第四章电力系统故障分析new

合集下载

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析1. 引言1.1 电力系统电气故障的危害电力系统电气故障的危害非常严重,可能会引发火灾、爆炸、设备损坏甚至人员伤亡。

火灾可能是最严重的后果,因为电气故障会引发高温,从而导致绝缘材料熔化或着火。

一旦发生火灾,不仅会造成设备的毁坏,还可能危及到周围的建筑物和人员的生命安全。

电力系统电气故障还可能导致设备的短路、过载等现象,进而影响电力系统的正常运行,甚至引发供电中断,给生产和生活带来极大的困扰。

电力系统电气故障的危害还表现在其对环境的影响。

由于电气故障可能导致设备的破坏,进而导致功率损失和电能浪费,造成不必要的资源消耗。

电气故障还可能释放有害物质,对周围环境造成污染。

为了确保电力系统的安全稳定运行,及时发现并排除电气故障是至关重要的。

引入预防措施、提高设备的可靠性,并加强对电力系统的监测和维护,可以有效降低电气故障带来的危害,保障电力系统的安全运行。

1.2 电力系统电气故障的分类电力系统电气故障的分类主要根据其性质和原因进行划分,常见的分类方式包括短路故障、过电压故障、欠电压故障和接地故障。

短路故障是电路中产生较大电流的现象,通常由电路元件之间的短路引起,可能会导致设备烧毁、火灾等严重后果。

过电压故障是指电压高于设定值的故障,可能由电网突发事件或设备故障引起,会对设备造成损坏和影响正常运行。

欠电压故障则是指电压低于设定值的故障,可能来源于电源不稳定或设备故障,会导致设备失效或无法正常工作。

接地故障是指设备或电路中出现接地故障,可能引起漏电、电击等安全问题。

通过对电力系统电气故障进行分类,可以更好地分析和解决故障问题,提高电力系统的安全性和稳定性。

2. 正文2.1 短路故障分析短路故障是电力系统中常见的电气故障之一,具有较高的危害性和影响范围。

短路故障一般指电路中两个或多个点之间因短路产生绝缘故障,导致电流突增,可能引发设备损坏、事故发生等严重后果。

短路故障通常可分为相间短路、接地短路和相接短路等多种类型,具体分析可根据系统结构和接线方式来确定。

电力系统故障分析

电力系统故障分析


对正序网络:
E a I a1 ( z G1 z L1 ) ( I a1 I b1 I c1 ) z N U a1
.
.
.
.
.
.
E a I a1 ( z G1 z L1 ) U a1

.
.
.
对负序网络:
.
I a 2 ( zG 2 z L 2 ) ( I a 2 I b 2 I c 2 ) z N U a 2
N0
一、二相短路(bc两相短路)
短路点K M a b c
& I Mc
& & U & U U ka kb kc
& I Ma & I Mb
& I Na & I
a b c
N
& I Nc
& I&kb I&kc I ka
K
(2 )
Nb
图 4-3 两相短路时的系统接线图
(一)故障边界条件:
I ka 0, I kb I kc ,U kb U kc

4. 断相故障及复杂故障:


断相故障:指电力系统一相断开或两相 断开的情况。属于不对称性故障。 复杂故障:指在电力系统中的不同地点 (两处或两处以上)同时发生不对称故 障的情况。又称复故障。
5. 研究电力系统暂态过程的方法:

物理模拟法 数学模拟法: (1) 建立数学模型; (2)求解数学模型; (3)结果分析。
主要内容

故障分析的基本知识 简单不对称故障的分析计算 不对称故障时电力系统中各电气量 值的分布计算
涉及的基本概念:

电力系统故障分析(

电力系统故障分析(
4
一、短路的类型
短路类型
对称 三相 短路 短路
单相 接地 短路
不对称 两相 短路 短路
两相 接地 短路
示意图
符号 发生概率 备注
f(3)
5% 最严重
f(1) 65%
--
f(2) 10%
--
f(1,1) 20%
-5
二、短路的原因
元件的损坏:如绝缘材料的自然、设计、安装及维护不良 带来的设备缺陷发展成短路等。
其中,特解代表短路的强制分量,即周期分量
ip a U Z m sin ( t ) Im sin ( t )
Z是R+jωL的模值;
φ是短路电流和电源电势之间的相角,即电路的阻抗角
Im是稳态短路电流的幅值
15
短路暂态分析
一般解代表自由分量,即非周期分量。与外ቤተ መጻሕፍቲ ባይዱ源 无关,是按指数规律衰减的直流。
7
四、短路危害的限制措施
合理地配置继电保护并整定其参数,能迅速动作 将短路部分与系统其它部分隔离。
装设限流电抗器,在母线上装设母线电抗器,限 制短路电流。
选择适当的主接线形式和运行方式。如变压器低 压侧分裂运行,增大系统阻抗,减少短路电流。
采用防雷设施,降低过电压水平。
8
五、短路计算的目的
t
i a Ce Ta
其中
Ta


L R
(特征根方程根的倒数)
根据楞次定律,电感电流不畸变,(0)短路前瞬
Im (0 )s in ((0 )) Im s in () C
C i a 0 I m ( 0 )s i n ( ( 0 ) ) I m s i n ( )

电力系统故障分析

电力系统故障分析

1 故障类型电力系统的线路故障总的来说可以分为两大类:横向故障和纵向故障。

横向故障是指各种类型的短路,包括三相短路、两相短路、单相接地短路及两相接地短路。

三相短路时,由于被短路的三相阻抗相等,因此,三相电流和电压仍是对称的,又称为对称短路。

其余几种种类型的短路,因系统的三相对称结构遭到破坏,网络中的三相电压、电流不再对称,故称为不对称短路。

运行经验表明,电力系统各种短路故障中,单相短路占大多数,约为总短路故障数的65%,三相短路只占5%~10%。

三相短路故障发生的几率虽然最小,但故障产生的后果最为严重,必须引起足够的重视。

此外,三相对称短路计算又是一切不对称短路计算的基础。

纵向故障主要是指各种类型的断线故障,包括单相断线、两相断线和三相断线。

2 对称分量法和克拉克变换2.1 对称分量变换三相电路中,任意一组不对称的三相相量都可以分解为三组三相对称的分量,这就是所谓的“三相相量对称分量法”。

对称分量法是将不对称的三相电流和电压各自分解为三组对称分量,它们是:(1) 正序分量:三相正序分量的大小相等,相位彼此相差2pi/3,相序与系统正常运行方式下的相同;(2) 负序分量:三相负序分量的大小相等,相位彼此相差2pi/3,相序与正序相反; (3) 零序分量:三相零序分量的大小相等,相位相同。

