江苏省南京市玄武区2018-2019学年度八年级(上)期末数学试卷(解析版)

合集下载

2018-2019学年苏科版八年级数学上学期末测试卷含答案 doc

2018-2019学年苏科版八年级数学上学期末测试卷含答案 doc

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共24分,每题中只有一个正确选项)1.下列各组数中,能构成直角三角形的是()A.1,B.6,8,10C.4,5,9D.5,12,182.下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()A.1B.2C.3D.43.下列奥运会会徽,是轴对称图形的是()A.B.C.D.4.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.5.由四舍五入得到的近似数8.01×104,精确到()A.10 000B.100C.0.01D.0.000 16.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)7.已知等腰三角形的两边长为4,5,则它的周长为()A.13B.14C.15D.13或148.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A.m>0B.m<0C.m>1D.m<1二、填空题(本大题共10小题,每小题4分,共40分)9.点(2,3)在哪个象限.10.4是的算术平方根.11.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.12.点P(﹣4,2)关于x轴对称的点Q的坐标.13.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.14.当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为.15.如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件.16.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.17.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为.三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.(1)x2=3(2)x3=﹣6420.(6分)在数轴上画出表示的点.21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,求证:(1)△ABE≌△DCF;(2)AE∥FD.22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y1=x﹣1和y2=﹣2x+5画出函数的图象;(2)根据图象直接写出的解为;(3)利用图象求两条直线与x轴所围成图形的面积.25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发小时,早到小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.参考答案与试题解析一、选择题(每题3分,共24分,每题中只有一个正确选项)1.下列各组数中,能构成直角三角形的是()A.1,B.6,8,10C.4,5,9D.5,12,18【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、12+()2≠()2,故不是直角三角形;B、62+82=102,能构成直角三角形;C、42+52≠92,故不是直角三角形;D、52+122≠182,故不是直角三角形.故选:B.【点评】此题主要考查了勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.2.下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()A.1B.2C.3D.4【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.【解答】解:、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数有:、﹣0.010010001…(每两个1之间增加1个0),共2个.故选:B.【点评】本题考查了无理数,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.3.下列奥运会会徽,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,即可判断出.【解答】解:∵A.此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;B:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;C.此图形一条直线对折后能够完全重合,∴此图形是轴对称图形,故此选项正确;D:此图形一条直线对折后不能够完全重合,∴此图形不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了轴对称图形的定义,根据定义得出图形形状是解决问题的关键.4.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.【分析】认真观察图形,可以看出选项中只有C中的两个可以平移后重合,其它三个大小或形状不一致.【解答】解:由全等形的概念可知:A、B中的两个图形大小不同,D中的形状不同,C 则完全相同,故选:C.【点评】本题考查的是全等形的识别,做题时要注意运用定义,注意观察题中图形,属于较容易的基础题.5.由四舍五入得到的近似数8.01×104,精确到()A.10 000B.100C.0.01D.0.000 1【分析】根据近似数的精确度求解.【解答】解:近似数8.01×104精确到百位.故选:B.【点评】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.6.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)【分析】让点P的横坐标加3,纵坐标不变即可.【解答】解:平移后点P的横坐标为﹣2+3=1,纵坐标不变为﹣3;所以点P(﹣2,﹣3)向右平移3个单位长度后的坐标为(1,﹣3).故选:B.【点评】本题考查了坐标与图形的变化﹣﹣平移,平移变换是中考的常考点,关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.已知等腰三角形的两边长为4,5,则它的周长为()A.13B.14C.15D.13或14【分析】分情况考虑:当4是腰时或当5是腰时,然后分别求出两种情况下的周长.【解答】解:当4是腰时,能组成三角形,周长为4×2+5=13;当5是腰时,则三角形的周长是4+5×2=14.故选:D.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.此类题不要漏掉一种情况,同时注意看是否符合三角形的三边关系.8.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A.m>0B.m<0C.m>1D.m<1【分析】根据一次函数的增减性可求解.【解答】解:∵一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),且x1>x2时,有y1<y2∴m﹣1<0∴m<1故选:D.【点评】本题考查了一次函数图象上点的坐标特征,利用一次函数增减性解决问题是本题的关键.二、填空题(本大题共10小题,每小题4分,共40分)9.点(2,3)在哪个象限第一象限.【分析】直接利用点的坐标特点进而得出答案.【解答】解:点(2,3)在第一象限.故答案为:第一象限.【点评】此题主要考查了点的坐标,正确记忆点的坐标特点是解题关键.10.4是16的算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.【点评】此题主要考查了算术平方根的概念,牢记概念是关键.11.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为B10.【分析】明确对应关系,然后解答.【解答】解:小刚家位于某住宅楼A座16层,记为:A16,按这种方法,那么小红家住B座10层,可记为B10.故答案填:B10.【点评】本题较为简单,主要是参照小刚家命名的方式来解决.12.点P(﹣4,2)关于x轴对称的点Q的坐标(﹣4,﹣2).【分析】直接利用关于x轴对称点的性质得出答案.【解答】解:点P(﹣4,2)关于x轴对称的点Q的坐标为:(﹣4,﹣2).故答案为:(﹣4,﹣2).【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的符号是解题关键.13.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是(1,﹣2).【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由用(﹣2,﹣1)表示白棋①的位置,用(﹣1,﹣3)表示白棋③的位置知,y轴为从左向数的第四条竖直直线,且向上为正方向,x轴是从下往上数第五条水平直线,这两条直线交点为坐标原点.那么黑棋②的位置为(1,﹣2).故答案填:(1,﹣2).【点评】解题的关键是确定坐标原点和x,y轴的位置及方向,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.14.当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为y=2x ﹣4.【分析】先根据两直线平行即可得到k=2,然后把(3,2)代入y=2x+b中,求出b即可.【解答】解:∵直线y=kx+b与y=2x﹣2平行,∴k=2,把(3,2)代入y=2x+b,得6+b=2,解得b=﹣4,∴y=kx+b的表达式是y=2x﹣4.故答案为:y=2x﹣4.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.15.如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件∠B=∠C..【分析】由图形可知∠A为公共角,则需要再添加∠B=∠C.【解答】解:∵在△ABD和△ACE中,有AB=AC,且∠A=∠A,∴当利用ASA来证明时,还需要添加∠B=∠C,故答案为:∠B=∠C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS、SAS、ASA、AAS和HL.16.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是c <a<b.【分析】观察图形根据勾股定理分别计算出a、b、c的值,因为a、b、c大于0,所以分别求a2、b2、c2比较大小即可比较a、b、c的大小.【解答】解:在图中,每个小正方形的边长为1,则a==,c=4,b==5,c2=16,a2=17,b2=25,c2<a2<b2,故c<a<b,故答案为c<a<b.【点评】本题考查了勾股定理的灵活运用,考查了实数大小的比较,本题中正确的把比较a、b、c的值转化为比较c2、a2、b2的值是解题的关键.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为3.【分析】作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.【解答】解:作点B关于x轴的对称点B′,连接AB′交x轴于P,此时PA+PB的值最小.∵PA+PB=PA+PB′=AB′==3,故答案为3.【点评】本题考查轴对称﹣最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.(1)x2=3(2)x3=﹣64【分析】利用平方根,立方根定义计算即可求出值.【解答】解:(1)x2=3,开方得:x=±;(2)x3=﹣64,开立方得:x=﹣4.【点评】此题考查了立方根,以及平方根,熟练掌握各自的性质是解本题的关键.20.(6分)在数轴上画出表示的点.【分析】作一个直角三角形,两直角边长分别是1和2,这个直角三角形的斜边长就是,然后在数轴上表示出即可.【解答】解:如图所示:首先过O作垂线,再截取AO=2,然后连接A和表示1的点B,再以O为圆心,AB长为半径画弧,与原点右边的坐标轴的交点为.【点评】此题主要考查了勾股定理的应用,关键是找出以为斜边的直角三角形的直角边长.21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,求证:(1)△ABE≌△DCF;(2)AE∥FD.【分析】(1)根据平行线性质求出∠B=∠C,求出BE=CF,根据SAS推出两三角形全等即可;(2)根据全等三角形的性质和平行线的判定证明即可.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,在△ABE和△DCF中,∴△ABE≌△DCF;(2)由(1)得△ABE≌△DCF,∴∠AEB=∠DFE,∴AE∥DF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.【分析】(1)由OB=OC,即可求得∠OBC=∠OCB,又由,锐角△ABC的两条高BD、CE 相交于点O,根据三角形的内角和等于180°,即可证得△ABC是等腰三角形;(2)首先连接AO并延长交BC于F,通过证△AOB≌△AOC(SSS),得到∠BAF=∠CAF,即点O在∠BAC的角平分线上.【解答】(1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:点O在∠BAC的角平分线上.理由:连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上.【点评】此题考查了等腰三角形的性质与判定,以及角平分线的判定等知识.此题难度不大,注意等角对等边与三线合一定理的应用.23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?【分析】仔细分析该题,可画出草图,关键是旗杆高度、绳子长及绳子下端距离旗杆底部8米这三线段长可构成一直角三角形,解此直角三角形即可.【解答】解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y 1=x ﹣1和y 2=﹣2x +5画出函数的图象;(2)根据图象直接写出的解为 ;(3)利用图象求两条直线与x 轴所围成图形的面积.【分析】(1)利用描点法画出一次函数y 1=x ﹣1和y 2=﹣2x +5的图象;(2)找出两函数图象的交点坐标即可;(3)先计算出两条直线与x 轴的交点坐标,然后利用三角形面积公式求解.【解答】解:(1)如图,(2)的解为;故答案为;(3)解方程﹣2x +5=0得x=,则直线y=﹣2x +5与x 轴的交点坐标为(,0), 解方程x ﹣1=0得x=1,则直线y=x ﹣1与x 轴的交点坐标为(1,0),所以两条直线与x 轴所围成图形的面积=×(﹣1)×1=.【点评】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.【分析】(1)根据题意,即可求得两种方式所付费用y(元)与租用路程x千米之间的函数关系式;(2)由y1<y2时,可得出不等式,解不等式即可求得答案.【解答】解:(1)y1=1.5x,y2=0.5x+800;(2)当y2<y1时,乙家收取的租车费y2元较甲家y1元较少;1.5x<0.5x+800解得x<800;答:当汽车行驶路程为小于800千米时,乙家收取的租车费y2元较甲家y元较少.【点评】此题考查了一次函数的实际应用.此题难度适中,解题的关键是理解题意,找到等量关系求得函数解析式,注意不等式思想的应用.26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发2小时,早到4小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.【分析】(1)根据图中,快,慢车的函数图象可得出结果.(2)求出的快车追上慢车时走的时间,可知道慢车和快车在相遇时分别用了多少小时,已知这段路程是276千米,因此根据速度=路程÷时间,即可求出两车的速度.(3)求出的两车的速度,从图中又知道了两车走完全程用的时间,因此,可以得出甲乙两地的路程.(4)结合图象解答即可.【解答】解:(1)慢车比快车早出发2小时,快车比慢车早4小时到达;故答案为:2;4;(2)设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程,解得x=6(小时).所以慢车的速度为千米/小时,快车的速度为千米/小时;(3)两地间的路程为70×18=1260千米.(4)设直线AB的解析式为:y=kx+b,可得:,解得:,所以直线AB的解析式为:y=105x﹣210,点C表示的实际意义是两车在420千米处相遇.【点评】此题考查一次函数的应用,关键是通过考查一次函数的应用来考查从图象上获取信息的能力.27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.【分析】活动一:利用同角的余角相等,证明∠B=∠ECD,根据ASA即可证明;活动二:结论:△ACB≌△CBM.根据ASA即可证明;活动三:作AH⊥y轴于H.只要证明△ACH≌△CBO,可得AH=OC=2,推出点A到y的距离为定值,推出点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);【解答】活动一:证明:如图1中,∵AB⊥AD,DE⊥AD,BC⊥CE,∴∠A=∠D=∠BCE=90°,∴∠B+∠ACB=90°,∠ACB+∠ECD=90°,∴∠B=∠ECD,∵AB=CD,∴△ABC≌△DCE.活动二:解:结论:△ACB≌△CBM.理由:∵∠CNM=90°,∠CMN=30°,∴∠MCN=60°,∵∠BCN=15°,∴∠MCB=45°,∵∠A=45°,∴∠A=∠BCM,∵AB=CM,AC=CB,∴△ACB≌△CBM(ASA).活动三:解:作AH⊥y轴于H.∵C(0,2),∴OC=2,∵∠AHC=∠COB=∠ACB=90°,∴∠HAC+∠ACH=90°,∠ACH+∠BCO=90°,∴∠HAC=∠BCO,∵AC=CB,∴△ACH≌△CBO,∴AH=OC=2,∴点A到y的距离为定值,∴点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);【点评】本题考查了三角形综合题,全等三角形的判定及性质、坐标与图形性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

每日一学:江苏省南京市玄武区2018-2019学年八年级上学期数学期末考试试卷 _压轴题解答

每日一学:江苏省南京市玄武区2018-2019学年八年级上学期数学期末考试试卷 _压轴题解答

每日一学:江苏省南京市玄武区2018-2019学年八年级上学期数学期末考试试卷 _压轴题解答答案江苏省南京市玄武区2018-2019学年八年级上学期数学期末考试试卷 _压轴题~~ 第1题 ~~(2019玄武.八上期末)(1) 【初步探究】如图1,在四边形ABCD 中,∠B =∠C =90°,点E 是边BC 上一点,AB =EC ,BE =CD ,连接AE 、DE.判断△AED 的形状,并说明理由.(2) 【解决问题】如图2,在长方形ABCD 中,点P 是边CD 上一点,在边BC 、AD 上分别作出点E 、F ,使得点F 、E 、P 是一个等腰直角三角形的三个顶点,且PE =PF ,∠FPE =90°.要求:仅用圆规作图,保留作图痕迹,不写作法.(3) 【拓展应用】如图3,在平面直角坐标系xOy 中,已知点A (2,0),点B (4,1),点C 在第一象限内,若△A BC 是等腰直角三角形,则点C 的坐标是.(4) 如图4,在平面直角坐标系xOy 中,已知点A (1,0),点C 是y 轴上的动点,线段CA 绕着点C 按逆时针方向旋转90°至线段CB ,CA =CB ,连接BO 、BA ,则BO+BA 的最小值是.考点: 坐标与图形性质;等腰直角三角形;全等三角形的判定与性质;旋转的性质;~~ 第2题 ~~(2019上海.中考模拟) 如图,在长方形纸片ABCD 中,AB =3,AD =9,折叠纸片ABCD ,使顶点C 落在边AD 上的点G 处,折痕分别交边AD 、BC 于点E 、F ,则△GEF 的面积最大值是________.~~ 第3题 ~~(2019安庆.八下期中) 如图,由四个全等的直角三角形拼成的图形,设CE= HG= 则斜边BD的长是()A .B .C .D .江苏省南京市玄武区2018-2019学年八年级上学期数学期末考试试卷 _压轴题解答~~ 第1题 ~~答案:解析:答案:解析:~~ 第3题 ~~答案:B解析:。

江苏省南京市名校2018-2019学年八上数学期末检测试题

江苏省南京市名校2018-2019学年八上数学期末检测试题

江苏省南京市名校2018-2019学年八上数学期末检测试题一、选择题1.下列式子从左到右变形正确的是( )A .B .C .D . 2.若213x M N x 1x 1x 1-=+-+-,则M 、N 的值分别为( ) A .M=-1,N=-2B .M=-2,N=-1C .M=1,N=2D .M=2,N=1 3.化简2m mn mn m n m n+÷--的结果是( ) A .m n n+ B .2m m n - C .m n n - D .2m 4.下列计算结果正确的是( ) A .2a ·3a =6aB .6a ÷3a =3aC .(a-b)=2a -2bD .32a +23a =55a 5.下列计算,结果等于a 4的是( )A .a+3aB .a 5-aC .(a 2)2D .a 8÷a 2 6.如图,大正方形的边长为m ,小正方形的边长为n ,x ,y 表示四个相同长方形的两边长(x y >).则①x y n -=;②224m n xy -=;③22x y mn -=;④22222m n x y -+=,中正确的是( )A.①②③B.①②④C.①③④D.①②③④7.如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( )A.(-12,-12)B.(2,2)C.-D.(0,0)8.点A (﹣5,4)关于y 轴的对称点A′的坐标为( )A .(﹣5,﹣4)B .(5,﹣4)C .(5,4)D .(﹣5,4) 9.如图,直线与轴,轴分别交于点,,以为底边在轴右侧作等腰,将沿轴折叠,使点恰好落在直线上,则点的坐标为( )A. B. C. D.10.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A.115B.120C.125D.13011.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处12.如图,在ABC ∆中,90BAC ∠=︒,2ABC C ∠=∠,BE 平分ABC ∠交于点E ,AD BE ⊥于点D ,下列结论:①AC BE AE -=;②DAE C ∠=∠;③4BC AD =;④点E 在线段BC 的垂直平分线上,其中正确的个数有( )A .4个B .3个C .2个D .1个13.如图,AB ⊥AC ,CD 、BE 分别是△ABC 的角平分线,AG ∥BC ,AG ⊥BG ,下列结论:①∠BAG=2∠ABF ;②BA 平分∠CBG ;③∠ABG=∠ACB ;④∠CFB=135°.其中正确的结论是( )A .①③B .②④C .①③④D .①②③④ 14.如图,在△ABC 和△DEC 中,AB =DE.若添加条件后使得△ABC ≌△DEC ,则在下列条件中,不能添加的是( )A.BC =EC ,∠B =∠EB.BC =EC ,AC =DCC.∠B =∠E ,∠A =∠DD.BC =EC ,∠A =∠D15.将一副直角三角板按如图所示方式放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A.45°B.65°C.70°D.75°二、填空题 16.观察分析下列方程:①x+2x=3;②x+6x =5;③x+12x =7,请利用他们所蕴含的规律,写出这一组方程中的第n 个方程是_____.17.如图,小倩家买了一套新房,其结构如图所示(单位:m ).施工方已经根据合同约定把公共区域(客厅、餐厅、厨房、卫生间)铺上了地板砖,小倩打算把两个卧室铺上实木地板,则小倩需要准备的地板面积是________________.18.已知四边形ABCD ,AB BC ⊥,AD DC ⊥,AB BC =,如果42AD DC ==,,则BD 的长为__________.19.已知ABC ∆的角满足下列条件:①90A B ∠+∠=;②2B A ∠=∠,3C A ∠=∠;③2A B C ∠+∠=∠;④3B A ∠=∠,8C A ∠=∠,其中一定不是直角三角形的是______.(只填序号)20.如图,数轴上A 点表示数7,B 点表示数5,C 为OB 上一点,当以OC 、CB 、BA 三条线段为边,可以围成等腰三角形时,C 点表示数______.三、解答题21.计算(1)221)1)-;(2)130120.1252019|1|2-⎛⎫-⨯++- ⎪⎝⎭; (3)111222133224-⎛⎫⎛⎫⎛⎫⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22.(1)计算:12ab•(2ab 2)2 (2)因式分解:4x 2y 2-y 223.已知:如图,点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,AM=AC=CM ,BC=CN=BN ,∠ACM=∠BCN=60°,AN 交MC 于点E ,BM 交CN 于点F.(1)求证:AN=BM;(2)求证:判断△CEF 形状24.如图,在ABC △中,点D 为边BC 的中点,点E 在ABC △内,AE 平分BAC ∠,CE AE ⊥,点F 在AB 上,且BF DE =.(1)求证:四边形BDEF 是平行四边形;(2)线段AB BF AC 、、之间具有怎样的数量关系?证明你所得到的结论.25.如图,直线,AB CD 相交于点O ,OE 平分BOC ∠,090∠=COF .(1)若065BOE ∠=,求AOF ∠的度数;(2)若:1:2BOD BOE ∠∠=,求AOF ∠的度数.【参考答案】***一、选择题16.x+ =n+(n+1)17.10ab18.19.④20.2或或3三、解答题21.(1)(2)3;(3)12. 22.(1)2a 3b 5;(2)y 2(2x+1)(2x-1).23.(1)证明见解析;(2)△CEF 是等边三角形,理由见解析.【解析】【分析】(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS 得到△ACN ≌△MCB ,结论得证;(2)由(1)中的全等可得∠CAN=∠CMB ,进而得出∠MCF=∠ACE ,由ASA 得出△CAE ≌△CMF ,即CE=CF ,又ECF=60°,所以△CEF 为等边三角形.【详解】(1)∵△ACM ,△CBN 是等边三角形,∴AC=MC ,BC=NC ,∠ACM=∠NCB=60°,∴∠ACM+∠MCN=∠NCB+∠MCN ,即∠ACN=∠MCB ,在△ACN 和△MCB 中,AC MC ACN MCB NC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△MCB (SAS ),∴AN=BM ;(2)△CEF 是等边三角形,理由:∵△CAN ≌△CMB ,∴∠CAN=∠CMB ,又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,∴∠MCF=∠ACE ,在△CAE 和△CMF 中,CAE CMF CA CM ACE MCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAE ≌△CMF (ASA ),∴CE=CF ,∴△CEF 为等腰三角形,又∵∠ECF=60°,∴△CEF 为等边三角形.【点睛】本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,要求能够掌握并熟练运用.24.(1)详见解析;(2)()12BF AB AC =- 【解析】【分析】(1)证明△AGE ≌△ACE ,根据全等三角形的性质可得到GE=EC ,再利用三角形的中位线定理证明DE ∥AB ,再加上条件DE=BF 可证出结论;(2)先证明12==BF DE BG ,再证明AG=AC ,可得到()()1122=-=-BF AB AG AB AC . 【详解】(1)证明:延长CE 交AB 于点G ,AE CE ⊥,90AEG AEC ∴∠=∠=︒,在AEG △和AEC 中,GAE CAE AE AE AEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AGE ACE ASA ∴△≌△.GE EC ∴=.BD CD =,DE ∴为CGB △的中位线,DE AB ∴∥.DE BF =,∴四边形BDEF 是平行四边形.(2)解:()12BF AB AC =-. 理由如下:四边形BDEF 是平行四边形,BF DE ∴=.,D E 分别是BC GC 、的中点,12BF DE BG ∴==. AGE ACE △≌△,AG AC ∴=,()()1122BF AB AG AB AC ∴=-=-. 【点睛】此题主要考查了平行四边形的判定与性质,全等三角形的判定与性质,三角形中位线定理,题目综合性较强,证明GE=EC ,再利用三角形中位线定理证明DE ∥AB 是解决问题的关键.25.(1)40°;(2)54°。

