三视图(1)doc
25.2三视图(1) 教案
下列几何体的三种视图有没有错误(不考虑尺寸)?为什么?如果错了,应怎样改正?
5.填线补全下面物体的三种视图:
4、课堂小结:
本节课你有什么收获?还有什么不明白的地方?
小结与反馈:
三视图
主视图——从正面看到的图
左视图 ——从左面看到的图
俯视图——从上面看到的图
画物体的三视图时,要 符合如下原则:
主视图左视图
俯视图
大小:长对正,高平齐,宽相等1页习题第1题
选做:1.根据前面所学的视图知识,画出图中正六棱柱的主视图,左视图和俯 视图。
预习:由三视图怎样推出实物图?
家庭作业:《基训》同步
讨论补充记录
学生自学。对不会的问题要做好批注或随笔,作为合作探究的问题进行合作探究。教师检查学情,不指导、不提问、不干扰。
我们用三个互相垂直的平面(例如:墙角处的三面墙面)作为投影面,
其中正对着我们的叫正面,正面下方的叫水平面,右边的叫做侧面。
2..主视图,俯视图,左视图
一个物体在三个投影面内同时进行正投影,
在 正面得到的由前向后观察物体的视图,叫主视图(从前面看);
在水平面内得到的由上向下观察物体的视图,叫俯视图(从上面看)
情感态度与价值观:通过主动探究、合作交流,在学习活动中体验获得成功的喜悦.
重难点
重点:1掌握画三视图必须符合的规律。2会正确画出物体的三 视图。
难点:会正确画出物体的三视图。
教
学
过
程
教
学
过
程
1、导入新课、揭示目标(2分钟左右)
1,了解三视图的概念,
2,掌握画三视图必须符合的规律
3,会正确画出物体的三视图。
机械制图_三视图的形成及其投影规律
机械制图--三视图的形成及其投影规律(图)--------------------------------------------------------------------------------该文章讲述了机械制图--三视图的形成及其投影规律(图).第五讲三视图的形成及其投影规律知识要点(1)中心投影的概念(2)斜投影的概念(3)正投影的概念(4)三视图的形成及其投影规律(5)画三视图的方法和步骤(6)利用AutoCAD绘制三视图教学设计用动画和电子挂图介绍三视图的形成及其投影规律,然后介绍三视图的画法,在介绍三视图的画法时,要紧紧抓住形体分析法,从一开始就要同学养成正确观察方法和正确的画图习惯,千万不能看到一条棱就画一条线,不作形体分析。
在讲形体分析法时,对具体模型可灵活介绍线面分析法的方法,不能局限于教材的顺序,在组合体中才介绍形体分析法和线面分析法。
这样为第四章的相贯线和截交线也打下了基础。
课前准备准备好上课用的模型。
教学内容(1)物体的投影为了得到物体的投影,必须具有投射线、物体和投影面三个条件,其中投射线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为中心投影法和平行投影。
图3-1物体的影子和投影(2)心投影中心投影法的投射线自一点S发出,物体投影的大小取决于S到投影面的距离d和物体相对与投影面的距离,当d一定时,物体离光源S越近,投影越大。
图3-2中心投影法(3)行投影和正投影投射线为平行线时的投影称为平行投影。
若投射线与投影面倾斜,则为斜投影;若投射线与投影面垂直,则为正投影。
正投影的特性如下:1)实形性:当物体上的平面图形(或棱线)与投影面平行时,其投影反映实形(或实长);2)积聚性:当物体上的平面图形(或棱线)与投影面垂直时,其投影积聚为一条直线(或一个点);3)类似性:当物体上的平面图形(或棱线)与投影面倾斜时,其投影与原形状类似,即凹凸性、直曲性和边数类似,但平面图形变小了,线段变短了。
三视图教案
三视图教案
一、教学内容
三视图
二、教学目标
1. 了解三视图的概念。
2. 掌握三视图的表达方法。
3. 能够画出物体的三视图。
三、教学重点
1. 三视图的概念。
2. 三视图的表达方法。
四、教学难点
1. 能够画出物体的三视图。
五、教学过程
1. 导入(5分钟)
通过展示一张物体的三视图让学生对三视图有一个大致的了解,并与学生一起讨论三视图的作用和重要性。
2. 讲解三视图的概念(10分钟)
向学生介绍三视图的概念:三视图是指物体从不同角度观察得到的三个平面图,分别是俯视图、前视图和侧视图。
三视图能够全面展示物体的形状和细节。
3. 讲解三视图的表达方法(10分钟)
向学生介绍三视图的表达方法:三视图采用正交投影的方法,即把物体放置在一个坐标系中,从不同方向上进行投影,得到三个平面图。
俯视图是从上方往下投影得到,前视图是从前方往后投影得到,侧视图是从侧面往前投影得到。
4. 实例演练(20分钟)
通过给学生提供一些物体的图形描述让他们尝试画出物体的三视图,并让他们互相展示并讨论。
5. 小结(5分钟)
回顾本节课的学习内容,强调三视图在工程图纸中的重要性,并鼓励学生多加练习提高自己的三视图绘制能力。
六、教学资源
1. 三视图的示例图。
2. 提供物体的图形描述的作业题。
七、教学评估
通过学生在实例演练环节的表现来评估他们是否掌握了三视图的绘制方法。
三视图(20个含答案)