为了清楚起见,除了仍按习惯用下标a 、b 和c 表示三个相分量外,以后用下标1、2、0分别表示正序、负序和零序分量。

设.a F 、.b F 、.c F 分别代表a 、b 、c 三相不对称的电压或电流相量,.1a F 、.2a F 、.0a F 分别表示a 相的正序、负序和零序分量;.1b F 、.2b F 、.0b F 和.1c F 、.2c F 、.0c F 分别表示b 相和c 相的正、负、零序分量。

通常选择a 相作为基准相,不对称的三相相量与其对称分量之间的关系为:..21..22..01113111a a a b a c F F a a a a F F F F ⎛⎫⎛⎫ ⎪⎛⎫ ⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭式中,运算子120j a e =o,2240j ae =o,且有31a =,2310a a ++=;我们令2211111a a S a a ⎛⎫⎪= ⎪ ⎪⎝⎭称为对称分量变换矩阵。

电力系统暂态分析第四章

电力系统暂态分析第四章

0 zs 2zm
Z S 即为电压降的对称分量和电流的对称分量之间的阻抗
矩阵。
《电力系统分析》
2023/5/1
即:
Ua(1) (zs zm)Ia(1) z I (1) a(1)
Ua(2) (zs zm)Ia(2) z(2)Ia(2)
Ua(0)
(zs
2zm)Ia(0)
z I (0) a(0)
式中 z (1) z ( 2 ) z ( 0 ) 分别称为此线路的正序、负序、零序阻抗。 由此可知:各序电压降与各序电流成线性关系;
零序阻抗: x(0)(0.1~ 50.1)x 6d
定义:机端零序电压基频分量与流入定子绕组零序电流基频分量的比值。
㈡ 输电线路的序阻抗
正序: x x 1 L
负序=正序 x x 1 2 零序=(3~4)倍正序电抗
《电力系统分析》
2023/5/1
电力元件的序阻抗
一、研究电力元件各序阻抗的意义 求取从短路点看进去电力网络的各序等值阻抗是应
《电力系统分析》
2023/5/1
解: IIaa((12))
Ia(0)
1 13a1
a a2 1
a2 a 1
IIIbac
I
1 100 10180 120 0 5.7830 a1 3
I
1 100 10180 240 0 5.7830 a2 3
I
1 100 10180 0 0 a0 3
FFFbac
(4-6)
《电力系统分析》
2023/5/1
或写为:
FS T1FP
上式说明三个不对称的相量可以唯一地分解成为三组对 称的相量(即对称分量): 正序分量、负序分量和零序分量。

电力系统故障诊断与分析

电力系统故障诊断与分析

电力系统故障诊断与分析一、前言电力系统是国家重点建设的基础性工程之一,其安全性和可靠性对国家经济和社会稳定具有极其重要的影响。

然而,电力系统也不可避免地存在着故障的可能性,这些故障往往会造成电力系统的停运,对正常生产和社会生活带来影响。

因此,本文将重点介绍电力系统故障的诊断与分析。

二、电力系统故障的分类电力系统故障一般可分为以下三类:1.短路故障短路故障是指电路中两个本来不应该相连的节点之间出现了低电阻的连通路径。

这将导致电流迅速增大,电路中热点温度迅速升高,可能会引起电器设备短路烧毁、火灾等严重后果。

短路故障的原因通常有接线错误、绝缘老化、设备故障等。

2.断路故障断路故障是指电路中断路或断开,电路中气息消失,无法完成电力传输。

这种故障一般由于设备过载或过热引起,可能会导致电力系统停运或设备损坏。

3.接地故障接地故障是指电器设备、电缆线路或接地线路等与大地之间的连通性发生问题,电力系统发生意外的接地。

接地故障可分为单相接地、两相接地、三相接地等不同类型,这种故障可能会对人身和设备安全造成极大威胁。

三、电力系统故障的诊断和分析电力系统故障的诊断和分析,旨在迅速、准确地找到故障点,及时采取措施,防止故障扩大,确保电力系统安全稳定运行。

故障诊断通常可以分为硬件故障诊断和软件故障诊断两种。

1.硬件故障诊断硬件故障诊断是指通过检测和分析电力系统中各种硬件设备的运行情况,找出故障设备,确定故障原因及其范围,并采取相应措施进行修复的过程。

硬件故障诊断通常包括以下几个方面:(1)现场检测:根据现场条件,对电力系统中的设备逐一进行检测,明确故障设备及其位置。

现场检测通常包括检查接线是否正常、对电缆进行测量和绝缘检查、检查开关和断路器是否正常、对变压器进行检测等。

(2)监测系统诊断:通过监测系统采集的数据,对电力系统中的各种电气参数进行分析,确定故障设备及其范围,进而明确问题所在。

监测系统诊断通常包括电力质量监测、故障录波检测等。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析电力系统是现代社会不可或缺的重要基础设施,它承担着对电能的生产、传输和分配的重要任务。

由于各种原因,电力系统在运行过程中难免会发生各种电气故障,这些故障可能会导致停电、设备损坏甚至安全事故。

对电力系统常见的电气故障进行分析和解决,对于确保电力系统的安全稳定运行具有重要意义。

一、短路故障短路故障是电力系统中最常见的一种故障形式,它通常指两个电路或设备之间因为某种原因导致电流异常增大而引起的故障。

短路故障可以分为相间短路和接地短路两种情况。

相间短路是指电力系统中两相或多相之间发生短路,可能导致设备受损、局部区域停电等后果;而接地短路是指系统中发生了接地故障,导致电流通过接地回路流回到地面,可能引起触电事故。

