NUMERICAL ANALYSIS OF A SMALL ULTRA WIDEBAND MICROSTRIP-FED TAP MONOPOLE ANTENNA
“第17届凝聚态理论与统计物理学术会议”日程(初稿)
吴超(西安交通大学) 题目: The influence of local arrangements of oxygen adatoms on the energetics of O2 dissociation over Pt(111) 赵明文(山东大学) 题目: 新型碳材料结构设计和性能调控的理 论模型 李希茂(北京宏剑公司)(12:10-12:25) 题目: 第一原理计算材料的缺陷和掺杂特性
李文飞(南京大学) 题目: 蛋白质分子体系多尺度理论模拟
孙久勋(电子科技大学) 题目: Improvement of unified mobility model and electrical properties for organic diodes under dc and ac conditions
关丽(河北大学):Structural stability and electronic properties of two nonstoichiometric SrTiO3 phases
休息
报告厅 3(主题: 冷原子物理) 分会报告 ST3.3 主席:成 泽 教授(华中科技大学) (邀请报告) 周琦(香港中文大学) 题目:自旋轨道耦合下波色凝聚体的命运
主席:金国钧 教授(南京大学)
(邀请报告) 杨义峰(中国科学院物理研究所) (邀请报告) 孟胜(中国科学院物理研究所)
题目:重费米子物理中的演生现象
题目:Energy Conversion At Nanoscale
蒸汽辅助重力泄油技术在超稠油开发中的应用
收稿日期:2007-01-20;改回日期:2007-02-02 作者简介:张方礼(1961-),男,教授级高级工程师,1983年毕业于大庆石油学院油藏工程专业,现任中油辽河油田公司副总地质师兼勘探开发研究院院长、《特种油气藏》主编。
文章编号:1006-6535(2007)02-0070-03蒸汽辅助重力泄油技术在超稠油开发中的应用张方礼,张丽萍,鲍君刚,张 晖(中油辽河油田公司,辽宁 盘锦 124010)摘要:对国外超稠油开发方式进行调研,利用数值模拟技术对辽河油区超稠油油藏进行了蒸汽辅助重力泄油(S AG D )开发可行性及油藏工程研究,确定了在杜84块馆陶组开展4个井组的直井与水平井组合S AG D 试验。
通过2a 的现场应用,馆陶油层S AG D 试验获得成功,目前处在蒸汽腔扩展阶段,井组日产油较蒸汽吞吐阶段上升了72t ,预测S AG D 开发可提高采收率27%。
S AG D 技术已成为超稠油油藏蒸汽吞吐后期的重要开发方式,可为类似油藏的开发提供依据。
关键词:蒸汽辅助重力泄油;超稠油;蒸汽吞吐;蒸汽腔;数值模拟;采收率;辽河油区中图分类号:TE345 文献标识码:A前 言目前,国外重油开采在现场试验成功并得到工业化应用的技术主要是蒸汽辅助重力泄油技术(S AG D ),其理论首先是由R 1M 1Butler 博士[1,2]于1978年提出的、最初是基于注水采盐的原理,将这一原理应用于注蒸汽热采过程就产生了重力泄油的概念。
蒸汽辅助重力泄油必须通过注汽井和采油井来实现(注汽井位于采油井的上部)。
对于在地层原始条件下无流动能力的高粘度原油,首先要实现注采井之间的热连通(油层温度达到原油可流动温度),该阶段为油层预热阶段。
形成热连通后,由注汽井连续不断地向油层注入高干度蒸汽,使其在地层中形成蒸汽腔,通过蒸汽腔向上及侧面移动,与油层中的原油发生热交换,加热的原油和蒸汽冷凝水依靠重力作用泄流至下部的生产井中产出。
汽车发动机英文参考文献(精选120个最新))
汽车发动机是为汽车提供动力的装置,是汽车的心脏,决定着汽车的动力性、经济性、稳定性和环保性。
下面是搜索整理的汽车发动机英文参考文献,欢迎借鉴参考。
汽车发动机英文参考文献一:[1]Barouch Giechaskiel,Ricardo Suarez-Bertoa,Tero L?hde,Michael Clairotte,Massimo Carriero,Pierre Bonnel,Maurizio Maggiore. Evaluation of NO x emissions of a retrofitted Euro 5 passenger car for the Horizon prize “Engine retrofit”[J]. Environmental Research,2018,166.[2]Shixuan Wang,Ying Liu,Carla Di Cairano-Gilfedder,Scott Titmus,Mohamed M. Naim,Aris A. Syntetos. Reliability Analysis for Automobile Engines: Conditional Inference Trees[J]. Procedia CIRP,2018,72.[3]Kévin Rosset,Violette Mounier,Eliott Guenat,Jürg Schiffmann. Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines[J]. Energy,2018,159.[4]Mohamed Kamal Ahmed Ali,Hou Xianjun,Mohamed A.A. Abdelkareem,M. Gulzar,A.H. Elsheikh. Novel approach of the graphene nanolubricant for energy saving via anti-friction/wear in automobile engines[J]. Tribology International,2018,124.[5]Shweta Tripathi,K.A. Subramanian. Control of fuel spray wall impingement on piston bowl in palm acid oil biodiesel fueled direct injection automotive engine using retarded injection timing, EGR and increased compression ratio[J]. Applied Thermal Engineering,2018,142.[6]Gianfranco Gagliardi,Francesco Tedesco,Alessandro Casavola. A LPV modeling of turbocharged spark-ignition automotive engine oriented to fault detection and isolation purposes[J]. Journal of the Franklin Institute,2018.[7]Gritsada Sua-Iam,Natt Makul. Innovative utilization of foundry sand waste obtained from the manufacture of automobile engine parts as a cement replacement material in concrete production[J]. Journal of Cleaner Production,2018.[8]Kanhu Charan Nayak,Prashant P. Date. Manufacturing of light automobile engine piston head using sheet metal[J]. Procedia Manufacturing,2018,15.[9]Yisong Chen,Jinqiu Ma,Bin Han,Peng Zhang,Haining Hua,Hao Chen,Xin Su. Emissions of automobiles fueled with alternative fuels based on engine technology: A review[J]. Journal of Traffic and Transportation Engineering (English Edition),2018.[10]Xinfeng Zhang,Minghui Luo,Wei Dai,Chuanqi Yao,Jiwen Wang,DaojinHuang,Chunyang Wang. Automotive fuel cell engine test cell design and its thermal flow analysis[J]. International Journal of Hydrogen Energy,2018.[11]K. Sato,T. Sadahiro,M. Yamazaki,M. Iwase. Throttle Valve Control of Automotive Engine based on Boundary Model[J]. IFAC PapersOnLine,2018,51(13).[12]Ajay Kumar Maddineni,Dipayan Das,Ravi Mohan Damodaran. Numerical Investigation of Pressure and Flow characteristics of Pleated Air Filter System for Automotive Engine Intake Application[J]. Separation and Purification Technology,2018.[13]Masahiro Yamazaki,Kotoru Sato,Katsuya Shinozaki,Masami Iwase. Boundary Modeling and Identification of Normal Operation for Automobile Engine[J]. IFAC PapersOnLine,2018,51(31).[14]Guo Bin,Chen Hong,Song Dafeng. Research on Fast Matching Method of Power System Parameters of Parallel Hybrid Electric Vehicles[J]. IFAC PapersOnLine,2018,51(31).[15]Natália de Assis Brasil Weber,Bárbara Pacheco da Rocha,Paulo Smith Schneider,Luiz Carlos Daemme,Renato de Arruda Penteado Neto. Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario[J]. Energy,2019,168.[16]Francesco Del Pero,Massimo Delogu,Marco Pierini. Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car[J]. Procedia Structural Integrity,2018,12.[17]Shan Lin,Li Zhao,Shuai Deng,Jiaxin Ni,Ying Zhang,Minglu Ma. Dynamic performance investigation for two types of ORC system driven by waste heat of automotive internal combustion engine[J]. Energy,2019,169.[18]Zhang Jian,Piao Zhong-yu,Liu Shi-ying,Su Sheng-wei,Deng Li-jun. Investigation of wear behavior of graphite coating on aluminum piston skirt of automobile engine[J]. Engineering Failure Analysis,2019.[19]Karsten Wittek,Frank Geiger,Jakob Andert,Mario Martins,Vitor Cogo,Thompson Lanzanova. Experimental investigation of a variable compression ratio system applied to a gasoline passenger car engine[J]. Energy Conversion and Management,2019,183.[20]Adnan Kadhim Rashid,Mohd Radzi Abu Mansor,Alexandru Racovitza,Radu Chiriac. Combustion Characteristics of Various Octane Rating Fuels for Automotive Thermal Engines Efficiency Requirements[J]. Energy Procedia,2019,157.[21]Marlon Cadrazco,Alexander Santamaría,John R. Agudelo. Chemical and nanostructural characteristics of the particulate matter produced by renewable diesel fuel in an automotive diesel engine[J]. Combustion and Flame,2019,203.[22]Kenneth Holmberg,Ali Erdemir. The impact of tribology on energy use and CO 2 emission globally and in combustion engine and electric cars[J]. Tribology International,2019,135.[23]Hongli Gao,Fujun Zhang,Sufei Wang,Hao Wu,Zhengkai Wang. Effect of Characteristic Parameters on the Magnetic Properties of Voice Coil Motor for Direct Fuel Injection in Gasoline Engine[J]. Energy Procedia,2019,158.[24]Xunan Gao,Bojan Savic,Roland Baar. A numerical procedure to model heat transfer in radial turbines for automotive engines[J]. Applied Thermal Engineering,2019,153.[25]Senthil Kumar Kandasamy,Arun Saco Selvaraj,Thundil Karuppa Raj Rajagopal. Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics[J]. Renewable Energy,2019,141.[26]Ganesh Duraisamy,Murugan Rangasamy,Nagarajan Govindan. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine[J]. Renewable Energy,2020,145.[27]Nosratollah Izadiamoli,Hoseyn Sayyaadi. Conceptual design, optimization, and assessment of a hybrid Otto-Stirling engine/cooler for recovering the thermal energy of the exhaust gasses for automotive applications[J]. Energy Conversion and Management,2018,171.[28]Federico Millo,Pranav Arya,Fabio Mallamo. Optimization of automotive diesel engine calibration using genetic algorithm techniques[J]. Energy,2018,158.[29]Yonggyu Lee,Seungmook Oh,Changup Kim,Junsun Lee,Kanghun Lee,Junghwan Kim. The dual-port fuel injection system for fuel economy improvement in an automotive spark-ignition gasoline engine[J]. Applied Thermal Engineering,2018,138.[30]S. d'Ambrosio,A. Ferrari,D. Iemmolo,A. Mittica. Dependence of combustion noise on engine calibration parameters by means of the response surface methodology in passenger car diesel engines[J]. Applied Thermal Engineering,2019.汽车发动机英文参考文献二:[31]Ivan Bortel,Ji?í Vávra,Michal Takáts. Effect of HVO fuel mixtures onemissions and performance of a passenger car size diesel engine[J]. Renewable Energy,2019,140.[32]Jaeho Cho,Kangjin Kim,Sungha Baek,Cha-Lee Myung,Simsoo Park. Abatement potential analysis on CO 2 and size-resolved particle emissions from a downsized LPG direct injection engine for passenger car[J]. Atmospheric Pollution Research,2019.[33]Jamie Sleigh,Catherine E. Warnaby. Finding the starter motor for the engine of consciousness[J]. British Journal of Anaesthesia,2019,123(3).[34]S. Prakash,M. Prabhahar,S. Sendilvelan,R. Venkatesh,Sanjay Singh,K. Bhaskar. Experimental studies on the performance and emission characteristics of an automobile engine fueled with fish oil methyl ester to reduce environmental pollution[J]. Energy Procedia,2019,160.