微波基本参数测量
实验报告-微波的基本参数测量
驻波测量线的结构
使用驻波测量线进行测量时, 要考虑探针在开槽波导管内有适当的穿伸度, 探针穿伸度 一般取波导窄边宽度的 5%~10%。实验前应注意驻波测量线的调谐,使其既有最佳灵敏度, 又使探针对微波通路的影响降至最低。一般是将测量线终端短接,形成纯驻波场。移动探针 置于波节点,调节测量线,使得波节点位置的检波电流最大,反复进行多次。
(c)大驻波比的测量 波腹振幅与波节振幅的差别很大,测量线不能同时测量波腹和波节,此时可以用二 倍极小功率法进行测量。利用探针测量极小点两旁,功率为极小功率二倍的两点的距离W, 波导波长λg ,可按下式计算驻波比:
S
g W
(2) 波导波长的测量. 波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍:
3. 相对功率与衰减测量:
用分贝表示的信号衰减量 A 定义如下:
A 10log
P 1 dB P2
P 1 为无衰减时的功率, P 2 为衰减后的功率。
当检波器为平方律检波时:
A 10log
I1 I2
三、 实验步骤: 确定谐振腔波长计的刻度与信号频率的关系: 将一定频率的微波信号(点频方式)输入到检波指示器,此时功率计一般显示 出较大的功率。仔细调节谐振腔波长计的测微头, 在某一时刻, 功率计的指示值最小, 记下此时测微头的刻度,即得到一组信号频率与波长计刻度的对应关系。利用此方法 测量其它频率对应的波长刻度。 2. 测量微波在波导中的主板特性和波导波长: 用波导开关将微波信号切换到负载或短路器一边,使微波在此时发生反射,在波 导中形成驻波。将波导测量线中的信号检测器沿波导测量线移动,每隔 1mm 在选频放 大器上独处相应的 I 值,据此绘出驻波分布图,分别计算出驻波比和波导波长。 3. 相对功率与衰减测量: 1.
微波基本参数的测量实验报告
微波基本参数的测量【目的要求】1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用;2.了解微波在波导中传播的特点,掌握微波基本测量技术;3.掌握驻波测量线的正确使用方法;4.掌握电压驻波系数的测量原理和方法。
【仪器用具】微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。
【原理】微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。
从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此它兼有两者的性质,却又区别于两者。
与无线电波相比,微波有下述几个主要特占八、、A /it |钏1 I「F X-io®LU 1 1 1 1 1i I J KT* IN JQ-U1 1 』」1p\\r in 1 1 1 n i 1 1 II P1 卿]□'"阿見充¥卅电恢图1电磁波的分类1 •波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微波波段制成方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信号,从而确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。
2 •频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间-9器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。
另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。
微波测量方法
微波测量方法本文来自: 微网论坛作者: huangfeihong88日期: 前天 22:52阅读: 25人打印收藏微波测量微波测量内容虽然很多,但是驻波测量、功率测量和频率测量是微波中最常测量的三个基本参量,而其他的二级参量(如Q值、衰减、介电常数、铁磁共振线宽△H、阻抗等等)的测量都可以归结到这三种基本参量的测量加以解决。
应该强调指出的是:“调节匹配”是微波测试中必不可少的概念和调整步骤,任何微波系统正式工作之前,都必须把微波线路中各个部分调到匹配状态。
匹配意味着微波系统处于这样一种工作状态:此时微波功率由信号向负载传输而不出现反射波(驻波比ρ=1)。
为什么通常总要把微波系统调到良好的匹配状态呢?因为在微波传输系统中,存在驻波是不好的。
驻波的存在表示信号源与负载未匹配好,能量不能有效地传到负载去,使损耗增大;在大功率情况下,由于驻波的存在,在电场最大值处可能发生击穿现象;驻波的存在还会影响信号源的频率稳定,从而影响微波测量的精确度。
1.驻波测量驻波测量是微波测量中最基本、最重要的项目之一。
驻波测量可以判断微波传输系统是否处于良好的匹配状态,还可以测量波导波长、衰减、阻抗、谐振腔Q值、介电常数等等。