短路故障的原因可能很多,例如设备老化、被损坏、作业问题、环境因素等等。

要想避免短路故障的发生,关键在于加强设备的维护保养和定期的检测。

二、过载故障过载故障是指电力系统中的电缆、变压器、开关设备等电气设备在短时间内承受的电流或负荷超过其额定值的极限,导致设备过热、短路等故障。

过载故障往往是由于电网负荷大于设备的承载能力、设备操作不当、电器设备老化等原因导致的。

要想解决过载故障,首先需要提高设备的负荷能力,其次是在使用设备时要按照其额定值合理分布负载,避免长时间大负荷运行,规范设备运行温度、电压和电流等参数。

三、接地故障接地故障是指电力系统中设备、设施、线路或绝缘因素失效而造成导体对地短接的一种电气故障。

接地故障一般情况下分为接地故障和接地过电压两种类型。

接地故障可能引起相间短路、设备损坏、接地回路产生危险电压等情况,有时还可能导致触电事故。

要想防止接地故障的发生,首先要加强绝缘检测和维护保养;其次需要加强对接地电阻、接地装置及其接地方式的检查和管理。

四、断线故障断线故障是指电力系统中线路或设备的导体意外因素或破坏性因素导致的漏电,通常是由于线路绝缘老化、外来物体破坏或操作不当等原因引起。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析电力系统是现代社会不可或缺的基础设施,它承担着输送和分配电能的重要任务。

由于各种原因,电力系统中常会出现各种电气故障,这些故障可能会导致电力系统的瘫痪甚至危及人员和设备的安全。

对电力系统常见电气故障进行分析和诊断具有重要意义,可以帮助电力系统的管理者和维护人员及时发现和解决问题,确保电力系统的正常运行和安全性。

一、线路故障线路故障是电力系统中最常见的故障之一。

它包括短路、接地故障和开路故障等。

短路是指电力系统中的两个或多个导体之间发生了不正常的直接连接,导致电流异常增大。

接地故障是指输电线路或设备的金属结构非正常接地,通常表现为接地电流异常增大。

开路故障是指导线或设备中的一根或多根导线断开,导致电路中断,无法继续传输电能。

这些线路故障可能会导致电力系统的短时过载、电压波动、设备损坏甚至引发火灾等严重后果。

针对线路故障,需要进行及时的故障定位和排除。

对于短路故障,可以使用故障指示器、差动保护装置等设备进行快速定位和切除故障段,以避免线路故障扩大范围。

对于接地故障,需要及时清除故障点周围的植被,找出接地故障点,并进行绝缘检查和绝缘处理。

对于开路故障,需要使用断路器等设备进行切除故障点,并进行维修和恢复线路。

二、设备故障电力系统中的各种设备,如变压器、开关设备、断路器等,也有可能发生各种故障。

这些设备故障可能由于设备自身的老化、设计缺陷、操作不当等原因导致。

常见的设备故障包括内部短路、绝缘击穿、过载、接触不良等。

这些故障可能会导致设备损坏、电力系统的稳定性下降以及其他设备故障的发生。

针对设备故障,需要加强设备的监测和维护工作。

通过定期的设备检查、绝缘测试、接触检查等手段,可以及时发现设备故障的迹象。

在发现设备故障后,需要及时对设备进行维修、更换或升级,以确保设备的正常运行和安全性。

三、电压不平衡电压不平衡是指电力系统中的三相电压之间存在不同程度的不一致,通常表现为电压幅值、相位差或波形失真的不一致。

第四章 电力系统分析概述

第四章 电力系统分析概述
选择、检验电气设备, 选择、检验电气设备, 继电保护的分析、 继电保护的分析、整定
5 机电暂态
运动的物体在经受扰动之后,能否回到原 来的稳定运动状态,或到达一个新的稳定运动 状态。 电力系统中运动着的物体主要是发电机、 电动机等设备,电动机一般接在负荷侧,电力 系统稳定分析一般针对发电机和输电网组成的 系统进行。
Y2 L Y,(n−1) n n
潮流求解
Y12 Y11 Y Y22 21 M M Y(n−1),1 Y(n−1),2 Yn1 Yn2 L L M Y1,n−1 Y2,n−1 M
∗ ∗ S /U & Y1n U1 ∗1 ∗ 1 & Y2n U2 S /U 2 2 M = M M & ∗ ∗ Y(n−1),n Un−1 S /U − n∗1 ∗ n−1 & Y nn Un Sn /U n
5 机电暂态
研究物体运动通常要描述物体运动状态变化的 微分方程
单机-无穷大系统
G
& U
5 机电暂态
dδ dt = ω − ω0 dω ω = 0 ( PT − PE ) dt TJ
发电机转子运动方程,二阶微分方程
ω
q轴
(1)
δ
& U
ω0
用于稳定分析的经典二阶微分方程,如 果考虑更高阶,需要考虑其它状态变量
电压水平取决于无功功率的平衡 无功功率平衡: 无功功率电源=无功功率负荷+无功功率损 耗
4 故障分析
常见的故障种类有 短路 断线
短路是故障分析的重点 短路是横向故障 断线是纵向故障
4 故障分析
图3-1 短路的类型 a) 三相短路 b) 两相短 路 c) 单相短路 d) 单相接中心点短路 e) 两相接地短路 f) 两相短路接地

电力系统故障分析及继电保护措施

电力系统故障分析及继电保护措施

电力系统故障分析及继电保护措施日照市技师学院山东日照276800一、电力系统的组成和特点电力系统是由发电厂、电力网和用电设备组成的统一整体。

电力系统的作用是由各个组成环节分别完成电能的生产、变换、输送、分配和消费等任务。

二、电力系统故障原因及后果1.电力系统的主要故障原因(1)大自然方面造成的原因:雷击、雾闪、暴风雪、动物活动、植物生长、大气污染等,造成电气设备对地放电或相间短路,或倒杆断线对地直接接地短路等事故。