[35]Sabino Caputo,Federico Millo,Giulio Boccardo,Andrea Piano,Giancarlo Cifali,Francesco Concetto Pesce. Numerical and experimental investigation of a piston thermal barrier coating for an automotive diesel engine application[J]. Applied Thermal Engineering,2019,162.[36]Nicole D?rr,Adam Agocs,Charlotte Besser,Andjelka Risti?,Marcella Frauscher. Engine Oils in the Field: A Comprehensive Chemical Assessment of Engine Oil Degradation in a Passenger Car[J]. Tribology Letters,2019,67(3).[37]Sumanchandran Devendran,Rajeshkumar Ramasamy,Varatharaj Neelakandan,Thulasirajan Ganesan,Praveen Chakrapani Rao. Failure assessment using accelerated testing on IC engine’s starter motor for reliability improvement[J]. Life Cycle Reliability and Safety Engineering,2019,8(2).[38]Jaegu Choi,Jongmin Lee,Namgyu Jun,Chang-Sung Seok,Sunghwan Park,Gayeon Kim. Development of Laboratory Fatigue Testing Apparatus for Automotive Vehicle Engine Valve Simulating Actual Operating Conditions[J]. International Journal of Precision Engineering and Manufacturing,2019,20(7).[39]Pavel Nicolaie,Chiriac Radu,Birtas Adrian,Draghici Florin,Dinca Mihai. On the improvement by laser ignition of the performances of a passenger car gasoline engine.[J]. Optics express,2019,27(8).[40]Ahmadipour Fatemeh,Esmaeili Sari Abbas,Bahramifar Nader. Characterization, concentration and risk assessment of airborne particles using car engine air filter (case study: Tehran metropolis).[J]. Environmental geochemistry and health,2019.[41]Sleigh Jamie,Warnaby Catherine E. Finding the starter motor for the engine of consciousness.[J]. British journal of anaesthesia,2019,123(3).[42]Derry Matthew J,Smith Timothy,O'Hora Paul S,Armes Steven P. Block Copolymer Nanoparticles Prepared via Polymerization-Induced Self-Assembly Provide Excellent Boundary Lubrication Performance for Next-Generation Ultralow-Viscosity Automotive Engine Oils.[J]. ACS applied materials & interfaces,2019.[43]. Hyundai Motor Company; Patent Issued for Continuous Variable Valve Duration Apparatus And Engine Provided With The Same (USPTO 10,060,307)[J]. Journal of Engineering,2018.[44]. Mazda Motor Corporation; Patent Issued for Engine Control Device (USPTO 10,060,372)[J]. Journal of Engineering,2018.[45]. Automotive Engine Market 2018 Global Industry Outlook By Size, Key Players, Trends, Share, Suppliers, Statistics, Sales, Growth, And Regional Forecast To 2023[J]. M2 Presswire,2018.[46]. Mathematics - Applied Mathematics; Researchers at University of Calabria Report New Data on Applied Mathematics (A LPV modeling of turbocharged spark-ignition automotive engine oriented to fault detection and isolation purposes)[J]. Journal of Transportation,2018.[47]. Ford Global Technologies LLC; "Hybrid Module, Hybrid Unit And Motor Vehicle As Well As Starting Process For An Internal Combustion Engine" in Patent Application Approval Process (USPTO 20180238291)[J]. Politics & Government Week,2018.[48]. Mazda Motor Corporation; Patent Application Titled "Engine Control Device" Published Online (USPTO 20180245529)[J]. Energy Weekly News,2018.[49]. Hitachi Automotive Systems Ltd.; "Cooling Device For Internal Combustion Engine Of Vehicle And Control Method Thereof" in Patent Application Approval Process (USPTO 20180245504)[J]. Journal of Transportation,2018.[50]. Automotive Engine Valves Market 2018 Global Industry Size, Key Player, Share, Mergers, Acquisition, Growth Analysis By Valves Type, Technology, Fuel Type, Vehicle And Region To 2023[J]. M2 Presswire,2018.[51]. Litens Automotive Partnership; Patent Issued for Isolator For Use With Engine That Is Assisted Or Started By An MGU Or A Motor Through An Endless Drive Member (USPTO 10,060,502)[J]. Journal of Engineering,2018.[52]. Honda Motor Co. Ltd.; Patent Issued for Supercharged Engine (USPTO 10,060,337)[J]. Journal of Engineering,2018.[53]. Hyundai Motor Company; Patent Issued for Method Of And System For Generating Virtual Engine Sound (USPTO 10,059,260)[J]. Journal of Engineering,2018.[54]. Suzuki Motor Corporation; Researchers Submit Patent Application, "Lubrication Structure For Internal Combustion Engine", for Approval (USPTO 20180238203)[J]. Politics & Government Week,2018.[55]. Energy; Studies from Brunel University in the Area of Energy Described (Expander Technologies for Automotive Engine Organic Rankine Cycle Applications)[J]. Journal of Engineering,2018.[56]. Hitachi Automotive Systems Ltd.; Patent Application Titled "Cooling Device For Internal Combustion Engine Of Vehicle And Control Method Thereof" Published Online (USPTO 20180245503)[J]. Journal of Transportation,2018.[57]. Honda Motor Co.Ltd.; Patent Application Titled "Internal Combustion Engine For Vehicle" Published Online (USPTO 20180245509)[J]. Politics & Government Week,2018.[58]. Honda Motor Co. Ltd.; Patent Issued for V Engine Having Valve Property Varying Mechanism (USPTO 10,066,553)[J]. Journal of Engineering,2018.[59]. Nissan Motor Co. Ltd.; Patent Issued for Vehicle Engine Stop Control Device (USPTO 10,065,646)[J]. Journal of Transportation,2018.[60]. Yamaha Motor Power Products Kabushiki Kaisha; Patent Issued for Engine (USPTO 10,066,522)[J]. Journal of Engineering,2018.汽车发动机英文参考文献三:[61]. Continental Automotive Systems Inc.; Patent Application Titled "Connected Energy Management And Autonomous Driving Strategy For Engine Cylinder Deactivation" Published Online (USPTO 20180238249)[J]. Journal of Transportation,2018.[62]. Honda Motor Co. Ltd.; Patent Issued for Variable Valve Mechanism For Internal Combustion Engine (USPTO 10,066,518)[J]. Journal of Engineering,2018.[63]. Suzuki Motor Corporation; Patent Issued for Engine For Outboard Motor (USPTO 10,059,416)[J]. Journal of Engineering,2018.[64]. MAHLE International GmbH; "Internal Combustion Engine For A Motor Vehicle" in Patent Application Approval Process (USPTO 20180216583)[J]. Energy Weekly News,2018.[65]. Hyundai Motor Company; "Engine Cooling System" in Patent Application Approval Process (USPTO 20180163608)[J]. Energy Weekly News,2018.[66]Jedd Cole. Grinder Simplifies Automotive Engine Part Production[J]. Modern Machine Shop,2018,91(3).[67]. Energy; Reports Outline Energy Study Results from Swiss Federal Institute of Technology in Lausanne (Multi-objective optimization of turbo-ORC systems for waste heat recovery on passenger car engines)[J]. Energy Weekly News,2018.[68]. Science - Applied Sciences; Researchers from Inha University Provide Details of New Studies and Findings in the Area of Applied Sciences (A New Method for Active Cancellation of Engine Order Noise in a Passenger Car)[J]. Science Letter,2018.[69]. Honda Motor Co. Ltd.; Researchers Submit Patent Application, "Engine Generator", for Approval (USPTO 20180283340)[J]. Energy Weekly News,2018.[70]. Mazda Motor Corporation; Patent Application Titled "Control Device Of Compression Self-Ignition Engine" Published Online (USPTO 20180283296)[J]. Energy Weekly News,2018.[71]. Continental Automotive GmbH; "High-Pressure Fuel Pump And Fuel Supply Device For An Internal Combustion Engine, In Particular Of A Motor Vehicle" in Patent Application Approval Process (USPTO 20180283336)[J]. Energy Weekly News,2018.[72]. Kia Motors Corporation; "Hybrid Vehicle And Method Of Controlling Engine Start" in Patent Application Approval Process (USPTO 20180297578)[J]. Energy Weekly News,2018.[73]. Mazda Motor Corporation; Patent Issued for Fuel Injection Control Device For Direct-Injection Engine (USPTO 10,119,492)[J]. Energy Weekly News,2018.[74]. Nissan Motor Co. Ltd.; Patent Issued for Engine Control Device And Engine Control Method (USPTO 10,119,486)[J]. Energy Weekly News,2018.[75]. Johnson Electric S.A.; "Motor, Circuit Board, And Engine Cooling Module Including The Motor" in Patent Application Approval Process (USPTO 20180337578)[J]. Electronics Business Journal,2018.[76]. Mazda Motor Corporation; Patent Application Titled "Structure Of Mounting Intake Air Temperature Sensor Of Engine With Supercharger" Published Online (USPTO 20180340496)[J]. Energy Weekly News,2018.[77]. Kia Motors Corporation; "System And Method For Controlling Engine Clutch" in Patent Application Approval Process (USPTO 20180335096)[J]. Energy Weekly News,2018.[78]. Kia Motors Corporation; "Method For Starting Engine For Hybrid Electric Vehicle" in Patent Application Approval Process (USPTO 20180340503)[J]. Energy Weekly News,2018.[79]. Kia Motors Corporation; "Piston For Engine" in Patent Application Approval Process (USPTO 20180340491)[J]. Energy Weekly News,2018.