下面介绍测量驻波的设备和方法。
驻波测量线是测量微波传输系统中电场的强弱和分布的精密仪器,其简单原理是:使探针在开槽传输线中移动,将一小部分功率耦合出来,经过晶体二极管检波后再由指示器指示,从而看出在开槽线中电场的分布情况(相对强度)。
使用驻波测量线时要注意下列几个问题:首先,使探针在开槽波导管内有适当的穿伸度。
显然,探针穿伸度过大,会影响开槽线内的场分布情况而产生误差;穿伸度太小,又会降低测量的灵敏度。
探针穿伸度一般取波导窄壁高度b的5—10%。
其次,通过调谐装置使测量线调谐。
调谐的目的是消除探针插入测量线内引起的不匹配,并使探针感应的功率有效地送至检波晶体管。
其次,注意检波晶体管的检波律。
检波晶体管的检波电流I与管端电压V有关,而V与探针所在处的电场E成正比,I,E满足关系式:,其中κ1,n为常数。
微波基本参数的测量
微波基本参数的测量引言一 实验目的1 熟悉和掌握微波测试系统中各种常用设备的结构原理及使用方法;2 掌握微波系统中频率、驻波比、功率等基本参数的测量方法;3 按要求测出测量线中的驻波分布;二 实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
(1) 导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁 场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
(2) 色散波的特点:由于TE 波及TM 波与TEM 波的性质不同。
色散波就有其自身的特点: (a) 临界波长cλ :矩形波导中传播的色散波,都有一定的“临界波长”。
只有当自由空间的波长λ小于临界波长λc 时,电磁波才能在矩形波导中得到传播。
mm TE 波或mm TM 波的临界波长公式为:22)()(2bn a m c +=λ (1)(b)波导波长gλ和相速V 、群速Vc :色散波在波导中的波长用gλ表示。
微波的传输特性和基本测量
求出P的粗பைடு நூலகம்值后,再按依照驻波比的三种情况,进一步精确测定P值.
a)大驻波比(p>6),的测量.在大驻波比的三种情况下,检波电流Imax与Imin相差太大,在波节点上检波电流极微,在波腹上二极管检波特性远离平方律,故不能用(8.1 .2)式计算驻波比p,可采用“二倍极小功率法”.如图8.1.2 所示,
利用驻波测量线测量极小点两旁功率为其二倍的点坐标,进而求出d,则
得分
教师签名
批改日期
深 圳 大 学 实 验 报 告
课程名称:近代物理实验(一)
实验名称:微波的传输特性和基本测量
学院:物理科学与技术学院
组号17指导教师:陈静秋
报告人:梁斯迪学号:**********班级:1
实验地点科技楼B105实验时间:2012.10.7
实验报告提交时间:2012.10.15
一、实验目的
3、波导波长的测量.
波导波长在数值上为相邻两个驻波极值点(波腹或波节)距离的两倍.由于场强在极大值点附近变化缓慢,峰顶位置不易确定,买际采用测定驻波极小点的位置来求出波导波长.考虑到驻波极小点附近变化平缓,因而测量值不够准确.为此,测量时通常不采取直接测量驻波极小点位置的方式,而是通过平均值间接测量.亦即测极小点附近两点(此两点在指示器上的输出幅度相等)的坐标,然后取这两点坐标的平均值,即得极小点坐标。
4 .波导波长和驻波比的测量.关于驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比.即
微波技术实验报告
微波技术实验报告 Prepared on 22 November 2020微波技术实验指导书目录实验一微波测量仪器认识及功率测量实验目的(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。
实验内容一、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。
它主要包括微波信号特性测量和微波网络参数测量。
微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。
微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。
测量的方法有:点频测量、扫频测量和时域测量三大类。
所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。
图1-1 是典型的微波测量系统。
它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。
图 1-1 微波测量系统二、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器三、功率测量在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。