三视图(一)1(2011西城一模理12).一个棱锥的三视图如图所示,则这个棱锥的体积为_____.2(2011西城一模文5).一个棱锥的三视图如图所示,则这个棱锥的体积是(A)6(B)12(C)24(D)363.(2011朝阳一模理6)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形,则此三棱锥的体积等于()(A )612(B )33(C )64(D )2334(2011门头沟一模理3).一几何体的三视图如右图所示,则该几何体的体积是(A) 2 (B) 4 3(C)312+(D)316+正(主)视图俯视图侧(左)视图3443 33正(主)视图俯视图侧(左)视图3443 33侧视图正视图1俯视图2主视图左视图111ABC DO EA 1B 1C 1D 1 5(2011石景山一模理4).一个空间几何体的三视图及部分数据如图所示(单位:cm ),则这个几何体的体积是( ) A . 33cm B .352cm C . 32cm D .332cm6(2011朝阳一模文6.)已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于()(A )23(B )33(C )223 (D )2337(2011丰台文5).如图所示,O 是正方体ABCD -A 1B 1C 1D 1对角线A 1C 与AC 1的交点,E 为棱BB 1的中点,则空间四边形OEC 1D 1在正方体各面上的正投影不可能...是( )8(2011海淀一模文11). 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_____.(A) (B) (C) (D)正视图俯视图侧视图13PDCBA1A 1D 1B 1C 左视主视9(2011门头沟一模文10).一几何体的三视图如左下图所示,则该几何体的体积是10(2011石景山一模文4).一个空间几何体的三视图及部分数据如图所示 (单位:cm ),则这个几何体的表面积是( ) A .29πcm B .212πcm C .215πcm D .224πcm参考答案:1.122.B3.B4.B5.D6.B7.A _8._1__9. 3710.D俯视23主视左视11(第10题(二)1(10。
三视图
视图和三视图:(1)视图:当我们从某个角度观察一个物体时,所看到的的图像叫做物体的一个视图。
视图也可以看做物体在某个角度的光线的投影,对于同一物体,如果从不同的角度观察,所得到的视图可能不同。
(2)三视图:一个物体在三个投影面(正面、侧面、水平面)内同时进行正投影,得到三种图形,叫做三视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图;左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图。
三视图中各种视图分别是从不同方向表示物体的,三者结合起来就能够较全面的反映物体的形状。
三视图反映物体的特征如下:主视图反映几何体的长和高;俯视图反映几何体的长和宽;左视图反映几何体的宽和高。
常见几何体的三视图:1、(2011四川达州,3,3分)如图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A、B、C、D、考点:简单组合体的三视图。
分析:根据左视图是从左面看到的图判定则可.解答:解:左面看去得到的正方形从左往右依次是2,1,故选B.点评:本题考查了几何体的三视图,从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.n2、(2011四川广安,9,3分)由个相同的小正方体堆成的几何体,其视图如下所示,则的最大值是()A .18B .19C .20D .21考点:三视图,由三视图确定物体的个数专题:视图与投影分析:综合主视图和俯视图,可知该几何体由三层组成,最底层最多有7个小正方体,第二层最多有7个小正方体,第三层最多有4个小正方体,故最大为7+7+4=18.解答:A点评:解决此类问题要具备空间想象能力,根据主视图与俯试图的形状来想象出几何体的组合方式,确定该物体的行数、列数和层数,确定出每层可能的最多小正方体的个数后即可判断.3、(2011,四川乐山,4,3分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 、G 分别是AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是( )A. B. C. D. 考点:简单组合体的三视图。
三视图全解
《立体图形》三视图知识点及解题思维全解知识点及解题思维:三视图:①理解三视图中包含立体图形的行、列、层②能从俯视图反推立体图形,并画出其他视图一.基础:画三视图(观察能力、空间想像力)主视图(从前往后看)看到的是列(每行个数的最大数)和层(每列上的最大层数),与行无关。
层,每列上的层数列数左视图(从左往右看)看到的是行(每列个数的最大数)和层(每行上的最大层数),与列无关。
从后往前排列层(每行层数的最大值)行(每列个数中最大值)俯视图(从上往下看)看到的是最底层的每行和每列的数字,与层无关。
最底层每行的个数最底层每列的个数二.题型(一)简单题:根据俯视图,画主视图与左视图(抓住三种视图的特点即可) 例:如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字 表示该位置的小立方块的个数。
画出它的主视图与左视图。
解题思路:俯视图能确定立体图的底面的行、列,可知这个几何体有三行三列。
上面的数字表示该列每个上面的层数。
那么从前往后看(主视图),最左边的是三个,中间是2个,最右边是4个,即从左往右看(左视图),最左边的是2个,中间的是3个,右边的是4个层行列24132(二)根据两种视图,判别立体图形的形状及组成数目。
1.中等题(空间想像力+逆向推理能力):题目告诉俯视图。
解题思路:在俯视图上标上表示每个方块位置上的层数的数字。
例:下面是几何体的主视图和俯视图,请求出这个几何体最多要向个小立方体块?最少要几个小立方体块?俯视图主视图11131131133333最多块数最少块数解题思路:从俯视图开始分析,可以几何体最底层有三行三列;结合主视图看,第一列的层数最多是3层,第二列的层数最多是3层,最三列的层数最多是1层。
所以要想组成的小方块数最多,可以让每列中的任一层数都是最大值;要想组成的小方块数最少,必须让每一列层数中最多出现一个最大值,而其余每列上的层数都为1。