[80]Maniatis P,Wagner U,Koch T. A model-based and experimental approach for the determination of suitable variable valve timings for cold start in partial load operation of a passenger car single-cylinder diesel engine[J]. International Journal of Engine Research,2019,20(1).[81]Tauzia Xavier,Maiboom Alain,Karaky Hassan,Chesse Pascal. Experimental analysis of the influence of coolant and oil temperature on combustion and emissions in an automotive diesel engine[J]. International Journal of Engine Research,2019,20(2).[82]. Kia Motors Corporation; Patent Issued for Engine Idle Operation Control Method And System For Heating Of Hybrid Electric Vehicle (USPTO 10,220,828)[J]. Energy Weekly News,2019.[83]. Suzuki Motor Corporation; Patent Issued for Engine Control Device And Engine Control Method (USPTO 10,232,924)[J]. Computers, Networks & Communications,2019.[84]. Kia Motors Corporation; "Gasoline Direct Injection Engine" in Patent Application Approval Process (USPTO 20190078500)[J]. Energy Weekly News,2019.[85]. Proposed Information Collection Request; Comment Request; Motor Vehicle and Engine Compliance Program Fees (Renewal), EPA ICR 2080.07, OMB Control No. 2060-0545[J]. The Federal Register / FIND,2019,84(070).[86]. Energy; Findings from Federal University of Santa Maria in the Area of Energy Reported (Experimental Investigation of a Variable Compression Ratio System Applied To a Gasoline Passenger Car Engine)[J]. Energy Weekly News,2019.[87]. Energy; Studies from Federal University in the Area of Energy Described (Energy and Emission Impacts of Liquid Fueled Engines Compared To Electric Motors for Small Size Motorcycles Based On the Brazilian Scenario)[J]. Energy Weekly News,2019.[88]. Central Motor Wheel Co. Ltd.; Patent Application Titled "Thermoacoustic Engine, And Designing Method For Thermoacoustic Engine" Published Online (USPTO 20190085833)[J]. Energy Weekly News,2019.[89]. Kia Motors Corporation; Researchers Submit Patent Application, "Apparatus For Improving Efficiency Of Turbocharger Engine", for Approval (USPTO 20190093548)[J]. Energy Weekly News,2019.[90]. Engineering - Automobile Engineering; University of Birmingham Reports Findings in Automobile Engineering (On-board Thermochemical Energy Recovery Technology for Low Carbon Clean Gasoline Direct Injection Engine Powered Vehicles)[J]. Energy Weekly News,2019.汽车发动机英文参考文献四:[91]. Kia Motors Corporation; "Method And Device For Controlling Engine During Idle Purge Of Canister" in Patent Application Approval Process (USPTO 20190112993)[J]. Energy Weekly News,2019.[92]. Hitachi Automotive Systems Ltd.; Patent Issued for Fuel Injection System For Internal Combustion Engine (USPTO 10,267,253)[J]. Energy Weekly News,2019.[93]Song Kang,Upadhyay Devesh,Xie Hui. A physics-based turbocharger model for automotive diesel engine control applications[J]. Proceedings of the Institution of Mechanical Engineers,2019,233(7).[94]. Hitachi Automotive Systems Ltd.; Patent Issued for Engine Control Device (USPTO 10,309,366)[J]. Energy Weekly News,2019.[95]. Continental Automotive GmbH; "Gas Internal Combustion Engine With Auxiliary Starting System" in Patent Application Approval Process (USPTO 20190162123)[J]. Energy Weekly News,2019.[96]. Fuel Research; Studies from Volvo Car Group Add New Findings in the Area of Fuel Research (Impact of Closely-coupled Triple-pilot and Conventional Double-pilot Injection Strategies In a Ld Diesel Engine)[J]. Energy Weekly News,2019.[97]. Kia Motors Corporation; Patent Issued for Engine Start Control Method (USPTO 10,316,814)[J]. Biotech Business Week,2019.[98]. Kia Motors Corporation; "Apparatus And Method For Starting Engine Of Mild Hybrid Electric Vehicle" in Patent Application Approval Process (USPTO 20190184972)[J]. Energy Weekly News,2019.[99]. Energy; Findings from K.N. Toosi University of Technology Provides New Data on Energy (Conceptual design, optimization, and assessment of a hybrid Otto-Stirling engine/cooler for recovering the thermal energy of the exhaust gasses for automotive ...)[J]. Energy Weekly News,2019.[100]. Toyota Jidosha Kabushiki Kaisha; "Automotive Engine Coolant Composition, Automotive Engine Concentrated Coolant Composition, And Method Of Operating Internal Combustion Engine" in Patent Application Approval Process (USPTO 20190194516)[J]. Energy Weekly News,2019.[101]. Kia Motors Corporation; "Engine Control Method For Heating Of Hybrid Electric Vehicle" in Patent Application Approval Process (USPTO 20190193516)[J]. Energy Weekly News,2019.[102]. Kia Motors Corporation; "Vehicle And Method For Controlling Engine Startup Reference Power" in Patent Application Approval Process (USPTO 20190202432)[J]. Energy Weekly News,2019.[103]. Energy; Technical University Details Findings in Energy (A fully automated smooth calibration generation methodology for optimization of latest generation of automotive diesel engines)[J]. Energy Weekly News,2019.[104]. Black &Decker Inc.; "Battery And Motor System For Replacing Internal Combustion Engine" in Patent Application Approval Process (USPTO 20190238083)[J]. Energy Weekly News,2019.[105]. Mazda Motor Corporation; "Exhaust Gas Control Device, Method, And Computer Program Product For An Engine" in Patent Application Approval Process (USPTO 20190234330)[J]. Energy Weekly News,2019.[106]Dongha Kim,JongRoul Woo,Jungwoo Shin,Jongsu Lee,Yongdai Kim. Can search engine data improve accuracy of demand forecasting for new products? Evidence from automotive market[J]. Industrial Management & Data Systems,2019,119(5).[107]R. Ellappan,S. Arumugam. The effect of corrosion inhibitor on corrosion of automotive materials in Biodegradable engine oil[J]. IOP Conference Series: Materials Science and Engineering,2018,390(1).[108]P. Wi?niowski,M ?l?zak,A Niewczas,T Szczepański. Method for synthesizing the laboratory exhaust emission test from car engines based on road tests[J]. IOP Conference Series: Materials Science and Engineering,2018,421(4).[109]J Kaszkowiak,M Markiewicz-Patalon. The impact on the manner of loading theengines powered with biogas and natural gas on the selected parameters of the motor oil[J]. IOP Conference Series: Materials Science and Engineering,2018,421(4).[110]A Wolff. Numerical analysis of gas flow through the labyrinth seal of piston rings of an automotive IC engine[J]. IOP Conference Series: Materials Science and Engineering,2018,421(4).[111]Z Kneba. Research on the phenomena of warming up and free cooling down the car engine[J]. IOP Conference Series: Materials Science and Engineering,2018,421(4).[112]N C Nutu,C Pana,N Negurescu,A Cernat,D Fuiorescu,L Nemoianu. An experimental approach on fuelling a passenger car diesel engine with LPG[J]. IOP Conference Series: Materials Science and Engineering,2018,444(7).[113]T Ulian,V Vornicu,E Rakosi,G Manolache,S Talif,I Agape. The study of the performance improvement possibilities by using the principle of zonal cooling for the automotive engine[J]. IOP Conference Series: Materials Science and Engineering,2018,444(7).[114]V Serevina,A A Azhar,T Sutandi,K Sumeru. Effect Of Engine Speed On The Performance Of Automotive Air Conditioning System Using R134a And R152a As Refrigerants[J]. Journal of Physics: Conference Series,2019,1150(1).[115]Willyanto Anggono,Sutrisno,Fandi D Suprianto,Muji Setiyo,Rendy Wibisono,Gabriel Jeremy Gotama. Experimental investigation of the effect of Nephelium Lappaceum seed biodiesel to the automotive diesel engine performance[J]. IOP Conference Series: Earth and Environmental Science,2019,257(1).[116]Guorui Jia,Huanhuan Ren,Dongchang Zhao,Chuan Chen,Rujie Yu,Peng Ge,Shaohui Liu. Numerical Simulation of Multiple Injections on the Combustion of Reactivity Distribution in Automotive Engine[J]. IOP Conference Series: Earth and Environmental Science,2019,252(3).[117]Xitong Zhang,Tao Peng,Fuxin Mao,Ming Cheng. Research on Key Technologies of Integrated Teaching Platform for Automotive Engine ECU Control System[J]. Journal of Physics: Conference Series,2019,1237(4).[118]Huanhuan Ren,Guorui Jia,Dongchang Zhao,Chuan Chen,Rujiex Yu,Peng Ge,Shaohui Liu. Simulation Study of Injection Strategy on the Emission in Automotive Engine[J]. IOP Conference Series: Earth and Environmental Science,2019,252(3).[119]Olufemi Sylvester Bamisaye,Anthony Yinka Oyerinde,Ubong Akpan Essien. Investigation of the Effects of Air-Conditioning System on the Temperature and Speed of Automobile Engine Using Paired T-Test and Regression Analysis[J]. Open AccessLibrary Journal,2019,06(01).[120]Huali Guo,Jia Cui,Guofu Wang,Hongwang Zhao. Analysis and Research on the Teaching Principle of Automotive Engine Based on CDIO Concept[P]. Proceedings of the 2018 International Conference on Sports, Arts, Education and Management Engineering (SAEME 2018),2018.以上就是关于汽车发动机英文参考文献的分享,希望对你有所帮助。