微波元器件的认识螺钉调配器E-T分支与匹配双T波导扭转匹配负载波导扭转实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。
实验二测量线的调整与晶体检波器校准实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。
实验5微波的传输特性和基本参数测量
实验五微波的传输特性和基本测量0 前言在微波测量技术中,微波测量的主要内容是频率、驻波比、功率等基本参数。
在微波工程设计中,多数情况下由于边界条件的复杂性,理论分析往往只能获得近似解,最终要通过微波测量来解决,因此,掌握微波测量技术对今后实际科研工作是非常有用的。
1 实验目的(1)初步了解微波测量系统,了解微波器件的使用和特性。
(2)了解微波测量技术,微波的传输特性。
(3)熟悉测量微波的基本参数:频率、驻波比。
(4)了解微波波导波长以及自由空间波长之间的关系。
2 原理2.1 频率的测定由于波长与频率满足关系λ=c/f,因此波长的测量和频率的测量是等效的。
在分米波和厘米波波段,频率的测量常采用谐振腔式波长计,而谐振腔波长计又可分两种:即是传输型谐振腔波长计和吸收型谐振腔波长计。
传输型谐振腔有两个耦合元件,一个将能量从微波系统输入谐振腔,另一个将能量从谐振腔输出到指示器。
当谐振腔调谐于待测频率时,能量传输最大,指示器的读数也最大。
吸收式波长计的谐振腔只有一个输入端与能量传输线路衔接,调谐是从能量传输线路接收端指示器读数的降低看出。
本实验所用的是吸收式波长计:如图(5—1)所示。
此波长计由传输波导与圆柱形谐振腔构成。
连接处利用长方形孔作磁耦合,螺旋测微计(读数结构)在旋转时与腔内活塞同步。
利用波长表可以测量微波信号源的频率。
当构成波长计的空腔与传输的电磁波失谐时,它既不吸收微波功率,也基本不影响电磁波的传输。
这种当谐振腔内活塞移动到一定位置,腔的体积正好使腔谐振于待测信号的频率,就有一部分电磁波耦合到腔内并损耗在腔壁上,从而使通过波导的信号减弱,即旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰。
反映在检波指示器上是一跌落点,此时读出波长表测微头的读数,再从波长表频率对照表上查出对应的频率。
如图(5—2)为不同谐振腔波长计的谐振曲线。
图5—1 吸收式波长计图5—2 谐振腔波长计谐振曲线(a)为传输型谐振腔波长计谐振曲线 (b)为吸收型谐振腔波长计谐振曲线2.2 波导波长以及驻波比的测量:关于驻波比,定义为波导中驻波极大值点与驻波极小值点的电场之比。
完整微波基本参数测量实验报告
(完整)微波基本参数测量实验报告微波基本参数测量实验报告【引言】微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,微波的基本性质通常呈现为穿透、反射、吸收三个特性。
微波成为一门技术科学,开始于20世纪30年代。
微波技术的形成以波导管的实际应用为其标志,若干形式的微波电子管(速调管、磁控管、行波管等)的发明,是另一标志。
在第二次世界大战中,微波技术得到飞跃发展。
因战争需要,微波研究的焦点集中在雷达方面,由此而带动了微波元件和器件、高功率微波管、微波电路和微波测量等技术的研究和发展。
至今,微波技术已成为一门无论在理论和技术上都相当成熟的学科,又是不断向纵深发展的学科。
【实验设计】一、实验原理1、微波微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。
微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热,微波炉就是利用这一特点制成的,而对金属类东西,则会反射微波。
2、微波的似声似光性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多。
使得微波的特点与几何光学相似,即所谓的似光性。
因此使用微波工作,能使电路元件尺寸减小,使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。
由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。
3、波导管波导管是一种空心的、内壁十分光洁的金属导管或内敷金属的管子。
微波基本参数的测量
微波基本参数的测量一、实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
(1) 导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁 场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即: 0=Z E ,0=Z H 。