(2)人员方面造成的原因:误操作、安装调试及运行维护不良或运行方式不当等,造成电气设备短路、接地、过负荷、过电压等事故,而导致电气设备损坏。

2.产生故障的后果电气设备发生故障后,其继电保护装置如果能够迅速切除,则其后果和影响并不可怕,系统能很快恢复正常运行。

否则,其后果和影响将很严重。

第一,故障电流的热效应和电动力的机械效应,直接加重故障设备的损坏程度。

第二,系统中其他正常设备也由于电流增大、电压降低难以继续正常运行。

第三,对那些近距离故障点或超高压电网内故障,切除时间较长将引起发电厂或发电机之间失去同步,有时导致系统振荡,破坏系统稳定运行。

这不仅是电力系统的灾难,也是用户的灾难。

三、对电力系统故障提出的继电保护措施1.瞬时电流速断保护。

当电力系统中发生短路时,电力系统的电流将变得很大,造成事故。

为了防止事故的发生或造成大的危害,我们在线路上设计了电流速断保护装置。

其工作过程是:在交流回路中,短路电流Id→LHa(或LHc或Lha及LHc)→1LJ(或2LJ或1LJ及2LJ)的线圈→LHa(或LHc或Lha及LHc)的末端形成回路。

当短路电流大于保护的整定值时电流继电器的线圈起动,闭合常开接点,使直流回路接通:+电源→1LJ(或2LJ或1LJ及2LJ)的常开接点→XJ线圈→ZJ线圈→-电源。

另一直流回路中:+电源→ZJ常开接点→DL1→跳闸线圈TQ→-电源。

在此回路中跳闸线圈起动完成跳闸任务,同时使XJ的常开接点闭合,使信号回路接通发出信号。

电力系统故障分析

电力系统故障分析

电力系统故障分析1 故障基础知识电力系统的故障一般分为简单故障和各种复杂故障。

简单故障是指电力系统正常运行时某一处发生短路或断线故障的情况,其又可分为短路故障(横向故障)和断线故障(纵向故障),而复杂故障则是指两个或两个以上简单故障的组合。

短路故障有4种类型:三相短路((3)K )、两相短路((2)K )、单相接地短路((1)K )和两相短路接地((1.1)K );断线故障分为一相断线和两相断线。

其中发生单相接地短路故障的概率最高,占65%。

在本次设计中,对这六种故障都进行了建模仿真,由于单相接地短路故障发生的几率最高,因此本文将该故障作为典型例子来分析建模仿真过程。

2 单相短路接地故障分析假设系统短路前空载,短路模拟图如图1所示。

图1 单相接地短路当系统中的f 点发生单相(A 相)直接短路接地故障时,其短路点的边界条件为A 相在短路点f 的对地电压为零,B 相和C 相从短路点流出的电流为零,即:00fA fB fC U I I ===将式子(1)转换成各个序分量之间的关系。

对于0fA U =,有如下关系:(1)(2)(0)0fA fA fA fA U U U U =++=根据0fB fC I I ==可以得出:2(1)2(2)(0)11110331110fA fA fA fA fA fA fA I I aa I I aa I I I ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦于是,单相短路接地时,用序分量表示的边界条件为:(1)(2)(0)(1)(2)(0)0fA fA fA fA fA fA fA U U U U I I I ⎧=++=⎪⎨==⎪⎩(1) (2) (3)由边界条件组成复合序网(复合序网是指在短路端口按照用序分量表示的边界条件,将正序、负序和零序三个序网相互连接而成的等值网络)从A 相短路接地的序分量边界条件式(3)可见,它相当于三序序网的端头进行串联,如图2所示图2 单相接地短路复合序网复合序网直观地表达了不对称短路故障的地点和类型,对复合序网进行分析计算,可以解出短路点处的各序电压,电流分量,如下:(1)电流分量序电流分量为 : 00(1)(2)(0)(1)(2)(0)fA fA fA fA fA U U I I I Z Z Z Z ∑∑∑====++∑ 三相电流为:(1)033/0fA fA fA fB fC I I U Z I I ⎧==∑⎪⎨==⎪⎩(2)电压分量序电压分量为:(1)(1)(1)(2)(0)00(2)(2)0(0)(0)0()/fA fA fA fA fA fA fA fA U U I Z U Z Z Z Z U U ZZ U U Z∑∑∑∑∑⎧⎡⎤=-=+∑⎪⎣⎦⎪⎪=-⎨∑⎪⎪=-⎪∑⎩三相电压为:(4) (5) (6) ()()()()(1)(2)(0)222(1)(2)(0)(2)(2)(1)22(1)(2)(0)(2)(2)(1)11fA fA fA fA fB fA fA fA fA fC fA fA fA fA U U U U U a U aU U a a Z a Z I U aU a U U a a Z a Z I ∑∑∑∑⎧=++=⎪⎪⎡⎤=++=-+-⎨⎣⎦⎪⎡⎤⎪=++=-+-⎣⎦⎩(7)。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析电力系统是现代社会中不可或缺的基础设施之一,它为我们的生活提供了稳定的电力供应。

电力系统在长期运行过程中难免会出现各种电气故障,这些故障不仅会影响电力系统的正常运行,还可能给人们的生活和生产带来不便和损失。

对电力系统常见的电气故障进行分析和研究,对于提高电力系统的可靠性和安全性具有重要意义。

一、断路故障断路故障是电力系统中常见的一种故障,它会导致电路中断,致使电力信号无法正常传输。

断路故障的主要原因包括线路老化、设备损坏、过载使用等。

断路故障的检测可以通过故障指示器、电力保护装置等设备进行,一旦发现断路故障,应及时进行维修或更换受损设备,以确保电力系统的正常运行。

三、漏电故障漏电故障是指电路中的部分电流流失到地面或其他非设定路径上,它主要是由于设备绝缘破损、潮湿环境等原因导致。

漏电故障的存在会给人身安全带来风险,因此在电力系统中需要设置漏电保护装置,一旦发生漏电故障能够及时切断电路,确保人身安全。

四、电压波动和电压不平衡电压波动和电压不平衡是电力系统中常见的电气故障,它会影响电气设备的正常运行,导致设备损坏和能源浪费。

电压波动通常是由于电力系统的负载变化、电源损坏等原因引起的,而电压不平衡则主要是由于电源供应不均匀、负载不平衡等原因引起的。

检测和分析电压波动和电压不平衡的方法包括使用电能质量分析仪、电压监测仪等设备,通过监测电压信号的波动情况,以及通过调整电源供应和负载平衡等措施,来减小电压波动和电压不平衡对电力系统的影响。