2018-2019学年苏科版数学八年级上册期末试卷含答案解析

2018-2019学年苏科版数学八年级上册期末试卷含答案解析

2018-2019学年八年级(上)期末数学试卷一、选择题:(本大题共8小题,每小题3分,共24分,每小题只有一个选项是正确的,请把你认为正确的选项代号填写在括号里,)1.点A(﹣3,2)关于x轴的对称点A′的坐标为()A.(﹣3,﹣2)B.(3,2)C.(3,﹣2)D.(2,﹣3)2.一次函数y=x+1不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,正确的是()A.=±2B.=3C.=﹣3D.=﹣34.4的平方根是()A.±2B.2C.±D.5.下列图形中,不是轴对称图形的是()A.B.C.D.6.下列各组数中,可以构成直角三角形的是()A.2,3,5B.3,4,5C.5,6,7D.6,7,87.如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CE的长为()A.1cm B.2cm C.3cm D.4cm8.如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=5,BD=3,则线段CE的长为()A.3B.1C.2D.4二、填空题:(共8小题,每题3分,共24分。

将结果直接填写在横线上.)9.一个等腰三角形的两边长分别为5和2,则这个三角形的周长为.10.把无理数,,﹣表示在数轴上,在这三个无理数中,被墨迹(如图所示)覆盖住的无理数是.11.函数y=kx的图象过点(﹣1,2),那么k=.12.取=1.4142135623731…的近似值,若要求精确到0.01,则=.13.如图,AB垂直平分CD,AD=4,BC=2,则四边形ACBD的周长是.14.将函数y=2x的图象向下平移3个单位,则得到的图象相应的函数表达式为.15.已知点A(1,y1)、B(2,y2)都在直线y=﹣2x+3上,则y1与y2的大小关系是.16.如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x、y轴的正半轴上,OA=3,OB=4,D为OB边的中点,E是OA边上的一个动点,当△CDE的周长最小时,E点坐标为.三、解答题(共10小题,共102分。

2019-2020学年江苏省南京市玄武区八年级(上)期末数学试卷解析版

2019-2020学年江苏省南京市玄武区八年级(上)期末数学试卷解析版

2019-2020学年江苏省南京市玄武区八年级(上)期末数学试卷一、选择题.1.有下列实数:,﹣0.101001,,π,其中无理数有()A.1 个B.2 个C.3 个D.4 个2.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N3.将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1B.y=﹣2x﹣5C.y=﹣2x+5D.y=﹣2x+74.如图,在△ABC和△DCB中,AC与BD相交于点O,下列四组条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.∠ABD=∠DCA,∠A=∠D5.已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长度为()A.cm B.1cm C.2cm D.cm6.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为()A.(0,﹣4 )B.(0,﹣5 )C.(0,﹣6 )D.(0,﹣7 )二、填空题7.的平方根为.8.函数y=中,自变量x的取值范围是.9.地球的半径约为6371km,用科学记数法表示约为km.(精确到100km)10.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是.11.已知点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,若x1<x2,则y1﹣y20(填“>”、“<”或“=”).12.如图,将一张三角形纸片折叠,使得点A、点C都与点B重合,折痕分别为DE、FG,此时测得∠EBG =36°,则∠ABC=°.13.直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为.14.下表给出的是关于某个一次函数的自变量x及其对应的函数值y的部分对应值,x…﹣2﹣10…y…m2n…则m+n的值为.15.某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时邮箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是km.16.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP的长为.三、解答题4217.计算:﹣+(π﹣3.14)0.18.求下列各式中的x:(1)(x﹣1)2=25(2)x3+4=19.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF⊥DE于点F.(1)求证:△ACD≌△BEC;(2)求证:CF平分∠DCE.20.在平面直角坐标系xOy中,△ABC的位置如图所示,直线l经过点(0,1),并且与x轴平行,△A1B1C1与△ABC关于直线l对称.(1)画出三角形A1B1C1;(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为;(3)在直线l上画出点Q,使得QA+QC的值最小.21.在平面直角坐标系xOy中,已知一次函数的图象经过点A(5,0),B(1,4).(1)求这个一次函数的表达式;(2)直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为.22.如图,已知△ABC(AB<BC),用不带刻度的直尺和圆规完成下列作图.(不写作法,保留作图痕迹(1)在图1中,在边BC上求作一点D,使得BA+DC=BC;(2)在图2中,在边BC上求作一点E,使得AE+EC=BC.23.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.24.(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE⊥AD,交AD的延长线于点E.若AD=3,则BE=.25.快车从M地出发沿一条公路匀速前往N地,慢车从N地出发沿同一条公路匀速前往M地,已知快车比慢车晚出发0.5小时,快车先到达目的地.设慢车行驶的时间为t(h),快慢车辆车之间的距离为s(km),s 与t的函数关系如图1所示.(1)求图1中线段BC的函数表达式;(2)点D的坐标为,并解释它的实际意义;(3)设快车与N地的距离为y(km),请在图2中画出y关于慢车行驶时间t的函数图象.(标明相关数据)26.【基础模型】已知等腰直角△ABC,∠ACB=90°,AC=CB,过点C任作一条直线l(不与CA、CB重合),过点A作AD⊥l于D,过点B作BE⊥l于E.(1)如图②,当点A、B在直线l异侧时,求证:△ACD≌△CBE【模型应用】在平面直角坐标性xOy中,已知直线l:y=kx﹣4k(k为常数,k≠0)与x轴交于点A,与y轴的负半轴交于点B.以AB为边、B为直角顶点作等腰直角△ABC.(2)若直线l经过点(2,﹣3),当点C在第三象限时,点C的坐标为.(3)若D是函数y=x(x<0)图象上的点,且BD∥x轴,当点C在第四象限时,连接CD交y轴于点E,则EB的长度为.(4)设点C的坐标为(a,b),探索a,b之间满足的等量关系,直接写出结论.(不含字母k)2019-2020学年江苏省南京市玄武区八年级(上)期末数学试卷参考答案与试题解析一、选择题.1.【解答】解:,是整数,属于有理数;﹣0.101001是有限小数,属于有理数;是分数,属于有理数.无理数有π共1个.故选:A.2.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选:C.3.【解答】解:∵将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y=﹣2x+3+2,即y=﹣2x+5.故选:C.4.【解答】解:∵AB=DC,AC=BD,BC=CB,∴△ABC≌△DCB(SSS),故A选项正确;∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS),故B选项正确;∵BO=CO,∴∠ACB=∠DBC,∵BC=CB,∠A=∠D∴△ABC≌△DCB(AAS),故C选项正确;∵∠ABD=∠DCA,∠A=∠D,BC=CB,不能证明△ABC≌△DCB,故D选项错误;故选:D.5.【解答】解:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==5cm,∵点D为AB的中点,∴OD=AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故选:D.6.【解答】解:直线y=﹣x+4与x轴、y轴分别交于点A、B,∴A(3,0),B(0,4),∴AB===5,设OM=m,由折叠知,AC=AB=5,CM=BM,BM=OB+OM=4+m,∴OC=8,CM=4+m根据勾股定理得,64+m2=(4+m)2,∴m=6,∴M(0,﹣6),故选:C.二、填空题7.【解答】解:的平方根为±=±.故答案为:±.8.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.9.【解答】解:地球的半径约为6371km,用科学记数法表示约为6.4×103km(精确到100km).故答案为:6.4×10310.【解答】解:若点P在第四象限,且点P到x轴的距离为2,到y轴的距离为3,则点的坐标为(3,﹣2),故答案为:(3,﹣2).11.【解答】解:∵一次函数y=﹣2x+1中,k=﹣2<0,∴y随着x的增大而减小.∵点A(x1,y1)、B(x2,y2)是函数y=﹣2x+1图象上的两个点,x1<x2,∴y1>y2.∴y1﹣y2>0,故答案为>.12.【解答】解:∵把一张三角形纸片折叠,使点A、点C都与点B重合,∴∠ABE=∠A,∠CBG=∠C,∵∠A+∠C=180°﹣∠ABC,∵∠ABC=∠ABE+∠CBG+∠EBG,∴∠ABC=∠A+∠C+36°=180°﹣∠ABC+36°,∴∠ABC=108°,故答案为:108.13.【解答】解:将点P(a,2)坐标代入直线y=x+1,得a=1,从图中直接看出,当x≥1时,x+1≥mx+n,故答案为:x≥1.14.【解答】解:设一次函数解析式为:y=kx+b,则可得:﹣2k+b=m①;﹣k+b=2②;b=n③;m+n=﹣2k+b+b=﹣2k+2b=2(﹣k+b)=2×2=4.故答案为:4.15.【解答】解:设行驶xkm,∵油箱内剩余油量不低于油箱容量的,∴﹣x+40≥40×.∴x≤350故,该辆汽车最多行驶的路程是350km,故答案为:350.16.【解答】解:作PM⊥AB于M,PN⊥AC于N,∵AP是∠BAC的角平分线,∴PM=PN,∴===,设A到BC距离为h,则===,∵PB+PC=BC=9,∴CP=9×=,故答案为.三、解答题4217.【解答】解:原式=﹣4+1=﹣.18.【解答】解:(1)∵(x﹣1)2=25∴x﹣1=±5,即x﹣1=5或x﹣1=﹣5,解得x=6或x=﹣4;(2)x3+4=,.19.【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,,∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF⊥DE,∴CF平分∠DCE.20.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)若点P(m,n)在AC边上,则点P关于直线l的对称点P1的坐标为(m,2﹣n),故答案为:(m,2﹣n);(3)如图所示,点Q即为所求.21.【解答】解:(1)设一次函数的解析式为y=kx+b,∵一次函数的图象经过点A(5,0),B(1,4).∴,解得,∴一次函数的表达式为y=﹣x+5,(2)解得,∴两直线的交点为(3,2),直线y=2x﹣4中,令x=0,则y=﹣4,直线y=﹣x+5中,令x=0,则y=5,∴两直线与y轴的交点为(0,﹣4)和(0,5),∴直线AB、直线y=2x﹣4与y轴所围成的三角形的面积为×3=,故答案为.22.【解答】解:(1)如图1所示,点D即为所求.(2)如图2所示,点E即为所求.23.【解答】解:(1)∠ADC是直角.∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADC中,∠AED=90°,∴AD2=AE2+DE2=42+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF==.24.【解答】解:(1)在△ABC中,∵∠BAC=45°,BE⊥AC,∴AE=BE,∠EAM=∠EBC,在△AEM和△BEC中,,∴△AEM≌△BEC(ASA),∴AM=BC,∵BC=BD+CD,且BD=CD,∴BC=2CD,∴AM=2CD;(2)解:延长BE、AC交于F点,如图,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠F AE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=BF,∵△ABC中,AC=BC,∠C=90°,∴∠CAB=45°,∴∠AFE=(180﹣45)°÷2=67.5°,∠F AE=22.5°,∴∠CDA=67.5°,∵在△ADC和△BFC中,,∴△ADC≌△BFC(AAS),∴BF=AD,∴BE=AD=1.5,故答案为:1.5.25.【解答】解:(1)设线段BC的函数表达式为y=kx+b(k,b为常数,k≠0)∴解得,∴线段BC的函数表达式为y=﹣120x+180;(2)由图象可得两车的速度和==120千米,∴小时后两车相距=120×()=90千米,∴点D(,90),表示慢车行驶了小时后,两车相距90千米;(3)如图所示:26.【解答】解:【基础模型】:∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);(1)∵∠ACB=90°,∴∠ACD+∠ECB=90°,∵AD⊥l,BE⊥l,∴∠ADC=∠BEC=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∵CA=CB,∴△ACD≌△CBE(AAS);【模型应用】:(2)如图1,过点C作CE⊥y轴于4,∵直线l:y=kx﹣4k经过点(2,﹣3),∴2k﹣4k=﹣3,∴k=,∴直线l的解析式为y=x﹣6,令x=0,则y=﹣6,∴B(0,﹣6),∴OB=6,令y=0,则0=x﹣6,∴x=4,∴A(4,0),∴OA=4,同(1)的方法得,△OAB≌△EBC(AAS),∴CE=OB=6,BE=OA=4,∴OE=OB﹣BE=6﹣4=2,∵点C在第三象限,∴C(﹣6,﹣2),故答案为(﹣6,﹣2);(3)如图2,针对于直线l:y=kx﹣4k,令x=0,则y=﹣4k,∴B(0,﹣4k),∴OB=4k,令y=0,则kx﹣4k=0,∴x=4,∴A(4,0),∴OA=4,过点C作CF⊥y轴于F,同【基础模型】的方法得,△OAB≌△FBC(AAS),∴BF=OA=4,CF=OB=4k,∴OF=OB+BF=4k+4,∵点C在第四象限,∴C(4k,4k+4),∵B(0,﹣4k),∵BD∥x轴,且D在y=x上,∴D(﹣4k,﹣4k),∴BD=4k=CF,∵CF⊥y轴于F,∴∠CFE=90°,∵BD∥x轴,∴∠DBE=90°=∠CFE,∵∠BED=∠FEC,∴△BED≌△FEC(AAS),∴BE=EF=BF=2,故答案为2;(4)当点C在第四象限时,由(3)知,C(4k,4k+4),∵C(a,b),∴a=4k,b=4k+4,∴b=4k+4,当点C在第三象限时,由(3)知,B(0,﹣4k),A(4,0),∴OB=4k,OA=4,如图1,由(2)知,△OAB≌△FBC(AAS),∴CE=OB=4k,BE=OA=4,∴OE=OB﹣BE=4k﹣4,∴C(﹣4k,4k﹣4),∵C(a,b),∴a=﹣4k,b=4k﹣4,∴b=﹣a﹣4,即:b=a+4或b=﹣a﹣4.。

苏科版江苏省南京市玄武区八年级上学期期末模拟数学试题

苏科版江苏省南京市玄武区八年级上学期期末模拟数学试题

苏科版江苏省南京市玄武区八年级上学期期末模拟数学试题一、选择题1.如图,在平面直角坐标系中,△ABC 位于第二象限,点A 的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于x 轴对称的△A 2B 2C 2,则点A 的对应点A 2的坐标是( )A .(-3,2)B .(2,-3)C .(1,-2)D .(-1,2)2.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒3.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .45 4.关于x 的分式方程7m 3x 1x 1+=--有增根,则增根为( ) A .x=1B .x=-1C .x=3D .x=-3 5.已知等腰三角形的两边长分别为3和4,则它的周长为( ) A .10B .11C .10或11D .7 6.下列条件中,不能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:237.下列实数中,无理数是( ) A .227 B .3π C .4- D .3278.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点P (3,﹣4)关于y 轴的对称点P′的坐标是( ) A .(﹣3,﹣4) B .(3,4) C .(﹣3,4) D .(﹣4,3) 10.给出下列实数:227、25-、39、 1.44、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个0),其中无理数有( )A .2个B .3个C .4个D .5个11.如图,直线y mx n =+与y kx b =+的图像交于点(3,-1),则不等式组,0mx n kx b mx n +≥+⎧⎨+≤⎩的解集是( )A .3x ≤B .n x m ≥-C .3n x m -≤≤D .以上都不对12.下列计算正确的是( )A .5151+22=5B .512﹣512=2 C 5151+-=1 D 5151--3﹣513.小明体重为 48.96 kg ,这个数精确到十分位的近似值为( )A .48 kgB .48.9 kgC .49 kgD .49.0 kg 14.直线y=ax+b(a <0,b >0)不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 15.下列各点中,在第四象限且到x 轴的距离为3个单位的点是( ) A .(﹣2,﹣3) B .(2,﹣3) C .(﹣4,3) D .(3,﹣4)二、填空题 16.4的算术平方根是 .17.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.18.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.19.2(5)-=_____.20.矩形ABCD 中,其中三个顶点的坐标分别是(0,0)、(5,0)、(5,3),则第四个顶点的坐标是______.21.若3a 的整数部分为2,则满足条件的奇数a 有_______个.22.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b =+⎧⎨=+⎩的解为____. 23.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.24.若正实数,m n 满足等式222(1)(1)(1)m n m n +-=-+-,则m n ⋅=__________. 25.化简 2(0,0)3b a b a>≥结果是_______ . 三、解答题26.小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?27.求下列各式中的x :(1)()2116x -=;(2)321x +=.28.已知一次函数y=kx+b 的图象经过点A (—1,—5),且与正比例函数的图象相交于点B (2,a ).(1)求a 的值;(2)求一次函数y=kx+b 的表达式;(3)在同一坐标系中,画出这两个函数的图象,并求这两条直线与y 轴围成的三角形的面积.29.(阅读·领会) (0)a a ≥的式子叫做二次根式,其中a 叫做被开方数.其中,被开方数相同的二次根式叫做同类二次根式.像同类项一样,同类二次根式也可以合并,合并方法类似合并同类项,是把几个同类二次根式前的系数相加,作为结果的系数,即((0).x x m n x x =+≥利用这个式子可以化简一些含根式的代数式. .(0,0)a b ab a b =≥≥我们可以利用以下方法证明这个公式:一般地,当0,0a b ≥≥时, 根据积的乘方运算法则,可得222()(()a b a b ab =⨯=, ∵2)(0)a a a =≥,∴2()ab ab =a b ab ab 的算术平方根, ∴.(0,0)a b ab a b =≥≥利用这个式子,可以进行一些二次根式的乘法运算. .(0,0)ab a b a b =≥≥它可以用来化简一些二次根式. 材料三:一般地,化简二次根式就是使二次根式:(I )被开方数中不含能开得尽方的因数或因式;(II )被开方数中不含分母;(III )分母中不含有根号.这样化简完后的二次根式叫做最简二次根式.(积累·运用)(1)仿照材料二中证明二次根式乘法公式那样,试推导二次根式的除法公式.(22325(2)(0,0,0)a b c a b c -≥≥≥=______.(3)当0a b <<2232232,a b b ab a a b a b a b +-+-+并求当7,9a b =⎧⎨=⎩时它的值. 30.如图所示,AC=AE ,∠1=∠2,AB=AD .求证:BC=DE .31.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x =2﹣23.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先利用平移的性质得到△A 1B 1C 1,进而利用关于x 轴对称点的性质得到△A 2B 2C 2,即可得出答案.【详解】如图所示:点A 的对应点A 2的坐标是:(2,﹣3).故选B .2.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.3.B解析:B【解析】【分析】易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x . ∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B .【点睛】 本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.4.A解析:A【解析】当x =1时,分母为零,没有意义,所以是增根.故选A .5.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C.【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.6.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.8.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.A解析:A【解析】试题解析:∵点P (3,-4)关于y 轴对称点P′,∴P′的坐标是:(-3,-4).故选A .10.B解析:B【解析】【分析】根据无理数是无限不循环小数,可得答案.【详解】解:−5,实数:227、2π、0.16、0.1010010001-⋯(每相邻两个1之间依次多一个02π、-0.1010010001…(每相邻两个1之间依次多一个0)共3个.【点睛】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.11.C解析:C【解析】【分析】 首先根据交点得出3b n m k -=-,判定0,0m k <>,然后即可解不等式组. 【详解】∵直线y mx n =+与y kx b =+的图像交于点(3,-1)∴31,31m n k b +=-+=-∴33m n k b +=+,即3b n m k-=- 由图象,得0,0m k <>∴mx n kx b +≥+,解得3x ≤0mx n +≤,解得n x m≥- ∴不等式组的解集为:3n x m -≤≤ 故选:C.【点睛】此题主要考查根据函数图象求不等式组的解集,利用交点是解题关键.12.C解析:C【解析】【分析】利用二次根式的加减法对A 、B 进行判断;根据二次根式的乘法法则对C 进行判断;利用完全平方公式对D 进行判断.【详解】解:A ==A 选项错误;B 212==,所以B 选项错误; C 1515114--==,所以C 选项正确;D 、151-=,所以D 选项错误. 故选:C .本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13.D解析:D【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】解:48.96≈49.0(精确到十分位).故选:D.【点睛】本题考查了近似数:近似数与精确数的接近程度,可以用精确度表示,精确到哪位,就是对它后边的一位进行四舍五入.14.C解析:C【解析】【分析】先根据一次函数的图象与系数的关系得出直线y=ax+b(a<0,b>0)所经过的象限,故可得出结论.【详解】∵直线y=ax+b中,a<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选:C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象经过一、二、四象限.15.B解析:B【解析】【分析】首先确定各点所在象限,再根据到x轴的距离为3个单位可得此点的纵坐标的绝对值为3,进而可得答案.【详解】A、(﹣2,﹣3)在第三象限,故此选项不合题意;B、(2,﹣3)在第四象限,到x轴的距离为3个单位,故此选项符合题意;C、(﹣4,3)在第二象限,故此选项不合题意;D 、(3,﹣4)在第四象限,到x 轴的距离为4个单位,故此选项不符合题意;故选:B .【点睛】此题主要考查根据象限判定坐标,熟练掌握,即可解题.二、填空题16.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224=,∴4算术平方根为2.故答案为2.考点:算术平方根.17.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1. 【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.18.【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD⊥AB,则CD 的长最短,如图,对于直线令y=0,则,解得x=-4,令x=0解析:165【解析】【分析】过点C 作直线AB 的垂线段CD ,利用三角形的面积即可求出CD 的长.【详解】连接AC ,过点C 作CD ⊥AB ,则CD 的长最短,如图,对于直线334y x =+令y=0,则3304x +=,解得x=-4,令x=0,则y=3, ∴A(-4,0),B(0,3),∴OA=4,OB=3,在Rt △OAB 中,222AB OA OB =+∴22435 ∵C (0,-1),∴OC=1,∴BC=3+1=4,∴1122ABC S BC AO AB CD ==,即1144=522CD ⨯⨯⨯⨯, 解得,165CD =.故答案为:16 5.【点睛】此题主要考查了一次函数的应用以及三角形面积公式的运用,解答此题的关键是利用三角形面积相等求出CD的长.19.5【解析】根据二次根式的性质知:5.解析:5【解析】根据二次根式的性质知:2(5)-=5.20.(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直解析:(0,3)【解析】【分析】画图分析,由矩形的性质求得第四点的坐标,再解答.【详解】如图,根据图形易知第四点的坐标是(0,3).故填:(0,3).【点睛】用到的知识点为:矩形的邻边垂直,对边平行.本题画出图后可很快求解.21.9【解析】【分析】的整数部分为,则可求出a 的取值范围,即可得到答案.【详解】解:的整数部分为,则a 的取值范围 8<a <27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a 的取值范围,即可得到答案.【详解】2,则a 的取值范围 8<a <27所以得到奇数a 有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.22..【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数与的图象的交点的坐标为(−1,2),∴方程组的解是.【点睛】本题考查了一次函数和二元一次方程(组)解析:12x y =-⎧⎨=⎩. 【解析】【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义. 23.200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时解析:200【解析】【分析】【详解】设现在平均每天生产x台机器,则原计划可生产(x﹣50)台,根据现在生产600台机器的时间与原计划生产450台机器的时间相同,等量关系为:现在生产600台机器时间=原计划生产450台时间,从而列出方程:600450x x50=-,解得:x=200.检验:当x=200时,x(x﹣50)≠0.∴x=200是原分式方程的解.∴现在平均每天生产200台机器.24.【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得的值. 【详解】∵∴∴∴,故答案为:.【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的解析:1 2【解析】【分析】根据整式的完全平方公式将等式两边的式子进行化简,从而求得m n⋅的值.【详解】∵2222(1)()2()12221m n m n m n m mn n m n +-=+-++=++--+2222(1)(1)2121m n m m n n -+-=-++-+∴222222212121m mn n m n m m n n ++--+=-++-+∴21mn = ∴12mn =, 故答案为:12. 【点睛】本题主要考查了整式的乘法公式,熟练掌握完全平方公式及整式的化简是解决本题的关键. 25.【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=,故答案为:.【点睛】本题主要考查的是二次根式的性质与化简,熟练掌握相关知【解析】【分析】首先将被开方数的分子和分母同时乘以3a ,然后再依据二次根式的性质化简即可.【详解】解:原式=. 【点睛】 本题主要考查的是二次根式的性质与化简,熟练掌握相关知识是解题的关键.三、解答题26.小明和小红不能买到相同数量的笔【解析】【分析】首先设每支水笔x 元,则每支圆珠笔(x+2)元,根据题意可得等量关系:30元买水笔的数量=用45元买圆珠笔的数量,求出每支水笔的价钱,再算出购买的水笔的数量,数量是整数就可以,不是整数就不合题意.【详解】设每支水笔x 元,则每支圆珠笔(2)x +元. 假设能买到相同数量的笔,则30452x x =+. 解这个方程,得4x =.经检验,4x =是原方程的解.但是,3047.5÷=,7.5不是整数,不符合题意,答:小明和小红不能买到相同数量的笔.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.27.(1)5x =或-3;(2)1x =-【解析】【分析】(1)根据平方根的定义求解;(2)先移项,再根据立方根的定义求解.【详解】解:(1)(x-1)2=16,x-1=±4,x=5或x=-3;(2)321x +=,x 3=-1,x=-1.【点睛】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根的定义,本题属于基础题型.28.(1)a=1 (2)y=2x-3 (3)3【解析】【分析】(1)将点(2,a )代入正比例函数解析式求出a 的值;(2)将(-1,-5)和(2,1)代入一次函数解析式求出k 和b 的值,从而得出函数解析式;(3)根据描点法画出函数图象.【详解】解:(1)∵ 正比例函数y=12x 的图象过点(2,a ) ∴ a=1 (2)∵一次函数y=kx+b 的图象经过两点(-1,-5)(2,1)∴521k b k b -+=-⎧⎨+=⎩解得23k b =⎧⎨=-⎩∴y=2x -3(3)函数图像如图【点睛】本题考查待定系数法求函数解析式;描点法画函数图象 29.(1)见解析;(2)2abc ac ;(3)a b ab +-,463- 【解析】【分析】(1)仿照材料二中证明二次根式乘法公式的方法,推导二次根式的除法公式 (2)根据二次根式乘法公式进行计算即可(3)先根据二次根式除法公式进行化简,再把a 和b 的值代入即可【详解】解:(10,0)a a a b b b=≥> 证明如下:一般地,当0,0a b ≥>时, 根据商的乘方运算法则,可得222()(()a a ab b b == ∵2)(0)a a a =≥,∴2a a b b =a ba b a b 的算术平方根,∴0,0)a b =≥>利用这个式子,可以进行一些二次根式的除法运算.0,0)a b =≥>它可以用来化简一些二次根式. (20,0,0)2a b c abc ≥≥≥==故答案为:2abc (3)当0a b <<时,1a b b aa b ab a +-===-+ 当79a b =⎧⎨=⎩时,原式=46363-=- 【点睛】本题考查二次根式的乘法和除法法则,,解题的关键是熟练运用公式以及二次根式的性质,本题属于中等题型.30.证明见解析.【解析】试题分析:由1=2∠∠,可得,CAB EAD ∠=∠,,AC AE AB AD ==则可证明ABC ADE ≅,因此可得.BC DE =试题解析:1=2∠∠,12,EAB EAB ∴∠+∠=∠+∠即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=(),ABC ADE SAS ∴≅.BC DE ∴=考点:三角形全等的判定. 31.﹣21(2)x -,﹣112【解析】【分析】直接括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】原式= [221(2)(2)x x x x x +----]•4x x - =2(2)(2)(1)(2)4x x x x x x x x +---⋅-- =24(2)4x x x x x -⋅--=﹣21(2)x ,当x =2﹣时,原式=﹣112. 【点睛】 此题主要考查分式的化简求值,熟练掌握,即可解题.。