电场E 和 磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm TE 波,又能传输mmTM波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
(2) 色散波的特点:由于TE 波及TM 波与TEM 波的性质不同。
色散波就有其自身的特点: (a) 临界波长c λ :矩形波导中传播的色散波,都有一定的“临界波长”。
只有当自由空间的波长λ小于临界波长λc 时,电磁波才能在矩形波导中得到传播。
mm TE 波或mm TM 波的临界波长公式为:22)()(2bn a mc +=λ (1)(b)波导波长g λ和相速V 、群速Vc :色散波在波导中的波长用g λ表示。
波导内由入射波与反射波叠加而成的合成波,其相平面传播的速度称为相速V 。
群速V c 是表示能量沿波导纵向传播的速度,其关系为2*c V V c =。
微波基本参数测量实验报告
(实验报告)微波基本参量测量【摘要】微波技术是一门独特的现代科学技术, 我们应掌握它的基本知识和测量的方法。
对微波测试系统的工作原理的分析研究与基本参量的测量, 能使我们掌握微波的基本知识, 了解其传播的特点, 并且我们还能学会对功率、驻波比和频率等量的测量方法。
另外, 在实验过程中我们还能熟悉功率计等实验器材的工作原理和物理学中对有关物理量的测量的思想方法。
【关键词】微波、功率、驻波比、频率、测量【引言】微波是指频率为300MHz-300GHz的电磁波, 是无线电波中一个有限频带的简称, 即波长在1米(不含1米)到1毫米之间的电磁波, 是分米波、厘米波、毫米波和亚毫米波的统称。
微波频率比一般的无线电波频率高, 通常也称为“超高频电磁波”。
微波作为一种电磁波也具有波粒二象性。
微波的基本性质通常呈现为穿透、反射、吸收三个特性。
对于玻璃、塑料和瓷器, 微波几乎是穿越而不被吸收。
对于水和食物等就会吸收微波而使自身发热。
而对金属类东西, 则会反射微波。
微波的特点有以下几点:第一.微波波长很短。
具有直线传播的性质, 能在微波波段制成方向性极强的无线系统, 也可以接收到地面和宇宙空间各种物体发射回来的微弱回波, 从而确定物体的方向和距离。
这使微波技术广泛的应用于雷达中。
第二.微波的频率很高, 电磁振荡周期很短。
比电子管中电子在电极经历的时间还要小。
普通电子管不能用作微波振荡器、放大器和检波器, 而必须用原理上完全不同的微波电子管来代替。
第三.许多原子和分子发射和吸收的电磁波的波长正好处在微波波内。
用这特点研究分子和原子的结构, 发展了微波波谱学和量子无线电物理学等尖端学科, 还研制了低噪音的量子放大器和极为准确的分子钟与原子钟。
第四.微波可以畅通无阻的穿过地球上空的电离层。
微波波段为宇宙通讯、导航、定位及射电天文学的研究和发展提供了广阔的前景。
【正文】本实验中, 我们首先要引入两个基本概念: 反射系数与驻波比。
实验七-微波技术汇总
实验七-微波技术汇总实验七微波的传输特性和基本测量微波通常是指波长为1mm至1m ,即频率范围为300GH z至300MHz 的电磁波。
其下端与无线电通讯的短波段相连接,上端与远红外光相邻近。
根据波长差异还可以将微波分为米波,分米波,厘米波和毫米波。
不同范围的电磁波既有其相同的特性,又有各自不同的特点。
下面对微波的特点作简要介绍。
1.微波波长很短,比建筑物、飞机、船舶等地球上一般物体的几何尺寸小得多,微波的衍射效应可以忽略,故,微波与几何光学中光的传输很接近,具有直线传播性质,利用该特点可制成方向性极强的天线、雷达等。
2 .微波频率很高,其电磁振荡周期为10-9—10-12秒,与电子管中电子在电极间渡越所经历的时间可以相比拟。
因此,普通的电子管已不能用作微波振荡器、放大器和检波器,必须采用微波电子管(速调管、磁控管、行波管等)来代替。
其次,微波传输线、微波元器件和微波测量设备的线度与微波波长有相近的数量级,因此,分立的电阻器、电容器、电感器等全不同的微波元器件。
3.微波段在研究方法上不象低频无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场。
以波长、功率、驻波系数等作为基本测量参量。
4.许多原子、分子能级间跃迁辐射或吸收的电磁波的波长处在微波波段,利用这一特点研究原子、原子核和分子的结构,发展了微波波谱学、量子无线电物理等尖端学科,以及研究低嘈声的量子放大器和极为准确的原子、分子频率标准。
5.某些波段的微波能畅通无阻地穿过地球上空的电离层,因此微波为宇宙通讯、导航、定位以及射电天文学的研究和发展提供了广阔的前景。
由此可见,在微波波段,不论处理问题时所用的概念、方法,还是微波系统的原理结构,都与普通无线电不同。
微波实验是近代物理实验的重要实验之一。
微波技术的应用十分广泛,深入到国防军事(雷达、导弹、导航),国民经济(移动通讯、卫星通信、微波遥感、工业干燥、酒老化),科学研究(射电天文学、微波波谱学、量子电子学、微波气象学),医疗卫生(肿瘤微波热疗、微波手术刀),以及家庭生活(微波炉)等各个领域。
微波基本参量实验报告