即:2.高难题(空间想像力+逆向推理能力+分类讨论):题目未告诉俯视图 解题思路:先根据其它两种视图,画出俯视图,再标上表示层数的数字。
第8讲三视图
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
三视图
一.教学目的了解工程图样的视图方法,理解建筑剖面图的形成原理,掌握各种剖面图的使用及画法。
二.教学重点讲课重点:剖面图的形成及画法。
三.教学难点如何正确地绘制形体的剖面图,帮助学生更好地建立空间概念。
四.布置作业习题集P83、84、85(4)、87§9-1 视图一、基本视图表达一个形体可有六个基本投射方向。
相应地有六个基本投影面分别垂直于这六个基本投射方向。
通常也把这六个基本投射方向称为六个基本视向,垂直于V面、H面、W面的基本投射方向分别称为正视方向、俯视方向、侧视方向。
六个基本投影面组成了一个方箱,把待表达的形体围在当中。
形体在这些基本投影面上的投影称为基本视图。
同三面图一样,六个基本视图之间仍然保持着内在的投影联系,即“长对正,高平齐,宽相等”的三等规律。
在实际工作中,当在同一张图纸上绘制同一个物体的若干个视图时,为了合理地利用图纸可将各视图的位置按这样的顺序进行配置。
此时每个视图一般应标注图名。
图名宜标注在视图的下方或一侧,并在图名下用粗实线绘一条横线,其长度应以图名所占长度为准。
二、镜像投影有些工程构造,如板梁柱构造节点(图a),因为板在上面,梁、柱在下面,按第一角画法绘制平面图的时候,梁、柱为不可见,要用虚线绘制,这样给读图和尺寸标注带来不便。
如果把H面当作一个镜面,在镜面中就能得到梁、柱为可见的反射图像,这种投影称为镜像投影。
镜像投影法属于正投影法。
镜像投影是形体在镜面中的反射图形的正投影,该镜面应平行于相应的投影面。
用镜像投影法绘图时,应在图名后加注“镜像”二字(图b),必要时可画出镜像投影画法的识别符号(图c)。
这种图在室内设计中常用来表现吊顶(天花)的平面布置。
§9-2 剖面图一、剖面图的基本概念1.概念:工程上常采用作剖面的办法,即假想用剖切面在形体的适当部位将形体剖开,移去剖切面与观察者之间的部分形体,把原来不可见的内部结构变为可见,将剩其余的部分投射到投影面上,这样得到的投影图称为剖面图,简称剖面。
投影法三视图
2投影法和三视图2.1体的三视图及其投影规律2.1.1常用的投影方法在工程上常用各种投影方法绘制工程图,常用投影方法有中心投影法、平行投影法。
(1)中心投影法如图2-1-1所示的投影法中,所有的投影线都汇交于一点,称为中心投影法。
中心投影法得到的物体的投影与投影中心、空间物体和投影面三者之间位置有关,投影不能反映物体的真实大小,但是图形富有立体感。
因此,中心投影法通常用来绘制建筑物或富有逼真感的立体图,也称为透视图。
图2-1-1 中心投影法(2)平行投影法如图2-1-2所示,投射线Aa、Bb、Cc是相互平行的,称为平行投影法。
平行投影法又称为正投影法和斜投影法。
(a)正投影法 (b)斜投影法图2-1-2 平行投影法投射线垂直于投影面,为正投影法;投影线倾斜于投影面为斜投影法。
在平行投影法中,如果平面与投影面平行,得到的投影就能反映平面的真实形状和大小并且投影同平面和投影面的距离无关。
2.1.2投影规律在机械图中常用正投影法,它具有以下规律:1.真实性:当空间物体平行于投影面时,投影反映空间物体的实形。
2.积聚性:当空间物体垂直于投影面时,投影积聚为直线和点。
3.类似性:当空间物体倾斜于投影面时,投影与原图形类似。
2.2点的投影特性点是组成形体的最基本的几何要素。
2.2.1点的单面投影(如图2-2-1所示)设定投影面P,由一个空间点A做垂直于P面的投影线,相交于P面上一点a,点a就是空间点A在P面上的投影。
由此可见:一个空间点在一个投影面上有唯一确定的投影。
反之,如果已知点A在投影面P上的投影a,不能唯一地确定该点的空间位置,这是由于在从点A所做的P面的垂直线上所有各点的投影都位于a处。
图2-2-1 点的单面投影由于单面投影不能够确定点的唯一位置,所以在工程上常把几何体想象成放在相互垂直的两个或两个以上投影面间,在投影面上形成的投影就是多面正投影。
2.2.2点的两面投影(1)两投影面体系的建立相互垂直的正投影面V和水平投影面H它们相交投影轴OX,便组成了V、H投影面体系。
第09讲 三视图(学生版)
第二十九章 投影与视图29.2 三视图课程标准课标解读1.会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。
2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作模型。
3.通过实例,了解上述视图与展开图在现实生活中的应用。
理解和掌握三视图的基本概念,能够画出棱柱、圆柱、圆锥、球的主视图,能够正确判断简单物体的三视图。
知识点01 三视图1.三视图有关的概念(1)视图:从某一方向观察一个物体时,所看到的平面图形叫作物体的一个视图。
(2)三视图:从3个互相垂直的方向观察物体,在正面内得到的由前向后观察物体的视图,叫作主视图;在水平面内得到的由上向下观察物体的视图,叫作俯视图;在侧面内得到的由左向右观察物体的视图,叫作左视图。
【微点拨】(1)视图的本质就是正投影;物体的主视图,等同于一束平行光线自物体的前方向后方照射,在正面投影面上得到的正投影;俯视图、左视图类似。
(2)三视图中的各视图,分别从不同方向表示物体的形状,三者结合能够较全面地反映物体的形状. 2. 三视图之间的关系三视图的摆放一般是,主视图在左上方,它下方应是俯视图,左视图在右边.在物体的三视图中,主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.【微点拨】三视图中,主视图与俯视图表示同一物体的长;主视图与左视图表示同一物体的高;左视图与俯视图表示同一物体的宽.【即学即练1】如图所示的几何体,其主视图是( )目标导航知识精讲A.B.C.D.知识点02 画三视图1.画几何体的三视图画一个几何体的三视图时,先观察几何体,判断出从3个方向看几何体得到的平面图形,即三视图;然后把三视图按照一定位置画出来。