五、频率波动频率波动是指电力系统运行中,交流电源频率的波动。

频率波动通常是由于电力系统的负载变化、电源损坏、系统调度等原因引起的。

频率波动会直接影响电气设备的正常运行,因此需要通过监测仪器、自动调节装置等设备来对频率波动进行监测和调节,以保证电力系统的正常运行。

六、电力系统电气故障的分析和诊断电力系统电气故障的分析和诊断需要依靠各种电气测试设备和监测仪器,如电压表、电流表、绝缘电阻仪、故障录波器等。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析【摘要】本文将围绕电力系统常见电气故障展开分析。

首先介绍了电力系统故障的分类,包括设备故障、线路故障、过载故障和短路故障。

然后针对不同类型的故障进行详细分析,解释了各种故障可能的原因和处理方法。

总结了电力系统常见电气故障的特点和预防措施建议,希望能为电力系统运行和维护提供参考。

通过本文的阐述,读者将能够深入了解电力系统常见故障的成因及应对方法,为提高电力系统的可靠性和稳定性提供帮助。

【关键词】电力系统、电气故障、故障分析、设备故障、线路故障、过载故障、短路故障、预防措施、总结。

1. 引言1.1 电力系统常见电气故障分析引言电力系统是现代社会不可或缺的基础设施之一,它为各行各业的正常运转提供了坚实的能源支持。

在电力系统的运行过程中,由于各种原因可能会发生各种电气故障,给系统的稳定性和安全性带来威胁。

对电力系统常见电气故障进行分析和研究,有助于及时发现和解决问题,提高系统的可靠性和稳定性。

电力系统故障的分类是对故障进行有效管理和处理的基础。

常见的分类包括设备故障、线路故障、过载故障和短路故障等。

对这些故障进行深入分析可以帮助我们更好地理解故障发生的原因和特点,为系统故障的预防和处理提供参考依据。

本文将对电力系统常见电气故障进行详细分析,包括不同类型故障的特点、常见原因以及相应的预防和解决方法。

通过学习和掌握这些知识,我们可以更好地应对电力系统中出现的故障,提高系统的稳定性和安全性。

2. 正文2.1 电力系统故障的分类电力系统故障的分类主要包括瞬时故障、短暂故障和持续性故障三种类型。

瞬时故障是一种持续时间很短的故障,通常不会对设备和系统造成明显的影响。

这种故障往往是一些瞬时的电压或电流波动导致的,比如闪电击中电线引起的瞬时过电压。

持续性故障是一种持续时间较长且对系统造成较大影响的故障。

这种故障可能会导致设备的长时间不正常运行,比如持续性的设备故障或线路短路。

对于电力系统的故障分类,了解不同类型的故障特点对于及时发现和解决问题至关重要。

电力系统故障诊断

电力系统故障诊断

电力系统故障诊断电力系统是现代社会不可或缺的基础设施,但是由于各种原因,系统中难免会发生故障。

在电力系统中,故障的快速诊断和定位对于保障系统的可靠运行至关重要。

本文将探讨电力系统故障诊断的相关内容。

一、故障的分类和特征在进行故障诊断之前,首先要对故障进行分类和了解其特征。

电力系统中的故障主要可以分为短路故障和接地故障两大类。

短路故障是指两个或多个电气设备之间发生了电气短路,导致电流迅速增大;接地故障是指电气设备的导体与地之间发生了电气接地,形成了电流通道。

根据故障的特征,可以通过故障的电流、电压、频率以及功率等参数来进行故障的诊断。

例如,当系统中出现短路故障时,电流会迅速升高,电压会下降;而接地故障时,会出现电压不平衡的情况。

二、故障诊断方法1. 基于经验的故障诊断方法基于经验的故障诊断方法是通过运维人员的经验判断故障原因和位置。

这种方法可以快速判断故障,并采取相应措施解决问题。

但是,这种方法存在主观性较强,准确性可能不高的问题。

2. 基于监测设备的故障诊断方法基于监测设备的故障诊断方法是通过安装在电力系统中的监测设备来获取故障相关的参数,并通过对参数的分析来进行故障诊断。

这种方法可以实时监测系统的运行状态,并且可以提供较准确的故障诊断结果。

但是,这种方法需要投资大量的设备,并且需要专业的运维人员进行数据的分析和处理。

3. 基于人工智能的故障诊断方法随着人工智能技术的发展,基于人工智能的故障诊断方法也逐渐应用于电力系统中。

通过建立故障诊断的模型和算法,可以对电力系统中的故障进行自动诊断和定位。

这种方法可以有效提高故障诊断的准确性和效率,但是需要大量的数据和计算资源。

三、故障诊断系统的建立为了实现电力系统的故障诊断,可以建立故障诊断系统来辅助运维人员进行故障处理。

故障诊断系统可以集成各种故障诊断方法,并提供用户友好的界面和操作方式。

故障诊断系统的建立需要以下几个步骤:1. 数据采集和处理:通过安装监测设备和传感器来获取电力系统的运行数据,并对数据进行处理和分析。

ch04-1电力系统故障分析及计算

ch04-1电力系统故障分析及计算

Uq Eq jxd Id
Ud jxq Iq
U Ud Uq Eq jxq Iq jxd Id U Eq j(xq xd )Iq jxd I
id’
jX q
暂态电抗后电势E’
xd’ Eq’
+
uq
iq
ud
-
31
1、暂态电抗和暂态电势
id )
q xq iq
f xadid x f i f xad (i f id ) xf i f
iq
+
xq
ψq
-
无阻尼绕组Park方程的等值电路
25
戴维南定理 id’
Eq’
xd’
+
ψd
-
iq
+
xq
ψq
-
xa xf xad
xd’
磁链平衡等值电路 26
1、暂态电抗和暂态电势
从 d , f 方程中消去 i f ,得
)
ic
X
R' X' R' X'
i ip ia 强制分量 自由分量
ip
Im
sin(t
)
Um Z
sin(t
)
ia Ce pt C exp( t / Ta )
Ta
L R
Z R2 X 2
arctg X
R
8
i (0)
i(0_)
Im(0) sin( (0) )
Im(0) sin( (0) ) Im sin( ) C
△ifa
△if
定转子子各各绕绕组组磁磁链量变保化持为初零始值定子转三子相绕绕组组磁的链磁变链化保持为21初零值
(三)忽略阻尼绕组同步电机突然三相短路 的物理分析