GE Inspection Technologies CL5 超音波精确厚度测量仪说明书
GEInspection TechnologiesCL5gUltrasonic Precision Thickness GaugeMicrometer Precision in a Rugged PackageThe CL5 is an easy-to-use precision thickness measuring solution for components used in the automotive and aerospace industries, such as:•Cast and stamped metal components made of aluminum, steel, copper, bronze • Machined workpieces • Chemically milled components • Metal strips, metal plates • Plastics and composites • GlassThe instrument can be held in one hand or placed on flat workpieces, making the CL5 a compact way to test your material for the required thickness or checking for sheet corrosion.Compact Solution With a Full Range of Functionality The CL5 precision thickness gauge offers a full range offunctionality in an easy to use, compact and rugged package.Three soft keys directly under the display activate the functions shown on the display menus. Four directional keys help make menu changes and navigation of the text entry screen simple and efficient.The graphical display presents the user with seven different operation modes. The user can select Normal, Minimum Scan,Maximum Scan, Differential/Rate of Reduction, Thk+A-Scan (option), Velocity (option) or Quality View. The CL5 uses aprogrammable data recorder for easy set up of data files from the PC. The SD Card memory system places all the datarecording and set-up information on a removable SD memory card. The files are formatted allowing drag and drop files when plugged directly into the PC. Other data such as digitalphotographs can also be stored on the same SD card. The CL5allows direct connection to the PC, using a serial or USB port (with optional cable).Simple OperationThe CL5 is a very straightforward instrument to operate. The MODE key progresses the user through a series of selection and set-up menus and back to the measurement mode. One press of the MODE key displays a table of standard probes and up to five special set-ups. Another press of the MODE key displays a set-up menu where the user can easily scroll through the menu, see the current settings and make fast changes to any of the displayed settings.A supervisor lock-out function enables a knowledgeable user to set up all the specific measuring functions and settings of the CL5 and lock the settings so critical settings cannot be changed by a subordinate user.Additional advantages offered by this compact, multifunctional instrument include:•Enhanced measurement performance produces stable and repeatable thickness values•Seven measurement and display modes: Normal, Minimum Capture, Maximum Capture, Differential and Rate of Reduction,Velocity (with CL5 VL option), Thickness+A-Scan (with Live A-Scan Option) and Quality View Mode (with Data Recorder option).•Snapshot A-Scan on all models•Hollow/Fill thickness digits showing coupling or non-coupling status•Visual LED alarm to alert user when measurements are exceeding the user selectable limit values•Customer parameter set-ups for special configurations and quick instrument set-up•Flexible power system via standard AA batteries or rechargeable battery pack system (standard)•Multi-language user interface•Automatic ultrasonic performance (gain and gate controls)•Wide variety of standard probes (sold separately)Filled digits indicate successful couplingLive A-Scan for more precise evaluationsRate of reductionData recorderSnapshot A-ScanCL5––Simply reliable, reliably simpleThe Velocity Option: Performance and FlexibilityThe CL5 Velocity option gives the user an added measurement mode used for determining the velocity of a known thickness of material. Material thickness can be entered manually via the CL5keyboard or a digital caliper can be connected, allowing the thickness value to be sent electronically from the caliper to the CL5. The user simply places the probe on the part, and the CL5displays the material velocity of the test object. Both the thickness and the velocity value can be stored in the Data Recorder and downloaded to the PC.The Live A-Scan OptionThe optional Live A-Scan feature gives the user a real time view of the echoes being digitally measured by the CL5.Viewing the Live A-Scan can aid users when attempting toproperly align the probe and the test object to achieve the best measurement values. Viewing the Live A-Scan enables the user to ensure the proper echoes are being measured and the digital value is correct.The Data Recorder OptionThe Data Recorder option permits the quick and easy storage of thickness values in file form. Fully user-programmable, it stores up to 10,000 measured values or as many as 500 values with attached A-Scan.The programmable data recorder allows creation of data recorder files directly from the CL5 keypad, or from the PC using the flexible UltraMATE ®or UltraMATE ®Lite software program. The Data Recorder supports the use of alphanumeric file names,standard linear and grid files and custom linear files.Extended file types store the thickness values, velocity settings and other critical data for each measurement point, making the CL5 and UltraMATE ®ideal for test data management.Achieve More Precision With Quality ViewQuality View Mode permits Data Recorder-driven control and capture of thickness measurements. It is ideal for singular parts or structures with numerous measurement points that havedifferent target thicknesses and/or varying upper and lower limits or tolerances.Uses of Quality View Mode include:1.Fast collection of thickness measurement data for statistical analysis during variation control and quality assurance.2.Digitally capturing thickness measurement data for quality records and traceability.3.Variation control of work in progress on the manufacturing or workshop floor.Quality View Mode displays the current measurement location name, a bar graphic of the thickness measurement that shows the lower specified limit value, the nominal/target value, the upper specified limit and a numerical readout of the measurement.Selection of Quality View Mode displaysTo work in Quality View Mode, custom four-point linear files are created in either Microsoft®Excel or UltraMate ®software applications on a PC and downloaded to the CL5 using the optional serial or USB cable. Measurements can also be uploaded into a PC for processing and analysis using Microsoft ®Excel, UltraMate ®or a third party statistics and/or quality software application.Quality View Mode Out of tolerance dialogue Measurement Review ModeNumerical value of thickness is filled whenprobe is coupled to the location of measurementAlpha 2 DFR/CLF4Standard Delay Line 15 MHz 0.30 in (7.6 mm)0.007 to 1.0 in (0.18 to 25.4 mm)Alpha 2 F/CLF5Fingertip Contact 10 MHz 0.38 in (9.5 mm)0.060 to 10.0 in (1.52 to 254 mm)Mini DFR Thin Range Delay Line20 MHz0.19 in (4.8 mm)0.006 to 0.2 in (0.16 to 5.1 mm)Alpha DFR-P Delay Line for Plastic Materials 22 MHz 0.30 in (7.6 mm)0.005 to 0.15 in (0.13 to 3.8 mm) in plastic materials K-Pen Delay Line Pencil Probe 20 MHz 0.065 or 0.090 in (1.7 or 2.3 mm)0.008 to 0.175 in (0.20 to 4.4 mm)CA211AStandard Contact5 MHz0.75 in (19.1 mm)0.060 to 20.0 in (1.52 to 508 mm)gGE Inspection Technologies: productivity through inspection solutionsGE Inspection Technologies provides technology-driven inspection solutions that deliver productivity, quality and safety. We design,manufacture and service ultrasonic, remote visual, radiographic and eddy current equipment and systems. We offerspecialized solutions that will help you improve productivity in your applications in the aerospace, power generation, oil & gas,automotive or metals Industries./inspectiontechnologies© 2007 General Electric Company. All Rights Reserved. We reserve the right to technical modifications without prior notice. GE ®is a registered trademark of General Electric Co. Other company or product names mentioned in this document may be trademarks or registered trademarks of their respective companies, which are not affiliated with GE.GEIT-20206EN (09/07)CL5 Compatible Transducer SpecificationsEnvironmental Sealing Impact resistant, dust and splash proof, gasket-sealed, case-tested to IP54Weight 0.92 lb (420 g) with batteries Size7.1 in H × 3.7 in W × 1.8 in D (180 mm × 94 mm × 46 mm)Temperature Range Operating: –10 ºC to +60 