画三视图时,一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,被其他部分遮挡而看不见的画成虚线,不能漏掉。
【微点拨】三视图的画法必须符合以下规律:长对正,高平齐,宽相等.2.根据三视图确定几何体形状不仅要会画简单几何体的三视图,还应会根据一个几何体的三视图确定几何体的形状。
投影的基本知识三面投影与三视图
教学过程一、布置绘图任务1.班级各小组下发绘图任务书。
2.各小组拆解齿轮式机油泵,小组成员查阅相关资料认识齿轮泵各部件并了解其工作原理。
各小组穿插、讨论解决存在问题二、新课引入如果要通过图形反映机油泵从动轴、钢球、销、轴衬的形状结构,图形应该怎样绘制,需要掌握什么知识?提问与思考:请同学们看下面几个常见的自然现象,考虑它们是怎样得到的?同学观看图片这种现象称为是投影投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法.三、新课讲解第一节投影的基本知识一、投影的概念投影——空间物体在光线的照射下,在地上或墙上产生的影子,这种现象叫做投影。
投影法——在投影面上作出物体投影的方法称为投影法二、投影法的种类1.中心投影法:特性:投影大小与物体和投影面之间距离有关。
同学观看图片:结论:从图中可以看出,空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线.中心投影后的图形与原图形相比,虽然改变很多,但直观性强,看起来与人的视觉效果一致,最象原来的物体.所以在绘画时,经常使用这种方法,但在立体几何中很少用中心投影原理来画图.2.平行投影法1)正投影法特性:投影大小与物体和投影面之间距离无关2)斜投影法:投影线倾斜于投影面。
提问:观察正投影法、斜投影法与中心投影法得到的得到的投影与原物体比较有什么特点。
结论:正投影能正确的表达物体的真实形状和大小,作图比较方便,在作图中应用最广泛.斜投影在实际中用的比较少,其特点是直观性强,但作图比较麻烦,也不能反映物体的真实形状,在作图中只是作为一种辅助图样。
小结:中心投影:投影线汇交于一点平行投影法:(1)斜投影法:投影线互相平行但与投影面倾斜(2)正投影法:投影线互相平行并且与投影面垂直(本节主要学习利用正投影绘制空间图形的三视图,并能根据所给的三视图了解该空间图形的基本特征)三、正投影法的主要特性1.点的投影:点的投影仍是一点。
三视图
①三视图包含正视图、侧视图和俯视图.②光线从几何体的前面向后面正投影,得到的投影图叫该几何体的正视图(又称主视图);光线从几何体的左面向右面正投影,得到的投影图叫该几何体的侧视图(又称左视图);光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图.③三视图的位置关系:一般地,侧视图在正视图的右边;俯视图在正视图的下边.④投影规律:(1)正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.(2)一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图和俯视图宽度一样,即正、俯视图——长对正;主、侧视图——高平齐;俯、侧视图——宽相等.画组合体的三视图时要注意的问题:(1)要确定好主视、侧视、俯视的方向,同一物体三视的方向不同,所画的三视图可能不同.(2)判断简单组合体的三视图是由哪几个基本几何体生成的,注意它们的生成方式,特别是它们的交线位置.(3)若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线,用虚线画出. (4)要检验画出的三视图是否符合“长对正、高平齐、宽相等”的基本特征,即正、俯视图长对正;正、侧视图高平齐;俯、侧视图宽相等,前后对应.对近年新高考试题进行研究,是高中数学教学方向的重要参照之一。
研究高考立体几何考查的三视图试题可以发现,大部分是已知部分(或全部)三视图,进而考查立体图形直观图的还原及计算问题。
对近年新高考试题进行研究,是高中数学教学方向的重要参照之一。
下面就立体几何的三视图出题做一些分析,希望对读者有所帮助。
研究高考立体几何考查的三视图试题可以发现,大部分是已知部分(或全部)三视图,进而考查立体图形直观图的还原及计算问题。
笔者认为主要包括以下这几类:一、已知部分三视图,考查还原为原来立体图形的直观图例:(2011年高考浙江卷理科3)若某几何体的三视图如图所示,则这个几何体的直观图可以是点评:此题关键在考察学生的观察能力和空间想象能力。
《三视图的绘制及详细步骤》
三视图的绘制及详细步骤
选主视图
(1)物体摆放应使尽可能多的表面平行或垂直于投影
(2)选择能反映物体主要形状特征的方向为主视图投影方向
(3)同时考虑尽量使俯视图和左视图简单易画,虚线少
画图步骤:
1、选择画图的比例,布置视图的位置
2、画出长宽高三个方向的基准线,及45度斜线
3、先画整体再画部分,即先不考虑竖板与底板挖去的部分,画出其
三视图,最后再将挖去部分逐个画出
4、擦去多余图线,将可见轮廓线用粗实线描深
尺寸标注:
1、小于等于半圆的圆弧标半径,大于半圆的圆弧标直径
2、相互平行的尺寸应按大小顺序,小尺寸在内,大尺寸在外。
3、每个尺寸一般只标注一次,并应标注在最能清晰地反映该结构特征的视图上。
4、应避免注成封闭尺寸链
例:
5、尺寸数字不可被任何图线所通过,否则必须将该图线断开。
6、虚线上尽量不注尺寸,如图中的圆孔直径。