电力系统故障分析

电力系统故障分析

电力系统故障分析1. 引言电力系统作为现代社会的重要基础设施之一,一旦发生故障将会对社会生活、经济发展和国家安全产生重要影响。

因此,对电力系统故障的及时分析和解决显得尤为重要。

本文将从故障的定义、故障分类以及故障分析方法等方面进行探讨。

2. 故障的定义在电力系统中,故障是指任何导致系统不正常运行、系统能力下降或运行中断的事件。

故障可能来源于设备故障、外界因素、操作错误等多种原因。

3. 故障分类根据故障的性质和原因,电力系统的故障可以分为如下几类:短路故障是指电路中两个或多个不相邻的导体之间发生异常接触,导致电流迅速增大的现象。

短路故障可能由电线短路、设备内部故障等原因引起。

3.2. 开路故障开路故障是指电路中出现断开的情况,导致电流无法顺利流通。

开路故障可能由电线折断、设备断路等原因引起。

3.3. 过载故障过载故障是指电路中的负载超过了设备的额定电流,导致设备过载损坏或烧毁的现象。

过载故障可能由负载过大、短路等原因引起。

接地故障是指电路中的导体接地或与地之间发生异常接触,导致电流通过地返回电源的现象。

接地故障可能由设备绝缘损坏、接线错误等原因引起。

4. 故障分析方法为了快速准确地分析电力系统的故障,并采取相应的措施进行修复,以下是几种常用的故障分析方法:4.1. 电力系统监测技术通过使用电力系统监测技术,可以实时监测电力系统的运行状态,包括电流、电压、频率等参数的监测。

当系统出现故障时,可以通过监测数据来判断故障的发生位置和类型。

4.2. 故障记录和数据分析电力系统故障记录的收集和分析是故障分析的重要手段。

通过故障记录,可以了解故障的发生频率、时刻、持续时间等信息,进而分析故障的原因和影响。

4.3. 模拟仿真分析通过使用电力系统模拟仿真软件,可以对电力系统进行虚拟仿真实验,模拟各种故障情况,并通过分析仿真结果来分析故障原因和解决方案。

4.4. 经验和专家知识电力系统的故障分析也离不开经验和专家知识的支持。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析电力系统是现代工业生产中非常重要的一个基础设施,而在电力系统的运行中,各种各样的电气故障时常发生,给系统的正常运行和电力供应带来了很大的影响。