ºC Storage: –20 ºC to +70 ºCOperating Languages English, German, French, Spanish, Italian, Russian, Japanese, ChineseApplication SoftwareUltraMATE ®Lite and UltraMATE ®Base Instrument PackageCL5 precision thickness gauge Lithium poly battery pack AC power supply Plastic carry case Wire standXL couplant sample, 4 oz Firmware upgrade CD-ROM Operating manualOperating instruction card Certificate of ConformityOptionsCL5 AS OPT – Live A-Scan option CL5 DR OPT – Data Recorder option CL5 VL – Velocity option AccessoriesPCCBL-690 USB PC cable PCCBL-419 serial PC cableLi-135 lithium poly battery pack AC-296 AC power supplyUltraMATE ®Lite or UltraMATE ®Data Management softwareMeasuring Range.005 in to 20.00 in (0.13 mm to 500 mm): depends on material, probe, surface condition and temperatureUnits and Measuring Resolution Inch – 0.0001, 0.001, 0.01 Millimeter – 0.001, 0.01, 0.1Material Velocity Range 0.03937 to 0.78736 in/μs 1000 to 19999 m/s Receiver Bandwidth of 1.0 to 16 MHz at –6 dB Update Rate User selectable 4 or 8 Hz, up to 32 Hz in Min Cap orMax Cap modeDisplay Type Graphical LCD 64 × 128 pixels2.25 in × 2.56 in (40 mm × 57 mm) with backlight and adjustable contrastThickness Display Five-digit display with 0.75 in (19.5 mm) height digitsin standard mode and 0.25 in (6.35 mm) height digits in Thickness + A-Scan mode, solid or hollow digits coupling indicator, A-Scan view – R.F. mode onlyDisplay Modes Thickness (includes Snapshot A-Scan), Thickness +Live A-Scan (optional), Minimum Capture, Maximum Capture, Differential and Rate of Reduction, Velocity Mode (optional), Quality View Mode (optional)Supervisor Lockout Alphanumeric password lockout for calibrations,set-up and Data RecorderI/O Port Bi-directional serial RS-232: baud rate 1200, 9600,57600 and 115200Data Recorder Programmable Data Recorder, 120 files max. oneach 64 MB SD cardFile Formats Grid created from instrument keypad. Grid andCustom Linear files accepted from UltraMATE ®software.Power Supply Three AA batteries (Alkaline, NiMH or NiCad) orcustom rechargeable battery packTechnical Data。
四川大学专业英语复习资料整理(有用)考试复试必备.
一.汉译英1.声卡是一块印刷电路板,它能把数字信息译为声音,也能把声音变为数字信息,它插在母板(计算机主电路板)上的槽内(slot),而且通常连接一对喇叭(speaker)Audio card is a piece of printed circuit boards, which can translate digital information into voice, and it also can translate voice into digital information, (it is planted in the slot of the main board(the main computer circuit boards)) it is always plugged into a slot on main_board and connected with a pair of speakers.2.计算机是一种电子装置,它能接受一套指令或程序,并通过数据运算,或收集和联系其他形式的信息来执行该程序。
Computer is a kind of electronic device which can receive(adopt) a set of instructions or procedures, and carry out the procedures through data computing(calculation), or collecting and contacting(association with) other form of information.3.IT机构早在XML和Web Services出现之前就成功地编制和部署了SOA应用程序。
不过他们用模块化、可重复用部件、面向对象编程或应用编程接口等术语来谈论这个过程。
虽然它们中没有一个是与SOA完全相同的,但它们都包含了SOA的一些方面.IT institution had successfully established and worked out (deployed) the SoA applications before the appearance of XML and Web Services. But they discussed the process with modular and reusable components, object-oriented programming or application programming interface and other terms. Although none of them is identical with the SOA, all of them contain some aspects of the SOA.4.本文提出了一种基于B/S架构的单点登录模型,为企业整合各种遗留系统提供了一种简单有效的单点登录方法。
超深层高压油气藏天然气偏差系数计算新模型
◄油气开发►doi:10.11911/syztjs.2023112引用格式:杨鹏程,薛浩楠,李升,等. 超深层高压油气藏天然气偏差系数计算新模型[J]. 石油钻探技术,2023, 51(6):106-114.YANG Pengcheng, XUE Haonan, LI Sheng, et al. A new model for calculating deviation factor of natural gas in ultra-deep oil and gas reservoirs under high pressure [J]. Petroleum Drilling Techniques ,2023, 51(6):106-114.超深层高压油气藏天然气偏差系数计算新模型杨鹏程1, 薛浩楠1, 李 升1, 陈科杉2(1. 中国石油集团西部钻探工程有限公司井下作业公司,新疆克拉玛依 834000;2. 中国石油大学(华东)石油工程学院,山东青岛 266580)摘 要: 为适应我国深层、超深层高压油气藏钻采需要,利用高温高压PVT 特性测量系统,开展了高压条件下不同组分天然气样品的PVT 特性测量试验,试验结果表明,高压下天然气偏差系数随压力升高大致呈线性增大,随温度升高而减小,但总体差别较小。
基于1 443组Standing-Katz 图版拟合数据、试验测量数据和公共试验数据,建立了大温度压力范围的天然气偏差系数试验数据库。
采用多元非线性拟合数值方法,对现有模型进行改进,建立了计算超深层高压油气藏天然气偏差系数的新模型。
将该模型与常用的HY 法、DPR 法、LXF 法等方法进行了对比,误差分析表明,该模型在高压段的相对误差在2%以内,计算精度高于HY 法、DPR 法、LXF 法等方法,满足工程要求,可以为超深层高压油气藏安全高效钻采提供指导与帮助。
关键词: 超深层高压油气藏;天然气偏差系数;数据库;计算模型;Standing-Katz 图版;误差中图分类号: TE311+.1 文献标志码: A 文章编号: 1001–0890(2023)06–0106–09A New Model for Calculating Deviation Factor of Natural Gas inUltra-Deep Oil and Gas Reservoirs under High PressureYANG Pengcheng 1, XUE Haonan 1, LI Sheng 1, CHEN Keshan2(1. Downhole Operation Company, CNPC Xibu Drilling Engineering Company Limited, Karamay, Xinjiang, 834000, China ; 2.School of Petroleum Engineering, China University of Petroleum (East China ), Qingdao, Shandong, 266580, China )Abstract: In order to meet the drilling and production requirements of deep and ultra-deep oil and gas reservoirs under high pressure in China, PVT characteristic measurement experiments of natural gas samples with different components under high-pressure conditions were carried out by using high-temperature and high-pressure PVT characteristic measurement system. The experiments show that the deviation factor of natural gas under high pressure increases linearly with the increase in pressure and decreases with the increase in temperature, but the overall difference is small. At the same time, an experimental database of the deviation factor of natural gas in a large temperature and pressure range is established based on 1 443 sets of data including Standing-Katz chart fitting data, experimental measurement data, and public experimental data. Through the numerical method of multivariate nonlinear fitting, the existing models are improved, and a new model for calculating the deviation factor of natural gas of ultra-deep oil and gas reservoirs under high pressure is established. The predicted results of the model are compared with those of HY,DPR, LXF, and other common methods. The error analysis shows that the relative error of the model is less than 2% in the high-pressure section, and its calculation accuracy is higher than that of HY, DPR, LXF, and other methods, which meets the practical needs of engineering and can provide guidance and support for safe and efficient drilling and production of ultra-deep oil and gas reservoirs under high pressure.Key words: ultra-deep reservoirs under high pressure; deviation factor of natural gas; database; calculation model;Standing-Katz chart; error随着在深层、超深层勘探方面取得许多重要突破,深层、超深层已成为我国陆上油气勘探开发的主要接替领域,但这类储层普遍具有高温、高压特点[1–2]。
数据残留的清除与安全性研究
第6卷第17期2006年9月1671—1815(2006)17—2769—03科学技术与工程ScienceTechnologyandEngineeringV01.6No.17Sep.2006⑥2006Sei.Tech.Engng.数据残留的清除与安全性研究周开民赵强+张晓邓高明(军械工程学院计算机工程系,石家庄050003)摘要随着各种存储设备的广泛应用和数据恢复技术的迅猛发展,数据安全越来越为用户所重视,而硬盘和其他移动存储设备作为当今数据存储的主要载体,清除残留在其中的秘密数据将面临巨大挑战。
通过研究硬盘数据残留产生的原因以及现状对其安全性进行了分析,并根据当前的数据恢复技术提出了一种如何安全清除数据残留的新方法和实现算法。
关键字数据残留数据恢复清除存储器中图法分类号TP334TP36;文献标识码B数据残留是指数据以某种形式擦除后所残留的物理表现。
存储介质被擦除后可能留有一些物理特性使数据能够被恢复。
当存储介质放置在安全条件相对较低的环境中,并且存储在其中的重要数据没有经过一定级别的擦除处理,那么残留在其中的数据信息就可能被攻击者非法获取,造成严重的损失。
1安全性分析磁介质在长期存储或高温条件下变得难以擦除。
如果介质在一个地址段上无法被重写(如“坏”磁道)的情况下释放就可能危及敏感数据的安全。
例如,在盘体上可能存有坏磁道或扇区,而以前可能有敏感信息被记录在这些区域。
覆盖这些无法使用的坏磁道可能会很困难。
在敏感信息被写入磁盘之前,应该辨别出无法使用的坏磁道、扇区,因为敏感信息可能就留在该区域。
可是,由于目前国内数据残留技术不成熟和计算机操作人员甚至数据安全处理人员的知识匮乏2006年4月14日收到第一作者简介:周开民,男,(1981一),汉族,石家庄军械工程学院,硕士研究生,研究方向:软件工程。
+通信作者简介:赵强,男,1945年出生,汉族,教授,博士生导师。
或不重视,导致不能理解如何才能做到彻底清除数据从而不对数据安全造成危害。
Cahn-Hilliard_方程的一个超紧致有限差分格式