7、角度数字一律水平写。
三视图概念
三视图能够正确反映物体长、宽、高尺寸的正投影工程图(主视图,俯视图,左视图三个基本视图)为三视图,这是工程界一种对物体几何形状约定俗成的抽象表达方式。
上图已是实际尺寸定义三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状,飞机三视图还有其它三个视图不是很常用。
三视图就是主视图、俯视图、左视图的总称。
特点一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
三视图的投影规则1主视、俯视长对正2主视、左视高平齐3左视、俯视宽相等物体的投影上图已是实际尺寸在许多情况下,只用一个投影不加任何注解,是不能完整清晰地表达和确定形体的形状和结构的。
如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。
可见只用一个方向的投影来表达形体形状是不行的。
一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
三投影面体系上图已是实际尺寸投影体系我们设立三个互相垂直的平面,叫做三投影面。
这三个平面将空间分为八个部分,每一部分叫做一个分角,分别称为Ⅰ 分角、Ⅱ 分角…… Ⅷ 分角,如图所示。
我们把这个体系叫三投影面体系,世界上有些国家规定将形体放在第一分角内进行投影。
《三视图》教学设计
《三视图》教学设计一、教学内容分析通用技术必修模块“技术与设计1”第六章第二节《常见的技术图样》之“正投影与三视图”(苏教版)主要描述了正投影形成三视图的方法、原理,三视图的绘制(识读)方法和规律等。
三视图作为一种技术图样是设计交流与表达的一种常用的技术语言形式。
学生通过本节的学习,掌握绘制简单三视图的基础知识和技能,本节内容也是后续知识“形体的尺寸标注”和“机械加工图”的基础。
在这里起到一个呈上启下的作用。
二、学情分析通过前面章节的学习,高中学生能够较熟练地绘制(识读)平面图和正等轴测图,也有光线投射成影的感知和体验。
教学可以从学生的现有知识和经验出发,按照直观感知、操作确认、思辩求证的认识过程展开,建构正投影与三视图的知识体系。
但学生的空间思维还受到定向模式的限制,很难发散思考一些个别现象,处理个特殊案例的能力有待提高,如不可见部分和重叠等。
三、教学目标1.知识目标:(1)理解投影法的基本概念和方法;(2)掌握正投影法方法、特性及三视图成图原理和规律;(3)掌握三视图一般绘图规则。
2.能力目标:(1)掌握简单的三视图的绘制(识读);(2)学会规范作图的方法和技能。
3.情感态度价值观:(1)经历三视图的作图过程,体验技术图样的魅力(2)形成科学的空间三围思维方式,培养学生严谨的思维与态度。
4、教学重点:(1)掌握三视图成图原理和规律;(2)掌握简单的三视图的绘制(识读)。
5、教学难点:(1)能规范绘制和识读简单的三视图。
四、教学准备准备积木,利用塑料胶纸和泡沫制作多个的模型。
五、教学策略及媒体运用在本节的教学中,将采用“主导—主体(分享—互助提升)”的设计模式,引导学生进行自主探究、知识建构和能力拓展。
总体教学流程为:“情境导入,知识建构,合作探究,总结提升,能力拓展”。
1、通过生活小故事的情景导学,激发学生对“技术语言的种类”进行回顾和复习以及注意在技术活动中选用恰当的技术语言进行交流的重要性,对本节课内容产生强烈的求知欲望。
专题02 三视图(基础)(解析版)
专题02 三视图要点一、三视图1.三视图的概念(1)视图一个几何体在一个平面上的正投影叫做这个几何体的视图.(2)正面、水平面和侧面用三个互相垂直的平面作为投影面,其中正对我们的面叫做正面,正面下面的面叫做水平面,右边的面叫做侧面.(3)三视图一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.主视图、左视图、俯视图叫做物体的三视图.2.三视图之间的关系(1)位置关系三视图的位置是有规定的,主视图要在左边,它的下方应是俯视图,左视图在其右边,如图(1)所示.(2)大小关系三视图之间的大小是相互联系的,遵循主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等的原则.如图(2)所示.要点诠释:物体的三视图的位置是有严格规定的,不能随意乱放.三视图把物体的长、宽、高三个方面反映到各个视图上,具体地说,主视图反映物体的长和高;俯视图反映物体的长和宽,左视图反映物体的高和宽,抓住这些特征能为画物体的三视图打下坚实的基础.3.画几何体的三视图画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下:(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.要点诠释:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以,首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其二,要注意正确地用虚线表示看不到的轮廓线;其三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.4.由三视图想象几何体的形状由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象主体图的前面、上面和左侧面,然后综合起来考虑整体图形.要点诠释:由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状以及几何体的长、宽、高;(2)根据实线和虚线想象几何体看得见和看不见的轮廓线;(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助;(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.