因此,对电力系统常见的电气故障进行分析,可以有效地提高系统的可靠性和运行效率。

1、跳闸故障跳闸故障是指电力系统中断开电路的一种故障,其常见原因包括过载、短路、接触不良等。

当电力系统中的电流或电压超过了其安全运行范围时,开关自动跳闸,以保护系统的安全运行。

2、接地故障接地故障是指电站电缆或配电系统某一相线接地故障。

接地故障会导致电力系统中的电压不稳定,同时也容易给人类带来触电的安全隐患,因此接地故障的检测和处理至关重要。

3、线断故障线路断路故障是指高压输电线路或低压配电线路发生线路断裂的故障。

当线路发生断裂,会导致电流无法传输,从而造成电力系统中的电压下降或完全失去供电的情况。

4、电力骤变故障电力骤变故障是指电力系统中的电压突然变化的一种故障,其原因可能包括外部因素(如雷击、灯击等)和内部故障(如电力电源失败、配电线路短路等)。

电力骤变故障容易造成电力设备的损坏,同时也容易给人们带来触电危险。

1、检查电表读数在出现电气故障时,首先需要检查电表读数是否异常。

如果电表读数异常,说明电气故障可能出现在电表以及电表所在的线路上。

2、检查电路配电线路在排查电气故障时,需要仔细检查配电线路的连接情况,尤其是电路的接头处。

如果发现电路接头处接触不良或出现腐蚀现象,就需要及时进行处理。

3、检查设备状况对于电气故障的分析,还需要检查电气设备的状况。

如需要更换受损的电气设备或重新设置电力系统控制台等。

4、使用测试仪器当遇到复杂的电气故障时,往往需要使用电气测试仪器来接线图、测量电流和电压,以判断故障的类型和位置。

三、预防和避免电力系统电气故障的方法1、加强对电力设备的维护保养对电力系统中的电机、变压器、开关、闸刀等设备进行定期检测和维护保养,预防故障的发生。

电力系统常见电气故障分析

电力系统常见电气故障分析

电力系统常见电气故障分析电力系统是现代社会不可或缺的基础设施,而电气故障是电力系统运行过程中经常出现的问题,可能对人们的生产生活造成严重影响。

因此,对电力系统常见电气故障进行分析和探讨,对于确保电力系统正常运行、提高电力系统可靠性具有非常重要的意义。

一、局部放电故障:局部放电是电力系统中最常出现的电气故障之一。

通常由介质材料或接头、支架等局部绝缘出现缺陷,使局部电场强度大于介质击穿强度而引起。

局部放电不仅会加速设备的老化破坏和缺陷扩大,还会引起相邻设备间的相互干扰,影响电力系统的安全运行。

因此,对局部放电故障进行检测和预防非常重要。

二、绝缘老化故障:随着使用时间的延长,电力设备中的绝缘材料会逐渐失去其良好的电气特性,伴随老化和破损。

这样绝缘层的击穿强度就会下降,发生绝缘老化故障的几率也就越大。

因此,定期进行设备的检测和保养,及时更换老化的绝缘材料,对维护电力设备的长久稳定运行以及维护用电安全都是非常重要的。

三、短路故障:短路故障是电力系统中常见的电气故障之一。

短路故障通常不仅会造成很大的电压和电流冲击,也会对系统内部设备造成严重损害,甚至引起火灾等危险。

因此,在电气系统的设计中,应该注重设计设备的灵敏保护措施,及时检测并排除短路故障,以确保电力系统的安全、稳定运行。

四、过电压故障:过电压故障是指电力系统中的电压超过系统设计电压,引起设备的烧毁或损坏。

过电压故障是电力系统中常见的电气故障之一,常见原因是雷击、电力设备切换、设备阻抗变化等。

过电压的发生会对设备造成很大的损害,并可能引起火灾等安全隐患。

因此,在电气系统中,应该安装良好的过电压保护装置,及时排查并消除过电压故障。

五、接地故障:接地故障是电力系统中常见的故障之一。

当电力设备接地时,电力系统中的电流会流向地面,导致电力设备不能正常工作或造成电流泄漏等安全隐患。

因此,在电气系统设计和施工过程中,必须注意接地装置的设置和保护措施,防止接地故障的发生。

电力系统故障分析及计算

电力系统故障分析及计算

为 50Hz;基准转速取同步速,ω B = ω N ,我国为 100π rad s ;与此相应,基准角度为 180/π ,
从而角度α 的标幺值为α
π
/180rad (弧度)。时间的基准值取为
tB=
1 ωB
=
1 ωN
,从而时
间 t 的标幺值为 tω N rad。这样选取时间基准值的好处是使得ωt 的标幺值和有名值相等,
第一节 电力系统故障计算的基本知识
一.故障概述
(一) 故障的分类 凡造成电力系统运行不正常的任何连接或情况均称为电力系统的故障。电力系统的故障 有多种类型,如短路、断线或它们的组合。短路又称横向故障,断线又称为纵向故障。短路 故障可分为三相短路、单相接地短路(简称单相短路)两相短路和两相接地短路,分别简记 为 f(3)、f(1)、f(2)和 f(1,1)。注意两相短路和两相接地短路是两类不同性质的短路故障,前 者无短路电流流入地中,而后者有。三相短路时三相回路依旧是对称的,故称为对称短路; 其他几种短路均使三相回路不对称,因此称为不对称短路。断线故障可分为单相断线和两相 断线,分别简记为 o(1)、o(2)。三相断线如同开断一条支路,一般不作为故障处理。断线又 称为非全相运行,也是一种不对称故障。大多数情况下在电力系统中一次只有一处故障,称 为简单故障或单重故障,但有时可能有两处或两处以上故障同时发生,称为复杂故障或多重 故障。由此,将电力系统故障作如下分类:
2
快恢复正常等。这些措施均须建立在故障计算的基础上。在发电厂、变电所以及整个电力系 统的设计工作中,都必须事先进行短路计算,以此作为合理选择电气接线、选用有足够热稳 定度和动稳定度的电气设备及载流导体、确定限制短路电流的措施、合理配置各种继电保护 并整定其参数等的重要依据。 因此故障计算对于电力系统的设计和安全运行具有十分重要 的意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2三相对称短路的基本分析 三相对称短路的基本分析
这种情况非周期分量为最大。 这种情况非周期分量为最大。由于周期性分量在短路初始 ′′ ′′ 瞬间为 I m ,故非周期性分量的最大值也为 I m 。isct的值 在短路后半周期时间( 达到最大瞬时值。 在短路后半周期时间(0.01s)达到最大瞬时值。通常称之 达到最大瞬时值 为冲击电流,冲击电流i 可以近似地用下式来计算。 为冲击电流,冲击电流 P可以近似地用下式来计算。
式中,I m = Em ( R + R ′) + ω ( L + L ′)
2 2 2
e = Em sin( ωt + α )
;ϕ ′ = tg −1
ω ( L + L ′)
R +成两个独立的电路, 当 f 点发生三相短路时,这个电路即被分成两个独立的电路,其中左边 的一个仍与电源相连接,而右边的一个则变为没有电源短接电路。 的一个仍与电源相连接,而右边的一个则变为没有电源短接电路。在短接电 路中,电流将从它发生电路瞬间的初始值衰减到零,在这一衰减过程中, 路中,电流将从它发生电路瞬间的初始值衰减到零,在这一衰减过程中,该 电路磁场中所储藏的能量将全部转化为电阻中所消耗的热能。 电路磁场中所储藏的能量将全部转化为电阻中所消耗的热能。在与电源相连 的左侧电路中, 的左侧电路中,每相的阻抗已变为R + jωL ,其电流将要由电路前的数值逐渐 所决定的新稳态值, 变化到由阻抗 R + jωL 所决定的新稳态值,短路电流计算主要是对这一电 路进行的。 路进行的。
I m sin(α − ϕ ′) = I actm sin(α − ϕ ) + C, 因此 C = idct 0 = I m sin(α − ϕ ′) − I actm sin(α − ϕ )。 i = I actm sin(ωt + α − ϕ ) + [ I m sin(α − ϕ ′) − I actm sin(α − ϕ )]exp(−t / Tα )
4.1短路的概念及原因
短路种类



符号


三相 短路 两相 短路
K
( 3)
三相同时在一 点短接, 点短接,属于 对称短路。 对称短路。 两相同时在一 点短接, 点短接,属于 不对称短路。 不对称短路。
K
( 2)
4.1短路的概念及原因
短路种类