2018-2019学年江苏省南京一中八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省南京一中八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省南京一中八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)下列表情中,是轴对称图形的是()A.B.C.D.2.(2分)的值等于()A.B.﹣C.±D.3.(2分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC4.(2分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ<5B.PQ>5C.PQ≥5D.PQ≤55.(2分)下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.,,6.(2分)设max{a,b}表示a,b两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x的函数y=max{2x,x+2}可以是()A.B.C.y=2x D.y=x+2二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.(2分)在,2π,0,,0.454454445…,中,无理数有个.8.(2分)点P(﹣5,12)到原点的距离是.9.(2分)比较大小:2.03 2.020020002…;﹣﹣.10.(2分)已知等腰三角形的两边长分别是4和9,则周长是.11.(2分)请用文字写出判定两个直角三角形全等的一种方法:.12.(2分)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=.13.(2分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而.(填“增大”或“减小”)14.(2分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为.15.(2分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为4,则△ABC的面积是.16.(2分)在△ABC中,BA=BC,AC=14,S=84,D为AB上一动点,连接CD,△ABC过A作AE⊥CD于点E,连接BE,则BE的最小值是.三、解答题(本大题共10小题,共68分,请在答卷纸指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(4分)计算:18.(8分)求下列各式中的x的值:(1)9x2=16(2)(x﹣1)3=64.19.(5分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.20.(6分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是.22.(7分)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC 的度数.23.(6分)图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.24.(8分)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=6,求线段DE的长.25.(8分)某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.(1)设某家庭月用水量为x吨,水费为y元,请写出y与x之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;(2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?26.(10分)甲、乙两车同时从A地出发,匀速开往B地.甲车行驶到B地后立即沿原路线以原速度返回A地,到达A地后停止运动;当甲车到达A地时,乙车恰好到达B地,并停止运动.已知甲车的速度为150km/h.设甲车出发xh后,甲、乙两车之间的距离为ykm,图中的折线OMNQ表示了整个运动过程中y与x之间的函数关系.(1)A、B两地的距离是km,乙车的速度是km/h;(2)指出点M的实际意义,并求线段MN所表示的y与x之间的函数表达式;(3)当两车相距150km时,直接写出x的值.2018-2019学年江苏省南京一中八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分)1.(2分)下列表情中,是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.2.(2分)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.【点评】此题考查算术平方根,关键是熟记常见数的算术平方根.3.(2分)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC【分析】由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.【解答】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.4.(2分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ<5B.PQ>5C.PQ≥5D.PQ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.(2分)下列各组数是勾股数的是()A.3,4,5B.1.5,2,2.5C.32,42,52D.,,【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.【点评】此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6.(2分)设max{a,b}表示a,b两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x的函数y=max{2x,x+2}可以是()A.B.C.y=2x D.y=x+2【分析】根据题意可以分类讨论2x与x+2的大小,从而可以解答本题.【解答】解:当2x≥x+2时,得x≥2,当x+2>2x时,得x<2,故关于x的函数y=max{2x,x+2}可以是y=,故选:A.【点评】本题考查正比例函数的性质、一次函数的性质,解答本题的关键是明确题意,写出相应的函数.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题纸相应位置上)7.(2分)在,2π,0,,0.454454445…,中,无理数有3个.【分析】根据无理数的定义:无限不循环小数叫做无理数可得答案.【解答】解:在所列实数中,无理数有2π,0.454454445…,这3个,故答案为:3.【点评】此题主要考查了无理数,关键是掌握无理数定义.8.(2分)点P(﹣5,12)到原点的距离是13.【分析】直接根据勾股定理进行解答即可.【解答】解:∵点P(﹣5,12),∴点P到原点的距离==13.故答案为:13.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.(2分)比较大小:2.03> 2.020020002…;﹣>﹣.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:2.03>2.020020002…;﹣>﹣.故答案为:>、>.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.(2分)已知等腰三角形的两边长分别是4和9,则周长是22.【分析】根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.【解答】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.【点评】本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.11.(2分)请用文字写出判定两个直角三角形全等的一种方法:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等.【分析】根据全等三角形的判定定理填上即可.【解答】解:判定两个直角三角形全等的一种方法:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等;故答案为:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等.【点评】本题考查了全等三角形的判定的应用,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.12.(2分)如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=30°.【分析】根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.【点评】考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.13.(2分)如果一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),那么y的值随x的增大而减小.(填“增大”或“减小”)【分析】根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.【解答】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=﹣3,∴y的值随x的增大而减小.故答案为:减小.【点评】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y 随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.14.(2分)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为x>﹣2.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故答案为x>﹣2.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.15.(2分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为4,则△ABC的面积是26.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC 的长,再利用三角形面积即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,在△ABD与△BCE中,,∴△ABD≌△BCE(ASA)∴BE=AD=4在Rt△BCE中,根据勾股定理,得BC==2,所以△ABC的面积=×2×2=26,故答案为:26.【点评】考查了全等三角形的判定与性质,等腰直角三角形的性质.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.16.(2分)在△ABC中,BA=BC,AC=14,S=84,D为AB上一动点,连接CD,△ABC过A作AE⊥CD于点E,连接BE,则BE的最小值是5.【分析】作BH⊥AC于H,连接EH,如图,利用等腰三角形的性质得AH=CH=AC =7,再利用三角形面积计算出BH=12,利用直角三角形斜边上的中线性质得到EH=7,然后根据三角形三边的关系得BE≥BH﹣EH(当且仅当B、E、H共线时取等号),从而可确定BE的最小值.【解答】解:作BH⊥AC于H,连接EH,如图,∵BA=BC,∴AH=CH=AC=7,=•AC•BH=84,∵S△ABC∴BH==12,∵AE⊥CD,∴EH为Rt△AEC的斜边AC上的中线,∴EH=AC=7,∵BE≥BH﹣EH(当且仅当B、E、H共线时取等号),即BE≥12﹣7,∴BE的最小值为5.故答案为5.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.也考查了三角形三边的关系.三、解答题(本大题共10小题,共68分,请在答卷纸指定区域内作答,解答时应写出文字说明,证明过程或演算步骤)17.(4分)计算:【分析】直接利用绝对值的性质以及立方根的性质、二次根式的性质分别化简得出答案.【解答】解:原式=2﹣+3+2=7﹣.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)求下列各式中的x的值:(1)9x2=16(2)(x﹣1)3=64.【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.【解答】解:(1)方程变形得:x2=,解得:x=±;(2)开立方得:x﹣1=4,解得:x=5.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.19.(5分)如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.【分析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴∠B=∠E.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.20.(6分)已知一次函数y=kx+b,当x=2时,y=2;当x=﹣4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.【分析】(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值即可;(2)根据题意解方程即可得到结论.【解答】解:(1)由题知,解得;(2)由(1)知y=﹣2x+6,当y与x互为相反数时,﹣2x+6=﹣x,解得x=6.【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,﹣3),C(4,﹣2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是(m﹣3,﹣n).【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用轴对称求最短路线的方法得出P点位置即可;(3)直接利用平移变换的性质得出点P2的坐标.【解答】解:(1)如图所示:△A1B1C1就是所要求作的图形;(2)如图所示:△A2B2C2就是所要求作的图形;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是:P2(m﹣3,﹣n).故答案为:(m﹣3,﹣n).【点评】此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.22.(7分)如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC 的度数.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.23.(6分)图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.【分析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a,b,高为a+b;(2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.【解答】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积,即.两者列成等式化简即可得:a2+b2=c2;【点评】此题考查勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定理.24.(8分)如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=6,求线段DE的长.【分析】根据角平分线的定义和平行线的性质得到∠EAD=∠CAD,∠EDA=∠CAD,等量代换得到∠EAD=∠EDA,根据余角的性质得到∠EBD=∠BDE,于是得到DE=BE,即可得到结论.【解答】解:∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴DE=AB=×6=3.【点评】该题主要考查了等腰三角形的判定与性质、直角三角形的性质、平行线的性质等几何知识点的应用问题;灵活运用有关定理来分析、判断是解题的关键.25.(8分)某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.(1)设某家庭月用水量为x吨,水费为y元,请写出y与x之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;(2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?【分析】(1)用水量如果不超过8吨,按每吨2.5元收费,可以列出正比例函数,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取,则可以列出一次函数;(2)应缴水费34元包括两部分,不超过6吨的水费,然后是每吨4元的水费,据此可得用水量.【解答】解:(1)当0≤x≤8时,y=2.5x;当x>8时,y=20+4(x﹣8)=4x﹣12.∴y=;根据(8,20),(12,36)可得函数图象:(2)设小明家今年3月份用水x吨.∵2.5×8=20<34,∴x>8.依题意,得4x﹣12=34,解得x=11.5,答:小明家今年3月份用水11.5吨.【点评】本题考查的是用一次函数解决实际问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.26.(10分)甲、乙两车同时从A地出发,匀速开往B地.甲车行驶到B地后立即沿原路线以原速度返回A地,到达A地后停止运动;当甲车到达A地时,乙车恰好到达B地,并停止运动.已知甲车的速度为150km/h.设甲车出发xh后,甲、乙两车之间的距离为ykm,图中的折线OMNQ表示了整个运动过程中y与x之间的函数关系.(1)A、B两地的距离是600km,乙车的速度是75km/h;(2)指出点M的实际意义,并求线段MN所表示的y与x之间的函数表达式;(3)当两车相距150km时,直接写出x的值.【分析】(1)根据题意和函数图象中的数据可以求得A、B两地的距离和乙车的速度;(2)根据题意可以写出点M的实际意义,并求得线段MN所表示的y与x之间的函数表达式;(3)根据题意可以求得各段对应的函数解析式,从而可以解答本题.【解答】解:(1)A、B两地的距离是:150×(8÷2)=600km,乙车的速度为:600÷8=75km/h,故答案为:600,75;(2)点M的实际意义是当甲车行驶4h时,甲乙两车之间的距离为300km,此时甲车达到B地,点M的坐标为(4,300),设点N的横坐标为n,则150n+75n=600×2,得n=,∴点N的坐标为(,0),设线段MN所表示的y与x之间的函数表达式是y=kx+b,,得,即线段MN所表示的y与x之间的函数表达式是y=﹣225x+1200(4≤x≤);(3)设OM段对应的函数解析式为y=ax,300=4a,得a=75,∴OM段对应的函数解析式为y=75x,令75x=150,得x=2,∵MN段对应的函数解析式为y=﹣225x+1200,∴当﹣225x+1200=150时,得x=,设过点N(,0)、Q(8,600)的函数解析式为y=cx+d,,得,即y=225x﹣1200,令225x﹣1200=150,得x=6,答:当两车相距150km时,x的值是2、或6.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.。

江苏省南京一中2018-2019学年度上期八年级数学期末试卷 解析版

江苏省南京一中2018-2019学年度上期八年级数学期末试卷 解析版

2018-2019学年江苏省南京一中八年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分) 1. 下列表情中,是轴对称图形的是( )A.B.C.D.2. √94的值等于( )A. 32B. −32C. ±32D. 81163. 如图,AE ∥DF ,AE =DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A. ∠A =∠DB. EC =BFC. AB =CDD. AB =BC4. 点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,下列选项正确的是( )A. PQ ≥5B. PQ >5C. PQ <5D. PQ ≤55. 下列各组数是勾股数的是( )A. 3,4,5B. 1.5,2,2.5C. 32,42,52D. √3,√4,√56. 设max{a ,b }表示a ,b 两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x 的函数y =max{2x ,x +2}可以是( )A. y ={2x(x ≥2)x+2(x<2)B. y ={x +2(x ≥2)2x(x<2)C. y =2xD. y =x +2二、填空题(本大题共10小题,共20.0分)7. 在34,2π,0,−223,0.454454445…,−√0.9中,无理数有______个. 8. 点P (-5,12)到原点的距离是______.9. 比较大小:2.03______2.020020002…;-√23______-√33.10. 已知等腰三角形的两边长分别是4和9,则周长是______.11. 请用文字写出判定两个直角三角形全等的一种方法:______.12. 如图,在等边三角形ABC 中,点D 是边BC 的中点,则∠BAD =______.13. 如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而______.(填“增大”或“减小”)14. 如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为______.15. 如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为4,则△ABC 的面积是______.16. 在△ABC 中,BA =BC ,AC =14,S △ABC =84,D 为AB 上一动点,连接CD ,过A 作AE ⊥CD 于点E ,连接BE ,则BE 的最小值是______.三、计算题(本大题共2小题,共18.0分) 17. 求下列各式中的x 的值:(1)9x 2=16 (2)(x -1)3=64.18. 甲、乙两车同时从A 地出发,匀速开往B 地.甲车行驶到B 地后立即沿原路线以原速度返回A 地,到达A 地后停止运动;当甲车到达A 地时,乙车恰好到达B 地,并停止运动.已知甲车的速度为150km /h .设甲车出发xh 后,甲、乙两车之间的距离为ykm ,图中的折线OMNQ 表示了整个运动过程中y 与x 之间的函数关系.(1)A、B两地的距离是______km,乙车的速度是______km/h;(2)指出点M的实际意义,并求线段MN所表示的y与x之间的函数表达式;(3)当两车相距150km时,直接写出x的值.四、解答题(本大题共8小题,共50.0分)19.计算:|−√3+2|+√9−√−8320.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.21.已知一次函数y=kx+b,当x=2时,y=2;当x=-4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是______.23.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.24.图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a和b,斜边为c.图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形.(1)画出拼成的这个图形的示意图,并标注相关数据;(2)利用(1)中画出的图形证明勾股定理.25.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=6,求线段DE的长.26.某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.(1)设某家庭月用水量为x吨,水费为y元,请写出y与x之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;(2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是正确找出对称轴的位置.2.【答案】A【解析】解:,故选:A.根据算术平方根解答即可.此题考查算术平方根,关键是熟记常见数的算术平方根.3.【答案】C【解析】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.4.【答案】A【解析】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:A.根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.【答案】A【解析】解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D 、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6.【答案】A【解析】解:当2x≥x+2时,得x≥2,当x+2>2x时,得x<2,故关于x的函数y=max{2x,x+2}可以是y=,故选:A.根据题意可以分类讨论2x与x+2的大小,从而可以解答本题.本题考查正比例函数的性质、一次函数的性质,解答本题的关键是明确题意,写出相应的函数.7.【答案】3【解析】解:在所列实数中,无理数有2π,0.454454445…,这3个,故答案为:3.根据无理数的定义:无限不循环小数叫做无理数可得答案.此题主要考查了无理数,关键是掌握无理数定义.8.【答案】13【解析】解:∵点P(-5,12),∴点P到原点的距离==13.故答案为:13.直接根据勾股定理进行解答即可.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.【答案】>>【解析】解:2.03>2.020020002…;->-.故答案为:>、>.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.【答案】22【解析】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.11.【答案】如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等【解析】解:判定两个直角三角形全等的一种方法:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等;故答案为:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等.根据全等三角形的判定定理填上即可.本题考查了全等三角形的判定的应用,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.12.【答案】30°【解析】解:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC.又点D是边BC的中点,∴∠BAD=∠BAC=30°.故答案是:30°.根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.13.【答案】减小【解析】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=-3,∴y的值随x的增大而减小.故答案为:减小.根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.14.【答案】x>-2【解析】解:观察图象知:当x>-2时,kx+b>4,故答案为x>-2.结合函数的图象利用数形结合的方法确定不等式的解集即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.【答案】26【解析】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,在△ABD与△BCE中,,∴△ABD≌△BCE(ASA)∴BE=AD=4在Rt△BCE中,根据勾股定理,得BC==2,所以△ABC的面积=×2×2=26,故答案为:26.过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用三角形面积即可求出.考查了全等三角形的判定与性质,等腰直角三角形的性质.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.16.【答案】5【解析】解:作BH⊥AC于H,连接EH,如图,∵BA=BC,∴AH=CH=AC=7,∵S△ABC =•AC•BH=84,∴BH==12,∵AE⊥CD,∴EH为Rt△AEC的斜边AC上的中线,∴EH=AC=7,∵BE≥BH-EH(当且仅当B、E、H共线时取等号),即BE≥12-7,∴BE的最小值为5.故答案为5.作BH⊥AC于H,连接EH,如图,利用等腰三角形的性质得AH=CH=AC=7,再利用三角形面积计算出BH=12,利用直角三角形斜边上的中线性质得到EH=7,然后根据三角形三边的关系得BE≥BH-EH(当且仅当B、E、H共线时取等号),从而可确定BE的最小值.本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.也考查了三角形三边的关系.17.【答案】解:(1)方程变形得:x2=169,解得:x=±43;(2)开立方得:x-1=4,解得:x=5.【解析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解.此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.18.【答案】600 75【解析】解:(1)A、B两地的距离是:150×(8÷2)=600km,乙车的速度为:600÷8=75km/h,故答案为:600,75;(2)点M的实际意义是此时甲车到达B地,点M的坐标为(4,300),设点N的横坐标为n,则150n+75n=600×2,得n=,∴点N的坐标为(,0),设线段MN所表示的y与x之间的函数表达式是y=kx+b,,得,即线段MN所表示的y与x之间的函数表达式是y=-225x+1200(4≤x≤);(3)设OM段对应的函数解析式为y=ax,300=4a,得a=75,∴OM段对应的函数解析式为y=75x,令75x=150,得x=2,∵MN段对应的函数解析式为y=-225x+1200,∴当-225x+1200=150时,得x=,设过点N(,0)、Q(8,600)的函数解析式为y=cx+d,,得,即y=225x-1200,令225x-1200=150,得x=6,答:当两车相距150km时,x的值是2、或6.(1)根据题意和函数图象中的数据可以求得A、B两地的距离和乙车的速度;(2)根据题意可以写出点M的实际意义,并求得线段MN所表示的y与x之间的函数表达式;(3)根据题意可以求得各段对应的函数解析式,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【答案】解:原式=2-√3+3+2=7-√3.【解析】直接利用绝对值的性质以及立方根的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】证明:∵AB∥CD,∴∠BAC=∠ECD,在△ABC和△CED中,{AB=CE∠BAC=∠ECDAC=CD,∴△ABC≌△CED(SAS),∴∠B=∠E.【解析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.21.【答案】解:(1)由题知{−4k+b=142k+b=2,解得{b=6k=−2;(2)由(1)知y=-2x+6,当y与x互为相反数时,-2x+6=-x,解得x=6.【解析】(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值即可;(2)根据题意解方程即可得到结论.此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.【答案】(m-3,-n)【解析】解:(1)如图所示:△A1B1C1就是所要求作的图形;(2)如图所示:△A2B2C2就是所要求作的图形;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是:P2(m-3,-n).故答案为:(m-3,-n).(1)直接利用关于y轴对称点的性质得出答案;(2)利用轴对称求最短路线的方法得出P点位置即可;(3)直接利用平移变换的性质得出点P2的坐标.此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.23.【答案】解:∵AB=AC,∴∠ABC=∠ACB =180°−∠A2=180°−40°2=70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°.【解析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.【答案】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=12(a+b)(a−b).从上图我们还发现梯形的面积=三个三角形的面积,即12ab+12ab+12c2.两者列成等式化简即可得:a2+b2=c2;【解析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a,b,高为a+b;(2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.此题考查勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定理.25.【答案】解:∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴DE =12AB =12×6=3. 【解析】根据角平分线的定义和平行线的性质得到∠EAD=∠CAD ,∠EDA=∠CAD ,等量代换得到∠EAD=∠EDA ,根据余角的性质得到∠EBD=∠BDE ,于是得到DE=BE ,即可得到结论. 该题主要考查了等腰三角形的判定与性质、直角三角形的性质、平行线的性质等几何知识点的应用问题;灵活运用有关定理来分析、判断是解题的关键. 26.【答案】解:(1)当0≤x ≤8时,y =2.5x ;当x >8时,y =20+4(x -8)=4x -12. ∴y ={4x −12(x >8)2.5x(0≤x≤8);根据(8,20),(12,36)可得函数图象:(2)设小明家今年3月份用水x 吨. ∵2.5×8=20<34, ∴x >8.依题意,得4x -12=34, 解得x =11.5,答:小明家今年3月份用水11.5吨. 【解析】(1)用水量如果不超过8吨,按每吨2.5元收费,可以列出正比例函数,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取,则可以列出一次函数;(2)应缴水费34元包括两部分,不超过6吨的水费,然后是每吨4元的水费,据此可得用水量.本题考查的是用一次函数解决实际问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.。