近代物理实验报告微波基本参量学院班级姓名学号时间微波基本参量【摘要】本实验让我们学习微波基础知识和掌握微波基本测量技术;同时学习用微波作为观测手段来研究物理现象的基本原理和实验方法,最后了解微波测量系统的基本组成,学会用谐振腔波长表测量微波频率,掌握了微波功率、驻波比测量的基本实验方法与技术。
【关键词】微波、功率、驻波比、频率、特性阻抗【引言】微波是一种波长较短的电磁波,频率范围约为300 MHz-300GHz,对应波长范围约为1m-1mm。
在电磁波波谱表中,微波的波长介于无线电波与光波之间,如图1 所示。
微波波段还可以细分为“分米波”(波长为1m 至10cm),“厘米波”(波长10cm 至1cm)和“毫米波”(波长为1cm 至1mm)。
波长在1 毫米以下至红外线之间的电磁波称为“亚毫米波”或超微波,这是一个正在开发的波段。
波长较长的分米波和无线电波的性能相近,波长较短的毫米波则与光波的性质相一致。
微波技术是近代发展起来的一门尖端科学技术,其重要标志是雷达的发明与使用。
微波技术不仅在国防、通讯、工农业生产的各个方面有着广泛的应用,而且在高能粒子加速器、受控热核反应、射电天文与气象观测、分子生物学研究、等离子体参量测量、遥感技术等当代尖端科学研究中也是一种重要手段。
例如,微波所辐射的能量可与物质发生相互作用,使用微波直线加速器和微波频谱仪可对原子和分子结构进行研究,微波衍射仪可用来研究晶体结构;微波波谱仪可测定物质的许多基本物理量,微波谐振腔又可用来测量低损耗物质的介质损耗及介质常数,等等。
因此,微波测量技术是一门基本的实验技术。
【实验方案】一、实验原理1.微波的特点与波导传输特性微波的特点:与低频无线电波相比,微波频率很高,波长很短。
因此,微波具有许多特点。
(1)与几何光学中光波类似,波长很短的微波也具有直线传播的性质。
因此,在微波波段可制成方向性极高的天线系统,通过检测发射微波和接收空间各种物体反射回来的微波,从而确定物体的方向和距离。
s参数测试方法
s参数测试方法【原创版】目录1.S 参数的定义与意义2.S 参数测试方法的原理3.S 参数测试方法的步骤4.S 参数测试方法的应用实例5.S 参数测试方法的优缺点分析正文一、S 参数的定义与意义S 参数(Scattering parameters)是一种描述电磁波在传输线上传播特性的参数,其主要用于分析和设计微波传输系统。
S 参数反映了微波信号在传输线上的散射特性,包括信号的反射和传输特性。
在微波传输系统中,S 参数是一个关键的性能指标,对于确保系统的正常工作和优化系统性能具有重要意义。
二、S 参数测试方法的原理S 参数测试方法是一种用于测量微波传输系统中 S 参数的实验方法。
其基本原理是利用散射矩阵和传输矩阵之间的关系,通过测量系统的输入和输出端口之间的散射矩阵,从而计算出 S 参数。
具体来说,S 参数测试方法通过对传输线上的输入信号和反射信号进行测量,然后通过计算得出 S 参数的值。
三、S 参数测试方法的步骤1.准备测试设备:包括信号源、传输线、测试仪器等。
2.连接测试设备:将信号源连接到传输线上,并将传输线连接到测试仪器。
3.设置测试参数:根据需要测量的 S 参数类型,设置测试仪器的相关参数。
4.测量输入和反射信号:通过测试仪器测量传输线上的输入信号和反射信号。
5.计算 S 参数:根据输入和反射信号的测量结果,利用相关公式计算出 S 参数的值。
四、S 参数测试方法的应用实例S 参数测试方法在微波传输系统中有广泛的应用,例如在通信系统、雷达系统、卫星接收系统等。
通过 S 参数测试方法,可以对微波传输系统的性能进行准确评估,为系统的优化和改进提供重要依据。
五、S 参数测试方法的优缺点分析优点:1.测量精度高:S 参数测试方法可以直接测量微波传输系统中的 S 参数,具有较高的测量精度。
2.适用范围广:S 参数测试方法适用于各种类型的微波传输系统,具有较强的通用性。
3.系统性能评估准确:通过 S 参数测试方法,可以对微波传输系统的性能进行准确评估,为系统的优化和改进提供重要依据。
微波基本参数的测量
实验六微波基本参数的测量实验目的1.了解微波传输线的传输特性;2.熟悉波导测量线的使用;3.学会驻波、衰减、波长、波导波长等基本参数的测量。
实验原理由于微波的工作频率很高(300MHz-300GHz),用普通导线已无法克服传输微波时引起的辐射与趋附效应,所以微波有其专用的传输线,常见的微波传输线有同轴线、波导、微带线;其中尤以波导传输线最为常见它是矩形或圆形的金属管,管的两端装有法兰盘,以便于互相连接。
波导具有传输功率大,衰减小的优点。
微波在波导中以电磁波的形式向前传输。
一、矩形波导的电磁波微波能量的传输是应用波导,它是无内导体的空心金属管。
通常其横截面形状为圆形和矩形。
金属管实质上起屏蔽作用。
强迫微波在波导内沿轴向前进,向负载传输电磁能量。
由电磁场的基本特性可知,电力线与磁力线永远交链,并且在导体表面上磁力线总是与导体表面平行,而电力线必与导体表面垂直。