要点二、棱柱1.概念:如图,这样的几何体叫做棱柱,它的上、下两个面叫做底面(△ABC、△A1B1C1互相平行且是全等的三角形),其余各面叫做侧面,相邻侧面的交线叫做侧棱.2.分类:(1)根据棱柱底面多边形的边数,棱柱可分为是三棱柱、四棱柱、五棱柱、……(2)按侧棱与底面是否垂直可分为:①侧棱不垂直于底面的棱柱叫做斜棱柱,如图(1).②侧棱垂直于底面的棱柱叫做直棱柱,如图(2).(3)底面是正多边形的直棱柱叫做正棱柱.一、单选题1.(2020·江苏无锡市·七年级月考)如图是由5个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体()A.主视图不变,左视图改变B.主视图不变,左视图不变C.主视图改变,左视图不变D.主视图改变,左视图改变【答案】C【分析】根据正方体①移走前后的几何体作出判断即可.【详解】解:将正方体①移走后,所得几何体如下图所示:则几何体的主视图改变,左视图不变,故选:C.【点睛】本体考查的是立体图形的三视图,知道正方体①移走后,所得几何体的形状是解决本题的关键.2.(2020·山东济南市·济南外国语学校九年级月考)如图所示,正三棱柱的俯视图是( )A.B.C.D.【答案】B【分析】正三棱柱从上面看到的图形即俯视图.【详解】该几何体为水平放置的三棱柱,故俯视图的外部轮廓应为矩形,还有一条可以看到的水平棱(实线),故选:B.【点睛】本题考查了简单几何体的三视图的画法,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.3.(2020·烟台市实验中学九年级月考)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为()A .48B .C .D .【答案】D【分析】 观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其表面积即可.【详解】观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为2,高为4,所以其表面积为2×4×6+2×12故答案为:.【点睛】本题考查六棱柱的识别及表面积计算,能够根据题图中分析出各边长是解题关键. 4.(2020·太原师范学院附属中学九年级月考)如图所示几何体的俯视图是( )A.B.C.D.【答案】D【分析】直接找出从上面看到的图形即可.【详解】解:该几何体的俯视图为,故选:D.【点睛】本题考查几何体的三视图,注意看不到的边要用虚线表示出来.5.(2020·江苏无锡市·南闸实验学校七年级月考)下列四种说法,正确的是()A.圆柱的侧面是长方形B.射线AB与射线BA表示同一条射线C.两点之间,直线最短D.两点确定一条直线【答案】D【分析】根据几何体的侧面展开图,射线的定义,两点间的距离,直线的性质依次判断.【详解】A、圆柱的侧面展开图是长方形,故该项错误;B、射线AB与射线BA不表示同一条射线,故该项错误;C、两点之间,线段最短,故该项错误;D、两点确定一条直线,故该项正确;故选:D.【点睛】此题考查几何体的侧面展开图,射线的定义,两点间的距离,直线的性质,综合掌握各知识点是解题的关键.二、填空题6.(2021·四川省遂宁市第二中学校)一个几何体的三视图如图所示,则该几何体的体积为________.【答案】【分析】观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示),根据体积等于底面积⨯高计算即可.【详解】解:观察三视图可知,这个立体图形是底面为半圆的半个圆柱(如图所示).21122V ππ=⨯=, 故答案为:π.【点睛】本题考查三视图,圆柱的体积公式等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.7.(2020·无锡市钱桥中学七年级月考)有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a ,2的对面数字为b ,那么a +b 的值为_____.【答案】7【分析】从图形进行分析,结合正方体的基本性质,得到对面的数字,即可求得结果.【详解】一个正方体已知1,4,6,第二个正方体已知1,2,3,第三个正方体已知2,5,6,且不同的面上写的数字各不相同,可求得1的对面数字为5,6的对面数字为3,2的对面数字为4∴a+b=7故答案为:7.【点睛】本题考查正方体相对两个面的数字,根据相邻的面确定出对面上的数字是解题的关键.8.(2020·辽宁锦州市·七年级期中)如图所示,是由一些相同的小立方体搭成的几何体分别从正面、左面、上面看到的该几何体的形状图,那么构成这个立体图形的小正方形有________个.【答案】5【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【详解】解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体组成.故答案为5.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案. 9.(2020·广西大学附属中学七年级期中)10个棱长为a cm 的正方体摆放成如图的形状,这个图形的表面积是____________.【答案】2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.三、解答题10.(2021·全国七年级)如图所示,在平整的地面上,有若干个完全相同的棱长为10cm的正方体堆成的一个几何体.(1)这个几何体由个正方体组成.