⎫15=5,…. 利用以上规律计算:f ⎝⎛⎭⎫12 019-f (2 019)= 1 W.6.用同样大小的黑色棋子按如图所示的方式摆图形,按照这样的规律摆下去,则第n 个图形需棋子 (3n +1) 枚(用含n 的代数式表示).7.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第 2 019个图形共有 6 058 个○.8.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5、-2、1、9,且任意相邻四个台阶上数的和都相等.尝试 (1)问前4个台阶上数的和是多少? (2)问第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和;发现 试用含k (k 为正整数)的式子表现出数“1”所在的台阶数.解:尝试 (1)由题意,得-5-2+1+9=3,故前4个台阶上的数字的和是3; (2)由题意,得-2+1+9+x =3,所以x =-5;应用 由题意知台阶上的数从下到上每4个循环,因为31÷4=7……3,所以7×3+1-2-5=15, 即从下到上前31个台阶上数的和是15. 发现 “1”所在的台阶数为4k -1.9.观察: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下面的问题:(1)若n 为正整数,请你猜想1n ×(n +1)= ;(2)若n 为正整数,请你猜想11×2+12×3+13×4+…+1n ×(n +1)= ;(3)若x -1+(xy -2)2=0,求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 017)(y +2 017)的值.解:(1)1n -1n +1;(2)1-1n +1;[原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1.](3)∵x -1+(xy -2)2=0,∴x -1=0,xy -2=0, 解得x =1,y =2.则原式=11×2+12×3+13×4+…+12 018×2 019=1-12 019=2 018 2 019.10.一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,行驶时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发给后面行程中每个车站的邮包一个.例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包(x-1)个,还要装上后面行程中要停靠的(n-x)个车站的邮包(n-x)个.(1)根据题意,完成下表:(2(3)当n=18时,列车在第几个车站启程时邮车上的邮包个数最多?解:(1)见上表;(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81.当x=9时,y取最大值,所以列车在第9个车站启程时,邮政车厢上的邮包个数最多.。

规律探索答案

规律探索答案

1.(2013•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n 个等式(n 为正整数):a n =﹣.考点: 规律型:数字的变化类.分析:根据题意可知a 1=1﹣,a 2=﹣,a 3=﹣,…故a n =﹣.解答:解:通过分析数据可知第n 个等式为:a n =﹣.故答案为:﹣.点评: 本题考查了数字变化规律,培养学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.2.(2013,娄底)如图,是用火柴棒拼成的图形,则第n 个图形需__________根火柴棒.3.(2013•益阳)下表中的数字是按一定规律填写的,表中a 的值应是 21 . 1 2 3 5 8 13 a … 2 358132134…考点: 规律型:数字的变化类.分析: 根据第一行第3个数是前两个数值之和,进而得出答案. 解答: 解:根据题意可得出:a=13+5=21.故答案为:21.点评: 此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.4.(2013,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)考点:推理与论证. 专题:压轴题.分析:根据题意,初步推断出C 对应的方格必定不是雷,A 、B 对应的方格中有一个雷,中间D 、E 对应方格中有一个雷且最右边的“4”周围4个方格中有3个雷.由此再观察C 下方“2”、B 下方的“2”、D 下方的“2”和F 下方的“4”,即可推断出A 、C 、E 对应的方格不是雷,且B 、D 、F 、G 对应的方格是雷.由此得到本题答案.3()图甲A B C D GE F 2341322422221111111133()图乙0000解答:解:图乙中最左边的“1”和最右边的“1”,可得如下推断由第三行最左边的“1”,可得它的上方必定是雷.结合B下方的“2”,可得最左边的A、B对应的方格中有一个雷;同理可得最右边的“4”周围4个方格中有3个雷,中间D、E对应方格中有一个雷;由于B下方的“2”和第二行最右边的“2”,它们周围的雷已经够数,所以C对应的方格肯定不是雷,如下图所示:进行下一步推理:因为C对应的方格不是雷,所以C下方“2”的左上、右上的方格,即B、D都是雷;而B下方的“2”的周围的雷也已经够数,所以A对应的方格也不是雷.因为D下方的“2”,它的周围的雷已经够数,可得E对应的方格不是雷,根据F下方的“4”周围应该有4个雷,结合E不是雷,可得F、G对应的方格都是雷.综上所述,A、C、E对应的方格不是雷,且B、D、F、G对应的方格是雷.故答案为:B、D、F、G.点评:此题主要考查了推理论证,本题给出扫雷游戏的图形,要求我们推理A、B、C、D、E、F对应方格是否为雷.着重考查了扫雷的基本原理和推理与证明的知识,属于中档题.5.(2007•荆州)观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是﹣128a8.考点:规律型:数字的变化类.专题:规律型.分析:根据单项式可知n为双数时a的前面要加上负号,而a的系数为2(n﹣1),a的指数为n.解答:解:第八项为﹣27a8=﹣128a8.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.(2013•达州)如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013=度。

规律探索性问题(含解析)

规律探索性问题(含解析)

规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。

二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。

三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。

例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。

专题08 规律探索题(针对训练)(解析版)

专题08 规律探索题(针对训练)(解析版)