江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版

江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版

江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版1 / 92018-2019学年江苏省南京一中八年级(上)期末数学试卷一、选择题(本大题共6小题,共12.0分) 1. 下列表情中,是轴对称图形的是( )A.B.C.D.2.的值等于( )A.B.C.D.3. 如图,AE ∥DF ,AE =DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A.B. C. D.4. 点P 在∠AOB 的平分线上,点P 到OA 边的距离等于5,点Q 是OB 边上的任意一点,下列选项正确的是( )A. B. C. D.5. 下列各组数是勾股数的是( )A. 3,4,5B. ,2,C. , ,D. , ,6. 设max{a ,b }表示a ,b 两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x 的函数y =max{2x ,x +2}可以是( )A.B.C. D.二、填空题(本大题共10小题,共20.0分)7. 在 ,2π,0,,0.454454445…, 中,无理数有______个. 8. 点P (-5,12)到原点的距离是______.9. 比较大小:2.03______2.020020002…;-______-. 10. 已知等腰三角形的两边长分别是4和9,则周长是______.11. 请用文字写出判定两个直角三角形全等的一种方法:______.12. 如图,在等边三角形ABC 中,点D 是边BC 的中点,则∠BAD =______.13. 如果一次函数y =kx +3(k 是常数,k ≠0)的图象经过点(1,0),那么y 的值随x 的增大而______.(填“增大”或“减小”)14. 如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为______.15. 如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为4,则△ABC 的面积是______.16. 在△ABC 中,BA =BC ,AC =14,S △ABC =84,D 为AB上一动点,连接CD ,过A 作AE ⊥CD 于点E ,连接BE ,则BE 的最小值是______.三、计算题(本大题共2小题,共18.0分) 17. 求下列各式中的x 的值:(1)9x 2=16 (2)(x -1)3=64.18. 甲、乙两车同时从A 地出发,匀速开往B 地.甲车行驶到B 地后立即沿原路线以原速度返回A 地,到达A 地后停止运动;当甲车到达A 地时,乙车恰好到达B 地,并停止运动.已知甲车的速度为150km /h .设甲车出发xh 后,甲、乙两车之间的距离为ykm ,图中的折线OMNQ 表示了整个运动过程中y 与x之间的函数关系.(1)A、B两地的距离是______km,乙车的速度是______km/h;(2)指出点M的实际意义,并求线段MN所表示的y与x之间的函数表达式;(3)当两车相距150km时,直接写出x的值.四、解答题(本大题共8小题,共50.0分)19.计算:20.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.21.已知一次函数y=kx+b,当x=2时,y=2;当x=-4时,y=14.(1)求k与b的值;(2)当y与x互为相反数时,求x的值.22.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是______.23.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版3 / 924. 图①是用硬纸板做成的两个全等的直角三角形,两条直角边的长分别为a 和b ,斜边为c .图②是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个直角梯形. (1)画出拼成的这个图形的示意图,并标注相关数据; (2)利用(1)中画出的图形证明勾股定理.25. 如图,在△ABC 中,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,过D 作DE ∥AC ,交AB 于E ,若AB =6,求线段DE 的长.26. 某城市对居民生活用水按以下规定收取每月的水费:家庭月用水量如果不超过8吨,按每吨2.5元收费;如果超过8吨,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取.(1)设某家庭月用水量为x 吨,水费为y 元,请写出y 与x 之间的函数解析式,并在给定的平面直角坐标系中,画出该函数的图象;(2)如果小明家按题中规定今年3月份应缴水费34元,那么今年3月份小明家用水多少吨?答案和解析1.【答案】B【解析】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是正确找出对称轴的位置.2.【答案】A【解析】解:,故选:A.根据算术平方根解答即可.此题考查算术平方根,关键是熟记常见数的算术平方根.3.【答案】C【解析】解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.由条件可得∠A=∠D,结合AE=DF,则还需要一边或一角,再结合选项可求得答案.本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.4.【答案】A【解析】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:A.根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.5.【答案】A【解析】解:A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、1.52+22=2.52,能构成直角三角形,不是正整数,故不是勾股数;C、(32)2+(42)2≠(52)2,不能构成直角三角形,故不是勾股数;D、()2+()2=()2,不能构成直角三角形,不是正整数,故不是勾股数.故选:A.欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.此题主要考查了勾股定理逆定理以及勾股数,解答此题掌握勾股数的定义,及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.6.【答案】A【解析】江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版5 / 9解:当2x≥x+2时,得x≥2, 当x+2>2x 时,得x <2,故关于x 的函数y=max{2x ,x+2}可以是y=,故选:A .根据题意可以分类讨论2x 与x+2的大小,从而可以解答本题.本题考查正比例函数的性质、一次函数的性质,解答本题的关键是明确题意,写出相应的函数. 7.【答案】3【解析】解:在所列实数中,无理数有2π,0.454454445…,这3个,故答案为:3.根据无理数的定义:无限不循环小数叫做无理数可得答案. 此题主要考查了无理数,关键是掌握无理数定义. 8.【答案】13【解析】解:∵点P (-5,12), ∴点P 到原点的距离==13.故答案为:13.直接根据勾股定理进行解答即可.本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 9.【答案】> >【解析】解:2.03>2.020020002…;->-.故答案为:>、>.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.【答案】22【解析】解:当等腰三角形的腰为4时,三边为4,4,9,4+4<9,三边关系不成立,当等腰三角形的腰为9时,三边为4,9,9,三边关系成立,周长为4+9+9=22.故答案为:22.根据腰为4或9,分类求解,注意根据三角形的三边关系进行判断.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据已知边那个为腰,分类讨论.11.【答案】如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等【解析】解:判定两个直角三角形全等的一种方法:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等;故答案为:如果两个直角三角形有一条直角边和斜边分别对应相等,则这两个直角三角形全等.根据全等三角形的判定定理填上即可.本题考查了全等三角形的判定的应用,注意:直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL .12.【答案】30° 【解析】解:∵△ABC 是等边三角形, ∴∠BAC=60°,AB=AC . 又点D 是边BC 的中点,∴∠BAD=∠BAC=30°. 故答案是:30°.根据等腰三角形的三线合一的性质和等边三角形三个内角相等的性质填空.考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.13.【答案】减小【解析】解:∵一次函数y=kx+3(k是常数,k≠0)的图象经过点(1,0),∴0=k+3,∴k=-3,∴y的值随x的增大而减小.故答案为:减小.根据点的坐标利用一次函数图象上点的坐标特征可求出k值,再利用一次函数的性质即可得出结论.本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.14.【答案】x>-2【解析】解:观察图象知:当x>-2时,kx+b>4,故答案为x>-2.结合函数的图象利用数形结合的方法确定不等式的解集即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.【答案】26【解析】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°又∠DAB+∠ABD=90°∴∠BAD=∠CBE,在△ABD与△BCE中,,∴△ABD≌△BCE(ASA)∴BE=AD=4在Rt△BCE中,根据勾股定理,得BC==2,所以△ABC的面积=×2×2=26,故答案为:26.过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC的长,再利用三角形面积即可求出.考查了全等三角形的判定与性质,等腰直角三角形的性质.此题要作出平行线间的距离,构造直角三角形.运用全等三角形的判定和性质以及勾股定理进行计算.16.【答案】5【解析】解:作BH⊥AC于H,连接EH,如图,∵BA=BC,∴AH=CH=AC=7,∵S△ABC =•AC•BH=84,∴BH==12,∵AE⊥CD,∴EH为Rt△AEC的斜边AC上的中线,∴EH=AC=7,∵BE≥BH-EH(当且仅当B、E、H共线时取等号),即BE≥12-7,∴BE的最小值为5.故答案为5.作BH⊥AC于H,连接EH,如图,利用等腰三角形的性质得AH=CH=AC=7,再利用三角形面江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版7 / 9积计算出BH=12,利用直角三角形斜边上的中线性质得到EH=7,然后根据三角形三边的关系得BE≥BH -EH (当且仅当B 、E 、H 共线时取等号),从而可确定BE 的最小值.本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.也考查了三角形三边的关系. 17.【答案】解:(1)方程变形得:x 2=,解得:x =±; (2)开立方得:x -1=4, 解得:x =5. 【解析】(1)方程变形后,利用平方根定义开方即可求出解; (2)方程利用立方根的定义开立方即可求出解.此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键. 18.【答案】600 75【解析】解:(1)A 、B 两地的距离是:150×(8÷2)=600km , 乙车的速度为:600÷8=75km/h , 故答案为:600,75;(2)点M 的实际意义是此时甲车到达B 地, 点M 的坐标为(4,300),设点N 的横坐标为n ,则150n+75n=600×2,得n=,∴点N 的坐标为(,0),设线段MN 所表示的y 与x 之间的函数表达式是y=kx+b ,,得,即线段MN 所表示的y 与x 之间的函数表达式是y=-225x+1200(4≤x≤);(3)设OM 段对应的函数解析式为y=ax ,300=4a ,得a=75,∴OM 段对应的函数解析式为y=75x , 令75x=150,得x=2,∵MN 段对应的函数解析式为y=-225x+1200, ∴当-225x+1200=150时,得x=,设过点N (,0)、Q (8,600)的函数解析式为y=cx+d ,,得,即y=225x-1200,令225x-1200=150,得x=6,答:当两车相距150km 时,x 的值是2、或6.(1)根据题意和函数图象中的数据可以求得A 、B 两地的距离和乙车的速度;(2)根据题意可以写出点M 的实际意义,并求得线段MN 所表示的y 与x 之间的函数表达式; (3)根据题意可以求得各段对应的函数解析式,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.19.【答案】解:原式=2- +3+2=7- . 【解析】直接利用绝对值的性质以及立方根的性质、二次根式的性质分别化简得出答案. 此题主要考查了实数运算,正确化简各数是解题关键. 20.【答案】证明:∵AB ∥CD ,∴∠BAC =∠ECD , 在△ABC 和△CED 中,,∴△ABC ≌△CED (SAS ),∴∠B =∠E . 【解析】根据两直线平行,内错角相等可得∠BAC=∠ECD,再利用“边角边”证明△ABC和△CED全等,然后根据全等三角形对应角相等证明即可.本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判定方法并找出两边的夹角是解题的关键.21.【答案】解:(1)由题知,解得;(2)由(1)知y=-2x+6,当y与x互为相反数时,-2x+6=-x,解得x=6.【解析】(1)将已知两对x与y的值代入一次函数解析式即可求出k与b的值即可;(2)根据题意解方程即可得到结论.此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.22.【答案】(m-3,-n)【解析】解:(1)如图所示:△A1B1C1就是所要求作的图形;(2)如图所示:△A2B2C2就是所要求作的图形;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是:P2(m-3,-n).故答案为:(m-3,-n).(1)直接利用关于y轴对称点的性质得出答案;(2)利用轴对称求最短路线的方法得出P点位置即可;(3)直接利用平移变换的性质得出点P2的坐标.此题主要考查了平移变换以及轴对称变换,正确得出对应点位置是解题关键.23.【答案】解:∵AB=AC,∴∠ABC=∠ACB==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°.【解析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.24.【答案】解:(1)如图所示,是梯形;(2)由上图我们根据梯形的面积公式可知,梯形的面积=.从上图我们还发现梯形的面积=三个三角形的面积,即.两者列成等式化简即可得:a2+b2=c2;【解析】(1)此题要由图中给出的三个三角形组成一个梯形,而且上底和下底分别为a,b,高为a+b;(2)此题主要是利用梯形的面积和三角形的面积公式进行计算,根据图中可知,由此列出等式即可求出勾股定理.此题考查勾股定理的证明,此题的关键是找等量关系,由等量关系求证勾股定理.25.【答案】解:∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,江苏省南京一中2018-2019学年上期八年级数学期末试卷 解析版9 / 9∴DE =AB =×6=3. 【解析】根据角平分线的定义和平行线的性质得到∠EAD=∠CAD ,∠EDA=∠CAD ,等量代换得到∠EAD=∠EDA ,根据余角的性质得到∠EBD=∠BDE ,于是得到DE=BE ,即可得到结论. 该题主要考查了等腰三角形的判定与性质、直角三角形的性质、平行线的性质等几何知识点的应用问题;灵活运用有关定理来分析、判断是解题的关键. 26.【答案】解:(1)当0≤x ≤8时,y =2.5x ;当x >8时,y =20+4(x -8)=4x -12. ∴y =;根据(8,20),(12,36)可得函数图象:(2)设小明家今年3月份用水x 吨. ∵2.5×8=20<34, ∴x >8.依题意,得4x -12=34, 解得x =11.5,答:小明家今年3月份用水11.5吨. 【解析】(1)用水量如果不超过8吨,按每吨2.5元收费,可以列出正比例函数,未超过的部分仍按每吨2.5元收取,而超过部分则按每吨4元收取,则可以列出一次函数;(2)应缴水费34元包括两部分,不超过6吨的水费,然后是每吨4元的水费,据此可得用水量.本题考查的是用一次函数解决实际问题,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.。

2018-2019学年江苏省南京市玄武区八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省南京市玄武区八年级(上)期末数学试卷(解析版)

2018-2019学年江苏省南京市玄武区八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列各数中,是无理数的是()A.0B.1.010010001C.πD.2.(2分)已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)如图,两个三角形是全等三角形,x的值是()A.30B.45C.50D.854.(2分)下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个5.(2分)如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.6.(2分)如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)4的算术平方根是,﹣64的立方根是.8.(2分)小明的体重为48.86kg,48.86≈.(精确到0.1)9.(2分)如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.10.(2分)若直角三角形的两直角边长分别为5和12,则斜边上的中线长为.11.(2分)写出一个一次函数,使它的图象经过第一、三、四象限:.12.(2分)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.13.(2分)如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为.14.(2分)在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.15.(2分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为.16.(2分)如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C 落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:+()2﹣.18.(8分)求x的值:(1)(x+1)2=64(2)8x3+27=0.19.(5分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.20.(7分)如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l经过点(1,0),且与y轴平行.(1)请在图中画出△ABC;(2)若△A1B1C1与△ABC关于直线l对称.请在图中画出△A1B1C1;(3)若点P(a,b)关于直线l的对称点为P1,则点P1的坐标是.21.(6分)如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.22.(7分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.23.(7分)如图,在△ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.24.(6分)如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.25.(8分)甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x 函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)26.(10分)【初步探究】(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.【拓展应用】(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA 的最小值是.2018-2019学年江苏省南京市玄武区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)下列各数中,是无理数的是()A.0B.1.010010001C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.(2分)已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限点的坐标特点进行判断即可.【解答】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.(2分)如图,两个三角形是全等三角形,x的值是()A.30B.45C.50D.85【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.【解答】解:∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.【点评】本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.4.(2分)下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个【分析】分别确定四个函数的k值,然后根据一次函数y=kx+b(k≠0)的性质判断即可.【解答】解:①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y=,k=﹣<0;④y=(1﹣)x,k=(1﹣)<0.所以四函数都是y随x的增大而减小.故选:D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.5.(2分)如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【解答】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.【点评】本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.6.(2分)如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD 的长是()A.a+b B.a﹣b C.D.【分析】设CD=x,则DE=a﹣x,求得AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,求得CD=,得到BC=DE=a﹣=,根据勾股定理即可得到结论.【解答】解:设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x=,∴BC=DE=a﹣=,∴BD2=BC2+CD2=()2+()2=,∴BD=,故选:C.【点评】本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)4的算术平方根是2,﹣64的立方根是﹣4.【分析】根据算术平方根和立方根的定义求解可得.【解答】解:4的算术平方根是2,﹣64的立方根是﹣4,故答案为:2,﹣4.【点评】本题主要考查立方根与算术平方根,解题的关键是熟练掌握算术平方根与立方根的定义.8.(2分)小明的体重为48.86kg,48.86≈48.9.(精确到0.1)【分析】把百分位上的数字6进行四舍五入即可.【解答】解:48.86≈48.9.(精确到0.1).故答案为48.9.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.9.(2分)如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.【点评】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等;题目较为简单,属于基础题.10.(2分)若直角三角形的两直角边长分别为5和12,则斜边上的中线长为 6.5.【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.【点评】此题主要考查勾股定理及直角三角形斜边上的中线的性质;熟练掌握勾股定理,熟记直角三角形斜边上的中线的性质是解决问题的关键.11.(2分)写出一个一次函数,使它的图象经过第一、三、四象限:y=x﹣1.【分析】根据一次函数的性质解答即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,b<0,∴写出的解析式只要符合上述条件即可,例如y=x﹣1.故答案为y=x﹣1.【点评】此题考查一次函数问题,属开放型题目,答案不唯一,只要写出的解析式符合条件即可.12.(2分)将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2.【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.【点评】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k 和b的值的变化.13.(2分)如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为 1.2.【分析】设点C到AB的距离为h,根据勾股定理得到AB==5,根据三角形的面积公式即可得到结论.【解答】解:设点C到AB的距离为h,∵AB==5,=×2×3=×5×h,∴S△ABC∴h=1.2,故答案为:1.2.【点评】本题考查了勾股定理,三角形的面积公式,熟练掌握勾股定理是解题的关键.14.(2分)在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为x<3.【分析】由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x<k1x+b的解集.【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.【点评】此题主要考查了一次函数与一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.15.(2分)在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为(﹣2,0)或(8,0).【分析】根据题意求出AB的长,以A为圆心作圆,与x轴交于C,C′,求出C的坐标即可.【解答】解:∵点A、B的坐标分别为(3,0)、(0,4),∴OA=3,OB=4,∴AB==5,∴AC′=5,AC=5,∴C′点坐标为(﹣2,0);C点坐标为(8,0).故答案为:(﹣2,0)或(8,0).【点评】本题考查了勾股定理、坐标与图形的性质,熟练掌握勾股定理是解题的关键.16.(2分)如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C 落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是7.5.【分析】当点G与点A重合时,△GEF的面积最大,根据折叠性质可得GF=FC,∠AFE =∠EFC,根据勾股定理可求AF=5,根据矩形的性质可得∠EFC=∠AEF=∠AFE,可得AE=AF=5,即可求△GEF的面积最大值.【解答】解:如图,当点G与点A重合时,△GEF的面积最大,∵折叠∴GF=FC,∠AFE=∠EFC在Rt∠ABF中,AF2=AB2+BF2,∴AF2=9+(9﹣AF)2,∴AF=5∵四边形ABCD是矩形∴AD∥BC,∴∠AEF=∠EFC∴∠AEF=∠AFE∴AE=AF=5∴△GEF的面积最大值=×5×3=7.5故答案为:7.5【点评】本题考查了翻折变换,折叠的性质,矩形的性质,勾股定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:+()2﹣.【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:原式=3+2﹣=.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8分)求x的值:(1)(x+1)2=64(2)8x3+27=0.【分析】根据立方根与平方根的定义即可求出答案.【解答】解:(1)x+1=±8x=7或﹣9(2)8x3=﹣27x3=x=【点评】本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.19.(5分)如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠C=∠B=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∠DAC=75°,∴∠ADC=∠B+∠DAB=30°+45°=75°,∴∠DAC=∠ADC,∴DC=AC,∵AB=AC,∴DC=AB.【点评】本题考查了等腰三角形的性质和判定定理:等腰三角形的两底角相等;有两个角相等的三角形为等腰三角形.也考查了三角形的内角和定理.20.(7分)如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l经过点(1,0),且与y轴平行.(1)请在图中画出△ABC;(2)若△A1B1C1与△ABC关于直线l对称.请在图中画出△A1B1C1;(3)若点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(2﹣a,b).【分析】(1)直接利用已知点坐标得出△ABC;(2)利用关于直线对称点的性质得出对应点位置进而得出答案;(3)根据直线l经过点(1,0),点P(a,b)关于直线l的对称点为P1,则P与P1的横坐标的和除以2等于1,纵坐标相等,进而得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△A1B1C1即为所求;(3)点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(2﹣a,b).故答案为:(2﹣a,b).【点评】此题主要考查了轴对称变换以及对称图形的性质,正确得出对应点位置是解题关键.21.(6分)如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.【分析】由“HL”可得Rt△ACB≌Rt△BDA,可得∠CBA=∠DAB,可得OA=OB,即可得结论.【解答】证明:在Rt△ACB和Rt△BDA中,∠C=∠D=90°∴Rt△ACB≌Rt△BDA(HL)∴∠CBA=∠DAB∴OA=OB又AD=BC,∴CO=DO【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明OA=OB是本题的关键.22.(7分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是20≤x≤45.【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0时求出x的值即可;(3)分别求出2≤y≤7时的x的取值范围,然后解答即可.【解答】解:(1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.【点评】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.23.(7分)如图,在△ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.【分析】连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的想知道的DC=DB,设DC=DB=x,则AD=8﹣x.根据勾股定理即可得到结论.【解答】解:连接DB,在△ACB中,∵AB2+AC2=62+82=100,又∵BC2 =102 =100,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=8﹣x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即62+(8﹣x)2=x2,解得x=,即CD=.【点评】本题考查了勾股定理的逆定理,线段的垂直平分线的性质,正确的作出辅助线是解题的关键.24.(6分)如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.【分析】(1)连接BE交AC于M,易得四边形BCDE为平行四边形,再根据三角形中位线判断M点为AC的中点,然后连接DM即可;(2)连接BE交AC于M,M点为AC的中点,再连接CE、DM,它们相交于F,连接AF并延长交CD于N,则AN⊥CD.【解答】解:(1)如图,DM为所作;(2)如图,AN为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质.25.(8分)甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x 函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)【分析】(1)根据函数图象中的数据可以求得线段BC所在直线的函数表达式;(2)根据题意和函数图象中的数据可以求得甲和乙的速度,从而可以求得点A的坐标并写出点A表示的实际意义;(3)根据(2)中甲乙的速度可以分别求得甲乙从M地到N地用的时间,从而可以将函数图象补充完整.【解答】解:(1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x﹣;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:30×=10,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.26.(10分)【初步探究】(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.【拓展应用】(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是(1,2)、(3,3)、(,).(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.【分析】(1)证明△ABE≌△ECD(SAS),即可求解;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C为圆心,DP长为半径作弧交BE于点E,连接EF,EP,FP,点E、F即为所求;(3)分∠CAB=90°、∠ABC=90°、∠ACB=90°,三种情况求解即可;(4)求出B(m,1+m),则:BO+BA=+,BO+BA 的值相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,即可求解.【解答】解:(1)△AED是等腰直角三角形,证明:∵在△ABE和△ECD中,∴△ABE≌△ECD(SAS)∴AE=DE,∠AEB=∠EDC,∵在Rt△EDC中,∠C=90°,∴∠EDC+∠DEC=90°.∴∠AEB+∠DEC=90°.∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°.∴△AED是等腰直角三角形;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C为圆心,DP长为半径作弧交BE于点E,连接EF,EP,FP.∴点E、F即为所求;(3)如图,当∠CAB=90°,CA=AB时,过点C作CF⊥AO于点F,过点B作BE⊥AO于点E,∵点A(2,0),点B(4,1),∴BE=1,OA=2,OE=4,∴AE=2,∵∠CAB=90°,BE⊥AO,∴∠CAF+∠BAE=90°,∠BAE+∠ABE=90°,∴∠CAF=∠ABE,且AC=AB,∠AFC=∠AEB=90°,∴△ACF≌△BAE(AAS)∴CF=AE=2,AF=BE=1,∴OF=OA﹣AF=1,∴点C坐标为(1,2)如图,当∠ABC=90°,AB=BC时,过点B作BE⊥OA,过点C作CF⊥BE∵∠ABC=90°,BE⊥OA,∴∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,且BC=AB,∠AEB=∠CFB=90°∴△BCF≌△ABE(AAS)∴BE=CF=1,AE=BF=2,∴EF=3∴点C坐标为(3,3)如图,当∠ACB=90°,CA=BC时,过点C作CD⊥OA于点D,过点B作BF⊥CD于点F,∵∠ACD+∠BCF=90°,∠ACD+∠CAD=90°,∴∠BCF=∠CAD,且AC=BC,∠CDA=∠CFB,∴△ACD≌△CBF(AAS)∴CF=AD,BF=CD=DE,∵AD+DE=AE=2∴2=AD+CD=AD+CF+DF=2AD+1∴DA=,∴CD=,OD=,∴点C坐标(,)综上所述:点C坐标为:(1,2)、(3,3)、(,)故答案为:(1,2)、(3,3)、(,)(4)如图作BH⊥OH于H.设点C的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则:BO+BA=+,BO+BA的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,相当于在直线y=x上寻找一点P(m,m),使得点P到M(0,﹣1),到N(1,﹣1)的距离和最小,作M关于直线y=x的对称点M′(﹣1,0),易知PM+PN=PM′+PN≥NM′,M′N==,故:BO+BA的最小值为.【点评】本题为四边形综合题,主要考查的是三角形全等的思维拓展,其中(4),将BO+BA的值转化点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,是本题的新颖点.。