符号


两相 接地 短路 单相 接地 短路
两相在不同地点 与地短接。 (1.1) 与地短接。不对 K 称。 在中性点直接接 地系统中, 地系统中,一相 (1) K 与地短接,不对 与地短接, 称短接。 称短接。
根据电路的开闭定律,电感中的电流不能突变,短路前瞬间( 根据电路的开闭定律,电感中的电流不能突变,短路前瞬间(以下表 [0]表示 [0]表示)的电流 i[ 0] 应等于短路发生后瞬间(以下表0表示)的电流 i0 。 表示) 应等于短路发生后瞬间(以下表0表示 表示) 分别代入短路前和短路后的电流算式, 将t=0分别代入短路前和短路后的电流算式,应得: 分别代入短路前和短路后的电流算式 应得:
4.2三相对称短路的基本分析 三相对称短路的基本分析
在电力系统发生短路时,由于电路阻抗突然减小, 在电力系统发生短路时,由于电路阻抗突然减小,在电动势的作用 下发电机定子电路中将产生很大的短路电流,这个电流按工频变化,因 下发电机定子电路中将产生很大的短路电流,这个电流按工频变化, 之称为周期分量电流。 之称为周期分量电流。 由于发电机定子短路回路基本上是感性的, 由于发电机定子短路回路基本上是感性的,因此在短路瞬间周期分 量电流将会感生一个自由电流来保持短路回路的磁链不能突变。这种自 量电流将会感生一个自由电流来保持短路回路的磁链不能突变。 由分量电流起着抵消周期分量电流变化的作用,并使回路中电流保持在 由分量电流起着抵消周期分量电流变化的作用, 短路前的瞬时值。 短路前的瞬时值。 自由分量电流产生后由于没有电动势维持, 自由分量电流产生后由于没有电动势维持,将按短路回路的时间常 衰减, 决定于短路回路的电阻R与电感 与电感L. 数Ta衰减, Ta决定于短路回路的电阻 与电感
− t / Ta
由以上分析可以写出周期性分量电流的表达式为
iact = − 2 I act cos(ωt + α 0 )
在时间t的周期性分量有效值 的周期性分量有效值; 式中 Iact-在时间 的周期性分量有效值; α0-短路瞬间电动势 的相位初始角。 短路瞬间电动势e的相位初始角 的相位初始角。 短路电流的总值为周期性分量与非周期性分量电流之和 isct
4.2三相对称短路的基本分析 三相对称短路的基本分析
− 0.01 Ta − 0.01 Ta
′′ ′′ i p = I m + I me
4.1短路的概念及原因
5.研究短路的目的
为了限制短路的危害和缩小故障影响的范围, 为了限制短路的危害和缩小故障影响的范围,在 变电所和供电系统的设计和运行中, 变电所和供电系统的设计和运行中,必须进行短路电 流计算,以解决下列问题: 流计算,以解决下列问题: (1)选择电气设备和载流导体,必须用短路电流 )选择电气设备和载流导体, 校验其热稳定性和机械强度。 校验其热稳定性和机械强度。 (2)选择和整定继电保护装置,使之能正确地切 )选择和整定继电保护装置, 除短路故障。 除短路故障。 (3)确定限流措施,当短路电流过大造成设备选 )确定限流措施, 择困难或不够经济时,可采取限制短路电流的措施。 择困难或不够经济时,可采取限制短路电流的措施。 (4)确定合理的主结线方案和主要运行方式等; )确定合理的主结线方案和主要运行方式等;
4.1短路的概念及原因
4.短路的危害 短路的危害
发生短路时,系统中总阻抗减小, 发生短路时,系统中总阻抗减小,短路电流达 到很大的数值。 到很大的数值。 强大的短路电流产生的热和电动力效应会使电气 强大的短路电流产生的热 电动力效应会使电气 设备破坏;短路点的电弧可烧毁电气设备; 设备破坏;短路点的电弧可烧毁电气设备;短路点附 近的电压显著降低,供电受到破坏; 近的电压显著降低,供电受到破坏; 发电厂附近发生短路时,可使全电力系统运行解 发电厂附近发生短路时, 裂。 不对称接地短路所造成的零序电流, 不对称接地短路所造成的零序电流,会在邻近的 通讯线路产生感应电势,干扰通信, 通讯线路产生感应电势,干扰通信,及人身和设备的 安全。 安全。
4.2无限大电源三相对称短路的基本分析 无限大电源三相对称短路的基本分析
分析简单三相R-L电路对称短路暂态过程。电路由有恒定幅值频率 电路对称短路暂态过程。 分析简单三相 电路对称短路暂态过程 的三相对称电势源供电。电路如由下图所示。短路前电路处于稳态, 的三相对称电势源供电。电路如由下图所示。短路前电路处于稳态, 每相的电阻和电感分别为R+R′和L+L′。由于电路对称,只写出一相 每相的电阻和电感分别为 和 。由于电路对称, (a相)电势和电流如下: 相 电势和电流如下:
Ri + L
的一般解,它代表短路电流的自由分量。 的一般解,它代表短路电流的自由分量。 短路电流的强制分量与外加电源电势有相同的变化规律,也是恒幅值 短路电流的强制分量与外加电源电势有相同的变化规律, 的正弦交流,习惯上称为周期分量,并记为 i act ,它用下式表示: 的正弦交流,习惯上称为周期分量, 它用下式表示:
量衰减快慢的时间常数 C是积分常数,由初始条 ; 件决定,它即是非 周期电流的起始值dc0。 i
4.2三相对称短路的基本分析 三相对称短路的基本分析
这样,短路的全电流可以表示为: 这样,短路的全电流可以表示为:
isct = iact + idct = I actm sin(ωt + α − ϕ ) + Cexp(−t / Tα )
Ta =
L R
=
X 314 R
4.2 三相对称短路的基本分析
自由分量电流也称非周期分量电流,一般经过 就衰减完毕。 自由分量电流也称非周期分量电流,一般经过0.15~0.2s就衰减完毕。 ~ 就衰减完毕 变化,如图4-2所示,其表达式为 所示, 非周期分量电流 idct变化,如图 所示
idct = idco e
Em sin(ωt + α )
ɺ Ia L L L ɺ Ib ɺ Ic
f
R′ R′ R′
L′ L′ L′
R Em sin(ωt + α − 120°)
Em sin(ωt + α + 120°)
R R
简单三相电路短路
4.2三相对称短路的基本分析 三相对称短路的基本分析
i = I m sin( ωt + α − ϕ ′ )
= idct + iact
结论( )当短路发生在电动势初始角α 为零时, 结论(1)当短路发生在电动势初始角 0为零时,这时若短路回路认为 是纯电感的,则短路电流周期性分量电流将为最大值。 是纯电感的,则短路电流周期性分量电流将为最大值。 ),则非周期分量的起始 (2)若短路之前电路是空载( i0 =0 ),则非周期分量的起始 )若短路之前电路是空载( 值也为最大。 值也为最大。图4-2表示 - 表示
4.1短路的概念及原因
6.进行短路计算的基本假设 进行短路计算的基本假设 通常采取以下基本假设: 通常采取以下基本假设: (1)忽略磁路的饱和与磁滞现象,认为系统 )忽略磁路的饱和与磁滞现象, 中的各元件参数为恒定。 中的各元件参数为恒定。 (2)忽略各元件的电阻。 )忽略各元件的电阻。 (3)忽略短路点的过渡电阻。 )忽略短路点的过渡电阻。 (4)除不对称故障处出现局部不对称外,实 )除不对称故障处出现局部不对称外, 际的电力系统通常可以当做三相对称的。 际的电力系统通常可以当做三相对称的。
相关文档
最新文档