1.(2021•武汉模拟)观察下面倒“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.2020B.2021C.4040D.4039【分析】首先分析得左上数字1,3,5分别是1、2、3的2倍与1的差,而下面的数21,22,23对应的指数正好也是1,2,3,即可以得出结果.【解答】解:由题意得:1=2×1﹣1,3=2×2﹣1,5=2×3﹣1…∴a=2×2020﹣1=4039.故选:D.【点评】本题考查数字的变化规律,找到左上数字1,3,5分别是1、2、3的2倍与1的差,得出与下方数字的指数的关系是解本题的关键.2.(2021•嘉善县一模)已知一列数a1,a2,a3,…,具有如下规律:a2n+1=a n+a n+1,a2n=a n(n是正整数).若a1=1,则a37的值为()A.1B.5C.7D.11【分析】根据题干公式寻找规律.【解答】解:由a2n+1=a n+a n+1,a2n=a n(n是正整数)可得:a37=a18+a19=2a9+a10=2(a4+a5)+a5=2a4+3a5=2a2+3a3=2a2+3(a2+a3)=5a2+3a3=8a1+3a2=11a1=11.故选:D.【点评】考查数字变化规律,解题关键是根据题中规律拆项.3.(2021•郧西县模拟)按一定规律排列的一列数依次为:−a22,a55,−a810,a1117,…(a≠0),按此规律排列下去,这列数中的第10个数是()A .a 2363B .−a 2680C .a 29101D .a 32101【分析】根据题目中的数字,可以发现分子和分母的变化规律,从而可以写出第n 个数,然后将n =10代入即可求得第10个数,本题得以解决.【解答】解:∵一列数依次为:−a 22,a 55,−a 810,a1117,…,(a ≠0),∴第n 个数为:(﹣1)n•a 3n−1n 2+1,∴当n =10时,(﹣1)10•a 3×10−1102+1=a 29101.故选:C .【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,写出第10个数. 4.(2021•汉阳区校级模拟)把所有正奇数从小到大排列,并按如下规律分组:(1)(3,5,7)、(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式A m =(i ,j )表示正奇数m 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 89=( ) A .(6,7)B .(7,8)C .(7,9)D .(6,9)【分析】先计算出89是第45个数,然后判断第45个数在第几组,再判断是这一组的第几个数即可. 【解答】解:∵89是第89+12=45个数,设89在第n 组,则1+3+5+7+…+(2n ﹣1)≥45, 即(1+2n−1)n2≥45,解得:n ≥√45,当n =6时,1+3+5+7+9+11=36; 当n =7时,1+3+5+7+9+11+13=49; 故第45个数在第7组, 第49个数为:2×49﹣1=97, 第7组的第一个数为:2×37﹣1=73, 第7组一共有:2×7﹣1=13个数, 则89是(89−732+1)=9个数.故A 89=(7,9). 故选:C .【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.5.(2021•济宁一模)观察下列各式:a1=23,a2=1,a3=107,a4=179,a5=2611,…,根据其中的规律可得a n=(用含n的式子表示).【分析】首先分析分母,分母3,5,7,9比偶数2,4,6,8大1,因此可以写成2的倍数加1,再看分子,分子2,5,10,17比平方数1,4,9,16大1,因此可以看成平方数加1,这样即可得到结果.【解答】解:由题意得:a1=12+12×1+1,a2=55=22+12×2+1,a3=32+12×3+1,…a n=n2+12n+1,故答案为:n2+12n+1.【点评】本题考查了数字的变化规律题,找到分子与偶数的关系和与分母平方数的关系是解本题的关键.6.(2021•宣城模拟)我国南宋数学家杨辉所著的《详解九章算术》书中辑录了一个三角形数表,称之为“开方作法本源”图,即是著名的“杨辉三角形”.以下数表的构造思路源于“杨辉三角形”:该表由若干行数字组成,从第二行起,每一行中的数字均等于“其肩上”两数之和,表中最后一行仅有一个数,则这个数为.【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2017行公差为22016,第2017行只有M,由此可得结论.【解答】解:由题意,第1行有2017个数,第2行有2016个数,…,第2017行有1个数,故第1行的第一个数为:2×2﹣1,第2行的第一个数为:3×20,第3行的第一个数为:4×21,第n行的第一个数为:(n+1)×22﹣2,第2017行只有M,则M=(1+2017)•22015=2018×22015.故答案为:2018×22015.【点评】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.7.(2021•东平县一模)已知有理数a ≠1,我们把11−a为a 的差倒数,如:2的差倒数是11−2=−1,﹣1的差倒数是11−(−1)=12如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…依此类推,那么a 1+a 2+…+a 100的值是【分析】求出数列的前4个数,从而得出这个数列以﹣2,13,32,依次循环,且﹣2+13+32=−16,再求出这100个数中有多少个周期,从而得出答案. 【解答】解:∵a 1=﹣2, ∴a 2=11−(−2)=13,a 3=11−13=32,a 4=11−32=−2, ∴这个数列以﹣2,13,32,依次循环,且﹣2+13+32=−16, ∵100÷3=33…1,∴a 1+a 2+…+a 100=33×(−16)﹣2=−152=−7.5, 故答案为﹣7.5.【点评】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.8.(2020•泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= .【分析】观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1),依此求出a 4,a 200,再相加即可求解.【解答】解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.【点评】此题考查了规律型:数字的变化类,通过观察、分析、归纳发现其中的规律,并应用发现的规律解决问题的能力.9.(2020•南谯区二模)观察以下等式:第1个等式:52﹣22=3×7,第2个等式:72﹣42=3×11,第3个等式:92﹣62=3×15,…按照以上规律,解决下列问题:(1)写出第6个等式和第n个等式;(2)证明你写的第n个等式的正确性.【分析】(1)观察前3个等式等式,即可写出第6个等式和第n个等式;(2)根据平方差公式即可证明第n个等式的正确性.