江苏省2018-2019年八年级上期末数学试卷含解析

江苏省2018-2019年八年级上期末数学试卷含解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共36分)1.(3分)下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180° B.减少180°C.不变D.以上三种情况都有可能3.(3分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E 4.(3分)下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.(a2b)2=a2b2D.a3+a3=2a35.(3分)在,,,,中,分式的个数是()A.1 B.2 C.3 D.46.(3分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形7.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b28.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C. 5 D.69.(3分)等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55°C.55°或70°D.70°10.(3分)多项式a2﹣9与a2﹣3a的公因式是()A.a+3 B.a﹣3 C.a+1 D.a﹣111.(3分)如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的12.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.二、细心填一填(每小题3分,共30分)13.(3分)将0.00000034用科学记数法表示应为.14.(3分)已知4x2+mx+9是完全平方式,则m=.15.(3分)若m﹣n=4,则2m2﹣4mn+2n2的值为.16.(3分)若分式的值为零,则x=.17.(3分)若三角形的三边长分别为3,4,x﹣1,则x的取值范围是.18.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有(填序号)19.(3分)将一副三角板如图叠放,则图中∠α的度数为.20.(3分)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.21.(3分)若a m =2,a n =3,则a 3m +2n = .22.(3分)已知﹣=5,则的值是 .三、解答题(共54分,要求:写出必要的解题步骤和说理过程)23.(8分)(1)+3=(解方程)(2)x ﹣x 3(分解因式)24.(6分)先化简(1+)÷,再从1、2中选取一个适当的数代入求值.25.(8分)如图,在平面直角坐标系中,A (﹣3,2),B (﹣4,﹣3),C (﹣1,﹣1).(1)在图中作出△ABC 关于y 轴对称的△A 1B 1C 1;(2)写出点△A 1,B 1,C 1的坐标(直接写答案):A 1 ;B 1 ;C 1 ;(3)△A 1B 1C 1的面积为 ;(4)在y 轴上画出点P ,使PB +PC 最小.26.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.27.(8分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.28.(8分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.29.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案与试题解析一、精心选一选(每小题3分,共36分)1.(3分)下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.(3分)一个四边形,截一刀后得到新多边形的内角和将()A.增加180° B.减少180°C.不变D.以上三种情况都有可能【解答】解:∵一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,∴内角和可能减少180°,可能不变,可能增加180°.故选:D.3.(3分)满足下列哪种条件时,能判定△ABC与△DEF全等的是()A.∠A=∠E,AB=EF,∠B=∠D B.AB=DE,BC=EF,∠C=∠FC.AB=DE,BC=EF,∠A=∠E D.∠A=∠D,AB=DE,∠B=∠E【解答】解:A、边不是两角的夹边,不符合ASA;B、角不是两边的夹角,不符合SAS;C、角不是两边的夹角,不符合SAS;D、符合ASA能判定三角形全等;仔细分析以上四个选项,只有D是正确的.故选:D.4.(3分)下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.(a2b)2=a2b2D.a3+a3=2a3【解答】解:A、a2•a3=a5,故本选项错误;B、(a2)3=a6,故本选项错误;C、(a2b)2=a4b2,故本选项错误;D、a3+a3=2a3,正确.故选:D.5.(3分)在,,,,中,分式的个数是()A.1 B.2 C.3 D.4【解答】解:,,的分母中均不含有字母,因此它们是整式,而不是分式.,,分母中含有字母,因此是分式.故选:C.6.(3分)如图,把矩形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么下列说法错误的是()A.△EBD是等腰三角形,EB=EDB.折叠后∠ABE和∠C′BD一定相等C.折叠后得到的图形是轴对称图形D.△EBA和△EDC′一定是全等三角形【解答】解:由题意得:△BC′D≌△BFD,∴DC′=DF,∠C′=∠C=90°;∠C′BD=∠CBD;又∵四边形ABCD为矩形,∴∠A=∠F=90°;DE∥BF,AB=DF;∴∠EDB=∠FBD,DC′=AB;∴∠EDB=∠C′BD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵,∴△ABE≌△C′DE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、C、D成立,∴下列说法错误的是B,故选:B.7.(3分)如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选:A.8.(3分)如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得DE=3.故选:A.9.(3分)等腰三角形一个外角等于110°,则底角为()A.70°或40°B.40°或55° C.55°或70°D.70°【解答】解:分为两种情况:①当顶角的外角是110°时,顶角是180°﹣110°=70°,则底角是×(180°﹣70°)=55°;②当底角的外角是110°时,底角是180°﹣110°=70°;即底角为55°或70°,故选:C.10.(3分)多项式a2﹣9与a2﹣3a的公因式是()A.a+3 B.a﹣3 C.a+1 D.a﹣1【解答】解:a2﹣9=(a﹣3)(a+3),a2﹣3a=a(a﹣3),故多项式a2﹣9与a2﹣3a的公因式是:a﹣3,故选:B.11.(3分)如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的【解答】解:分别用10x,10y代替式子中的x、y得==,可见新分式与原分式相等.故选:C.12.(3分)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.B.C.D.【解答】解:设乘公交车平均每小时走x千米,根据题意可列方程为:=+,故选:D.二、细心填一填(每小题3分,共30分)13.(3分)将0.00000034用科学记数法表示应为 3.4×10﹣7.【解答】解:0.00000034=3.4×10﹣7,故答案为:3.4×10﹣7.14.(3分)已知4x2+mx+9是完全平方式,则m=±12.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.15.(3分)若m﹣n=4,则2m2﹣4mn+2n2的值为32.【解答】解:∵2m2﹣4mn+2n2=2(m﹣n)2∴当m﹣n=4时,原式=2×42=32.故答案是:32.16.(3分)若分式的值为零,则x=﹣3.【解答】解:∵分式的值为零,∴,解得x=﹣3.故答案为:﹣3.17.(3分)若三角形的三边长分别为3,4,x﹣1,则x的取值范围是2<x<8.【解答】解:由三角形三边关系定理得:4﹣3<x﹣1<4+3,解得:2<x<8,即x的取值范围是2<x<8.故答案为:2<x<8.18.(3分)在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.19.(3分)将一副三角板如图叠放,则图中∠α的度数为15°.【解答】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.20.(3分)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.21.(3分)若a m=2,a n=3,则a3m+2n=72.【解答】解:∵a m=2,a n=3,∴a3m+2n=(a m)3×(a n)2=23×32=72.故答案为:72.22.(3分)已知﹣=5,则的值是1.【解答】解:解法一:由已知﹣=5,∴a﹣b=﹣5ab,则=.解法二:将原式分子分母同时除以ab,===1.故答案为:1.三、解答题(共54分,要求:写出必要的解题步骤和说理过程)23.(8分)(1)+3=(解方程)(2)x﹣x3(分解因式)【解答】解:(1)方程的两边同乘x﹣2,得1+3(x﹣2)=x﹣1,解得x=2.检验:把x=2代入x﹣2=0,即x=2是原分式方程的增根.则原方程无解;(2)x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).24.(6分)先化简(1+)÷,再从1、2中选取一个适当的数代入求值.【解答】解:原式=﹣•=﹣,当a=2时,原式=﹣.25.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1(3,2);B1(4,﹣3);C1(1,﹣1);(3)△A1B1C1的面积为 6.5;(4)在y轴上画出点P,使PB+PC最小.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A1(3,2);B1(4,﹣3);C1(1,﹣1);故答案为:(3,2);(4,﹣3);(1,﹣1);(3)△A1B1C1的面积为:3×5﹣×2×3﹣×1×5﹣×2×3=6.5;(4)如图所示:P点即为所求.26.(6分)如图,在△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠B=40°,∠DAE=15°,求∠C的度数.【解答】解:∵AD是BC边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣15°=75°.∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=75°﹣40°=35°.∵AE是∠BAC平分线,∴∠BAC=2∠BAE=2×35°=70°.∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣40°﹣70°=70°.27.(8分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠C GF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.28.(8分)如图,在等腰△ABC中,∠BAC=120°,DE是AC的垂直平分线,DE=1cm,求BD的长.【解答】解:∵等腰△ABC中,∠BAC=120°,∴∠B=∠C=×(180°﹣120°)=30°,连接AD,∵DE是AC的垂直平分线,∴AD=CD,∴∠C=∠CAD=30°,∴∠BAD=∠BAC﹣∠CAD=120°﹣30°=90°,∵DE=1cm,DE⊥AC,∴CD=2DE=2cm,∴AD=2cm,在Rt△ABD中,BD=2AD=2×2=4cm.29.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

【玄武区】2018-2019学年上学期初二数学期末试卷及答案

【玄武区】2018-2019学年上学期初二数学期末试卷及答案

2018【玄武区】初二(上)数学期末试卷一、选择题(本大题共6小题,每小题2分,共12分)1.下列各数中,是无理数的是()A. 0 B.1.010010001 C.πD.2272.若a>0,b<0,则点(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,两个三角形是全等三角形,x的值是()A. 30 B. 45 C.50 D.85 4.下列函数中,y随x的增大而减小的有()①21y x=-+②6y x=- ③13xy+=-④(1y x=A. 1个B.2个C.3个D.4个(第3题)(第5题)5.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图像大致是()A.B.C.D.6.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a-b CD.(第6题)二、填空题(本大题共10小题,每小题2分,共20分)7.4的算术平方根是________,-64的立方根是__________.8.小明的体重为48.86kg ,48.86≈_________.(精确到0.1)9.如图,∠C =90°,∠1=∠2,BC =10,BD =6,则点D 到AB 的距离为_________.10.若直角三角形的两条直角边长分别是5和12,则斜边上的中线长为_________.11.请写出一个一次函数________,使它的图像经过第一、三、四象限.12.将函数31y x =+的图像平移,使它经过点(1,1),则平移后的函数表达式是________. 13.如图,长方形网格中每个小正方形的边长是1,△ABC 是格点三角形(顶点都在格点上),则点C 到AB 的距离为________.(第9题) (第13题)14.在平面直角坐标系xOy ,一次函数1y k x b =+(k 1,b 均为常数)与正比例函数2y k x =(k 2为常数)的图像如图所示,则关于x 的不等式k 2x <1k x b +的解集为_________.15.在平面直角坐标系xOy ,点A 、B 的坐标分别为(3,0)、(0,4),以点A 为圆心,AB 长为半径圆弧,与x 轴交于点C ,则点C 的坐标为_________.(第14题) (第16题)16.如图,在长方形纸片ABCD 中,AB =3,AD =9,折叠纸片ABCD ,使顶点C 落在边AD 上的点G 处,折痕分别交边AD 、BC 于点E 、F ,则△GEF 的面积最大值是_________.三、解答题(本大题共10小题,共68分)17.(本题42-. 18.(每小题4分,共8分)解方程:⑴2(1)64x +=; ⑵38270x +=19.(本题5分)如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°, ∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB .(第19题图)20.(本题7分)如图,在平面直角坐标系xOy 中,已知点A (-2,4),B (-5,4),C (-3,1),直线l 经过点(1,0),且与y 轴平行. ⑴请在图中画出△ABC ;⑵若△A 1B 1C 1与△ABC 关于直线l 对称.请在图中画出△A 1B 1C 1;⑶若点P (a ,b )关于关于直线l 的对称点为P 1,则点P 1的坐标是 .(第20题图)21.(本题6分)如图,在Rt △ACB 和Rt △ADB 中,∠C =∠D =90°,AD =BC ,AD 、BC 相交于点O ,求证CO =DO .(第21题图)22.(本题7分)客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时需付的行李费y (元)是行李质量x (kg)的一次函数,且部分对应关系如下表所示 x (kg) … 30 40 50 … y (kg)…468…⑴求y 关于x的函数表达式;⑵求旅客最多可免费携带行李的质量;⑶当行李费2≤y ≤7(元)时,可携带行李的质量x (kg)的取值范围是.23.(本题7分)如图,在△ABC 中,AB =6,AC =8,BC =10,BC 的垂直平分线分别交AC 、BC 于点D 、E ,求CD 的长.(第23题)24.(本题6分)如图,在四边形ABCD 中,AD ∥BC ,AD =2BC ,点E 是AD 的中点,请仅用..无刻度的直尺......分别按下列要求画图(不写画法,保留画图痕迹) ⑴在图1中,画出△ACD 的边AC 上的中线DM ;⑵在图2中,若AC =AD ,画出△ACD 的边CD 上的高AN .图1 图225.(本题8分)甲骑电动车、乙骑摩托车都从M 地出发,沿一条笔直的公路匀速前往N 地,甲先出发一段时间后乙再出发,甲、乙两人到达N 地后均停止骑行,已知M 、N 两地相距 1753km ,设甲行驶的时间为x (h),甲、乙两人之间的距离为y (km),表示y 与x 函数关系的部分图像如图所示.请你解决以下问题: ⑴求线段BC 所在直线的函数表达式;⑵求点A 的坐标,并说明点A 的实际意义; ⑶根据题目信息补全函数图像.(须标明相关数据).(第25题)BB26.(本题10分)【初步探究】⑴如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.图1【解决问题】⑵如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且EF=EP,∠FEP=90°.(要求:仅用圆规作图,保留作图痕迹.............,不写做法)图2【拓展应用】⑶如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是.⑷如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.图3 图4。