(2)如果在这个几何体的表面(露出的部分)喷上黄色的漆,则在所有的正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)求这个几何体喷漆的面积.【答案】(1)10;(2)1,2,3;(3)面积为3200cm2【分析】(1)根据几何体的形状,可得左列三排,第一排一层,第二排两层,后排三层,中间列两排,每排一层,右列一排,共一层,可得答案;(2)根据几何体的形状,可得小正方体露出表面的个数;(3)根据露出的小正方体的面数,可得几何体的表面积.【详解】解:(1)这个几何体由10个小正方体组成.故答案为:10(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.故答案为:1,2,3.(3)露出表面的面一共有32个,32 102=3200,则这个几何体喷漆的面积为3200cm2,【点睛】本题考查了几何体的表面积,小正方体露出面的面积和.11.(2021·四川省遂宁市第二中学校)画出下面立体图形的三视图.【答案】详见解析【分析】根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,分别画出即可.【详解】解:如图所示:【点睛】本题考查了简单组合体的三视图,几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形,考查了学生的空间想象能力.12.(2020·和平县实验初级中学七年级月考)由十个小立方体搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图和左视图.【答案】见解析【分析】运用空间想象能力根据俯视图画出主视图和左视图.【详解】解:根据题意,这个几何体的主视图和左视图如下图所示:【点睛】本题考查三视图,解题的关键是运用空间想象能力画三视图.13.(2020·大石桥市周家镇中学九年级月考)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.【答案】200 mm2【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【详解】根据三视图可得:上面的长方体长4mm,高4mm,宽2mm①下面的长方体长8mm,宽6mm,高2mm①∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2-4×2=200①mm2①①故答案为200 mm2①【点睛】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.14.(2020·广东茂名市·七年级月考)用若干个完全相同的小正方体搭成一个几何体,当从正面、上面看这个几何体时,得到的图形如图,问:在这个几何体中,小正方体的个数最多是多少?最少是多少?【答案】最多5个;最少4个【分析】从正面看时,图形左列最多有2个小正方体,右列有1个正方体,将小正方体可能的个数分别标记在从上面看的图形上.【详解】解:根据已知可得,在从上面看到的图形中,各位置上小正方体的个数最多时如图D1-3(1),各位置上小正方体的个数最少时如图D1-3(2)由图(1)可知,这个几何体中有5个小正方体;由图(2)可知,这个几何体中有4个小正方体,即在这个几何体中,小正方体的个数最多是5,最少是415.(2020·焦作市第十七中学七年级月考)如图,已知一个几何体的主视图与俯视图,求该几何体的体积.(π取3.14,单位: cm )【答案】40048【分析】根据三视图得到几何体上半部分是圆柱,下半部分是长方体,分别计算体积相加即可解题.【详解】解:由几何体的主视图和俯视图,可以想象出该几何体由两部分组成:上部是一个圆柱,底面直径是20cm ,高是32cm ;下部是一个长方体,长、宽、高分别是30cm ,25cm ,40cm ,所以该几何体的体积为23203.14()3230254040048(cm )2⨯⨯+⨯⨯=. 【点睛】主视图是在物体正面从前向后观察物体得到的图形;俯视图是站在物体的正面从上向下观察物体得到的图形;左视图是在物体正面从左向右观察到的图形,掌握三视图的定义是解题关键.。
三视图间的位置关系
三视图之间、形体和三视图之间存在着下列投影规律:
1 、三视图间的位置关系
俯视图在主视图的正下方,左视图在主视图的正右方。
2、视图之间的对应关系
如下图所示。
归纳如下:
1)、每个视图所反映的形体尺寸情况
主视图——反映了形体上下方向的高度尺寸和左右方向的长度尺寸。
俯视图——反映了形体左右方向的长度尺寸和前后方向的宽度尺寸。
左视图——反映了形体上下方向的高度尺寸和前后方向的宽度尺寸。
2)、视图之间的关系
根据每个视图所反映的形体的尺寸情况及投影关系,有:
主、俯视图中相应投影( 整体或局部) 的长度相等,并且对正;
主、左视图中相应投影( 整体或局部) 的高度相等,并且平齐;
俯、左视图中相应投影( 整体或局部) 的宽度相等。
这就是我们今后画图或看图中要时刻遵循的“长对
正,高平齐,宽相等”规律,需要牢固掌握。
3 、形体与视图的方位关系
任何形体在空间都具有上、下、左、右、前、后六个方位,形体在空间的六个方位和三视图所反映形体的方位如下图所示。
主视图——反映了形体的上、下和左、右方位关系;
俯视图——反映了形体的左、右和前、后方位关系;
左视图——反映了形体的上、下和前、后位置关系。
比较形体与视图,可以看出:
1 )主视图的上、下、左、右方位与形体的上、下、左、右方位一致;
2 )俯视图的左、右方位与形体的左、右方位一致,而俯视图的上方反映的是形体的后方,俯视图的下方反
映的是形体的前方;
3 )左视图的上、下方位与形体的上、下方位一致,而左视图的左方反映的是形体的后方,左视图的右方反
映的是形体的前方。
三视图(1)