【解答】解:(1)观察以下等式:第1个等式:52﹣22=3×7,第2个等式:72﹣42=3×11,第3个等式:92﹣62=3×15,…按照以上规律可知:第6个等式:152﹣122=3×27;∴第n个等式:(2n+3)2﹣(2n)2=3(4n+3);(2)证明:第n个等式的左边=(2n+3+2n)(2n+3﹣2n)=3(4n+3)=右边.所以第n个等式正确.【点评】本题考查了规律型﹣数字的变化类,解决本题的关键是根据已知等式寻找规律.10.(2021•安徽模拟)观察以下等式:第1个等式:21−11=12×1−1; 第2个等式:23−12=12×4−2;第3个等式:25−13=12×9−3; 第4个等式:27−14=12×16−4;…按照以上规律,解决下列问题: (1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明. 【分析】(1)观察所给等式中的各个分数的分子与分母的数字与序号的关系可得结论; (2)同(1)一样的方法进行总结可得;利用分式的加减法则分别计算等式的左边和右边可得. 【解答】解:(1)第6个等式为:211−16=12×36−6,故答案为:211−16=12×36−6; (2)猜想第n 个等式为:22n−1−1n=12n 2−n,证明如下:左边=22n−1−1n =2n−(2n−1)n(2n−1)=12n 2−n =右边,故猜想成立, 故答案为:22n−1−1n=12n 2−n.【点评】本题考差的是数字找规律,要求学生通过观察,分析、归纳发现其中的规律,发现等式中的数字与序号的关系是解题的关键. 11.(2020•盈江县模拟)观察下列等式: ①1﹣1−12=−11×2; ②12−13−14=−13×4; ③13−15−16=−15×6; ④14−17−18=−17×8;…根据上述规律解决下列问题:(1)完成第⑤个等式;(2)写出你猜想的第n 个等式(用含n 的式子表示)并证明其正确性.【分析】(1)根据题意可得,左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积,由此可得第5个等式;(2)根据(1)中的规律,用含n 的代数式表示,再利用分式的运算进行证明.【解答】解:(1)∵左边的第2项和第3项的分母分别是连续的奇数和偶数,右边的分母为是左边第2项和第3项的分母之积, ∴第5个等式为:15−19−110=−19×10;(2)第n 个等式为:1n −12n−1−12n=−12n(2n−1),证明:左边=2(2n−1)−2n−(2n−1)2n(2n−1)=−12n(2n−1), 右边=−12n(2n−1), ∴左边=右边, ∴原式成立.【点评】本题主要考查了规律猜想型问题,关于等式的规律探索:用含字母的代数式来归纳,注意字母往往还具有反映等式序号的作用. 12.(2020•芜湖一模)观察下列数据:第1列 第2列 第3列 第4列 … 第n 列 第1行 1 2 3 4 … n 第2行 2 4 6 8 … 2n 第3行 3 6 9 12 … 3n … … … … … … … 第n 行 n2n3n4n…n 2请回答:(1)第1行所有数字之和为 (用含字母n 的式子表示); (2)表格中所有数字之和为 (用含字母n 的式子表示); (3)根据以上的信息,计算13+23+33+ (1003)【分析】(1)直接利用前n 个数和公式可得结论; (2)分别计算每一列的所有数字之和,再相加可得结论;(3)通过计算发现:前n 个数的立方和等于前n 个数的和的平方,根据(1)中的结论可解答. 【解答】解:(1)1+2+3+…+n =n(n+1)2; 故答案为:n(n+1)2;(2)第1列所有数字之和=1+2+3+…+n =n(n+1)2, 第2列所有数字之和=2+4+6+…+2n =2(1+2+3+…+n )=2n(n+1)2, …第n 列所有数字之和=n (1+2+3+…+n )=n 2(n+1)2,∴格中所有数字之和为:n(n+1)2+2n(n+1)2+⋯+n 2(n+1)2=n(n+1)(1+2+⋯+n)2=n(n+1)2⋅n(n+1)2=n 2(n+1)24; 故答案为:n 2(n+1)24;(3)∵13=12, 13+23=9=(1+2)2, 13+23+33=36=(1+2+3)2, …∴13+23+33+…+1003, =(1+2+3+…+100)2, =50502, =25502500.【点评】本题考查数的规律,实数的运算;能够横纵联系观察表格中的数,找到数之间的关系,熟练幂的运算性质是解题的关键.13.(2021•瑶海区校级二模)观察下列等式: ①42−126=2+12,②52−226=3+12,③62−326=4+12,④72−426=5+12,…(1)请按以上规律写出第⑥个等式: ;(2)猜想并写出第n 个等式: = ;并证明猜想的正确性.(3)利用上述规律,直接写出下列算式的结果:42−12−36+52−22−36+62−32−36+⋯+1002−972−36= .【分析】(1)根据分母不变,分子是两个数的平方差可得答案; (2)根据发现的规律写出第n 个等式并计算可进行验证; (3)根据42−12−36=1,52−22−36=2,62−32−36=3…可得原式=1+2+3……+97,进而可得答案.【解答】解:(1)第⑥个式子为:92−626=7+12;故答案为:92−626=7+12;(2)猜想第n 个等式为:(n+3)2−n 26=(n +1)+12,证明:∵左边=(n+3)2−n 26=3(2n+3)6=(n +1)+12=右边, 故答案为:(n+3)2−n 26=(n +1)+12;(3)原式=2+3+…+98 =97(2+98)2=4850. 故答案为:4850.【点评】本题考查对规律型问题的理解和有理数的运算能力,找到规律是解题关键.14.(2020•沙河市模拟)图1为奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为m ,其它四个数分别记为a ,b ,c ,d (如图2);图3为按某一规律排成的另一个数表,用十字框任意框出5个数,记框内中间这个数为n ,其它四个数记为e ,f ,g ,h (如图4). (1)请用含m 的代数式表示b . (2)请用含n 的代数式表示e .(3)若a +b +c +d =km ,e +f +g +h =pn ,求k +3p 的值.【分析】(1)上下相邻的数相差18,可得结论;(2)由图3:分n>0和n<0两种情况,根据图中数据,可得结论;(3)根据图1和图2可得k的值,分两种情况表示图3和图4中各个字母的关系,代入已知两式,可得p的值,代入k+3p可得值.【解答】解:(1)由图1和图2得:b=m﹣18;(2)如图3,分两种情况:①当n>0时,e=﹣n+2,②当n<0时,e=﹣n﹣2;(3)由图1和图2得:a=m﹣2,b=m﹣18,c=m+2,d=m+18,∵a+b+c+d=km,∴m﹣2+m﹣18+m+2+m+18=km,4m=km,k=4,由图3和图4得:分两种情况:①当n>0时,e=﹣n+2,f=﹣n+18,g=﹣n﹣2,h=﹣n﹣18,∵e+f+g+h=pn,∴﹣n+2﹣n+18﹣n﹣2﹣n﹣18=pn,﹣4n=pn,p=﹣4,∴k+3p=4+3×(﹣4)=﹣8.