第38卷第1期2024年1月山东理工大学学报(自然科学版)Journal of Shandong University of Technology(Natural Science Edition)Vol.38No.1Jan.2024收稿日期:20221209基金项目:陕西省自然科学基金项目(2018JQ1043)第一作者:栗雪娟,女,lxj_zk@;通信作者:王丹,女,1611182118@文章编号:1672-6197(2024)01-0073-06Cahn-Hilliard 方程的一个超紧致有限差分格式栗雪娟,王丹(西安建筑科技大学理学院,陕西西安710055)摘要:研究四阶Cahn-Hilliard 方程的数值求解方法㊂给出组合型超紧致差分格式,将其用于四阶Cahn-Hilliard 方程的空间导数离散,采用四阶Runge-Kutta 格式离散时间导数,将二者结合得到四阶Cahn-Hilliard 方程的离散格式,并给出了该格式的误差估计㊂通过编程计算得到其数值解,并与精确解进行对比,结果表明本文的数值方法误差小,验证了所提方法的有效性和可行性㊂关键词:四阶Cahn-Hilliard 方程;组合型超紧致差分方法;四阶Runge-Kutta 方法;误差估计中图分类号:TB532.1;TB553文献标志码:AA supercompact finite difference scheme for Cahn-Hilliard equationsLI Xuejuan,WANG Dan(School of Science,Xiᶄan University of Architecture and Technology,Xiᶄan 710055,China)Abstract :A numerical method for solving the fourth order Cahn-Hilliard equation is studied.The combi-national ultra-compact difference scheme is given and applied to the spatial derivative discretization of the fourth order Cahn-Hilliard equation.The fourth-order Runge-Kutta scheme is used to discrete time deriv-atives.The discrete scheme of the fourth order Cahn-Hilliard equation is obtained by combining the two methods,and the error estimate of the scheme is given.Finally,the numerical solution is obtained by programming and compared with the exact solution.The results show that the numerical method in this paper has a small error,verifying the effectiveness and feasibility of the proposed method.Keywords :fourth order Cahn-Hilliard equation;combinational supercompact difference scheme;fourthorder Runge-Kutta;error estimation㊀㊀本文考虑的四阶Cahn-Hilliard 方程为u t -f u ()xx +ku xxxx =0,x ɪ0,2π[],t >0,u x ,0()=u 0x (),x ɪ0,2π[],u 0,t ()=0,u 2π,t ()=0,t >0,ìîíïïïï(1)式中:求解区域为0,2π[],且kn ȡ0;f u ()为光滑函数;u 0x ()表示t =0时刻的初值;u t 表示u 关于时间t 求偏导数,u t =∂u∂t;f u ()xx表示f u ()关于x求二阶偏导数,f u ()xx=∂2f u ()∂x 2;u xxxx 表示u 关于x 求四阶偏导数,u xxxx=∂4u∂x4;u 是混合物中某种物质的浓度,被称为相变量㊂1958年,Cahn 和Hilliard 提出Cahn-Hilliard 方程,该方程最早被用来描述在温度降低时两种均匀的混合物所发生的相分离现象㊂随着学者对该方程的研究越来越深入,该方程的应用也越来越广泛,特别是在材料科学和物理学等领域中有广泛的应用[1-3]㊂㊀Cahn-Hilliard 方程的数值解法目前已有很多研究,文献[4]使用了全离散有限元方法,文献[5]使用了一类二阶稳定的Crank-Nicolson /Adams-Bashforth 离散化的一致性有限元逼近方法,文献[6-7]使用了有限元方法,文献[8]使用了不连续伽辽金有限元方法,文献[9]使用了Cahn-Hilliard 方程的完全离散谱格式,文献[10]使用了高阶超紧致有限差分方法,文献[11]使用了高阶优化组合型紧致有限差分方法㊂综上所述,本文拟对Cahn-Hilliard 方程构造一种新的超紧致差分格式,将空间组合型超紧致差分方法和修正的时间四阶Runge-Kutta 方法相结合,求解Cahn-Hilliard 方程的数值解,得到相对于现有广义格式精度更高的数值求解格式,并对组合型超紧致差分格式进行误差估计,最后通过数值算例验证该方法的可行性㊂1㊀高阶精度数值求解方法1.1㊀空间组合型超紧致差分格式早期的紧致差分格式是在Hermite 多项式的基础上构造而来的,Hermite 多项式中连续三个节点的一阶导数㊁二阶导数和函数值的数值关系可以表示为ð1k =-1a k f i +k +b k fᶄi +k +c k fᵡi +k ()=0㊂(2)1998年,Krishnan 提出如下紧致差分格式:a 1fᶄi -1+a 0fᶄi +a 2fᶄi +1+hb 1fᵡi -1+b 0fᵡi +b 2fᵡi +1()=1h c 1f i -2+c 2f i -1+c 0f i +c 3f i +1+c 4f i +2(),(3)式中:h 为空间网格间距;a 1,a 0,a 2,b 1,b 0,b 2,c 1,c 2,c 0,c 3,c 4均表示差分格式系数;f i 表示i 节点的函数值;fᶄi 和fᵡi 分别表示i 节点的一阶导数值和二阶导数值;f i -1,f i -2,f i +1,f i +2分别表示i 节点依次向前两个节点和依次向后两个节点的函数值;fᶄi -1,fᶄi +1分别表示i 节点依次向前一个节点和依次向后一个节点的一阶导数值;fᵡi -1,fᵡi +1分别表示i 节点依次向前一个节点和依次向后一个节点的二阶导数值㊂式(2)对应f (x )展开以x i 为邻域的泰勒级数为f x ()=f x i ()+hfᶄx i ()+h 2fᵡx i ()2!+㊀㊀㊀㊀㊀h3f‴x i ()3!+h 4f 4()x i ()4!+h 5f 5()x i ()5!+h 6f 6()x i ()6!+h 7f 7()x i ()7!㊂㊀㊀(4)㊀㊀差分格式的各项系数由式(3)决定,可得到如下的三点六阶超紧致差分格式:716fᶄi +1+fᶄi -1()+fᶄi -h 16fᵡi +1-fᵡi -1()=㊀㊀1516h f i +1-f i -1(),98h fᶄi +1-fᶄi -1()+fᵡi -18fᵡi +1+fᵡi -1()=㊀㊀3h 2f i +1-2f i +f i -1()ìîíïïïïïïïïïï(5)为优化三点六阶紧致差分格式,并保持较好的数值频散,将迎风机制[12]引入式(5),构造出如下三点五阶迎风型超紧致差分格式:78fᶄi -1+fᶄi +h 19fᵡi -1-718fᵡi -172fᵡi +1()=㊀㊀1h -10148f i -1+73f i -1148f i +1(),25fᵡi -1+fᵡi +1h 1910fᶄi -1+165fᶄi +910fᶄi +1()=㊀㊀1h 2-135f i -1-45f i +175f i +1()㊂ìîíïïïïïïïïïï(6)左右边界可达到三阶精度紧致格式:fᶄ1-132fᶄ2+fᶄ3()+3h4fᵡ2+fᵡ3()=㊀㊀-12h f 3-f 2(),fᵡ1+3728h fᶄ3-fᶄ2()+3914h fᶄ1-3356fᵡ3-fᵡ2()=㊀㊀f 3-2f 1+f 2(),ìîíïïïïïïïï(7)fᶄN -132fᶄN -2+fᶄN -1()-3h 4fᵡN -2+fᵡN -1()=㊀㊀12h f N -2-f N -1(),fᵡN -3728h (fᶄN -2-fᶄN -1)-3914h fᶄN -3356(fᵡN -2-㊀㊀fᵡN -1)=1314h 2f N -2-2f N +f N -1()㊂ìîíïïïïïïïïïï(8)上述组合型超紧致差分格式只需要相邻的三个节点便可以同时求得一阶导数和二阶导数的五阶精度近似值,比普通差分格式的节点更少,降低了计算量㊂为便于编程计算,将上述构造的组合型超紧致差分格式重写为矩阵表达形式㊂假设U 为位移矩阵,其大小为m ˑn ,则求一阶导数和二阶导数的离47山东理工大学学报(自然科学版)2024年㊀散过程可以用矩阵运算表示为AF=BU,(9)结合内点的三点五阶迎风型超紧致差分格式和边界点的三点三阶差分格式,组成式(9)中等式左边的矩阵A和等式右边的矩阵B,大小分别为2mˑ2n 和2mˑn;F为奇数行为空间一阶导数和偶数行为空间二阶导数组成的矩阵,大小为2mˑn㊂以上矩阵分别为:A=10-13/23h/4-13/23h/439/14h1-37/28h33/5637/28h-33/567/8h/91-7h/180-h/7219/10h2/516/5h19/1007/8h/91-7h/180-h/7219/10h2/516/5h19/100⋱⋱⋱⋱⋱⋱7/8h/91-7h/180-h/7219/10h2/516/5h19/100-13/2-3h/4-13/2-3h/410-37/28h-33/5637/28h33/56-39/14h1éëêêêêêêêêêêêêêêêêùûúúúúúúúúúúúúúúúú,(10)F=∂u∂x()1,1∂u∂x()1,2∂u∂x()1,n-1∂u∂x()1,n∂2u∂x2()1,1∂2u∂x2()1,2 ∂2u∂x2()1,n-1∂2u∂x2()1,n︙︙︙︙∂u∂x()m,1∂u∂x()m,2∂u∂x()m,n-1∂u∂x()m,n∂2u∂x2()m,1∂2u∂x2()m,2 ∂2u∂x2()m,n-1∂2u∂x2()m,néëêêêêêêêêêêêêêùûúúúúúúúúúúúúú,(11) B=012/h-12/h-13/7h213/14h213/14h2-101/48h7/3h-11/48h-13/5h2-4/5h217/5h2-101/48h27/3h-11/48h-13/5h2-4/5h217/5h2⋱⋱⋱-101/48h7/3h-11/48h-13/5h2-4/5h217/5h2012/h-12/h-13/7h213/14h213/14h2éëêêêêêêêêêêêêêêêêùûúúúúúúúúúúúúúúúú,(12)U=u1,1u1,2 u1,n-1u1,nu2,1u2,2 u2,n-1u2,n︙︙︙︙u m-1,1u m-1,2 u m-1,n-1u m-1,nu m,1u m,2 u m,n-1u m,néëêêêêêêêùûúúúúúúú㊂(13)㊀㊀由式(9)可得F=A-1BU㊂(14)㊀㊀解线性代数方程组(9)可得Cahn-Hilliard方程的空间一阶导数和二阶导数㊂对于四阶导数,可将已求得的二阶导数替代式(14)中的U,再次使用式(14)进行求取㊂57第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀栗雪娟,等:Cahn-Hilliard方程的一个超紧致有限差分格式1.2㊀时间离散格式在对很多偏微分方程的数值求解中不仅需要高精度的空间离散格式,同时还需要高精度的时间离散格式㊂普通的一阶精度时间离散格式显然满足不了高精度计算要求,因此本文选用时间四阶Runge-Kutta 格式进行时间离散㊂Runge-Kutta 方法是基于欧拉方法改进后的求解偏微分方程的常用方法,这种方法不仅计算效率高,而且稳定性好㊂格式的推算过程如下:假设求解方程为∂u∂t+F u ()=0,(15)式中F 是对空间变量的微分算子,则修正的四阶Runge-Kutta 格式为u 0i =u n i ,u 1i =u n i-Δt 4F u ()()0i,u 2i =u ni -Δt 3F u ()()1i,u 3i =u n i-Δt 2F u ()()2i,u n +1i =u n i -Δt F u ()()3i ㊂ìîíïïïïïïïïïïïï(16)1.3㊀误差估计以五阶精度将fᶄi -1,fᶄi +1,fᵡi -1,fᵡi +1泰勒级数展开:fᶄi -1=fᶄi -hfᵡi +h 22!f (3)i -h 33!f (4)i +㊀㊀h 44!f (5)i -h 55!f (6)i ,fᶄi +1=fᶄi +hfᵡi +h 22!f (3)i +h 33!f (4)i+㊀㊀h 44!f (5)i +h 55!f (6)i ,fᵡi -1=fᵡi -hf (3)i +h 22!f (4)i -h 33!f (5)i+㊀㊀h 44!f (6)i -h 55!f (7)i ,fᵡi +1=fᵡi +hf (3)i +h 22!f (4)i +h 33!f (5)i +㊀㊀h 44!f (6)i +h 55!f (7)i ㊂ìîíïïïïïïïïïïïïïïïïïïïïïïïï(17)将式(17)代入式(6),所求得组合型超紧致差分格式的一阶导数及二阶导数对应的截断误差为:78fᶄi -1+fᶄi +h19fᵡi -1-718fᵡi -172fᵡi +1()=㊀1h -10148f i -1+73f i -1148f i +1()+78640f 6()ih 5,25fᵡi -1+fᵡi +1h 1910fᶄi -1+165fᶄi +910fᶄi +1()=㊀-135f i -1-45f i +175f i +1()-5125200f 7()i h 5,ìîíïïïïïïïïïï(18)78640f 6()i h 5ʈ8.101ˑ10-4f 6()i h 5,5125200f 7()ih 5ʈ2.023ˑ10-3f 7()i h 5㊂ìîíïïïï(19)㊀㊀使用组合型超紧致差分格式的好处是在每一个网格点上存在一个一阶和二阶连续导数的多项式㊂本文比较了组合型超紧致差分格式和现有广义格式的一阶导数和二阶导数的截断误差:fᶄi +αfᶄi +1+fᶄi -1()+βfᶄi +2+fᶄi -2()=㊀㊀a f i +1-f i -12h +b f i +2-f i -24h +c f i +3-f i -36h ,fᵡi +αfᵡi +1+fᵡi -1()+βfᵡi +2+fᵡi -2()=㊀㊀a f i +1-2f i +f i -1h 2+b f i +2-2f i +f i -24h2+㊀㊀c f i +3-2f i +f i -39h 2,ìîíïïïïïïïïïïï(20)式中参数α,β,a ,b ,c 在各种格式中取不同的值(表1,表2)㊂本文发现在各种方案中,组合型超紧致差分格式的截断误差最小㊂表1㊀不同格式一阶导数的截断误差格式αβa b c 截断误差二阶中心010013!f 3()ih 2标准Padeᶄ格式1/403/20-15f 5()ih 4六阶中心03/2-3/51/1036ˑ17!f 7()ih 6五阶迎风143ˑ16!f 6()ih 5表2㊀不同格式二阶导数的截断误差格式αβa b c 截断误差二阶中心01002ˑ14!f 4()ih 2标准Padeᶄ格式1/1006/50185ˑ16!f 6()ih 4六阶中心03/2-3/51/1072ˑ18!f 8()ih 6五阶迎风165ˑ17!f 7()ih 567山东理工大学学报(自然科学版)2024年㊀2㊀数值算例误差范数L 1和L 2的定义为:L 1=1N ðNi =1u -U ,L 2=1N ðNi =1u -U ()2㊂对四阶Cahn-Hilliard 取f u ()=u 2,k =2,在边界条件u 0,t ()=u 2π,t ()=0下的计算区域为0,2π[],方程的精确解为u x ,t ()=e -tsin x2,数值解为U ㊂对给出的数值算例,计算误差范数L 1和L 2,并采用四种方法进行数值模拟,对其数值结果进行误差分析和对比,结果见表3,本文所使用方法效果最佳,由此证明所提方法的有效性和可行性㊂表3㊀0.5s 时刻精确度测试结果(N =10)方法L 1误差L 2误差间断有限元格式1.56235ˑ10-21.37823ˑ10-2普通中心差分格式1.66667ˑ10-18.33333ˑ10-2紧致差分格式7.14286ˑ10-31.78571ˑ10-3组合型超紧致差分格式6.48148ˑ10-36.34921ˑ10-4㊀㊀用本文提出的式(6) 式(8)和式(16)计算算例,图1 图3给出了不同时刻数值解与精确解的(a)精确解(b)数值解图1㊀0.1s 的精确解与数值解(a)精确解(b)数值解图2㊀0.5s 的精确解与数值解(a)精确解(b)数值解图3㊀1s 的精确解与数值解77第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀栗雪娟,等:Cahn-Hilliard 方程的一个超紧致有限差分格式对比图,可以看出,数值解与精确解吻合很好,表明本文给出的数值格式是可行的,并且精度较高㊂3 结论本文研究了组合型超紧致差分方法和四阶Runge-Kutta方法,并将其运用于四阶Cahn-Hilliard 方程的数值求解,通过研究与分析,得到如下结论: 1)使用泰勒级数展开锁定差分格式系数,得到本文的组合型超紧致差分格式精度更高,误差更小㊂2)在边界点处有效地达到了降阶,并提高了精度㊂3)通过数值算例验证了数值格式的有效性㊂4)预估该方法可应用于高阶偏微分方程的数值求解㊂参考文献:[1]HUANG Q M,YANG J X.Linear and energy-stable method with en-hanced consistency for the incompressible Cahn-Hilliard-Navier-Stokes two-phase flow model[J].Mathematics,2022,10 (24):4711.[2]AKRIVIS G,LI B Y,LI D F.Energy-decaying extrapolated RK-SAV methods for the allen-Cahn and Cahn-Hilliard equations[J].SIAM Journal on Scientific Computing,2019,41(6):3703-3727. [3]YOUNAS U,REZAZADEH H,REN J,et al.Propagation of diverse exact solitary wave solutions in separation phase of iron(Fe-Cr-X(X =Mo,Cu))for the ternary alloys[J].International Journal of Mod-ern Physics B,2022,36(4):2250039.[4]HE R J,CHEN Z X,FENG X L.Error estimates of fully discrete finite element solution for the2D Cahn-Hilliard equation with infinite time horizon[J].Numerical Methods for Partial Differential Equati-ions,2017,33(3):742-762.[5]HE Y N,FENG X L.Uniform H2-regularity of solution for the2D Navier-Stokes/Cahn-Hilliard phase field model[J].Journal of Math-ematical Analysis and Applications,2016,441(2):815-829. [6]WEN J,HE Y N,HE Y L.Semi-implicit,unconditionally energy sta-ble,stabilized finite element method based on multiscale enrichment for the Cahn-Hilliard-Navier-Stokes phase-field model[J]. Computers and Mathematics with Applications,2022,126:172 -181.[7]MESFORUSH A,LARSSON S.A posteriori error analysis for the Cahn-Hilliard equation[J].Journal of Mathematical Modeling, 2022,10(4):437-452.[8]XIA Y,XU Y,SHU C W.Local discontinuous Galerkin methods for the Cahn-Hilliard type equation[J].Journal of Computational Phys-ics,2007,227(1):472-491.[9]CHEN L,LüS J.A fully discrete spectral scheme for time fractional Cahn-Hilliard equation with initial singularity[J].Computers and Mathematics with Applications,2022,127:213-224. [10]周诚尧,汪勇,桂志先,等.二维黏弹介质五点八阶超紧致有限差分声波方程数值模拟[J].科学技术与工程,2020,20(1):54 -63.[11]汪勇,徐佑德,高刚,等.二维黏滞声波方程的优化组合型紧致有限差分数值模拟[J].石油地球物理勘探,2018,53(6):1152 -1164,1110.[12]程晓晗,封建湖,郑素佩.求解对流扩散方程的低耗散中心迎风格式[J].应用数学,2017,30(2):344-349.(编辑:杜清玲)87山东理工大学学报(自然科学版)2024年㊀。