江苏省2018-2019年八年级上期末数学试卷含答案解析

江苏省2018-2019年八年级上期末数学试卷含答案解析

八年级(上)期末数学试卷一、选择题1.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.42.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x53.计算(﹣2a﹣3b)(2a﹣3b)的结果为()A.9b2﹣4a2B.4a2﹣9b2C.﹣4a2﹣12ab﹣9b2D.﹣4a2+12ab﹣9b24.下列各项多项式从左到右变形是因式分解,并分解正确的是()A.x2+2x+1=x(x+2)+1 B.3(a﹣2)﹣2a(2﹣a)=(a﹣2)(3﹣2a)C.6a﹣9﹣a2=(a﹣3)2D.ab(a﹣b)﹣a(b﹣a)2=a(a﹣b)(2b﹣a)5.如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab6.分式方程的解是()A.B.﹣C.D.无解7.计算(+)÷(﹣2﹣2x)的结果是()A.﹣B.﹣C.﹣D.8.甲、乙两个救援队向相距50千米某地震灾区送救援物资,已知甲救援队的平均速度是乙救援队平均速度的2倍,乙救援队出发40分钟后,甲救援队才出发,结果甲救援队比乙救援队早到20分钟.若设乙救援队的平均速度为x千米/小时,则方程可列为()A. +=B. +1= C.﹣=D.﹣1=9.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20° C.25° D.15°10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.1211.分式有意义,则x满足的条件是.12.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.13.近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为.14.若把多项式x2+5x﹣6分解因式为.15.如图,坐标平面上,△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣3),D、E两点在y轴上,则F点到y 轴的距离为.16.四边形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当三角形AMN周长最小时,∠MAN的度数为.17.解方程(1)=﹣1(2)=1+.18.化简分式(1)÷(x﹣)(2)(﹣)÷(﹣x+2)19.如图,△ABC和△AED为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接BE、CD交于点O,连接AO求证:(1)△BAE≌△CAD;(2)OA平分∠BOD.20.利用乘法公式计算(1)(2x﹣3)(﹣3﹣2x)+(2x﹣1)2(2)(x+2y+1)(x﹣2y+1)﹣(x﹣2y﹣1)2.21.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.22.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?23.(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E 三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE (3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF为等边三角形24.已知△ABC中,∠ACB=90°,(1)如图1,点B与点D关于直线AC对称,连AD,点E、F分别是线段CD、AB上的点(点E不与点D、C重合),且∠AEF=∠ABC,∠ABC=2∠CAE.求证:BF=DE.(2)如图2:若AC=BC,BD⊥AD,连DC,求证:∠ADC=45°(3)如图3,若AC=BC,点D在AB的延长线上,以DC为斜边作等腰直角△DCE,过直角顶点E作EF⊥AC于F,求证:点F是AC的中点.参考答案与试题解析一、选择题1.若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.4【解答】解:由x2﹣4=0,得x=±2.当x=2时,x2﹣x﹣2=22﹣2﹣2=0,故x=2不合题意;当x=﹣2时,x2﹣x﹣2=(﹣2)2﹣(﹣2)﹣2=4≠0.所以x=﹣2时分式的值为0.故选:C.2.下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.(x+1)2=x2+1 D.x3•x2=x5【解答】解:A、(x3)2=x6,错误;B、(2x)2=4x2,错误;C、(x+1)2=x2+2x+1,错误;D、x3•x2=x5,正确;故选:D.3.计算(﹣2a﹣3b)(2a﹣3b)的结果为()A.9b2﹣4a2B.4a2﹣9b2C.﹣4a2﹣12ab﹣9b2D.﹣4a2+12ab﹣9b2【解答】解:原式=9b2﹣4a2,故选:A.4.下列各项多项式从左到右变形是因式分解,并分解正确的是()A.x2+2x+1=x(x+2)+1 B.3(a﹣2)﹣2a(2﹣a)=(a﹣2)(3﹣2a)C.6a﹣9﹣a2=(a﹣3)2D.ab(a﹣b)﹣a(b﹣a)2=a(a﹣b)(2b﹣a)【解答】解:A、不是因式分解,故本选项不符合题意;B、等式两边不等,不是因式分解,故本选项不符合题意;C、等式两边不等,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.5.如图,根据计算正方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a﹣b)=a2﹣ab【解答】解:根据题意得:(a+b)2=a2+2ab+b2,故选:A.6.分式方程的解是()A.B.﹣C.D.无解【解答】解:两边同时乘以2(x﹣1)得,2x=3﹣2(2x﹣2),去括号得,2x=3﹣4x+4,解得,x=,检验:当x=时,2x﹣2≠0,故x=是原分式方程的解,故选:A.7.计算(+)÷(﹣2﹣2x)的结果是()A.﹣B.﹣C.﹣D.【解答】解:原式=÷[]=÷=×=﹣.故选:B.8.甲、乙两个救援队向相距50千米某地震灾区送救援物资,已知甲救援队的平均速度是乙救援队平均速度的2倍,乙救援队出发40分钟后,甲救援队才出发,结果甲救援队比乙救援队早到20分钟.若设乙救援队的平均速度为x千米/小时,则方程可列为()A. +=B. +1= C.﹣=D.﹣1=【解答】解:设乙救援队的平均速度为x千米/小时,则甲救援队的平均速度为2x千米/小时;根据题意得出: +1=.故选:B.9.如图,在四边形ABCD中,AB=AC,∠ABD=60°,∠ADB=78°,∠BDC=24°,则∠DBC=()A.18°B.20° C.25° D.15°【解答】解:如图延长BD到M使得DM=DC,∵∠ADB=78°,∴∠ADM=180°﹣∠ADB=102°,∵∠ADB=78°,∠BDC=24°,∴∠ADC=∠ADB+∠BDC=102°,∴∠ADM=∠ADC,在△ADM和△ADC中,,∴△ADM≌△ADC,∴AM=AC=AB,∵∠ABD=60°,∴△AMB是等边三角形,∴∠M=∠DCA=60°,∵∠DOC=∠AOB,∠DCO=∠ABO=60°,∴∠BAO=∠ODC=24°,∵∠CAB+∠ABC+∠ACB=180°,∴24°+2(60°+∠CBD)=180°,∴∠CBD=18°,故选:A.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题11.分式有意义,则x满足的条件是x≠﹣.【解答】解:3x+1≠0所以x≠﹣故答案为:x≠﹣12.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=﹣1或7.【解答】解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.13.近日,获诺贝尔奖的中国科学家屠呦呦接受央视记者采访时表示,青蒿素挽救数百万人生命,但对青蒿素的研究远远没有结束,“青蒿素抗疟是有效的,但抗疟的机理还没搞清楚,大家能把它搞清楚,这个药才能物尽其用发挥更好作用.”其中疟疾病菌的直径约为0.51微米,也就是0.00000051米,那么数据0.00000051用科学记数法表示为 5.1×10﹣7.【解答】解:0.00000051=5.1×10﹣7.故答案为:5.1×10﹣7.14.若把多项式x2+5x﹣6分解因式为(x﹣1)(x+6).【解答】解:x2+5x﹣6=(x﹣1)(x+6),故答案为:(x﹣1)(x+6).15.如图,坐标平面上,△ABC≌△FDE,若A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣3),D、E两点在y轴上,则F点到y 轴的距离为4.【解答】解:如图,作AH⊥BC于H,FP⊥DE于P,∵△ABC≌△FDE,∴AC=DF,∠C=∠FDE,在△ACH和△DFP中,,∴△ACH≌△DFP(AAS),∴AH=FP,∵A点的坐标为(a,1),BC∥x轴,B点的坐标为(b,﹣3),∴AH=4,∴FP=4,∴F点到y轴的距离为4,故答案为:4.16.四边形ABCD中,∠BAD=125°,∠B=∠D=90°,在BC、CD上分别找一点M、N,当三角形AMN周长最小时,∠MAN的度数为70°.【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°,∴A、A′关于BC对称,A、A″关于CD对称,此时△AMN的周长最小,∵BA=BA′,MB⊥AB,∴MA=MA′,同理:NA=NA″,∴∠A′=∠MAB,∠A″=∠NAD,∵∠AMN=∠A′+∠MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,∴∠AMN+∠ANM=2(∠A′+∠A″),∵∠BAD=125°,∴∠A′+∠A″=180°﹣∠BAD=55°,∴∠AMN+∠ANM=2×55°=110°.∴∠MAN=180°﹣110°=70°,故答案为:70°三、解答题17.解方程(1)=﹣1(2)=1+.【解答】解:(1)去分母得:x﹣3=﹣3﹣x+2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+5,解得:x=1.5,经检验x=1.5是分式方程的解.18.化简分式(1)÷(x﹣)(2)(﹣)÷(﹣x+2)【解答】解:(1)原式=÷=÷=×=;(2)原式=[﹣]÷=×=﹣19.如图,△ABC和△AED为等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,连接BE、CD交于点O,连接AO求证:(1)△BAE≌△CAD;(2)OA平分∠BOD.【解答】证明:(1)过点A分别作AF⊥BE于F,AG⊥CD于G.如图所示:∵∠BAC=∠DAE,∴∠BAE=∠CAD,在△BAE和△CAD中,,∴△BAE≌△CAD(SAS),(2)连接AO并延长交CE为点H,∵△BAE≌△CAD,∴BE=CD,∴AF=AG,∵AF⊥BE于F,AG⊥CD于G,∴OA平分∠BOD,∴∠AOD=∠AOB,∵∠COH=∠AOD,∠EOH=∠AOB,∴∠COH=∠EOH.∴OA平分∠BOD.20.利用乘法公式计算(1)(2x﹣3)(﹣3﹣2x)+(2x﹣1)2(2)(x+2y+1)(x﹣2y+1)﹣(x﹣2y﹣1)2.【解答】解:(1)(2x﹣3)(﹣3﹣2x)+(2x﹣1)2=9﹣4x2+4x2﹣4x+1=﹣4x+10;(2)(x+2y+1)(x﹣2y+1)﹣(x﹣2y﹣1)2=[(x+1)+2y][(x+1)﹣2y])﹣(x﹣2y﹣1)2=[(x+1)2﹣4y2﹣x2+4xy+2x﹣4y+4y2﹣1=4xy+4x﹣4y.21.将下列多项式因式分解①4ab2﹣4a2b+a3②16(x﹣y)2﹣24x(x﹣y)+9x2③6(a﹣b)2﹣3(b﹣a)2.【解答】解:①4ab2﹣4a2b+a3=a(a2﹣4ab+4b2)=a(a﹣2b)2;②16(x﹣y)2﹣24x(x﹣y)+9x2=[4(x﹣y)﹣3x]2=(x﹣4y)2;③6(a﹣b)2﹣3(b﹣a)2.=3(a﹣b)2×(2+1)=9(a﹣b)2.22.某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?【解答】解:设第一次购书的单价为x元,∵第二次每本书的批发价已比第一次提高了20%,∴第二次购书的单价为1.2x元.根据题意得:.(4分)解得:x=5.经检验,x=5是原方程的解.(6分)所以第一次购书为1200÷5=240(本).第二次购书为240+10=250(本).第一次赚钱为240×(7﹣5)=480(元).第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元).所以两次共赚钱480+40=520(元)(8分).答:该老板两次售书总体上是赚钱了,共赚了520元.(9分)23.(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E 三点都在直线m上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE (3)拓展与应用:如图3,D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF为等边三角形【解答】(1)解:如图1,∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:如图2,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠DBA=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)证明:如图3,由(2)可知,△ADB≌△CEA,∴BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.24.已知△ABC中,∠ACB=90°,(1)如图1,点B与点D关于直线AC对称,连AD,点E、F分别是线段CD、AB上的点(点E不与点D、C重合),且∠AEF=∠ABC,∠ABC=2∠CAE.求证:BF=DE.(2)如图2:若AC=BC,BD⊥AD,连DC,求证:∠ADC=45°(3)如图3,若AC=BC,点D在AB的延长线上,以DC为斜边作等腰直角△DCE,过直角顶点E作EF⊥AC于F,求证:点F是AC的中点.【解答】解:(1)如图1,过点E作EH⊥AB于H,交AC于M,设∠CAE=α,∴∠ABC=2∠CAE=2α,∵∠ACB=90°,∴∠CME=∠ABC=2α,∴∠AEH=∠CME﹣∠CAE=2α﹣α=α,∵∠AEF=∠ABC,∴∠AEF=2α,∴∠FEH=∠AEF﹣∠AEH=α=∠AEH,∵EH⊥AB,∴AE=FE,∵AC⊥BD,∵点B与点D关于AC对称,∴∠ADB=∠ABC=2α,在△ADE中,∠AED+∠DAE+∠ADB=180°,∵∠AED+∠AEF+∠BEF=180°,∴∠DAE+∠ADB=∠AEF+∠BEF,∵∠AEF=∠ABC,∴∠DAE+∠ADB=∠ABC+∠BEF∴∠DAE=∠BEF,在△ADE和△EBF中,,∴△ADE≌△EBF,∴DE=BF;(2)如图2,过点C作CN⊥CD交AD于N,∵∠ACB=90°,∴∠ACN=∠BCD,∵∠ACB=90°=∠ADB,∴∠CAN=∠CBD,在△ACN和△CBD中,,∴△ACN≌△CBD,∴CN=CD,∵∠DCN=90°,∴∠ADC=45°;(3)如图3,记EF与AB的交点为G,连接CG,∵△CDE是等腰直角三角形,∴∠CED=90°,∠DCE=45°,∴∠BCE+∠BCD=45°,∵∠BCD+∠BDC=45°,∴∠BCE=∠BDC,∵∠ACB=90°,EF⊥AC,∴EF∥BC,∴∠CEF=∠BCE,∴∠BDC=∠CEF,∴点C,D,E,G共圆,∴∠CGD=∠CED=90°,∴∠AGC=90°,∵AC=BC,∠ACB=90°,∴∠A=45°∴∠ACG=45°=∠A,∴AG=CG,∵EF⊥AC,∴AF=CF,即:点F是AC的中点.。

江苏省南京市玄武区2018-2019学年度八年级(上)期末数学试卷 (解析版)

江苏省南京市玄武区2018-2019学年度八年级(上)期末数学试卷  (解析版)

南京市玄武区2018-2019学年八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.854.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个5.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.6.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.4的算术平方根是,﹣64的立方根是.8.小明的体重为48.86kg,48.86≈.(精确到0.1)9.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.10.若直角三角形的两直角边长分别为5和12,则斜边上的中线长为.11.写出一个一次函数,使它的图象经过第一、三、四象限:.12.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是.13.如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为.14.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为.15.在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为.16.如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是.三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:+()2﹣.18.求x的值:(1)(x+1)2=64(2)8x3+27=0.19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.20.如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l经过点(1,0),且与y轴平行.(1)请在图中画出△ABC;(2)若△A1B1C1与△ABC关于直线l对称.请在图中画出△A1B1C1;(3)若点P(a,b)关于直线l的对称点为P1,则点P1的坐标是.21.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.22.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x (kg)的一次函数,且部分对应关系如表所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.23.如图,在△ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.24.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.25.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)26.【初步探究】(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.【拓展应用】(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是.(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.参考答案与试题解析一.选择题(共6小题)1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限点的坐标特点进行判断即可.【解答】解:∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.3.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85【分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.【解答】解:∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.4.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y=;④y=(1﹣)x.A.1个B.2个C.3个D.4个【分析】分别确定四个函数的k值,然后根据一次函数y=kx+b(k≠0)的性质判断即可.【解答】解:①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y=,k=﹣<0;④y=(1﹣)x,k=(1﹣)<0.所以四函数都是y随x的增大而减小.故选:D.5.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.【分析】根据P点半圆O、线段OB、线段OA这三段运动的情况分析即可.【解答】解:①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.6.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.【分析】设CD=x,则DE=a﹣x,求得AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,求得CD=,得到BC=DE=a﹣=,根据勾股定理即可得到结论.【解答】解:设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x=,∴BC=DE=a﹣=,∴BD2=BC2+CD2=()2+()2=,∴BD=,故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.4的算术平方根是 2 ,﹣64的立方根是﹣4 .【分析】根据算术平方根和立方根的定义求解可得.【解答】解:4的算术平方根是2,﹣64的立方根是﹣4,故答案为:2,﹣4.8.小明的体重为48.86kg,48.86≈48.9 .(精确到0.1)【分析】把百分位上的数字6进行四舍五入即可.【解答】解:48.86≈48.9.(精确到0.1).故答案为48.9.9.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为 4 .【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.10.若直角三角形的两直角边长分别为5和12,则斜边上的中线长为 6.5 .【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为5和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5.故答案为:6.5.11.写出一个一次函数,使它的图象经过第一、三、四象限:y=x﹣1 .【分析】根据一次函数的性质解答即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,b<0,∴写出的解析式只要符合上述条件即可,例如y=x﹣1.故答案为y=x﹣1.12.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2 .【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【解答】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.13.如图,长方形网格中每个小正方形的边长是1,△ABC是格点三角形(顶点都在格点上),则点C到AB的距离为1.2 .【分析】设点C到AB的距离为h,根据勾股定理得到AB==5,根据三角形的面积公式即可得到结论.【解答】解:设点C到AB的距离为h,∵AB==5,∴S△ABC=×2×3=×5×h,∴h=1.2,故答案为:1.2.14.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b均为常数)与正比例函数y=k2x(k2为常数)的图象如图所示,则关于x的不等式k2x<k1x+b的解集为x<3 .【分析】由图象可以知道,当x=3时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x <k1x+b的解集.【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3时,直线y=k2x在直线y=k1x+b的下方,故不等式k2x<k1x+b的解集为x<3.故答案为x<3.15.在平面直角坐标系xOy中,点A、B的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为(﹣2,0)或(8,0).【分析】根据题意求出AB的长,以A为圆心作圆,与x轴交于C,C′,求出C的坐标即可.【解答】解:∵点A、B的坐标分别为(3,0)、(0,4),∴OA=3,OB=4,∴AB==5,∴AC′=5,AC=5,∴C′点坐标为(﹣2,0);C点坐标为(8,0).故答案为:(﹣2,0)或(8,0).16.如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C落在边AD上的点G处,折痕分别交边AD、BC于点E、F,则△GEF的面积最大值是7.5 .【分析】当点G与点A重合时,△GEF的面积最大,根据折叠性质可得GF=FC,∠AFE=∠EFC,根据勾股定理可求AF=5,根据矩形的性质可得∠EFC=∠AEF=∠AFE,可得AE=AF=5,即可求△GEF的面积最大值.【解答】解:如图,当点G与点A重合时,△GEF的面积最大,∵折叠∴GF=FC,∠AFE=∠EFC在Rt∠ABF中,AF2=AB2+BF2,∴AF2=9+(9﹣AF)2,∴AF=5∵四边形ABCD是矩形∴AD∥BC,∴∠AEF=∠EFC∴∠AEF=∠AFE∴AE=AF=5∴△GEF的面积最大值=×5×3=7.5故答案为:7.5三、解答题(本大题共10小题,共68分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.计算:+()2﹣.【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.【解答】解:原式=3+2﹣=.18.求x的值:(1)(x+1)2=64(2)8x3+27=0.【分析】根据立方根与平方根的定义即可求出答案.【解答】解:(1)x+1=±8x=7或﹣9(2)8x3=﹣27x3=x=19.如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.【分析】(1)由AB=AC,根据等腰三角形的两底角相等得到∠B=∠C=30°,再根据三角形的内角和定理可计算出∠BAC=120°,而∠DAB=45°,则∠DAC=∠BAC﹣∠DAB=120°﹣45°;(2)根据三角形外角性质得到∠ADC=∠B+∠DAB=75°,而由(1)得到∠DAC=75°,再根据等腰三角形的判定可得DC=AC,这样即可得到结论.【解答】(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC﹣∠DAB=120°﹣45°=75°;(2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∴DC=AB.20.如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l经过点(1,0),且与y轴平行.(1)请在图中画出△ABC;(2)若△A1B1C1与△ABC关于直线l对称.请在图中画出△A1B1C1;(3)若点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(2﹣a,b).【分析】(1)直接利用已知点坐标得出△ABC;(2)利用关于直线对称点的性质得出对应点位置进而得出答案;(3)根据直线l经过点(1,0),点P(a,b)关于直线l的对称点为P1,则P与P1的横坐标的和除以2等于1,纵坐标相等,进而得出答案.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△A1B1C1即为所求;(3)点P(a,b)关于直线l的对称点为P1,则点P1的坐标是(2﹣a,b).故答案为:(2﹣a,b).21.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.【分析】由“HL”可得Rt△ACB≌Rt△BDA,可得∠CBA=∠DAB,可得OA=OB,即可得结论.【解答】证明:在Rt△ACB和Rt△BDA中,∠C=∠D=90°∴Rt△ACB≌Rt△BDA(HL)∴∠CBA=∠DAB∴OA=OB又AD=BC,∴CO=DO22.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x (kg)的一次函数,且部分对应关系如表所示.(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是20≤x≤45 .【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0时求出x的值即可;(3)分别求出2≤y≤7时的x的取值范围,然后解答即可.【解答】解:(1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.23.如图,在△ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD的长.【分析】连接DB,根据勾股定理的逆定理得到∠A=90°,根据线段垂直平分线的想知道的DC=DB,设DC=DB=x,则AD=8﹣x.根据勾股定理即可得到结论.【解答】解:连接DB,在△ACB中,∵AB2+AC2=62+82=100,又∵BC2 =102 =100,∴AB2+AC2=BC2.∴△ACB是直角三角形,∠A=90°,∵DE垂直平分BC,∴DC=DB,设DC=DB=x,则AD=8﹣x.在Rt△ABD中,∠A=90°,AB2+AD2=BD2,即62+(8﹣x)2=x2,解得x=,即CD=.24.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按下列要求画图.(不写画法,保留画图痕迹)(1)在图1中,画出△ACD的边AC上的中线DM;(2)在图2中,若AC=AD,画出△ACD的边CD上的高AN.【分析】(1)连接BE交AC于M,易得四边形BCDE为平行四边形,再根据三角形中位线判断M点为AC的中点,然后连接DM即可;(2)连接BE交AC于M,M点为AC的中点,再连接CE、DM,它们相交于F,连接AF并延长交CD于N,则AN⊥CD.【解答】解:(1)如图,DM为所作;(2)如图,AN为所作.25.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y (km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)【分析】(1)根据函数图象中的数据可以求得线段BC所在直线的函数表达式;(2)根据题意和函数图象中的数据可以求得甲和乙的速度,从而可以求得点A的坐标并写出点A表示的实际意义;(3)根据(2)中甲乙的速度可以分别求得甲乙从M地到N地用的时间,从而可以将函数图象补充完整.【解答】解:(1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x﹣;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:30×=10,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.26.【初步探究】(1)如图1,在四边形ABCD中,∠B=∠C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△AED 的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.【拓展应用】(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是(1,2)、(3,3)、(,).(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.【分析】(1)证明△ABE≌△ECD(SAS),即可求解;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C为圆心,DP长为半径作弧交BE于点E,连接EF,EP,FP,点E、F即为所求;(3)分∠CAB=90°、∠ABC=90°、∠ACB=90°,三种情况求解即可;(4)求出B(m,1+m),则:BO+BA=+,BO+BA的值相当于求点P(m,m)到点M (1,﹣1)和点N(0,﹣1)的最小值,即可求解.【解答】解:(1)△AED是等腰直角三角形,证明:∵在△ABE和△ECD中,∴△ABE≌△ECD(SAS)∴AE=DE,∠AEB=∠EDC,∵在Rt△EDC中,∠C=90°,∴∠EDC+∠DEC=90°.∴∠AEB+∠DEC=90°.∵∠AEB+∠DEC+∠AED=180°,∴∠AED=90°.∴△AED是等腰直角三角形;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C为圆心,DP长为半径作弧交BE于点E,连接EF,EP,FP.∴点E、F即为所求;(3)如图,当∠CAB=90°,CA=AB时,过点C作CF⊥AO于点F,过点B作BE⊥AO于点E,∵点A(2,0),点B(4,1),∴BE=1,OA=2,OE=4,∴AE=2,∵∠CAB=90°,BE⊥AO,∴∠CAF+∠BAE=90°,∠BAE+∠ABE=90°,∴∠CAF=∠ABE,且AC=AB,∠AFC=∠AEB=90°,∴△ACF≌△BAE(AAS)∴CF=AE=2,AF=BE=1,∴OF=OA﹣AF=1,∴点C坐标为(1,2)如图,当∠ABC=90°,AB=BC时,过点B作BE⊥OA,过点C作CF⊥BE∵∠ABC=90°,BE⊥OA,∴∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,∴∠BAE=∠CBF,且BC=AB,∠AEB=∠CFB=90°∴△BCF≌△ABE(AAS)∴BE=CF=1,AE=BF=2,∴EF=3∴点C坐标为(3,3)如图,当∠ACB=90°,CA=BC时,过点C作CD⊥OA于点D,过点B作BF⊥CD于点F,∵∠ACD+∠BCF=90°,∠ACD+∠CAD=90°,∴∠BCF=∠CAD,且AC=BC,∠CDA=∠CFB,∴△ACD≌△CBF(AAS)∴CF=AD,BF=CD=DE,∵AD+DE=AE=2∴2=AD+CD=AD+CF+DF=2AD+1∴DA=,∴CD=,OD=,∴点C坐标(,)综上所述:点C坐标为:(1,2)、(3,3)、(,)故答案为:(1,2)、(3,3)、(,)(4)如图作BH⊥OH于H.设点C的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则:BO+BA=+,BO+BA的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,相当于在直线y=x上寻找一点P(m,m),使得点P到M(0,﹣1),到N(1,﹣1)的距离和最小,作M关于直线y=x的对称点M′(﹣1,0),易知PM+PN=PM′+PN≥NM′,M′N==,故:BO+BA的最小值为.。