②当n<0时,e=﹣n﹣2,f=﹣n﹣18,g=﹣n+2,h=﹣n+18,∵e+f+g+h=pn,∴﹣n﹣2﹣n﹣18﹣n+2﹣n+18=pn,﹣4n=pn,p=﹣4,∴k+3p=4+3×(﹣4)=﹣8.【点评】本题考查整式的加减和一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.15.(2020•河南三模)如图1,观察数表,如何计算数表中所有数的和?方法1:如图1,先求每行数的和:第1行1+2+3+…+n=(1+2+3+…+n)第2行2+4+6+…+2n=2(1+2+3+…+n)第n行n+2n+3n+…+n2=n(1+2+3+…+n)故表中所有数的和:(1+2+3+…+n)+2(1+2+3+…+n)+…+n(1+2+3+…+n)=;方法2:如图2,依次以第1行每个数为起点,按顺时针方向计算各数的和:第1组:1=13第2组:2+4+2=23第3组:3+6+9+6+3=33…第n组:n+2n+…+n2+…+2n+n=.用这n组数计算的结果,表示数表中所有数的和为:.综合上面两种方法所得的结果可得等式:.利用上面得到的规律计算:13+23+33+ (203)【分析】根据所给式子找到规律,可求(1+2+3+…+n )2=n 2(n+1)24;n +2n +…+n 2+…+2n +n =n 3;得到等式:(1+2+3+...+n )2=13+23+33+...+n 3;再由所得的关系式计算13+23+33+...+203=(1+2+3+ (20)2=44100.【解答】解:(1+2+3+…+n )+2(1+2+3+…+n )+…+n (1+2+3+…+n ) =(1+2+3+…+n )2 =[n(n+1)2]2=n 2(n+1)24;通过观察所给式子可得:n +2n +…+n 2+…+2n +n =n 3; 表中所有数的和为13+23+33+…+n 3; 等式:(1+2+3+…+n )2=13+23+33+…+n 3; 故答案为:n 2(n+1)24;n 3;13+23+33+…+n 3;(1+2+3+…+n )2=13+23+33+…+n 3.13+23+33+…+203=(1+2+3+…+20)2=(20×212)2=44100.【点评】本题考查数字的变化规律;能够通过所给的式子,找到式子之间的关系,再将所得等式灵活应用是解题的关键.16.(2020•微山县二模)阅读新知一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,这个数列就叫做等比数列.这个常数叫做等比数列的公比,公比通常用字母q 表示(q ≠0). 即:在数列a 1,a 2,a 3,…,a n .(n 为正整数)中,若a 2a 1=q ,a 3a 2=q ,…,则数列a 1,a 2,a 3,…,a n .(n 为正整数)叫做等比数列.其中a 1叫数列的首项,a 2叫第二项,…,a n 叫第n 项,q 叫做数列的公比.例如:数列1,2,4,8,16,…是等比数列,公比q=2.计算:求等比数列1,3,32,33,…,3100的和.解:令S=1+3+32+33+…+3100,则3S=3+32+33+34+…+3100+3101.因此3S﹣S=3101﹣1.所以S=3101−12.即1+3+32+33+…+3100=3101−12.学以致用(1)选择题:下列数列属于等比数列的是.A.1,2,3,4,5B.2,6,18,21,63C.56,28,14,7,3.5D.﹣11,22,﹣33,44,﹣55(2)填空题:已知数列a1,a2,a3,…,a n是公比为4的等比数列,若它的首项a1=3,则它的第n项a n等于.(3)解答题:求等比数列1,5,52,53,…前2021项的和.【分析】(1)根据题意和等比数列的定义,可以判断哪个选项中的数列是等比数列;(2)根据题意,可以写出所给数列第n项a n的值;(3)仿照题目的例子,可以求得前2021项的和.【解答】解:(1)由题意可得,2 1≠32,故选项A中的数列不是等比数列;6 2≠2118,故选项B中的数列不是等比数列;56 28=2814=147=73.5,故选项C中的数列是等比数列;22−11≠−3322,故选项D中的数列不是等比数列;故答案为:C;(2)∵数列a1,a2,a3,…,a n是公比为4的等比数列,它的首项a1=3,∴它的第n项a n=a1•q n﹣1=3×4n﹣1,故答案为:3×4n﹣1;(3)设S=1+5+52+53+ (52020)则5S =5+52+53+…+52021, 5S ﹣S =52021﹣1, 4S =52021﹣1, S =52021−14,即前2021项的和是52021−14.【点评】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现数字的变化特点,利用类比的方法解答.17.(2021•任城区一模)如图,矩形ABCD 中AB 是3cm ,BC 是2cm ,一个边长为1cm 的小正方形沿着矩形ABCD 的边AB →BC →CD →DA →AB 连续地翻转,那么这个小正方形第一次回到起始位置时,小正方形箭头的方向是( )A .B .C .D .【分析】由题意可知,小正方形在矩形ABCD 边AB 和CD 上各翻转两次,在矩形ABCD 边BC 和DA 上各翻转一次,每个直角处各翻转一次,而每翻转4次,它的方向重复依次,小正方形共翻转10次回到起始位置,即可得到它的方向.【解答】解:根据题意可得:小正方形沿着矩形ABCD 的边AB →BC →CD →DA →AB 连续地翻转,矩形ABCD 的边长AB 和BC 分别是3cm 和2cm ,小正方形的边长为1cm ,则这个小正方形第一次回到起始位置时需10次翻转,而每翻转4次,它的方向重复依次,故回到起始位置时它的方向是向下. 故选:C .【点评】本题主要考查矩形的性质和旋转的性质,本题是一道找规律的题目,关键是得出小正方形共翻转10次回到起始位置.18.(2021•武汉模拟)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n 个图案有2020个三角形,则n =( )A.670B.672C.673D.676【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有(3n+1)个三角形,进而得出方程解答即可.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.19.(2020•德州)如图是用黑色棋子摆成的美丽图案,按照这样的规律摆下去,第10个这样的图案需要黑色棋子的个数为()A.148B.152C.174D.202【分析】观察各图可知,后一个图案比前一个图案多2(n+3)枚棋子,然后写成第n个图案的通式,再取n=10进行计算即可求解.【解答】解:根据图形,第1个图案有12枚棋子,第2个图案有22枚棋子,第3个图案有34枚棋子,…第n﹣1个图案有2(1+2+…+n+1)+2(n﹣2)=n2+5n﹣2枚棋子,第n个图案有2(1+2+…+n+2)+2(n﹣1)=n2+7n+4枚棋子,故第10个这样的图案需要黑色棋子的个数为102+7×10+4=100+70+4=174(枚).