课题:三视图(1)学习目标:1、会从投影的角度理解视图的概念。
2、会画几何体的三视图教学重点:从投影的角度加深对三视图概念的理解,会画简单几何体的三视图。
教学难点:对三视图概念理解的升华,准确画出三棱柱的三视图和小零件的三视图。
一、新课早知:1、什么叫做视图?2、什么叫左视图、主视图、俯视图?3、画一个几何体的三视图是应该遵循什么原则?二、情景引入,出示目标张师傅是铸造厂的工人,今天想让他制作一个如图所示的小零件,应如何准确告诉他小零件的形状和规格?三、新课讲解(一)什么叫做视图?(二)欣赏一下108页飞机的三视图(三)探究几何体的三视图1、观察教材108页同一本书的三个不同的视图。
说出这三个视图分别是从哪个方向观察这本书时得到的?2、观察教材29.2—3(1)图,并说一下什么是一个物体的三视图。
★★★★★自主★★★★★合作★★★★★探究★★★★★第 2 页 共 4 页3、三视图的画法:(1)如何绘制一个几何体的三视图?(2)将一个几何体的三视图画在同一个平面时,他们的位置有什么关系?(3)除了位置上的关系,在大小尺寸上,三视图彼此之间又有什么关系?4、例题讲解:例1画出下图所示的一些基本几何体的三视图.例2、画出图29.2—6所示的支架(一种小零件)的三视图,支架的两个台阶的高度和宽度都是同一长度。
例3、如图是一根钢管的直观图,画出它的三视图四、练习:112页练习五、课后小结:本节课学习了什么?六、当堂测评一、填空题1.我们常说的三种视图分别是指______、______、______.2.请将六棱柱的三视图名称填在相应的横线上.3.某同学把下图所示的几何体的三种视图画出如下(不考虑尺寸);其中错误的是哪个视图?答:是__________________.4.如下图为一个几何体的三视图,那么这个几何体是____________.二、选择题5.有一实物如图,那么它的主视图是( )6.下图中①表示的是组合在一起的模块,那么这个模块的俯视图的是( )★★★★★自主★★★★★合作★★★★★探究★★★★★A.②B.③C.④D.⑤7.两个物体的主视图都是圆,则这两个物体可能是( ) A.圆柱体、圆锥体B.圆柱体、正方体C.圆柱体、球D.圆锥体、球三、解答题8.画出下列几何体的三视图.(1) (2)六、作业设置:课本第116页:习题29.2复习巩固第1、2、3题七、教学反思:第 4 页共4 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 29.2 三视图(一)
课型:新 授 主备:杜满瑾 审核:张 峰 时间:2009.3.11 班级:九年级 班 姓名: 【教学目标】
1、知识与技能:会从投影的角度理解视图的概念
2、方法与技能:会画简单几何体的三视图
3、情感、态度与价值观:通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。
【教学重点和难点】:
教学重点:从投影的角度加深对三视图的理解和会画简单的三视图 教学难点:对三视图概念理解的升华及正确画出三棱柱的三视图 【教学过程】: 【学前准备】
(一)创设情境,引入新课
这个水平投影能完全反映这个物体的形状和大小吗? 如不能,那么还需哪些投影面?物体的正投影从一 个方向反映了物体的形状和大小,为了全面地反 映一个物体的形状和大小,我们常常再选择正面 和侧面两个投影面,画出物体的正投影。
如图 (1),我们用三个互相垂直的平面 作为投影面,其中正对着我们的叫做正 面,正面下方的叫做水平面,右边的叫 做侧面.一个物体(例如一个长方体)在三 个投影面内同时进行正投影,在正面内 得到的由前向后观察物体的视图,叫做 主视图,在水平面内得到的由上向下观 察物体的视图,叫做俯视图;在侧面内得 到由左向右观察物体的视图,叫做左视 图.
如图(2),将三个投影面展开在一个平面 内,得到这一物体的一张三视图(由主视
图,俯视图和左视图组成).三视图中的各视图,分别从不同方面表示物体,三者合起来就能够较全面地反映物体的形状.三视图中,主视图与俯视图表示同一物体的长,主视图与左视图表示同一物体的高.左视图与俯视图表示同一物体的宽,因此三个视图的大小是互相联系的.画三视图时.三个视图要放在正确的位置.并且使主视图与俯视图的长对正,主视图与左视图的高平齐.左视图与俯视图的宽相等 通过以上的学习,你有什么发现?
物体的三视图实际上是物体在三个不同方向的正投影.正投影面上的正投影就是主视图,水平投影面上的正投影就是俯视图,侧投影面上的正投影就是左视图 【新课探究】:
活动一:画出下图2所示的一些基本几何体的三视图.
分析:画这些基本几何体的三视图时,要注意从三个方面观察它们.具体画法为: 1.确定主视图的位置,画出主视图;
2.在主视图正下方画出俯视图,注意与主视图“长对正”。
3.在主视图正右方画出左视图.注意与主视图“高平齐”,与俯视图“宽相等”. 解:
活动二:画出如图所示的支架(一种小零件)的三视图. 分析:支架的形状,由两个大小不等的长方体构 成的组合体.画三视四时要注意这两个长方体 的上下、前后位置关系.
活动三:右图是一根钢管的直观图,画出它的三视图
分析.钢管有内外壁,从一定角度看它时,看不见内壁.为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.
【随堂练习】
1.你能画出下图1中几何体的三视图吗 小明画出了它们的三种视图(图2),他画的对吗 请你判断一下.
2. 见课本P119 练习1、2
3、一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为 200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图.
【拓展提高】:
1.见课本P123习题1
2.见课本P123习题2
3.见课本P123习题3。