八年级(上)期末数学试卷5江苏省南京市玄武区八年级(上)期末数学试卷含参考答案与试题解析

八年级(上)期末数学试卷5江苏省南京市玄武区八年级(上)期末数学试卷含参考答案与试题解析

八年级(上)期末数学试卷5江苏省南京市玄武区八年级(上)期末数学试卷1.在下列各数中,无理数是()A.B.3πC.D.2.在平面直角坐标系中,若点P坐标为(2,﹣3),则它位于第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A.B.C.D.4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC 于点E.若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.55.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到直线的函数关系式为()A.y=﹣2x+1B.y=﹣2x﹣5C.y=﹣2x+5D.y=﹣2x+76.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽x B.y=|x|C.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间x D.|y|=x7.16的平方根是,5的算术平方根是.8.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是.9.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).10.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距km.11.点A(2,﹣3)关于x轴对称的点的坐标为,点B(﹣3,1)到y轴的距离是.12.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为.13.如图,在△ABC中,AB=AC,D为BC的中点,且∠BAD=25°,则∠C的度数是°.14.某社区有一块空地需要绿化,某绿化组承担了此项任务,该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.3小时后,绿化组每小时比开始多完成50m2,则当t>3时,S与t的函数关系式为.15.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为cm.16.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.17.计算:(π+1)0+|﹣2|﹣.18.求下列各式中的x.(1)4x2=81;(2)(x+1)3﹣27=0.19.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.20.已知一次函数y=kx+b的图象经过点(1,2),(0,4).(1)求一次函数的表达式;(2)在所给直角坐标系中画出此函数的图象;(3)根据图象回答:当x时,y>0.21.如图,在平面直角坐标系中,已知△ABC三个顶点坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是.22.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?23.已知:如图∠BAC的角平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:BE=CF.24.学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC 的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:请你按照小明的思路解决这道思考题.25.小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当x的值为时,小明与妈妈相距1 500米.26.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED 于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.江苏省南京市玄武区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.在下列各数中,无理数是()A.B.3πC.D.解:,,是有理数,3π是无理数,故选:B.2.在平面直角坐标系中,若点P坐标为(2,﹣3),则它位于第几象限()A.第一象限B.第二象限C.第三象限D.第四象限解:点P坐标为(2,﹣3),则它位于第四象限,故选:D.3.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A.B.C.D.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:A.4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()A.3B.4C.2D.2.5解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=3,FE=CE,∴CE=DE﹣DF=5﹣3=2.故选:C.5.在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1B.y=﹣2x﹣5C.y=﹣2x+5D.y=﹣2x+7解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.6.下列关系中,y不是x的函数关系的是()A.长方形的长一定时,其面积y与宽xB.高速公路上匀速行驶的汽车,其行驶的路程y与行驶的时间xC.y=|x|D.|y|=x解:A、∵对于x的每一个取值,y都有唯一确定的值,故A正确;B、∵对于x的每一个取值,y都有唯一确定的值,故B正确;C、∵对于x的每一个取值,y都有唯一确定的值,故C正确;D、∵对于x的每一个取值,y没有唯一确定的值,故D错误;故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.16的平方根是±4,5的算术平方根是.解:16的平方根是±4,5的算术平方根是.故答案为:±4,.8.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是 2.0.解:2.026≈2.0(精确到0.1).故答案为2.0.9.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD(添加一个条件即可).解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.10.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距5km.解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.11.点A(2,﹣3)关于x轴对称的点的坐标为(2,3),点B(﹣3,1)到y轴的距离是3.解:点A(2,﹣3)关于x轴对称的点的坐标为(2,3);点B(﹣3,1)到y轴的距离是3.故答案为:(2,3);3.12.如图,直线y1=x+b与y2=kx﹣1相交于点P,则关于x的不等式x+b>kx﹣1的解集为x>﹣1.解:当x>﹣1,函数y=x+b的图象在函数y=kx﹣1图象的上方,所以关于x的不等式x+b>kx﹣1的解集为x>﹣1.故答案为x>﹣1.13.如图,在△ABC中,AB=AC,D为BC的中点,且∠BAD=25°,则∠C的度数是65°.解:AB=AC,D为BC中点,∴AD是∠BAC的平分线,∠B=∠C,∵∠BAD=25°,∴∠BAC=2∠BAD=50°,∴∠C=(180°﹣50°)=65°.故答案为:65.14.某社区有一块空地需要绿化,某绿化组承担了此项任务,该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.3小时后,绿化组每小时比开始多完成50m2,则当t>3时,S与t的函数关系式为S=200t﹣300.解:前两个小时每小时完成绿化的面积为300÷2=150(m2),∴3小时后绿化组每小时完成绿化的面积为150+50=200(m2),∴当t>3时,S与t的函数关系式为S=200(t﹣3)+300=200t﹣300.故答案为:S=200t﹣300.15.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=6cm,BC=10cm.则EC的长为cm.解:∵四边形ABCD是长方形,∴AD=BC=10cm,CD=AB=6cm,∵长方形纸片沿AE折叠,点D落在BC边的点F处,∴AF=AD=10cm,EF=DE,在Rt△ABF中,BF===8cm,∴FC=BC﹣BF=10﹣8=2cm,设DE=x,则EC=CD﹣DE=6﹣x,在Rt△CEF中,EC2+FC2=EF2,即(6﹣x)2+22=x2,解得x=,∴EC=CD﹣DE=6﹣=,故答案为.16.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为(,).解:如图所示,∵点O关于AB的对称点是O(1,1),点A关于y轴的对称点是A′(﹣1,0)设AB的解析式为y=kx+b,∵(1,0),(0,1)在直线上,∴,解得k=﹣1,∴AB的表达式是y=1﹣x,同理可得O′A′的表达式是y=+,两个表达式联立,解得x=,y=.故答案为:(,).三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(4分)计算:(π+1)0+|﹣2|﹣.解:原式=1+2﹣﹣3=﹣.18.求下列各式中的x.(1)4x2=81;(2)(x+1)3﹣27=0.解:(1)4x2=81,x2=,x=±;(2)(x+1)3﹣27=0,(x+1)3=27,x+1=3,x=2.19.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.20.已知一次函数y=kx+b的图象经过点(1,2),(0,4).(1)求一次函数的表达式;(2)在所给直角坐标系中画出此函数的图象;(3)根据图象回答:当x<2时,y>0.(1)将(1,2)和(0,4)分别代入y=kx+b,得:,解得:,∴一次函数的表达式为y=﹣2x+4.(2)∵当y=﹣2x+4=0时,x=2.∴函数图象过点(0,4)和(2,0).画出函数图象如图所示.(3)观察函数图象发现:当x<2时,函数图象在x轴上方.故答案为:<2.21.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b)经过上述两次变换,那么对应A2C2上的点M2的坐标是(a+4,﹣b).解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)由(1)(2)轴对称以及平移的性质得出对应A2C2上的点M2的坐标是:(a+4,﹣b).故答案为:(a+4,﹣b).22.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.23.(7分)已知:如图∠BAC的角平分线与BC的垂直平分线交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.求证:BE=CF.解:连接BD、CD,根据垂直平分线性质可得BD=CD,∵D为∠BAC上面的点,DE⊥AB,DF⊥AC∴DE=DF,在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF.24.(8分)学完第五章《平面直角坐标系》和第六章《一次函数》后,老师布置了这样一道思考题:已知:如图,在长方形ABCD中,BC=4,AB=2,点E为AD的中点,BD和CE相交于点P.求△BPC 的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:请你按照小明的思路解决这道思考题.解:建立如图直角坐标系,则由题意得A(0,2),B(0,0),C(4,0),D(4,2),E(2,2)由待定系数法求得BD:y=CE:y=﹣x+4解得P()∴△BPC的面积=4××=,25.(8分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当x的值为10或30时,小明与妈妈相距1 500米.解:(1)∵45×50=2250(米),3000﹣2250=750(米),∴点C的坐标为(45,750).设线段BC的函数表达式为y=kx+b(k≠0),把(30,3000)、(45,750)代入y=kx+b,,解得:,∴线段BC的函数表达式y=﹣150x+7500(30≤x≤45).(2)设直线AC的函数表达式为:y=k1x+b1,把(0,3000)、(45,750)代入y=k1x+b1,,解得:.∴直线AC的函数表达式为y=﹣50x+3000.∵750÷250=3(分钟),45+3=48,∴点E的坐标为(48,0).∴直线ED的函数表达式y=250(x﹣48)=250x﹣12000.联立直线AC、ED表达式成方程组,,解得:,∴点D的坐标为(50,500).实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里.(3)∵3000÷30=100(米/分钟),∴线段OB的函数表达式为y=100x(0≤x≤30),由(1)线段BC的表达式为y=﹣150x+7500,(30≤x≤45)当小明与妈妈相距1500米时,即﹣50x+3000﹣100x=1500或100x﹣(﹣50x+3000)=1500或(﹣150x+7500)﹣(﹣50x+3000)=1500,解得:x=10或x=30,∴当x为10或30时,小明与妈妈相距1500米.故答案为:10或30.26.(9分)【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED 于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.解:(1)证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=﹣3;若x=0,则y=4,∴A(﹣3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(﹣4,7),设l2的解析式为y=kx+b,则,解得,∴l2的解析式:y=﹣7x﹣21;②D(4,﹣2),().理由:当点D是直线y=﹣2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE=8﹣x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12﹣2x=8﹣x,解得x=4,∴﹣2x+6=﹣2,∴D(4,﹣2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x,同理可得:△ADE≌△DPF,则AE=DF,即:2x﹣12=8﹣x,解得x =,∴﹣2x+6=﹣,∴D (,﹣),此时,ED=PF =,AE=BF =,BP=PF﹣BF =<6,符合题意.第21页。

江苏省南京玄武区六校联考2018-2019学年八上数学期末试卷

江苏省南京玄武区六校联考2018-2019学年八上数学期末试卷

江苏省南京玄武区六校联考2018-2019学年八上数学期末试卷一、选择题1.若把2a 1a 1+-变形为1a 1-,则下列方法正确的是( ) A.分子与分母同时乘a 1+ B.分子与分母同时除以a 1+ C.分子与分母同时乘a 1-D.分子与分母同时除以a 1- 2.分式23x x --有意义的x 的取值为( ) A .2x ≠ B .3x ≠ C .2x =D .3x = 3.化简22a b b a +-的结果是( ) A.1a b - B.1b a- C.a ﹣b D.b ﹣a 4.下列运算中,正确的是( ) A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅ 5.下列运算正确的是( ) A .842a a a ÷=B .236a a ()=C .236•a a a =D .236ab ab ()= 6.下列运算正确的是( ) A .(x+2y )2=x 2+4y 2B .(﹣2a 3)2=4a 6C .﹣6a 2b 5+ab 2=﹣6ab 3D .2a 2•3a 3=6a 6 7.如图,在△ABC 中,AB =6,AC =4,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 分别交AB 、AC 于M 、N ,则△AMN 的周长为( )A .12B .10C .8D .不确定8.如图,边长为24的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连结MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连结HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12B .6C .3D .19.如图,直线l 1∥l 2,将等边三角形如图放置,若∠α=35°,则∠β等于( )A.35°B.30°C.25°D.15°10.如图所示,AB∥CD,O为∠BAC、∠ACD的平分线交点,OE⊥AC于E,若OE=2,则AB与CD之间的距离是()A.2 B.4 C.6 D.811.如图,△ABC的顶点A、B、C都在小正方形的顶点上,在格点F、G、H、I中选出一个点与点D、点E构成的三角形与△ABC全等,则符合条件的点共有()A.1个B.2个C.3个D.4个12.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是( )A.①②B.②③C.①③D.①②③13.如图,在△ABC中,∠ABC、∠ACB的平分线BE,CD相交于点F,且∠ABC=42°,∠A=60°,则∠BFC等于()A.121°B.120°C.119°D.118°14.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠A=40°,求∠ABD+∠ACD=()A.30°B.40°C.50°D.60°15.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条 B.8条 C.9条 D.10条二、填空题16.甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,则乙施工队单独完成此项工程需 天.17.若a +b =5,ab =3,则3a 2+3b 2=____________.18.如图,等边△ABC 的周长为18cm ,BD 为AC 边上的中线,动点P ,Q 分别在线段BC ,BD 上运动,连接CQ ,PQ ,当BP 长为_____cm 时,线段CQ+PQ 的和为最小.19.如图,以正方形ABCD 的AB 边向外作正六边形ABEFGH ,连接DH ,则∠ADH=____________°20.等边三角形的边长为1,则它的面积是_____.三、解答题21.(1)计算:(-1)2019+(-12)-2+(3.14-π)0 (2)化简:(a +2)(a -2)-a(a -1) 22.把下列各式因式分解:(1)22ax ay -;(2)3221218a a a -+-23.如图,已知ABC △和△FED 的边BC 和ED 在同一直线上,BD CE =,点,A F 在直线BE 的两侧,//,AB EF A F ∠=∠,判断AC 与FD 的数量关系和位置关系,并说明理由.24.如图,已知直线l 和l 外一点P ,用尺规作l 的垂线,使它经过点P .(保留作图痕迹,不写作法)25.如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC 经过一次平移后得到△A′B′C′,图中标出了点B 的对应点B′.(1)在给定方格纸中画出平移后的△A′B′C′;(2)画出AB 边上的中线CD 和BC 边上的高线AE ;(3) 求四边形ACBB′的面积【参考答案】***一、选择题16.17.5718.19.1520三、解答题21.(1)4 (2)4a -22.(1)()()a x y x y +-;(2)()223a a --. 23.AC =DF ;AC ∥DF.【解析】【分析】只要证明△ACB ≌△FDE(AAS),推出AC =FD ,∠ACB =∠FDE ,推出AC ∥DF .【详解】数量关系:AC =DF.位置关系:AC ∥DF∵BD =CE∴BD+CD =CE+CD即BC =DE又∵AB ∥EF ,∴∠B =∠E在△ACB 和△FDE 中A F B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△FDE(AAS)∴AC =FD ,∠ACB =∠FDE∴AC ∥DF【点睛】本题主要考查了两直线平行的判定方法及全等三角形的判定和性质的知识点,内错角相等,,两直线平行,要熟练掌握两三角形全等的知识点.24.详见解析【解析】【分析】以P为圆心,以任意长为半径画弧,交直线l与于点M、N,再分别以点M、N为圆心,以大于12MN长为半径画弧,两弧相交于点G、H,连接GH,直线GH即为所求.【详解】如图,直线GH即为所求.【点睛】本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答本题的关键.25.(1)见解析;(2)见解析;(3)27。