故选:C.【点评】考查了规律型:图形的变化类,观察图形,发现后一个图案比前一个图案多2(n+3)枚棋子是解题的关键.20.(2020•花溪区一模)在新型冠状病毒防控战“疫”中,花溪榕筑花园小区利用如图①的建立了一个身份识别系统,图②是某个业主的识别图案,灰色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d算式a×23+b×22+c×21+d×20的运算结果为该业主所居住房子的栋数号.例如,图②第一行数字从左到右依次为0,1,0,1,通过计算得0×23+1×22+0×21+1×20=5,即可知该业主为5栋住户,小敏家住在11栋,则表示他家的识别图案是()A.B.C.D.【分析】找出a,b,c,d的值,再根据公式计算即可得出结论【解答】解:A.第一行数字从左到右依次为1,0,0,1,通过计算得1×23+0×22+0×21+1×20=9,即可知该业主为9栋住户,此选项不符合题意;B.第一行数字从左到右依次为1,0,1,1,通过计算得1×23+0×22+1×21+1×20=11,即可知该业主为11栋住户,此选项符合题意;C.第一行数字从左到右依次为0,1,0,1,通过计算得0×23+1×22+0×21+1×20=5,即可知该业主为5栋住户,此选项不符合题意;D.第一行数字从左到右依次为1,1,0,1,通过计算得1×23+1×22+0×21+1×20=13,即可知该业主为13栋住户,此选项符合题意;故选:B.【点评】本题考查了规律型:图形的变化类以及用数字表示事件,找出a×23+b×22+c×21+d×20=10的a,b,c,d的值.21.(2021•安徽模拟)如图1,给定一个正方形,要通过裁剪将其分割成若干个互不重叠的正方形.第1次裁剪分割成4个互不重叠的正方形,得到图2,称之为1个基本操作;第2次裁剪分割成7个互不重叠的正方形,得到图3,称之为2个基本操作…以后每次只在上次得到图形的左上角的正方形中裁剪.(1)5个基本操作后,共裁剪成个正方形;100个基本操作后,共裁剪成个正方形;(2)经过若干次基本操作后,能否得到2021个互不重叠的正方形?若能,求出是几个基本操作后得到的;若不能,请说明理由.【分析】根据前2个基本操作画线分割成的正方形个数即可得到第3个、第4个的、第5个的;即第3个基本操作得到3×3+1=10个,第4个基本操作得到3×4+1=13个,第5个基本操作得到3×5+1=16个…发现规律可得第n个操作后,分割成3n+1个正方形,进而可推算能否得到2021个得到互不重叠的正方形;【解答】解:(1)尝试:3×1+1=4,3×2+1=7;3×3+1=10;3×4+1=13;3×5+1=16;⋯3×100+1=301;故答案为:16,301;(2)发现:通过尝试可知:第n个操作后,分割成的正方形个数为:3n+1;设每个操作后得到互不重叠的正方形的个数为m,则m=3n+1.若m =2021,则2021=3n +1.解得n =20203,这个数不是整数,故不能. 【点评】本题考查了规律型:图形的变化类,根据图形的变化寻找规律、总结规律、运用规律是解题的关键.22.(2020•海门市校级模拟)用黑白棋子摆出下列一组图形,根据规律可知.(1)在第n 个图中,白棋共有 枚,黑棋共有 枚; (2)在第几个图形中,白棋共有300枚;(3)白棋的个数能否与黑棋的个数相等?若能,求出是第几个图形,若不能,说明理由. 【分析】依据题意求出白棋和黑棋的表达式即可求解.【解答】解:(1)由题意得:在第n 个图中,白棋共有12n (n +1)枚,黑棋共有(3n +6)枚;故答案为:12n (n +1),(3n +6);(2)12n (n +1)=300,解得:n =24(已舍去负值)故在第24个图形中,白棋共有300枚; (3)12n (n +1)=3n +6,解得:n =5±√732为无理数, 所以白棋的个数不能与黑棋的个数相等.【点评】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.部分考生总结规律为第n 个图中琪的数目的表达式.23.(2020•安徽一模)用同样大小的两种不同颜色的正方形纸片,按下图方式拼正方形.第(1)个图形中有1个正方形;第(2)个图形有1+3=4个小正方形; 第(3)个图形有1+3+5=9个小正方形; 第(4)个图形有1+3+5+7=16小正方形; ……(1)根据上面的发现我们可以猜想:1+3+5+7+...+(2n ﹣1)= (用含n 的代数式表示); (2)请根据你的发现计算: ①1+3+5+7+...+99; ②101+103+105+ (199)【分析】(1)观察图形的变化可得规律,根据发现的规律即可猜想1+3+5+7+…+(2n ﹣1)的值; (2)①根据(1)中的规律即可求解;②根据(1)中的规律和①的结果,即可求得101+103+105+…+199的值. 【解答】解:(1)∵第(1)个图形中有1个正方形; 第(2)个图形有1+3=4个小正方形; 第(3)个图形有1+3+5=9个小正方形; 第(4)个图形有1+3+5+7=16小正方形; ……∴1+3+5+7+…+(2n ﹣1) =(1+2n−12)2=n 2; 故答案为:n 2; (2)①1+3+5+7+…+99 =(1+992)2=502 =2500;②∵1+3+5+7+…+199 =(1+1992)2=10000,∴101+103+105+…+199=10000﹣2500=7500.【点评】本题考查了规律型﹣图形的变化类,解决本题的关键是观察图形的变化寻找规律.24.(2020•迁安市二模)“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.【分析】观察图形可得,图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以容易求出图8、图n中黑点的个数;(1)观察点阵可得,第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);进而发现规律:即可得第n个点阵中有圆圈个数;(2)3n2﹣3n+1=331,整理得,n2﹣n﹣110=0,解得n1=11,n2=﹣10(负值舍去),进而得结论.【解答】解:图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个;图3中黑点个数是6×3=18个;…,所以图8、图n中黑点的个数分别是48,6n;故答案为:48,6n;(1)观察点阵可知:第1个点阵中有1个圆圈;第2个点阵中有7个圆圈;7=2×3×1+1;第3个点阵中有19个圆圈;19=3×3×2+1;第4个点阵中有37个圆圈;37=4×3×3+1;第6个点阵中有圆圈个数为:6×3×5+1=91(个);发现规律:第n个点阵中有圆圈个数为:n×3(n﹣1)+1=3n2﹣3n+1.故答案为:91;n×3(n﹣1)+1=3n2﹣3n+1.(2)会;第11个点阵.3n2﹣3n+1=331整理得,n2﹣n﹣110=0解得n1=11,n2=﹣10(负值舍去),答:小圆圈的个数会等于331,是第11个点阵.【点评】本题考查了规律型﹣图形的变化类,解决本题的关键是观察图形的变化,寻找规律,总结规律,运用规律.。