低渗透油藏非达西流动数值模拟
SPE 154890低渗透油藏非达西流动数值模拟Jianchun Xu,SPE, Ruizhong Jiang,SPE, Lisha Xie, Ruiheng Wang, Lijun Shan, 中国石油大学(华东), Linkai Li,威德福(中国)能源服务有限公司摘要随着全世界油田的进一步开发,越来越多的低渗透油藏投入生产。
然而,流体在低渗透孔隙介质中的流动不再遵循达西流动规律,相代替的是一种低速非达西渗流。
大部分商业数值模拟软件在进行低渗透油藏开发模拟时会带来不准确性。
所以针对非达西流动的数值模拟软件已经开发出来。
在本文中,非达西流动数学公式已经给出。
接着,在实际油田和实验室测试数据的基础上,一个理想化的五点法井网公式被建立出来。
在相同油藏条件下,进行了非达西模拟,达西模拟和拟线性模拟。
最后,得出了达西流动条件下的压力梯度分布,累计产油量和剩余油分布的模拟结果,以及拟线性流动和非达西流动的模拟结果。
调查研究显示了大部分低渗透油藏区块的流动满足非达西软件表明合理的曲线段;与达西流动结果相比较,当考虑非达西流动时,累计产油量减少,拟线性流动时最少,所以达西流动模型夸大了油藏的渗流能力,而拟线性流动模型夸大了油藏的渗流阻力;剩余油饱和度的分析表明,真对非达西流动模型模拟和拟线性流动模型模拟,不同的流动区域存在着包括使得在低渗透油藏流动模型更加复杂的死油区和流动区。
引言许多年内,达西规律已经被认为是一个运用于流体在孔隙介质中流动的基础公式,尤其是在石油工业。
然而经验结果显示,在低渗透油藏的流动已经不再遵循达西规律(Prada and Civan1999; Zeng et al., 2011)。
对于低渗透油藏,流动曲线是一条直线和一条曲线结合出来的。
存在拟启动压力梯度(拟TPG)和最小启动压力梯度(最小TPG)(Zeng et al., 2011)。
图例1用三种流动模型来描述流动特性。
达西流动模型忽略了凹曲线段,渗流曲线只是一条通过原点的直线;拟线性模型同样也一条经过X轴上拟压力梯度点的直线。
siam journal on numerical analysis
siam journal on numericalanalysisSiam Journal on Numerical Analysis (SIAM JNA) is a leading international journal that focuses on the development and analysis of numerical algorithms and their implementation in mathematical models of physical, biological, and engineering systems. It is published by the Society for Industrial and Applied Mathematics (SIAM) four times a year, in February, May, August, and November.The aim of SIAM JNA is to provide a forum for the exchange of ideas and results among researchers in numerical mathematics, scientific computing, and related fields. The journal publishes original research works that describe advances in numerical algorithms, their analysis, and their application to problems in science, engineering, and industry. The topics covered in the journal include, but not limited to:- Numerical linear algebra and matrix computations. - Numerical methods for solving ordinary and partial differential equations. - Numerical optimization and nonlinear equations. - Numerical methods for integral equations and inverse problems. - Numerical methods for stochastic and probabilistic systems. - Numerical methods for signal processing and image analysis.Each issue of SIAM JNA contains articles that have undergone a rigorous peer-review process to ensure their scientific quality and relevance. The articles are written by leading experts in numerical mathematics and scientific computing, and they present new results, algorithms, numerical experiments, and applications. The journal also publishes invited survey articles that provide an overview of recent developments in a particular field of numerical analysis.SIAM JNA attracts a broad readership that includes mathematicians, engineers, physicists, and computer scientists, as well as practitioners in various fields of science and engineering. Thejournal is widely cited and has a high impact factor, which reflects its importance in the community of numerical analysts and researchers in applied mathematics.The editorial board of SIAM JNA comprises distinguished researchers in numerical analysis and scientific computing, who are responsible for selecting and reviewing the manuscripts submitted to the journal. The board is chaired by the editor-in-chief, who is a leading expert in the field and oversees the editorial process. The journal also has associate editors, who are responsible for specific areas of numerical analysis and contribute to the review process.In summary, SIAM JNA is a highly respected and influential journal in the field of numerical analysis and scientific computing. Its publication of original research, surveys, and reviews, and its high standards for scientific rigor and quality, make it a valuable resource for researchers and practitioners in the field.。
超宽带双极化交叉偶极子天线设计
第19卷 第3期太赫兹科学与电子信息学报Vo1.19,No.3 2021年6月 Journal of Terahertz Science and Electronic Information Technology Jun.,2021 文章编号:2095-4980(2021)03-0438-05超宽带双极化交叉偶极子天线设计陈盛嘉,陈星(四川大学电子信息学院,四川成都 610064)摘 要:提出一种结构简单的新型超宽带双极化天线。
采用交叉偶极子天线实现双线极化;每只偶极子天线由两个八边形环振子构成,同时在八边形环内部加载寄生枝节,引入新谐振点增加天线带宽;天线结构紧凑,尺寸仅为0.3λL 0.3λL(λL为低频截止频率对应的空间自由波长)。
对天线进行加工测试,测试结果表明,该天线在 1.24~4.42 GHz能够实现电压驻波比(VSWR)<2,相对带宽达到125%,方向图带宽为95%(1.24~3.60 GHz)。
天线定向辐射性能良好,在方向图带宽内增益大于7 dB。
关键词:双极化;超宽带;交叉偶极子天线;定向辐射中图分类号:TN821+.4 文献标志码:A doi:10.11805/TKYDA2021009Design of cross dipole antenna with ultra-wide band anddual-polarization propertiesCHEN Shengjia,CHEN Xing(School of Electronic and Information Engineering,Sichuan University,Chengdu Sichuan 610064,China)Abstract:A new type of ultra-wide band dual-polarized antenna with simple structure is presented.The antenna uses cross dipole antennas to generate dual polarization, each dipole antenna is composed oftwo octagonal rings. The stubs are loaded inside the octagonal ring to introduce new resonance frequencypoints, which greatly increases the bandwidth. The presented antenna has a compact structure with aplanar size of only 0.3λL×0.3λL, where λL is the wavelength corresponding to the lowest frequency withinthe whole working frequency band. An antenna sample has been fabricated and tested. The measuredresults show that the antenna can achieve Voltage Standing Wave Ratio(VSWR)<2 in 1.24-4.42 GHz. Therelative bandwidth is 125% and the pattern bandwidth is 95%(1.24-3.60 GHz). The directional radiationperformance is good, and the gain in the pattern bandwidth is greater than 7dB.Keywords:dual-polarization;ultra-wide band;cross dipole antenna;directional radiation随着无线通信技术的发展,在基站、陆地移动无线电设备、数据采集与监控系统、应急通信以及其他众多通信领域,对天线设计提出了苛刻的要求,需要定向天线同时具有超宽带、双线极化和结构紧凑等特性。
ima journal of numerical analysis
ima journal of numerical analysis 《imajournalofnumericalanalysis》是一本专注于数值分析领域的国际性学术期刊。
数值分析是一门研究数值计算方法和算法的学科,其应用范围广泛,包括但不限于物理、工程、经济、金融等领域。
本文将从以下几个方面介绍该期刊的特点和意义。
一、期刊简介《ima journal of numerical analysis》是英国皇家工程院(Royal Academy of Engineering)和英国工程与自然科学研究委员会(Engineering and Physical Sciences Research Council)共同创办的一本国际性学术期刊。
该期刊于1981年创刊,每年出版4期,由牛津大学出版社(Oxford University Press)出版。
二、期刊内容该期刊的主要内容涵盖数值分析领域内的各个方向,包括但不限于数值线性代数、数值微积分、数值偏微分方程、数值优化、数值逼近等。
其中,数值线性代数是该期刊的一个重点领域,涉及到矩阵分解、线性方程组求解、特征值计算等方面的研究。
此外,该期刊也关注数值方法在实际问题中的应用,例如流体力学、结构力学、电磁学等领域。
三、期刊质量《ima journal of numerical analysis》是数值分析领域内的顶级期刊之一,其影响因子(Impact Factor)在近年来一直保持在2左右。
该期刊的审稿流程严格,稿件一般需要经过两轮以上的匿名评审才能被接受发表。
因此,该期刊所发表的文章质量较高,具有较高的学术价值和影响力。
四、期刊意义《ima journal of numerical analysis》的出版对于数值分析领域的研究具有重要意义。
首先,该期刊为数值分析领域内的学者提供了一个交流和合作的平台,促进了该领域内的学术交流和研究合作。
其次,该期刊所发表的文章在学术界具有较高的声誉和影响力,为该领域内的研究提供了重要的参考和指导。
达芬奇密码
Michael: Let's cover the talking points again, Your Eminence. Many call Opus Dei a brainwashing cult. Others, an ultraconservative Christian secret society.Bishop: We are a simple Catholic church.Michael: Simple? With a brand-new $47-million headquarters in Manhattan.Bishop: Our followers are generous, should we apologize for that?Michael: Perhaps a less defensive tack, Your Eminence. The press continue to beharsh with us.Bishop: We are not Cafeteria Catholics. We don't pick and choose which rules to follow. We follow doctrine. Rigorously.Michael: Does doctrine necessarily include vows of chastity, tithing and atonement for sins through self-flagellation and the cilice?Bishop: Many of our followers are married. Many of them have families. Only a small proportion choose to live ascetic lives in the cloisters of our residential halls. But we are all united in God’s work around the world. Surely that is an admirableway to lead one’s life.Michael: Why are some media referring to Opus Dei as “God’s mafia”?Bishop: Obviously, some people fear what they don't understand. And because thewar finally draws to a close.Michael: Bishop, we need to stay on message.Bishop: That will be all, Michael, thank you.妙语佳句,活学活用1. Talking point论据,尤指“有利的”论据。
焊接构造对T型接头超低周疲劳性能的影响