因此,在无限长波导内满足条件的可能传输微波只有两种形式:一类电磁场波型是沿传播方向(Z方向)无电场分量,即E Z = 0,电场只存在波导的横截面上,称横电波,也称为TE波;另一类则是沿传播方向无磁场分量,即E Z = 0,磁力线在截面上闭合,称横磁波,也称TM波。
TE波或TM波在波导中的形成(称为激励)和微波的激励方法及频率都有关系。
我们以实际应用上最重要的矩形波导内的TE波为例说明之。
今在矩形波导的宽边中央开一小孔并插进一电偶极子(或探针),它通常是微波振荡器向波导传递能量的同轴线内导体的延续部分。
显然探针相当于一个小天线,它能向四周辐射电磁波,由于波导管壁对微波的反射作用,在波导内便形成杂乱的波形,若其中存在这样的一个平面波,它从某一方向入射到波导的窄壁,并在两窄壁上往复反射,形“之”字形沿Z轴前进,如果波导的尺寸和入射方向恰当,正好使入射波和反射波的合成波在金属表面处形成电场的波节,而在波导的宽边中央形成电场驻波的波腹,正好满足电磁场的边界条件,这样的合成波就是TE波,它可在这个波导中激励和传输。
微波器件测量手册
微波器件测量手册
(实用版)
目录
1.微波器件测量手册概述
2.手册的主要内容
3.手册的应用范围和意义
正文
【微波器件测量手册概述】
微波器件测量手册是一本针对微波器件的测量、评估和测试的专业指南,它为微波工程师和技术人员提供了一套完整的测量方法和技术,以确保微波器件的性能和质量。
这本手册详细介绍了微波器件的各项指标,包括频率、功率、增益、驻波等,同时提供了详细的测量步骤和注意事项,是微波工程师和技术人员在研发、生产和维护微波设备时的重要参考资料。
【手册的主要内容】
微波器件测量手册主要包括以下内容:
1.微波器件的概述和分类,包括微波天线、微波放大器、微波振荡器、微波混频器、微波滤波器等常见微波器件的基本原理和特性。
2.微波器件的测量方法和技术,包括各种参数的测量方法和计算公式,如频率测量、功率测量、增益测量、驻波测量等。
3.微波器件的性能评估和测试,包括对器件的各项性能指标进行分析和评估,以及如何进行全面的测试和验证。
4.微波器件的测量仪器和设备,包括各种微波测量仪器的使用方法和操作技巧,以及如何选择合适的测量设备。
【手册的应用范围和意义】
微波器件测量手册的应用范围非常广泛,它不仅适用于微波通信、雷达、导航、遥控等领域的研发和生产,也适用于微波设备的维护和维修。
通过使用这本手册,微波工程师和技术人员可以更好地了解微波器件的性能和特性,更准确地测量和评估器件的各项指标,从而提高微波设备的质量和可靠性。
此外,微波器件测量手册对于微波技术的研究和发展也具有重要的意义。
通过不断地更新和完善这本手册,我们可以及时了解微波技术的最新发展和应用,进一步推动微波技术的进步和发展。
微波基本参数的测量—原理
微波基本参数的测量一、实验目的1、了解各种微波器件;2、了解微波工作状态及传输特性;3、了解微波传输线场型特性;4、熟悉驻波、衰减、波长(频率)和功率的测量;5、学会测量微波介质材料的介电常数和损耗角正切值。
二、实验原理微波系统中最基本的参数有频率、驻波比、功率等。
要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。
1、导行波的概念:由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。
导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。
导行波可分成以下三种类型: (A) 横电磁波(TEM 波):TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即: 0=Z E ,0=Z H 。
电场E 和磁场H ,都是纯横向的。
TEM 波沿传输方向的分量为零。
所以,这种波是无法在波导中传播的。
(B) 横电波(TE 波):TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。
亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。
(C) 横磁波(TM 波):TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。
亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。
TE 波和TM 波均为“色散波”。
矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。
2、波导管:波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。
常见的波导管有矩形波导和圆波导,本实验用矩形波导。
矩形波导的宽边定为x 方向,内尺寸用a 表示。
窄边定为y 方向,内尺寸用b 表示。
10TE 波以圆频率ω自波导管开口沿着z 方向传播。