规律探索(解析版)_2

规律探索(解析版)_2

第2个图中有9个正方形,可以写成:5+4=5+4×1;第3个图中有13个正方形,可以写成:5+4+4=5+4×2;第4个图中有17个正方形,可以写成:5+4+4+4=5+4×3;...第n个图中有正方形,可以写成:5+4(n-1)=4n+1;当n=9时,代入4n+1得:4×9+1=37.故选:C.【点睛】本题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键.12.(2022烟台中考)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为()A.(2)5B.(2)6C.()5D.()6【分析】根据勾股定理得出正方形的对角线是边长的.第1个正方形的边长为1,其对角线长为;第2个正方形的边长为,其对角线长为()2;第3个正方形的边长为()2,其对角线长为()3;•;第n个正方形的边长为()n﹣1.所以,第6个正方形的边长()5.【解答】解:由题知,第1个正方形的边长AB=1,根据勾股定理得,第2个正方形的边长AC=,根据勾股定理得,第3个正方形的边长CF=()2,根据勾股定理得,第4个正方形的边长GF=()3,根据勾股定理得,第5个正方形的边长GN=()4,根据勾股定理得,第6个正方形的边长=()5.故选C.【点评】本题利用勾股定理找到正方形边长之间的倍关系,由此依次推出第2个、第3个、•、第6个正方形的边长.二、填空题1.(2022青海中考)木材加工厂将一批木料按如图所示的规律依次摆放,则第n个图中共有木料______根.【答案】()21n n +【解析】【分析】第一个图形有1根木料,第二个图形有2(21)122⨯++=根木料,第三个图形有3(31)1232⨯+++=根木料,第四个图形有4(41)12342⨯++++=根木料,以此类推,得到第n 个图形有()21n n +根木料.【详解】解:∵第一个图形有1(11)12⨯+=根木料, 第二个图形有2(21)122⨯++=根木料, 第三个图形有3(31)1232⨯+++=根木料, 第四个图形有4(41)12342⨯++++=木料, ∴第n 个图形有11232n n n +++++=L 根木料, 故答案为:()21n n +.【点睛】本题考查了图形的变化类问题,仔细观察,分析,归纳并发现其中的规律是解本题的关键.2. (2022德阳中考)古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:三角形3 正方形4五边形5六边形6L M边形m1 1 1 1 1 L12 1+2 1+211+2111+2111L1+21(3)1m⎫⎪−⎬⎪⎭M3 1+2+3 1+2+31+21+2+31+21+21+2+31+21+21+2L1+2+312(3)12m+⎫⎪−⎬⎪+⎭M4 1+2+3+4 1+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+3L1+2+3+4123(3)123m++⎫⎪−⎬⎪++⎭MM M M M M M Mn 12n+++L12n+++L12(1)n+++−L12n+++L12(1)n+++−L12(1)n+++−L12n+++L12(1)n+++−L12(1)n+++−L12(1)n+++−LL12n+++L12(1)(3)12(1)nmn+++−⎫⎪−⎬⎪+++−⎭LML由上表可知第n个M边形数为:,整理得:1)(1)(3)2(2n n n n m S −−+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +−−+−−+=+==, 故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.3.(2022遂宁中考)(4分)“勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名.假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为 127.【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数. 【解答】解:∵第一代勾股树中正方形有1+2=3(个), 第二代勾股树中正方形有1+2+22=7(个), 第三代勾股树中正方形有1+2+22+23=15(个), ......∴第六代勾股树中正方形有1+2+22+23+24+25+26=127(个), 故答案为:127.【点评】本题考查图形中的规律问题,解题的关键是仔细观察图形,得到图形变化的规律.4. (2022泰安中考) 观察下列图形规律,当图形中的“○”的个数和“.”个数差为2022时,n 的值为____________.【答案】不存在 【解析】【分析】首先根据n =1、2、3、4时,“•”的个数分别是3、6、9、12,判断出第n 个图形中“•”的个数是3n ;然后根据n =1、2、3、4,“○”的个数分别是1、3、6、10,判断出第n 个“○”的个数是()12n n +;最后根据图形中的“○”的个数和“.”个数差为2022,列出方程,解方程即可求出n 的值是多少即可. 【详解】解:∵n =1时,“•”的个数是3=3×1; n =2时,“•”的个数是6=3×2; n =3时,“•”的个数是9=3×3; n =4时,“•”的个数是12=3×4; ……∴第n 个图形中“•”的个数是3n ; 又∵n =1时,“○”的个数是1=1(11)2⨯+; n =2时,“○”的个数是2(21)32⨯+=, n =3时,“○”的个数是3(31)62⨯+=, n =4时,“○”的个数是4(41)102⨯+=, ……∴第n 个“○”的个数是()12n n +, 由图形中的“○”的个数和“.”个数差为2022()1320222n n n +∴−=①,()1320222n n n +−=② 解①得:无解 解②得:12516201516201,22n n +==故答案为:不存在【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.5.