南京市玄武区2018-2019年八年级上期末考试数学试卷含答案

南京市玄武区2018-2019年八年级上期末考试数学试卷含答案

玄武区2019〜2019学年第一学期八年级期末试卷注意事项:1 •本试卷共6页•全卷满分100分•考试时间为100分钟•考生答题全部答在答题卡上.2 •请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合.3 •答选择题必须用 2B 铅笔将答题卡上对应的答案标号涂黑•答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4 •作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共 8小题,每小题2分,共16分•在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置 上) 1 .下面四个艺术字中,是轴对称图形的个数是()A. 1个B. 2个C. 3个D. 4个2.平面直角坐标系中,点 A 的坐标为(-2 , 1),则点A 在( )A .第一象限B.第二象限C.第三象限D.第四象限6.如图,在△ ABC 中,/ ACB=90°, D 是AB 中点,连接 CD .若AB=10,则CD 的长为()(第 1 题)3 •如图,两个三角形全等,则/ A. 72° B. 604.如图,数轴上点A 对应的数是 :-的度数是( ) C. 58 D. 50°0,点B 对应的数是1 , BC 丄AB ,垂足为B ,且BC=1,以A 为圆心,AC 为半径画弧,交数轴于点 D , B.2(b 为常数)与函数 则点D 表示的数为(A . 1.45.如果函数y =x -bC. 1.5D. y - -2x - 4的图像的交点坐标是 (2, 0),那么关于x 、y的二元一次方程组 當4的解是(x=2, A ., y=0.B .:=:,C.X —2 ,y =0 .D.x = 0 ,y =— 2A. 5B. 6C. 7D. 8(第6 题) (第7题)O(第8题)t7. 如图,直线y - _x • c 与直线y =ax u b 的交点坐标为(3, -1),关于x 的不等式_x • c _ax • b 的解集为( )二、填空题(本大题共 10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在 答题卡相应位置上)19.在实数 n 屈、万、0.303003…(相邻两个3之间依次多一个 0 )中,无理数有 __________________ 个. 10 .平面直角坐标系中,将点A (1 , -2 )向上平移1个单位长度后与点B 重合,则点B 的坐标是( _______ , ________ ).11. _______________________________________ 用四舍五入法对 9.2345取近似数为 .(精确到0.01) 12. 平面直角坐标系中,点(2, 3)关于y 轴对称的点的坐标为(_______ , ________ )13. 如图,已知/ ACD =Z BCE , AC=DC ,如果要得至ACB ◎△ DCE ,那么还需要添加的条件是 在 Rt A ABC 中,/ A=90° / ABC 的平分线 BD 交AC 于点D , DE 是BC 的垂直平分线,点E 是垂足.若 DC=2, AD=1,贝U BE 的长为 ___________ . 17 .已知y 是x 的一次函数,函数 y 与自变量x 的部分对应值如表,x-2-1 0 1 2y10 8 6 42点(X 1, yj ,( x 2, y 2)在该函数的图像上.若X 1 X,贝U 屮 ___________ y 2.B. x 乞-1C. x _3D.&向一个容器内匀速地注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图像所示.这个容器的形状可能是下图中的(B .C .D..(填写一个即可, 不得添加辅助线和字母)14.如图, AB=AC , D 为 AB 上一点,AD = CD ,若/15.如图,在厶ABC 中, AB=AC=13, BC=10, D 为 BC 上一点,若BD=5,贝U AD 的长16.如图, E中,在厶ABC (第 14 题)ACD=40° 贝B=o18 •老师让同学们举一个 y 是x 的函数的例子,同学们分别用表格、 图像、函数表达式列举了如下 4 个x 、y之间的关系:三、解答题(本大题共 9小题,共64分•请在答题卡指定区域.内作答,解答时应写出文字说明、证 明过程或演算步骤)19. ( 4 分)计算:| n 3| ( 2)2( 7-1)0.20. ( 8分)求下面各式中的 X :(1) X 2 =4 ;21 . ( 7分)如图,在厶ABC 与厶FDE 中,点D 在AB 上,点B 在DF 上,/ C= / E , AC // FE , AD=FB .求证:△ ABCFDE .22.( 8分)如图,在7X7网格中,每个小正方形的边长都为1 .(1)建立适当的平面直角坐标系后,若点 _______________ A ( 3, 4)、C (4, 2),则点B 的坐标为(2) _______________________________ 图中格点厶 ABC 的面积为 ;(3) 判断格点厶ABC 的形状,并说明理由.气温x 1 2 0 1 日期y1234其中y - -定是 x 的函数的是(2) (x —1)3=8 .•(填写所有正确的序号) (第 21 题)(第 22 题)23. (8分)已知一次函数y -_2x::;4,元成下列问题:(1)求此函数图像与x轴、y轴的交点坐标;(2)画出此函数的图像;观察图像,当0乞y乞4时,x的取值范围是▲(3)平移一次函数y = 2x 4的图像后经过点-3,1),求平移后的函数表达式.xiTt-ltf(第23 题)24. (7分)小红驾车从甲地到乙地,她出发第xh时距离乙地ykm,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.(1)B点的坐标为( ________ , ______ );(2)求线段AB所表示的y与x之间的函数表达式;(3)___________________________________________________________________ 小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是 ________________________________ .25. ( 7分)如图,已知△ ABC与厶ADE为等边三角形,D为BC延长线上的一点.(1)求证:△ ABD ◎△ ACE ;(2)求证:CE平分/ ACD .26. ( 7分)建立一次函数关系.解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A 种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元•两校共购买了35棵树苗•若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.27. ( 8分)如图①,四边形OACB为长方形,A (-6 , 0), B ( 0, 4),直线I为函数y=_2x_5 的图像.(1)点C的坐标为__________ ;(2)若点P在直线I上,△ APB为等腰直角三角形,/ APB=90°求点P的坐标;小明的思考过程如下:第一步:添加辅助线,如图②,过点P作MN // x轴,与y轴交于点N,与AC的延长线交于点M;第二步:证明△ MPA◎△ NBP ;第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.请你根据小明的思考过程,写出第二步和第三步的完整解答过程;(3)若点P在直线I上,点Q在线段AC上(不与点A重合),△ QPB为等腰直角三角形,直接写出点P的坐标.①②2019〜2019学年第一学期八年级数学期末试卷答案二、填空题(本大题共10小题,每小题2分,共20分)9. 3 10 . 1, -1 11 . 9.23 2 . -2 , 3 13 ./ A=Z D 或/ B= / E 或BC=EC 14. 70 15 . 12 16 . 3 17 . ::: 18 .④三、解答题(本大题共9小题,共64分)19 .(4分)解:原式=冗一3亠2亠1 =n.(4分)20 .(8分)(1)解: x 二2 或x - -2 ; (4分)(2)解: x —1 =2 , • x =3.(8 分)21 . (7分)证:••• AC// FE,•••/ A= / F , (2 分)•/ AD=FB ,• AD+DB=FB + DB,即卩AB=FD , (4 分)f/ C= / E在厶ABC和厶FDE中/ A= / F ,.AB=FD•△ ABC◎△ FDE (AAS). (7 分)22. (8 分)(1)解:点B的坐标为(0, 0);(2分)(2)解:图中格点△ ABC的面积为5; (4分)(3)解:格点厶ABC是直角三角形.证明:由勾股定理可得:AB2=32+42=25, BC2=42+22=20, AC2=22+12=5,2 2 2•- BC +AC =20+5=25, AB =25,2 2 2•- BC +AC =AB ,•△ ABC是直角三角形.(8分)23. (8 分)(1)解:当x=0 时y=4 ,函数y=—2x+4的图像与y轴的交点坐标为(0, 4); (2分)当y =0 时,-2x,4=0,解得:x=2 ,函数y=—2x+4的图像与x轴的交点坐标(2, 0) . (4分)(2)解:图像略;(6分)观察图像,当0乞y乞4时,x的取值范围是0^x^2 . (7 分)(3)解:设平移后的函数表达式为y = -2x b,将(-3 , 1 )代入得: 6 5=1 , --b - i'5,…y - -2x _5 . y - -2x -5 . (8 分)答:平移后的直线函数表达式为:24. (7 分)(1)解:(3 , 120 ); (2 分)(2)解:设y与x之间的函数表达式为y=kx+b.根据题意,当x=0时,y=420;当x=3时,y=120.•420=0k+b,解得 > =-100,•- 120=3k+b.解得*420.•y与x之间的函数表达式为y = _100x • 420 . (6分)(3)解:小红出发第 6 h时距离乙地0 km,即小红到达乙地. (7分)25. (7 分)(1)证:•••△ ABC为等边三角形,△ ADE为等边三角形,•AB =AC, AD=AE,Z DAE = Z BAC= / ACB= / B=60°•••/ DAE=Z BAC ,•••/ DAE + Z CAD = / BAC+ / CAD,•••/ BAD = Z CAE ,AB=AC在厶ABD和厶ACE中丿Z BAD = Z CAE ,L AD =AE•△ ABD ◎△ ACE (SAS); (4 分)(2)证:•••△ ABD ◎△ ACE ,•Z ACE = Z B=60° vZ ACB = Z ACE=60°•Z ECD=180° Z ACE- Z ACB =180°-60 °-60 °=60°,•Z ACE = Z DCE=60°•CE 平分Z ACD . (7 分)26. (7 分)解:设甲校购进x棵A种树苗,两校所需要的总费用为w元.根据题意得:w =24x 18(35 -x)=24x 630 - 18x =6x 630 (4 分)v 35—x : x , • x 17.5 且为整数,在一次函数w =6x 630中,v k =6 0 , • w随x的增大而增大,•当x =18时w有最小值,最小值为738,此时35 -X =17 .738 答:甲校购买A种树苗18棵,乙校购买B种树苗17棵,所需的总费用最少,最少为元.(7分)27. (8 分)(1)解:点C的坐标为(-6 , 4); (2分)(2)解:根据题意得:Z AMP= Z PNB=90°•••△APB为等腰直角三角形,• AP=BP , Z APB=90°vZ APB = Z AMP=90° •/ NPB + Z MPA=Z MPA+Z MAP =90°•Z NPB = Z MPA,f Z MAP= Z NPB在厶MPA 和厶NBP 中Z AMP= Z PNB ,.PA=BP•••△ MPA^A NBP (AAS), /• AM=PN , MP=NB ,设NB = m,贝U MP = m , PN =MN _ MP =6 _m , AM =4 m ,■/ AM=PN,^ 4 m=6-m , ( 4 分)解得:m=1 ,•••点P的坐标为(-5 , 5); (6分)(3)解:设点Q的坐标为(-6 , q), Ocq兰4,分3种情况讨论:①当/ PBQ=90。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市玄武区 2018-2019 学年八年级(上)期末数学试卷 、选择题(本大题共 6小题,每小题 2分,共 12 分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列各数中,是无理数的是(C .π 2.已知 a >0, b < 0,那么点 P ( a ,b )在3.如图,两个三角形是全等三角形, x 的值是(① y =﹣ 2x +1;② y = 6﹣ x ;③ y = ;回到点 A 停止,线段 OP 的长度 d 与运动时间 t 的函数图象大致是A .0B . 1.010 010 001D .A .第一象限B .第二象限C .D .第四象限C . 50D .854.下列函数中, y 随 x 的增大而减小的有(A . 1 个B . 2 个C . 3个D .4个5.如图,动点 P 从点 A 出发,按顺时针方向绕半圆 O 匀速运动到点 B ,再以相同的速度沿直径 BAA . D .6.如图,由四个全等的直角三角形拼成的图形,设 CE =a ,HG = b ,则斜边 BD 的长是( A .30 B .45 C . B .、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写 在答题卡相应位置上)7.4的算术平方根是 ,﹣64 的立方根是 .8.小明的体重为 48.86 kg ,48.86 ≈.(精确到 0.1) 9.如图,∠ C =90°,∠ 1=∠ 2,若 BC =10,BD =6,则 D 到 AB 的距离为10.若直角三角形的两直角边长分别为 5 和 12,则斜边上的中线长为. 11.写出一个一次函数,使它的图象经过第一、三、四象限: .12.将函数 y = 3x +1 的图象平移,使它经过点( 1,1),则平移后的函数表达式是. 13.如图,长方形网格中每个小正方形的边长是 1,△ ABC 是格点三角形(顶点都在格点上) ,则点C 到 AB 的距离为 .14.在平面直角坐标系 xOy 中,一次函数 y =k 1x +b (k 1, b 均为常数)与正比例函数 y = k 2x ( k 2 为 常数)的图象如图所示,则关于 x 的不等式 k 2x <k 1x +b 的解集为 .15.在平面直角坐标系 xOy 中,点 A 、B 的坐标分别为( 3,0)、(0,4).以点 A 为圆心, AB 长为A .a +bB .a ﹣b半径画弧,与x 轴交于点C,则点C的坐标为16.如图,在长方形纸片ABCD中,AB=3,AD=9,折叠纸片ABCD,使顶点C落在边AD上的点GF,则△ GEF的面积最大值是三、解答题(本大题共10小题,共68 分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)18.求x 的值:21)(x+1)2=6432) 8x +27=0.19.如图,在△ ABC中,AB=AC,D为BC边上一点,∠ B=30°,∠ DAB=45°.1)求∠ DAC的度数;2)求证:DC=AB.20.如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l 经过点(1,0),且与y 轴平行.(1)请在图中画出△ ABC;(2)若△ A1B1C1 与△ ABC关于直线l 对称.请在图中画出△ A1B1C1;(3)若点P(a,b)关于直线l 的对称点为P1,则点P1的坐标是.22.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.(1)求y 关于x 的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.23.如图,在△ ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD24.如图,在四边形ABCD中,AD∥BC,AD=2BC,点E是AD的中点,请仅用无刻度的直尺分别按列要求画图.(不写画法,保留画图痕迹)1)在图 1 中,画出△ ACD的边AC上的中线DM;2)在图 2 中,若AC=AD,画出△ ACD的边CD上的高AN.25.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N 两地相距km,设甲行驶的时间为x (h),甲、乙两人之间的距离为y (km),表示y 与x 函数关系的部分图象如图所示.请你解决以下问题:1)求线段BC所在直线的函数表达式;2)求点A的坐标,并说明点A 的实际意义;3)根据题目信息补全函数图象.(须标明相关数据)(1)如图1,在四边形ABCD中,∠ B=∠ C=90°,点 E 是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△ AED的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P 是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.【拓展应用】(3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ ABC是等腰直角三角形,则点C的坐标是.4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y 轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是参考答案与试题解析.选择题(共 6 小题)1.下列各数中,是无理数的是()A.0B. 1.010 010 001 C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答】解:A.0 是整数,属于有理数;B.1.010 010 001 是有限小数,即分数,属于有理数;C.π 是无理数;D.是分数,属于有理数;故选:C.2.已知a>0,b< 0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限【分析】根据各象限点的坐标特点进行判断即可.【解答】解:∵ a> 0,b<0,∴点P(a,b)在第四象限.故选:D.解答】解:∠ A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠ D=∠ A=30°,即x=30,D.第四象限x 的值是(A.30 B.45 C.50D.85分析】根据三角形内角和定理求出∠A,根据全等三角形的性质解答即可.4.下列函数中, y 随 x 的增大而减小的有( )① y =﹣ 2x +1;② y = 6﹣ x ;③ y = ;④ y =(1﹣ )x .A .1 个B .2 个C .3 个D .4 个【分析】分别确定四个函数的 k 值,然后根据一次函数 y = kx +b (k ≠ 0)的性质判断即可.【解答】解:① y =﹣2x +1,k =﹣2<0;② y =6﹣x ,k =﹣1<0;③y =,k =﹣ <0;④y =(1﹣ ) x , k =( 1﹣ )< 0.所以四函数都是 y 随 x 的增大而减小.故选: D .5.如图,动点 P 从点 A 出发,按顺时针方向绕半圆 O 匀速运动到点 B ,再以相同的速度沿直径 BA 回到点 A 停止,线段 OP 的长度 d 与运动时间 t 的函数图象大致是( )C . 【分析】根据 P 点半圆 O 、线段 OB 、线段OA 这三段运动的情况分析即可.【解答】解:①当 P 点半圆 O 匀速运动时, OP 长度始终等于半径不变,对应的函数图象是平行 于横轴的一段线段,排除 A 答案;②当 P 点在 OB 段运动时, OP 长度越来越小,当 P 点与 O 点重合时 OP =0,排除 C 答案; ③当 P 点在 OA 段运动时, OP 长度越来越大, B 答案符合.故选: B .故选: A .A .B .D .6.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是(A.a+b B.a﹣b C.D.【分析】设CD=x,则DE=a﹣x,求得AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,求得CD=,得到BC=DE=a﹣=,根据勾股定理即可得到结论.【解答】解:设CD=x,则DE=a﹣x,∵ HG=b,∴ AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴ x=,∴ BC=DE=a﹣=,∴ BD2=BC2+CD2=()2+()2=,∴ BD=,故选:C.二、填空题(本大题共10 小题,每小题 2 分,共20 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.4的算术平方根是 2 ,﹣64 的立方根是﹣4 .【分析】根据算术平方根和立方根的定义求解可得.【解答】解:4的算术平方根是2,﹣64 的立方根是﹣4,故答案为:2,﹣4.8.小明的体重为48.86 kg,48.86 ≈48.9 .(精确到0.1)【分析】把百分位上的数字 6 进行四舍五入即可.【解答】解:48.86 ≈48.9 .(精确到0.1 ).故答案为48.9 .9.如图,∠ C=90°,∠ 1=∠ 2,若BC=10,BD=6,则D到AB的距离为4 .【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点 D 到边AB的距离等于CD的大小,问题可解.【解答】解:∵ BC=10,BD=6,∴ CD=4,∵∠ C=90 °,∠ 1=∠ 2,∴点D到边AB的距离等于CD=4,故答案为:4.10.若直角三角形的两直角边长分别为5和12,则斜边上的中线长为 6.5 .【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵直角三角形两直角边长为 5 和12,∴斜边==13,∴此直角三角形斜边上的中线的长==6.5 .故答案为: 6.5 .11.写出一个一次函数,使它的图象经过第一、三、四象限:y=x﹣1 .【分析】根据一次函数的性质解答即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,b< 0,∴写出的解析式只要符合上述条件即可,例如y=x﹣1.故答案为y=x﹣1.12.将函数y=3x+1 的图象平移,使它经过点(1,1),则平移后的函数表达式是y=3x﹣2 .【分析】根据函数图象平移的性质得出k 的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【解答】解:新直线是由一次函数y=3x+1 的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为:y=3x﹣2.13.如图,长方形网格中每个小正方形的边长是1,△ ABC是格点三角形(顶点都在格点上),则点C 到AB的距离为 1.2 .【分析】设点 C 到AB的距离为h,根据勾股定理得到AB==5,根据三角形的面积公式即可得到结论.【解答】解:设点 C 到AB的距离为h,∵ AB==5,∴ S△ABC=×2×3=×5× h,△ABC∴ h= 1.2 ,故答案为: 1.2 .14.在平面直角坐标系xOy中,一次函数y=k1x+b(k1,b 均为常数)与正比例函数y=k2x(k2 为常数)的图象如图所示,则关于x 的不等式k2x<k1x+b 的解集为x<3 .【分析】由图象可以知道,当x=3 时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k2x< k1x+b 的解集.【解答】解:两条直线的交点坐标为(3,﹣1),且当x<3 时,直线y=k2x 在直线y=k1x+b 的下方,故不等式k2x<k1x+b 的解集为x< 3.故答案为x< 3.15.在平面直角坐标系xOy中,点A、B 的坐标分别为(3,0)、(0,4).以点A为圆心,AB长为半径画弧,与x轴交于点C,则点C的坐标为(﹣2,0)或(8,0).分析】根据题意求出AB的长,以A为圆心作圆,与x 轴交于C,C′,求出C的坐标即可.解答】解:∵点 A 、 B 的坐标分别为( 3,0)、(0,4),∴ OA =3, OB = 4,∴ AB = =5,∴ AC ′= 5, AC =5,∴ C ′点坐标为(﹣ 2, 0); C 点坐标为( 8, 0).故答案为: (﹣ 2, 0)或( 8,0).16.如图,在长方形纸片 ABCD 中, AB =3,AD =9,折叠纸片 ABCD ,使顶点 C 落在边 AD 上的点G处,折痕分别交边 AD 、 BC 于点 E 、F ,则△ GEF 的面积最大值是【分析】当点 G 与点 A 重合时,△ GEF 的面积最大,根据折叠性质可得 G F =FC ,∠ AFE =∠ EFC ,根据勾股定理可求 AF =5,根据矩形的性质可得∠ EFC =∠ AEF =∠ AFE ,可得 AE = AF =5,即可求△ GEF 的面积最大值.【解答】解:如图,当点 G 与点 A 重合时,△ GEF 的面积最大,∵折叠∴ GF = FC ,∠ AFE =∠ EFC在 Rt ∠ABF 中, AF 2=AB 2+BF 2,∴ AF 2=9+(9﹣AF ) 2,∴ AF = 5∵四边形 ABCD 是矩形∴ AD ∥ BC ,∴∠ AEF =∠ EFC∴∠ AEF =∠ AFE7.5∴ AE =AF = 5∴△ GEF 的面积最大值= × 5×3=7.5故答案为: 7.5三、解答题(本大题共 10小题,共 68 分.请在答题卷指定区域内作答,解答时应写出文字说明、 证明过程或演算步骤)分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案.解答】解:原式= 3+2﹣=.18.求 x 的值:2(1)(x +1)2=643(2)8x 3+27=0.【分析】根据立方根与平方根的定义即可求出答案.【解答】解:(1)x +1=±8x = 7 或﹣ 93(2) 8x 3=﹣ 27x 3=19.如图,在△ ABC 中, AB = AC , D 为 BC 边上一点,∠ B =30°,∠ DAB = 45(1)求∠ DAC 的度数;(2)求证: DC = AB .【分析】(1)由 AB =AC ,根据等腰三角形的两底角相等得到∠ B =∠ C =30°,再根据三角形的内 角和定理可计算出∠ BAC =120°,而∠ DAB =45°,则∠ DAC =∠ BAC ﹣∠ DAB =120°﹣45°; (2)根据三角形外角性质得到∠ ADC =∠ B +∠DAB =75°,而由( 1)得到∠ DAC =75°,再根据等 腰三角形的判定可得 DC = AC ,这样即可得到结论.【解答】(1)解:∵ AB = AC ,∴∠B =∠ C =30°,17.计算: +(∵∠ C+∠ BAC+∠B=180°,∴∠ BAC=180°﹣30°﹣30°=120°,∵∠ DAB=45°,∴∠ DAC=∠ BAC﹣∠ DAB=120°﹣45°=75(2)证明:∵∠ DAB=45°,∴∠ ADC=∠ B+∠ DAB=75°,∴∠ DAC=∠ ADC,∴DC=AC,∴DC=AB.20.如图,在平面直角坐标系xOy中,已知点A(﹣2,4),B(﹣5,4),C(﹣3,1),直线l 经过点(1,0),且与y 轴平行.(1)请在图中画出△ ABC;(2)若△ A1B1C1 与△ ABC关于直线l 对称.请在图中画出△ A1B1C1;(3)若点P(a,b)关于直线l 的对称点为P1,则点P1 的坐标是(2﹣a,b).【分析】(1)直接利用已知点坐标得出△ ABC;(2)利用关于直线对称点的性质得出对应点位置进而得出答案;(3)根据直线l 经过点(1,0),点P(a,b)关于直线l 的对称点为P1,则P与P1 的横坐标的和除以 2 等于1,纵坐标相等,进而得出答案.【解答】解:(1)如图所示:△ ABC即为所求;2)如图所示:△ A1B1C1 即为所求;(3)点P(a,b)关于直线l 的对称点为P1,则点P1的坐标是(2﹣a,b).故答案为:(2﹣a,b).21.如图,在Rt△ACB和Rt △ ADB中,∠ C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO =DO.【分析】由“ HL”可得Rt△ACB≌Rt△BDA,可得∠ CBA=∠ DAB,可得OA=OB,即可得结论.【解答】证明:在Rt△ACB和Rt△BDA中,∠ C=∠ D=90°∴Rt△ACB≌Rt△ BDA(HL)∴∠ CBA=∠ DAB∴OA=OB 又AD=BC,∴CO=DO22.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.1)求y 关于x 的函数表达式;2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是20≤x≤45【分析】(1)利用待定系数法求一次函数解析式解答;(2)令y=0 时求出x 的值即可;(3)分别求出2≤y≤7 时的x 的取值范围,然后解答即可.【解答】解:(1)∵ y 是x 的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,∴函数表达式为y=0.2 x﹣2,(2)将y=0代入y=0.2 x﹣2,得0=0.2 x﹣2,∴x=10,(3)把y=2 代入解析式,可得:x=20,把y=7 代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.23.如图,在△ ABC中,AB=6,AC=8,BC=10,BC的垂直平分线分别交AC、BC于点D、E,求CD 的长.【分析】连接DB,根据勾股定理的逆定理得到∠ A=90°,根据线段垂直平分线的想知道的DC=DB,设DC=DB=x,则AD=8﹣x.根据勾股定理即可得到结论.【解答】解:连接DB,在△ ACB中,2 2 2 2∵AB +AC= 6 +8 =100,又∵BC2=102=100,∴ AB +AC=BC.∴△ ACB 是直角三角形,∠ A =90°,∵ DE 垂直平分 BC ,∴DC =DB ,设 DC = DB =x ,则 AD =8﹣ x .在 Rt △ ABD 中,∠ A =90°, AB 2+AD 2=BD 2,即 62+(8﹣x ) 2=x 2,解得 x = ,24.如图,在四边形 ABCD 中, AD ∥BC ,AD =2BC ,点 E 是 AD 的中点,请仅用无刻度的直尺分别按 下列要求画图. (不写画法,保留画图痕迹)(1)在图 1 中,画出△ ACD 的边 AC 上的中线 DM ;(2)在图 2 中,若 AC = AD ,画出△ ACD 的边 CD 上的高 AN .【分析】( 1)连接 BE 交 AC 于 M ,易得四边形 BCDE 为平行四边形,再根据三角形中位线判断 M 点为 AC 的中点,然后连接 DM 即可;(2)连接 BE 交 AC 于 M ,M 点为 AC 的中点,再连接 CE 、 DM ,它们相交于 F ,连接 AF 并延长交 CD 于 N ,则 AN ⊥ CD .【解答】解: (1)如图, DM 为所作;(2)如图, AN 为所作.即 CD = .M 地出发,沿一条笔直的公路匀速前往 N 地,甲先出发一段时间后乙再出发,甲、乙两人到达 N 地后均停止骑行.已知 M 、N 两地相距 km ,设甲行驶的时间为 x ( h ),甲、乙两人之间的距离为 y (km ),表示 y 与 x 函数关系的部分图象如图所示.请你解决以 下问题:1)求线段 BC 所在直线的函数表达式;2)求点 A 的坐标,并说明点 A 的实际意义;3)根据题目信息补全函数图象. (须标明相关数据)【分析】( 1)根据函数图象中的数据可以求得线段 BC 所在直线的函数表达式;(2)根据题意和函数图象中的数据可以求得甲和乙的速度,从而可以求得点A 的坐标并写出点 A表示的实际意义;(3)根据( 2)中甲乙的速度可以分别求得甲乙从 M 地到 N 地用的时间,从而可以将函数图象补充 完整.解答】解: (1)设线段 BC 所在直线的函数表达式为∵B ( ,0), C ( , )在直线 BC 上, ,得,得即线段 BC 所在直线的函数表达式为 y = 20x ﹣ ;y =kx +b (k ≠0),2)设甲的速度为m km/ h,乙的速度为n km/ h,∴点 A 的纵坐标是:30× =10,即点A的坐标为(,10),点 A 的实际意义是当甲骑电动车行驶时,距离M地为10 km;(3)由(2)可知,甲的速度为30km/ h,乙的速度为50 千米/小时,则乙从M地到达N 地用的时间为:小时,∵,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,(1)如图1,在四边形ABCD中,∠ B=∠ C=90°,点E是边BC上一点,AB=EC,BE=CD,连接AE、DE.判断△ AED的形状,并说明理由.【解决问题】(2)如图2,在长方形ABCD中,点P 是边CD上一点,在边BC、AD上分别作出点E、F,使得点F、E、P是一个等腰直角三角形的三个顶点,且PE=PF,∠ FPE=90°.要求:仅用圆规作图,保留作图痕迹,不写作法.拓展应用】3)如图3,在平面直角坐标系xOy中,已知点A(2,0),点B(4,1),点C在第一象限内,若△ABC是等腰直角三角形,则点C的坐标是(1,2)、(3,3)、(,)(4)如图4,在平面直角坐标系xOy中,已知点A(1,0),点C是y 轴上的动点,线段CA绕着点C按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA的最小值是.【分析】(1)证明△ ABE≌△ ECD(SAS),即可求解;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C 为圆心,DP长为半径作弧交BE 于点E,连接EF,EP,FP,点E、F 即为所求;(3)分∠ CAB=90°、∠ ABC=90°、∠ ACB=90°,三种情况求解即可;(4)求出B(m,1+m),则:BO+BA=+ ,BO+BA的值相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,即可求解.【解答】解:(1)△ AED是等腰直角三角形,证明:∵在△ ABE和△ ECD中,∴△ ABE≌△ ECD(SAS)∴AE=DE,∠ AEB=∠ EDC,∵在Rt △ EDC中,∠ C=90°,∴∠ EDC+∠DEC=90°.∴∠ AEB+∠DEC=90°.∵∠ AEB+∠DEC+∠AED=180°,∴∠ AED=90°∴△ AED是等腰直角三角形;(2)如图,以点D为圆心CP长为半径作弧交AD于点F,以点C 为圆心,DP长为半径作弧交BE 于点E,连接EF,EP,FP.∴点E、F 即为所求;(3)如图,当∠ CAB=90°,CA=AB时,过点C作CF⊥AO于点F,过点B作BE⊥AO于点E,∵点A(2,0),点B(4,1),∴BE=1,OA=2,OE=4,∴ AE=2,∵∠ CAB=90°,BE⊥AO,∴∠CAF+∠BAE=90°,∠ BAE+∠ ABE=90°,∴∠ CAF=∠ ABE,且AC=AB,∠ AFC=∠ AEB=90°,∴△ ACF≌△ BAE(AAS)∴CF=AE=2,AF=BE=1,∴OF=OA﹣AF=1,∴点C坐标为(1,2)如图,当∠ ABC=90°,AB=BC时,过点B作BE⊥OA,过点C作CF⊥BE∵∠ ABC=90°,BE⊥OA,∴∠ABE+∠CBF=90°,∠ ABE+∠ BAE=90°,∴∠ BAE=∠ CBF,且BC=AB,∠ AEB=∠ CFB=90°∴△ BCF≌△ ABE(AAS)∴BE=CF=1,AE=BF=2,∴ EF=3∴点C坐标为(3,3)如图,当∠ ACB=90°,CA=BC时,过点C作CD⊥OA于点D,过点B作BF⊥CD于点F,∵∠ACD+∠BCF=90°,∠ ACD+∠ CAD=90°,∴∠ BCF=∠ CAD,且AC=BC,∠ CDA=∠ CFB,∴△ ACD≌△ CBF(AAS)∴CF=AD,BF=CD=DE,∵AD+DE=AE=2∴2=AD+CD=AD+CF+DF=2AD+1∴DA=,∴CD=,OD=,∴点 C 坐标(,)综上所述:点C坐标为:(1,2)、(3,3)、(,)故答案为:(1,2)、(3,3)、(,)(4)如图作BH⊥ OH于H.设点 C 的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则:BO+BA=+ ,BO+BA的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,的距离和最小,相当于在直线y=x 上寻找一点P(m,m),使得点P到M(0,﹣1),到N(1,﹣作M关于直线y=x 的对称点M′(﹣1,0),易知PM+PN=PM′+PN≥NM′,M′N==,故:BO+BA的最小值为.。

相关文档
最新文档