在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到:()sin()j t z o y x E je ωβωμππα-=-, ()sin()j t z o x xH j e ωβμαππα-=()cos()j t z z x H eωβπα-=, x y z E E E ==,2g πβλ=其中,位相常数g λ=c fλ=。
微波信号频率和波长测量
石英晶体振荡器
采用LC振荡回路
Zin
分布电容
晶体盒
Rq
Yout
正反馈放大
C0 Cq
Lq
分布电容
一般晶体振荡器旳频率稳定度: 长久频率稳定度—— 10-10~10-8/日 短期频率稳定度 < 10-11/S
若已知信号和未知信号都带有谐波,则需要判断谐波数,一般这是很困难旳事 情,所以在用这措施进行测试时,需要大致懂得信号频率。
目前外差法已经被计数法频率计所替代。
计数法
原理:
将未知频率fx与原则频率fs相比较,此时是利用未知频率fx
旳脉冲计数法而测得fx。如利用原则频率fs去控制一计数闸门旳
开放时间,假如开方时间 等于fs旳m个周期,即
微波信号频率及波长测量
频率定义
• 频率是周期性信号旳主要参量之一,也是微波信号源旳两大要素之一。 它是微波测量中经常需要搞清楚旳一种参量,而且也是最轻易被精确 测量旳一种参量。
• 频率是周期旳倒数,即每秒中振荡旳周期数
频率:
f=1/T(Hz)
角频率: ω=2π/T= 2πf(rad/s)
瞬时角频率:ω(t)=dψ/dt
信号频率旳校准
采用前面简介旳四种频标构成鉴相器对压控晶体振荡器进行锁相 稳定,使压控晶体振荡器旳输出信号到达所用频标旳稳定度,然 后将此信号与被校准信号一同加到一种比相仪进行比较,比相仪 将统计一段时间内旳累积相位差所相应旳时间差,从而给出被校 准频率旳相对误差并进行调校。
一般单位可能没有以上频率原则,所以能够采用一种简朴易行旳 措施,即采用“电视彩色副载波传播旳原则频率”进行校准。副 载波频率稳定度为5×10-12/30分钟,它是由中央电视台公布旳, 用铯原子频标直接控制频率合成器产生旳。
1kw功率微波测量方法
1kw功率微波测量方法
1kw功率微波测量的方法可以分为直接测量法和间接测量法两种。
1. 直接测量法:直接测量法是指使用功率计或功率传感器直接测量1kw微波功率的方法。
其中,功率计是一种专门用来测
量微波功率的仪器,可以通过将微波信号输入功率计并读取其显示值来获取功率大小。
功率传感器则是一种能够转化微波功率为电信号并输出的传感器,通常与功率计配套使用。
这种方法通常具有较高的测量精度和稳定性。
2. 间接测量法:间接测量法是指利用其他参数间接测量1kw
微波功率的方法。
常见的间接测量方法包括热敏电阻法、热流法和能量积分法等。
其中,热敏电阻法是通过在微波器件中添加一个热敏电阻,通过测量电阻温度变化来计算微波功率大小;热流法是通过测量微波器件或传感器表面的热量变化来推算微波功率;能量积分法是通过将微波能量积分累加的方式获得微波功率。
这些方法通常需要进行一定的校准和修正,测量精度较直接测量方法略低。
以上是常用的1kw功率微波测量方法,不同的场景和需求会
选择不同的测量方法。
微波设备的性能测试与分析
微波设备的性能测试与分析随着计算机网络和移动通信的高速发展,微波设备在通讯、工业制造、医疗等领域越来越广泛地应用,为各行各业的发展起到了重要的支持作用。
但是,不同的微波设备在性能上会存在差异,如何对其进行有效的性能测试和分析成为了一个必需的步骤。
本文将从微波设备的基本概念、常用的测试方法和分析技术入手,探讨微波设备的性能测试与分析。
一、微波设备的基本概念微波设备是指工作频率在300MHz至300GHz之间,波长在1mm至1m之间的电子设备。
它们的工作频率高、波长短、工作方式多样,是现代通讯和电子技术的重要组成部分。
常见的微波设备包括天线、收发器、信号发生器、功率放大器、滤波器等。
二、微波设备的测试方法微波设备的测试方法主要包括以下几种:1. S参数测试S参数测试是一种最基本的微波设备测试方法,可以用来描述微波器件的性能。
它通过测量微波信号在器件中传输时的反射和透射系数,来描述微波器件的电学特性。
其中,S11参数描述的是器件的反射系数,S21参数描述的是器件的透射系数。
2. 功率测试功率测试是测量微波器件的功率输出和输入的测试方法。
它可以用来描述微波器件的功率特性,比如线性范围、饱和功率和输出功率等。
通常利用功率计、功率传感器和负载等设备来实现功率测试。
3. 噪声测试噪声测试是测量微波器件中产生的噪声的测试方法。
噪声通常是由器件内的随机热噪声引起的,与器件本身的结构和工艺有关。
它可以用来描述微波器件的噪声系数、等效温度等特性。
常用的噪声测试方法包括单极低噪声放大器法、单位增益法和热噪声源法等。
4. 频谱分析频谱分析是测量微波信号频谱的测试方法。
它可以分析微波信号的频谱特性,如频谱形状、频率分布等。
常用的频谱分析方法包括功率谱分析法、快速傅里叶变换法和谱线分析法等。