(2022十堰中考)如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为_________cm.【答案】91【解析】【分析】通过观察图形可知,1节链条的长度是2.8cm,2节链条的长度是(2.8×2-1)cm,3节链条的长度是(2.8×3-1×2)cm,n节链条的长度是2.8n-1×(n-1)cm,据此解答即可求解.【详解】解:2节链条的长度是(2.8×2-1)cm,3节链条的长度是(2.8×3-1×2)cm,n节链条的长度是2.8n-1×(n-1)cm,所以50节链条的长度是:2.8×50-1×(50-1)=140-1×49=91(cm)故答案为:91【点睛】此题考查的图形类规律,关键是找出规律,得出n节链条长度为2.5×n-0.8×(n-1).6. (2022广安中考)如图,四边形ABCD是边长为1的正方形,曲线DA1B1C1D1A2…是由2多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是___________(结果保留π).【答案】2022π【解析】【分析】根据题意有后一段弧的半径总比前一段弧的半径长12,又因为1AA 的半径为12,可知任何一段弧的半径都是12的倍数,根据圆心以A 、B 、C 、D 四次一个循环,可得弧n n C D 的半径为:1422n DD n n =⨯⨯=,再根据弧长公式即可作答. 【详解】根据题意有:¼1DA 的半径112AA =, ¼11A B 的半径11122BB AB AA =+=⨯, ¼11B C 的半径11132CC CB BB =+=⨯, ¼11C D 的半径11142DD CD CC =+=⨯, ¼12D A 的半径21152AA AD DD =+=⨯, ¼22A B 的半径22162BB AB AA =+=⨯, ¼22B C 的半径22172CC BC BB =+=⨯, ¼22C D 的半径22182DD CD CC =+=⨯, ...以此类推可知,故弧n n C D 的半径为:1422n DD n n =⨯⨯=, 即弧20222022C D 的半径为:20222220224044DD n ==⨯=, 即弧20222022C D 的长度为:90240442022360ππ⨯⨯⨯=, 故答案为:2022π.【点睛】本题考查了弧长的计算公式,找到每段弧的半径变化规律是解答本题的关键. 7. (2022绥化中考) 如图,60AOB ∠=︒,点1P 在射线OA 上,且11OP =,过点1P 作11PK OA ⊥交射线OB 于1K ,在射线OA 上截取12PP ,使1211PP PK =;过点2P 作22P K OA ⊥交射线OB 于2K ,在射线OA 上截取23P P ,使2322P P P K =.按照此规律,线段20232023P K 的长为________.2022313+【解析】【分析】解直角三角形分别求得11PK ,22P K ,33P K ,……,探究出规律,利用规律即可解决问题.【详解】解:11PK OA ⊥Q ,11OPK ∴△是直角三角形,在11Rt OPK V 中,60AOB ∠=︒,11OP=, 12111tan 603PP PK OP ∴==⋅︒=11PK OA ⊥Q ,22PK OA ⊥, 1122PK P K ∴∥,2211OP K OPK ∴△∽△, 222111P K OP PK OP ∴=, 22133+= 22313P K ∴=,同理可得:233313P K =+,344313P K =+,……,1313n n n P K −∴=,202220232023313P K ∴=,2022313+.【点睛】本题考查了图形的规律,解直角三角形,平行线的判定,相似三角形的判定与性质,解题的关键是学会探究规律的方法.8. (2022牡丹江中考) 下列图形是将等边三角形按一定规律排列,则第5个图形中所以等边三角形的个数是__________.【答案】485 【解析】【详解】试题分析:观察图形,找出数字与图形之间的联系: 由图可以看出:第一个图形中5个正三角形, 第二个图形中5×3+2=17个正三角形, 第三个图形中17×3+2=53个正三角形, 由此得出第四个图形中53×3+2=161个正三角形, 第五个图形中161×3+2=485个正三角形. 考点:探索规律题(图形的变化类).9. (2022牡丹江中考) 如图所示,以O 为端点画六条射线后OA ,OB ,OC ,OD ,OE ,O 后F ,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线___上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

33.规律探索一、数字规律数字规律探索反映了由特殊到一般的数学方法,同时能考查学生的分析、归纳、抽象、概括能力,因此,它成为近几年中考试题的命题热点。

例1、(2005年锦州)观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1=____.分析:这是一道数字探索性题,解这一类型题目,要用到归纳推理,它是一种重要的数学思想方法,数学史上有很多重要的发现如哥德巴赫猜想、四色猜想、费尔玛大定理等就是由数学家的探索,猜想而得,学习数学必须不断去探索、猜想、不断总结规律,才会有所发现有所创造。

答案:10000或1002 ; 练习一 1.(2005年青岛),,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+…,若符合前面式子的规律,则。

10102+=⨯+=b a b aa b2.(2005年日照)已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ; …… ……由此规律知,第⑤个等式是 . 3.(2005年陕西)观察下列等式:221 2111222222223332 ⨯⨯⨯⨯⨯⨯2+=(+)+=(+)3+=(+)……则第n 个等式可以表示为 。