三、微波设备的性能分析对微波设备进行性能分析是测试的重要补充,可以帮助工程师更好地了解器件的性能特点,并对其进行系统性的优化和改进。
常见的性能分析方法包括:1. 反向散射系数分析反向散射系数分析是一种基于S参数的分析方法,可以用来评估微波器件的匹配性能和稳定性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江师范大学实验报告
实验名称微波基本参数测量班级物理071 姓名陈群学号07180116
同组人刘懿钧实验日期09/10/27 室温气温
微波基本参数测量
摘要:微波是一种波长较短的电磁波。
在电磁波波谱表中,微波的波长介于无线电波与光波之间。
波长较长的分米波和无线电波的性能相近,波长较短的毫米波则
与光波的性质相一致。
本实验有以下目的(1)了解微波传输系统的组成部分。
(2)掌握微波的基本测量:频率、功率、驻波比和波导波长
关键词:微波功率驻波比频率特性阻抗波长可变衰减器
引言:微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频端与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的
波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波,厘米波
和毫米波。
微波有以下基本特征:1.微波的波长极短,比地球上一些物体的几
何尺寸小得多,因此当微波照射到这些物体上时,产生显著的反射,其传播特
性与几何光学相似,具有“似光性”直线传播的特点;2.微波的频率极高,即
振荡周期极短(10-9~10-12秒),与一般电真空器械中的电子渡越时间同一数量
级;3.微波可以毫无阻碍地穿过电离层,具有穿透性;4.许多的原子和分子发
射和吸收原子电磁波波长正好处于微波波段内;5.研究方法和测量技术上,要
从“电磁场”的概念去研究和分析,测量功率、驻波比、频率和特性阻抗等。
近年来,微波边缘学科,如微波超导、微波化学、微波生物学、微波医学都得
到长足的发展。
实验方案:
1、实验原理
微波的波长通常被认为在1mm~1M之间,其频率范围相当于300GHz~300MHz。
如此之高的振荡频率,势必会引起一系列新的问题。
现将微波与无线电波的主要不同点简述如下:(1)微波的产生具有其独特性
电子管中,电子由阴极到达阳极的时间称为“电子渡越时间”,一般是在s的数
量级。
这对频率较低的无线电波来讲,几乎可被忽略。
但对频率高于300 MHZ的微波,则将受到制约。
若想从电子管中获得微波信号,只能借助于电子流与谐振腔相互交换能量的方式来进行。
(2)在研究方法上两者有明显的不同
在低频电路中,工作波长已远远超出实际电路的几何尺寸(例如:对应于50Hz的电磁波其波长值为6000KM)。
电路中各点的电流和电压值可被认为是在同一时刻建立起来。
微波系统则不然,由于微波器件的线度十分接近于工作波长,电压、电流等概念将有别于低频电路。
为此,微波系统的研究方法必须从三度空间场的理论着手,把“路”的观点转化成“场”的观念、把“基尔霍夫定律”转化成“麦克斯韦方程组”、把“集总参数”转化成“分布参数”,才能认识和讨论有关问题。
(3)微波在传输特性上类似于光波
微波与光波虽在波长值上有差异,但均远远地小于地球上一般物体的实际尺寸。
尤其对微波中的毫米波,其传输特性与光波更为接近,使用准光传输线就能同时传播微波与光波。
同样,一般的光学器件和光学特性,微波也都具备。
微波的突出贡献尤其表现在空间技术领域,使用会聚成束的微波电磁场能量,可以进行定向发射,并能顺利地穿透空间电离层,已被人们称为“宇宙的窗口”。
(4)微波基本参数的测量方法与低频电路大不相同
阻抗、波长、驻波比和功率等微波参数的测量方法有其独特之处。
微波阻抗的测量是通过检测电场强度的相对值(即:驻波比)来实现。
波长的测量可经校准过的谐振腔来进行(即通常所称的“吸收式波长计”)。
功率的测量是利用微波的热效应,通过热电换能器进行间接的量测。
2、实验装置
图(1)
3、实验内容和要求
(1)测试前的准备工作
根据讲义中介绍的常用微波器件和实验室提供的仪器使用说明书,掌握它们的工作原理及使用方法。
开启反射速调管微波源电源开关。
将微安表接在测量线输出端,适当选择微安
表量程和可变衰减器位置,使测量线调在驻波波腹时,微安表能指示到表盘中以上的读数。
(2)频率测量
按图(1)所示连接微波系统,将检波器及检波指示器接到被测件位置,利用波长表可以测出微波信号源的频率,旋转波长表的测微头,当波长表与被测频率谐振时,将出现吸收峰,反映在检波器上的指示是一跌落点,读出测量头读数,查出对应频率。
(3)功率测量
传输线路终端接入探头和功率计,并选择合适的量程,功率计调零后把波导开关旋至检波器上,读出功率读数。
(4)微波驻波比测量
驻波比依据不同的负载,结合大,中,小驻波比,分别使用二倍最小功率法,直接测量和平均测量法测量。