4.(2005年深圳)212212+=⨯,323323+=⨯,434434+=⨯,……,若10ba 10ba +=⨯(a 、b 都是正整数),则a+b 的最小值是 _ 。

5. (2005年内江)有若干个数,依次记为,,,,,321n a a a a 若211-=a ,从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则=2005a 。

二、图形规律例题2、(2005年泸州)如图是用火柴棍摆成边长分别是1、2、3根火柴棍时的正方形,当边长为n 根火柴棍时,若摆出的正方形所用的火柴棍的根数为S ,则S = (用含n 的代数式表示,n 为正整数).分析:此题是图形规律,解决这类问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。

答案:55练习二 1.(2005年潜江、仙桃、江汉油田)如图是五角星灯连续旋转闪烁所成的三个图形。

照此规律闪烁,下一个呈现出来的图形是( )2.(2005年枣庄)在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数共有_________个. 3.(2005年泰州)如下图是小明用火柴搭的1条、2条、3条A B CD“金鱼”……,则搭n 条“金鱼”需要火柴 根. ……4.(2005年重庆)如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示).5(2005年茂名)小的黑、白两种颜色的棋子摆设如下图所示的正方形图案,则第n 个图案需要用白色棋子 枚(用含有n 的代数式表示)三、能力提高1、(2005年福州)瑞士中学教师巴尔末成功地从光谱数据、591216⋯⋯32362125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。

请你按这种规律写出第七个数据是_____。

2、(2005年连云港)右图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于,,,321A A A ….若从O 点到1A 点的回形线为第1圈(长为7),从1A 点到2A 点的回形线为第2圈,…,依此类推.则第10圈的长为 . 3、(2005年深圳南山区)观察下面图形我们可以发现:第1个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第5个图形共有________个正方形。

4(2005年南通)已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).(1)当n = 5时,共向外作出了 个小等边三角形,每个..小等边三角形的面积为 ;(2)当n = k 时,共向外作出了 个小等边三角形,这些小等边三角形的面.1条 2条 3条1O1A B积和..为 (用含k 的式子表示).5(2005年武汉课改)在计算机程序中,二杈树是一种表示数据结构的方法。

如图,一层二杈树的结点总数是1,二层二杈树的结点总数是3,三层二杈树的结点总数是7,四层二杈树的结点总数是15……照此规律七层二杈树的结点总数是 。

6.(2005年南京)如果将点P 绕定点M 旋转180°后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心。

此时,M 是线段PQ 的中点。

如图,在直角坐标系中,⊿ABO 的顶点A 、B 、O 的坐标分别为(1,0)、(0,1)、(0,0)。

点列P 1、P 2、P 3、…中的相邻两点都关于⊿ABO 的一个顶点对称: 点P 1与点P 2关于点A 对称,点P 2与点P 3关于点B 对称, 点P 3与P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5 与点P 6关于点B 对称,点P 6与点P 7关于点O 对称,…。

对称 中心分别是A 、B ,O ,A ,B ,O ,…,且这些对称中心依次循 环。

已知点P 1的坐标是(1,1),试求出点P 2、P 7、P 100的坐标。

7.(2005年武汉)在同一平面上,1条直线把一个平面分成个部分,2条直线把一个平面最多分成个部分,3条直线把一个平面最多分成个部分,那么8条直线把一个平面最多分成 部分。

8.(2005年玉溪)一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。

三层二杈树二层二杈树一层二杈树9.(北京丰台)观察下列数表: 1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行 4567…第四行第 第 第 第 一 二 三 四 列 列 列 列根据表中所反映的规律,猜想第6行与第6列的交叉点上的数应为______,第n 行(n 为正整数)与第n 列的交叉点上的数应为_________。

10. (2005年福州)瑞士中学教师巴尔末成功地从光谱数据、591216⋯⋯32362125、、中得到巴尔末公式,从而打开了光谱奥妙的大门。

请你按这种规律写出第七个数据是_____。

11.(2005年大连)在数学活动中,小明为了求2341111122222n++++⋅⋅⋅+的值(结果用n 表示),设计如图1所示的几何图形。

(1)请你利用这个几何图形求2341111122222n++++⋅⋅⋅+的值为__________。

(2)请你利用图2,再设计一个能求2341111122222n++++⋅⋅⋅+的值的几何图形。

12.(2005年重庆市)已知甲运动方式为:先竖直向上运动1个单位长度后,再水平向右运动2个单位长度;乙运动方式为:先竖直向下运动2个单位长度后,再水平向左运动3个单位长度.在平面直角坐标系内,现有一动点P 第1次从原点O 出发按甲方式运动到点P 1,第2次从点P 1出发按乙方式运动到点P 2,第3次从点P 2出发再按甲方式运动到点P 3,第4次从点P 3出发再按乙方式运动到点P 4,…….依此运动规律,则经过第11次运动后,动点P 所在位置P 11的坐标是 .图1图213、(2005年湘潭市)观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律;①211211-=⨯ ②322322-=⨯ ③433433-=⨯ ④544544-=⨯……⑴写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:⑵猜想并写出与第n 个图形相对应的等式。

四、参考答案练习一1.109 2.1523.2n 2n n n 2+=(+) ; 4.19; 5.21-练习二1.A 2.40 3.6n +2 4.13+n 5.4n+4[或填4(n+1)或4(n+2)-4或(n+2)2-n 2 能力提高 1.7781 2.79 3.554. (1)9,125S. (2)3(k -2),23(2)k Sk-. 5.1276. P 2(1,-1) P 7(1,1) P 100=(1,-3) 7. 37 8. nn 11 22⎛⎫⎪⎝⎭或9.11,21n - 10.7781 11.(1)112n-。

(2)如图1-1或如图1-2或如图1-3或如图1-4等,图形正确。

12、(-3,-4);13、⑴655655-=⨯⑵11+-=+⨯n n n n n n⋅。

相关文档
最新文档