DOI: 10.3785/j.issn.1008-973X.2021.01.004焊接构造对T 型接头超低周疲劳性能的影响余文韬,谢旭,成程(浙江大学 建筑工程学院,浙江 杭州 310058)摘 要:为了研究焊接细节对钢结构超低周疲劳性能的影响,以T 型接头为对象,在通用有限元程序Abaqus 平台上,开发基于Arlequin 算法的结构多尺度计算程序. 利用多尺度算法,开展焊接接头的局部弹塑性有限元分析. 比较焊趾半径、厚钢板未熔透长度及焊趾表面凹凸对局部塑性应变履历的影响,利用Coffin-Manson 模型对T 型接头的超低周疲劳特性进行定性讨论. 数值计算结果表明,焊趾位置是焊接接头的超低周疲劳易损位置,厚钢板的未熔透长度对焊接部位局部塑性应变的影响不大;焊趾半径对焊趾局部塑性应变有较大的影响,增大焊趾半径可以有效提升钢结构在循环荷载下的超低周疲劳性能;焊趾表面的平整性是影响焊趾局部塑性应变履历的重要因素,尖锐的凹坑会明显降低焊接接头的超低周疲劳性能,磨平的焊趾表面可以减少局部塑性应变,提高接头的超低周疲劳强度.关键词: T 型焊接接头;多尺度分析方法;Arlequin 法;局部塑性应变履历;超低周疲劳;参数分析中图分类号: U 448 文献标志码: A 文章编号: 1008−973X (2021)01−0031−07Effects of welding details on ultra-low cycle fatigueperformance of T-welded jointYU Wen-tao, XIE Xu, CHENG Cheng(College of Civil Engineering and Architecture , Zhejiang University , Hangzhou 310058, China )Abstract: T-welded joint was adopted as a research object and a structural multi-scale calculation program wasproposed based on Arlequin algorithm on the general finite element program Abaqus platform in order to analyze the effects of welding details on ultra-low cycle fatigue performance of steel structures. Local elastic-plastic finite element analysis of T-welded joints were conducted, and the local plastic strain characteristics were analyzed. The effects of welding details, such as weld toe radius, unfused length of thick steel plate and unevenness of weld toe surface on local plastic strain history were compared. The ultra-low cycle fatigue characteristics of T-welded joints were discussed by qualitatively using Coffin-Manson model. The numerical calculation results show that weld toe position is the vulnerable position of T-welded joints, and the influence of the unfused length of the steel plates on the local plastic strain history of the welded part is negligible. The local plastic strain history is more sensitive to the change of the weld toe radius, and the increase of the weld toe radius can significantly improve the ultra-low cycle fatigue performance of the structure under cyclic loading. The flatness of weld surfaces is an important factor on the plastic strain history of welding areas. Sharp dents can significantly reduce the ultra-low cycle fatigue performance of welded joints whereas a smoother welding surface is beneficial to reduce the local plastic strain and improve the ultra-low cycle fatigue strength of joints.Key words: T-welded joint; multi-scale analysis method; Arlequin algorithm; local plastic strain history;ultra-low cycle fatigue; parametric analysis收稿日期:2020−01−18. 网址:/eng/article/2021/1008-973X/202101004.shtml 基金项目:国家自然科学基金资助项目(51878606).作者简介:余文韬(1995—),男,硕士生,从事结构多尺度分析的研究. /0000-0002-6898-1912. E-mail :****************通信联系人:谢旭,男,教授,博导. /0000-0002-4247-0487. E-mail :*************.cn第 55 卷第 1 期 2021 年 1 月浙 江 大 学 学 报(工学版)Journal of Zhejiang University (Engineering Science)Vol.55 No.1Jan. 2021超低周疲劳开裂是钢结构在强地震作用下的主要破坏形式之一[1-2]. 这类破坏的特点是在应变集中的焊接部位首先萌生裂纹,随后在循环荷载作用下裂纹扩展,最终发生断裂. 近20年来,许多学者通过试验研究了钢结构超低周疲劳破坏的机理及疲劳寿命的预测方法. 如周晖等[3]对梁柱节点的超低周疲劳性能进行实验研究. Ge等[4-5]以无加劲肋的厚钢板桥墩为对象,研究钢桥墩的超低周疲劳破坏形态. Usami等[6]根据金属阻尼器的超低周疲劳试验研究结果,认为结构的超低周疲劳性能低于母材. 廖燕华等[7]根据钢材焊接接头的超低周疲劳试验结果,确认了焊接接头超低周疲劳寿命低于母材. 既有的研究结果表明,焊接部位是钢结构超低周疲劳破坏的易损位置,且受到焊接构造方式的影响.为了指导钢结构超低周疲劳强度设计,一些学者在传统低周疲劳领域内的Coffin-Mason公式基础上提出适用于超低周疲劳的寿命预测公式. 如Tateishi等[8]提出用分段表示的超低周疲劳寿命经验预测公式. Xue[9]通过引入指数函数和附加的材料参数,提出兼顾低周和超低周疲劳寿命预测的统一表达式. 除此之外,也有学者从微观力学的角度研究结构的超低周疲劳特性,如Kanvinde 等[10]基于Anderson[11]提出的延性破坏空穴扩张模型(VGM模型),建立反复荷载下材料疲劳启裂条件的循环空穴扩张模型(CVGM模型);Tong 等[12]在Bonora[13]研究的基础上,提出适用于超低周疲劳断裂预测的连续损伤力学模型. 在上述寿命预测公式中,局部塑性应变履历是验算结构超低周疲劳强度的主要参数. 为了更具体地探究钢结构超低周疲劳的影响因素,Tataishi等[14]通过对T型焊接接头的试验和数值模拟,认为焊趾半径对塑性应变集中有明显的影响. Kato等[15]针对厚钢板T型焊接接头的未熔透问题进行试验研究,认为当焊接接头的未熔透长度大于钢板厚度的15%时,未熔透长度对接头的超低周疲劳强度有不可忽略的影响.上述研究现状表明,已有一些学者对焊接接头的超低周疲劳性能进行研究,但是局部应变计算方法繁杂、有限元模型单元数量庞大,相关研究比较欠缺,尚未取得全面的认识,所得结果不能用来指导焊接部位构造优化设计. 本文在Abaqus 平台下开发基于Arlequin 算法的多尺度计算程序,用多尺度的结构计算方法实现了任意粗糙单元和精细单元过渡区间网格划分的目的. 通过一系列T型接头的数值分析结果,比较不同焊接构造及加载工况对疲劳寿命的影响,为T型接头焊接构造的优化提供依据.1 计算对象及计算方法1.1 计算对象焊接接头在传递地震荷载时起到重要作用,是钢结构超低周疲劳破坏的易损位置. T型焊接接头是钢结构桥梁中常见的焊接形式,如钢桥墩底板与腹板、翼板与端板、梁柱节点等均采用这种形式的焊接. 为了方便计算和比较,本文参考文献[14]的计算模型,以图1(a)所示的简支结构中间焊接竖向腹板的T型接头为对象,计算焊缝构造对局部应变的影响.该计算模型由长度为L的水平简支钢板和与之垂直的竖向钢板组成,竖向钢板的下端与水平钢板焊接,上端施加如图1(b)所示的强制循环变形δ,加载程序中的δy为简支钢板达到初始屈服时的位移. 图1(a)中,r为焊趾半径,焊脚长度为w,取w=10 mm. 图1(b)中,n为加载次数. 取钢板厚度t为12和36 mm 2种,对应的L分别取160和480 mm. 当t=12 mm时,采用全熔透双面剖口焊图 1 T型焊接接头计算模型以及加载方式Fig.1 Analytical model and loading form of T-welded joint32浙江大学学报(工学版)第 55 卷未熔透位置的间隙为h ,长度为a .材料采用Q345qC 钢,母材、焊接材料及热影响区的Chaboche 混合强化模型参数如表1所示[16].表中,σ|0为塑性应变为0时的屈服应力,Q ∞为屈服强度的最大变化值,εf ′为疲劳塑性系数,b 为屈服面随塑性应变增加的变化率,C kin ,i 为第i 次的随动强化模量初始值,C kin ,i /γi 为背应力的最大变化值,γi 为背应力随塑性应变增加的变化率,c 为疲劳塑性指数.表 1 Q345qC 钢材的Chaboche 混合强化模型参数Tab.1 Parameters of chaboche' strengthening model for Q345qC steel材料σ|0 / MPa Q ∞/ MPa b C kin ,1/MPa γ1C kin ,2 /MPa γ2C kin ,3 /MPa γ3εf ′c 母材354.1013.20.644 373.7523.89 346.6120.2946.118.70.821 9−0.655 0热影响区312.579.80.732 242.4199.23 858.543.1329.20.3−−焊缝428.4517.40.412 752.3160.01 111.2160.0630.526.00.609 7−0.678 61.2 计算方法1.2.1 结构多尺度算法 目前,对焊接部位局部应变的计算除了精细的数值模拟以外,没有其他通用性强的计算方法. 利用精细有限元计算接头塑性应力存在网格划分困难、计算量大的问题. 田村洋等[17]尝试采用多重子结构法,计算焊接位置的局部塑性应力. 该方法通过边界条件建立粗糙模型和精细模型之间的对应关系,但两者之间的边界条件在弹塑性计算中不能精确模拟. 为了避免精细有限元模型带来的繁杂计算量,保证计算结果的可靠性,采用Ben[18]提出的Arlequin 算法,分析焊接接头的局部应变分布. 该算法可以实现不同类型网格之间的过渡,且网格划分的自由度大.如图2所示,Arlequin 算法的主要思想是将结构整体划分成Ω1和Ω2 2个区域,2个区域之间存在重合区域S . 在Ω1和Ω2区域内,可以根据计算精度需求分别划分不同单元,2个区域的单元种类和网格密度可以完全不同. 在耦合区S ,根据Ω1区域和Ω2区域的变形协调关系,建立同时过渡2种单元的耦合算子,实现多尺度的结构计算方法. 利用该算法,可以不考虑Ω1和Ω2之间的单元协调. 整个结构计算模型可以根据计算目的的需要,灵活变换不同的单元类型或者网格尺寸,例如在精度要求较高的区域采用精细网格划分,在其他区域采用粗糙网格划分;在关心的区域采用精细的实体单元、在不关心的区域采用粗糙的梁单元. Ben 等[18-21]利用该方法,达到简化结构分析的计算目的. 本文参考文献[19]的方法,在Abaqus 平台上开发基于Arlequin 算法的耦合单元,实现了在Abaqus 平台上结构多尺度分析的简化.根据Arlequin 算法可知,在区域Ω1和Ω2重合区域S 内2种单元之间的耦合单元刚度方程为式中:k 1为耦合区域S 内按Ω1划分的单元刚度矩阵;k 2为耦合区域S 内按Ω2划分的单元刚度矩阵;αi 和βi 分别为区域内分配给Ωi 区的刚度和荷载系数,其中,0≤αi ≤1.0,0≤βi ≤1.0.当采用H 1耦合时,耦合算子C 定义为式中:参数l 为缩放参数,作用是使得前后2项量纲相同,当l =0时耦合为L 2耦合.1.2.2 计算精度验证 为了验证该方法的计算精度,取T 型焊接结构为例进行分析. t =12 mm ,w =10 mm , r =0,L =160 mm ,加载模式为单调加载,最大强制位移为5δy . 考虑到计算模型具有对称性,取如图3(a )所示的半结构进行计算分析. 利用如图 2 Arlequin 算法的计算区域划分Fig.2 Calculation zone of Arlequin algorithm第 1 期余文韬, 等:焊接构造对T 型接头超低周疲劳性能的影响[J]. 浙江大学学报:工学版,2021, 55(1): 31–37.33图3(b )、(c )所示的2种有限元模型,开展算法精度的验证. 方法A 为精细的有限元模型,网格尺寸为0.1 mm×0.1 mm ,单元数量达到189 440. 方法B 为应用了Arlequin 算法的多尺度计算方法,在粗糙区域内网格尺寸为2 mm×2 mm ,精细区域的网格尺寸为0.1 mm×0.1 mm ,单元总数为13 996. 由于粗糙与精细网格之间的密度相差悬殊,如图3所示的网格形式仅为示意图. 在多尺度模型中,设宽为2 mm 的范围为耦合区,建立耦合单元来进行2种密度单元之间的过渡.如图4所示为采用2种数值分析方法在焊趾两侧1 mm 范围内的等效塑性应变PEEQ 分布情况. 可以看出,2种算法的塑性应变履历相差非常小,表明采用了Arlequin 法的多尺度结构计算方法能够以相对较小的计算量获得足够精确的数值解. 在不特别说明的情况下,后续所提到的数值模拟均为采用了Arlequin 法的多尺度结构建模思路.图 4 多尺度算法验证结果Fig.4 Results of structural multi-scale algorithm verification2 参数影响分析为了能够直观地进行比较,以材料、加载制度及结构几何形态为研究参数,对T 型焊接接头进行参数敏感性分析.2.1 材料参数对计算结果的影响由于焊缝周围的材料力学性质受焊接施工的影响较大,根据以往学者的研究可知,焊接区域附近的材料可以分为焊接材料、热影响区和母材3种. 为了比较不同材料划分区域的影响,对T 型焊接接头按图5采用2种材料划分方式. 1)方式A :严格按母材、热影响区和焊缝的所在区域赋予对应的材料参数;2)方式B :仅在焊趾部位区分母材、热影响区和焊缝3个区域,赋予对应的材料参数,其他区域均按母材考虑,不细分材料的分布.计算采用如图3(c )所示的多尺度模型,强制变形采用最大为5δy 的单调荷载. 如图6所示为利图 3 多尺度算法验证的有限元计算模型Fig.3 Finite element models for structural multi-scale algorithmverification图 5 材料分配方式Fig.5 Material assignment methods of welded joint zone图 6 材料赋值对等效塑性应变的影响Fig.6 Effect of material assignment methods on equivalent plasticstrain at weld toe34浙 江 大 学 学 报(工学版)第 55 卷用2种模型得到的等效塑性应变对比结果. 可以发现,焊趾外的材料参数对焊趾塑性应变计算结果的影响较小,等效塑性应变的比值约为1.0. 为了方便起见,均采用方式B 来赋予单元的材料参数.2.2 加载幅值对计算结果的影响为了比较不同加载程度对塑性应变比值的影响,采用3种不同的等幅值循环加载模式,相应的加载幅值分别设为2δy 、3δy 和5δy . 如图7所示为焊趾附近的等效塑性应变计算结果. 可知,最大等效塑性应变发生的位置不受加载幅值的影响,但幅值随强制位移幅度基本上呈比例增加.图 7 强制位移幅度对等效塑性应变的影响Fig.7 Effect of forced displacement amplitude on equivalent plasticstrain at weld toe2.3 发生最大塑性应变位置当钢板较厚时,采用全熔透焊接较困难,在实际施工过程中可能存留有一段未熔透长度. 为了比较未熔透区长度对焊趾处等效塑应变分布情况的影响,分别以焊趾与未熔透区端部为研究对象,研究等效塑应变最大值发生的地方. 通常未熔透端部的边界情况有如图8所示的2种理想化形式(在接头中的位置参照图1(a )):垂直边界和圆弧形边界. 有限元模型中,t 取值为36 mm ,L 为480 mm , w 为10 mm ,a 分别取值为0、8、16 mm ,高度h 取值为0、0.5、1、2 mm ,r 为0 mm.如表2所示为在不同未熔透长度下最大等效塑应变发生的地方的统计结果. 可以看出,无论是垂直边界还是圆弧边界,未熔透位置的局部塑性应变小于焊趾位置,接头的超低周疲劳性能由焊趾位置的塑性应变控制. 后面所讨论的塑性应变仅局限于焊趾位置处.2.4 焊趾半径的影响为了比较焊趾半径对局部塑性应变的影响,计算模型保持板厚为12 mm 不变,分别取r 为0、0.2、0.5、1、2、4 mm 进行分析. 计算结果如图9所示. 可知,焊趾半径对焊趾处塑性应变集中程度有很大的影响,当焊趾半径为0~1.0 mm 时,塑性应变有明显的减小;随着焊趾半径的增大,塑性应变的减小程度开始放缓.图 9 焊趾半径对最大等效塑性应变的影响Fig.9 Effect of toe radius on maximum equivalent plastic strain2.5 焊趾平整的影响由于焊接工艺的原因,通常焊缝表面会存在凸起或凹陷等不平整的情况. 为了分析焊趾处焊缝表面的不平整对焊趾位置等效塑性应变的影响,以板厚为12 mm 、焊趾半径为4 mm 的焊接接头为对象进行计算分析,比较在焊趾表面凹陷或表 2 考虑未熔透影响的等效塑性应变Tab.2 Equivalent plastic strain considering effect of unwel-ded zone on weld toe编号a /mm h /mm 发生位置PEEQ 100焊趾 3.5828.0 1.0焊趾 3.5728.0 1.0垂直边界0.10316.0 1.0焊趾 3.57316.0 1.0垂直边界0.04416.0 1.0圆弧边界0.11416.02.0焊趾3.57图 8 未熔透端部示意图Fig.8 Schematic diagram of unwelded zone end第 1 期余文韬, 等:焊接构造对T 型接头超低周疲劳性能的影响[J]. 浙江大学学报:工学版,2021, 55(1): 31–37.35凸起对焊趾处等效塑性应变的影响. 如图10所示为表面不平整的形式,分为下陷的凹坑和上鼓的凸面2种形式. 具体的焊趾不平整参数如表3所示. 表中,r 0为曲线半径,h 0为不平整高度.如图11所示为考虑焊趾表面凹陷或凸起时的等效塑性应变计算结果. 焊趾表面的凹陷会明显增大焊趾附近的最大等效塑性应变,凸起对焊趾局部塑性应变的影响相对较小,但在凸起开始和结束位置由于形成凹面会产生应变集中的现象.当凹陷深度相同时,r 0越小,等效塑性应变越大,尖锐的凹坑是容易发生超低周疲劳的部位.3 T 型接头超低周疲劳寿命分析通过分析参数影响可知,焊趾半径及焊缝表面凹凸不平对T 型接头的等效塑性应变有较大的影响. 为了比较这些参数对钢结构超低周疲劳寿命的影响,利用Coffin-Manson 公式进行分析.Coffin 等[22-23]根据钢结构试样在不同塑性应变幅下的疲劳试验结果,得到关于塑性应变幅Δεp 和疲劳寿命N f (以疲劳破坏时所需要等幅加载的圈数表征)的经验曲线. 试验结果表明,这些试样的塑性应变幅对数值和低周疲劳启裂时的寿命对数值之间具有线性关系,即ε′f ε′f 式中:、c 均为常数,根据试验点的回归获得. 根据光滑圆棒试样的循环荷载试验结果可知,焊接材料的=0.609 7,c =−0.678 6[16]. 根据塑性应变结果,可以计算结构的超低周疲劳寿命.如图12所示为焊趾半径对超低周疲劳寿命的影响. 可以看出,焊趾半径的增加会大幅度增加T 型接头的超低周疲劳寿命.如表4所示为焊缝表面凹凸曲线半径对接头超低周疲劳寿命的影响. 通过对比可知,焊缝表面尖锐的凹陷对结构超低周疲劳强度的影响较凸起不利. 当凹陷深度相同时,焊趾半径越大,对应的结构超低周疲劳强度越大.图 12 疲劳寿命-焊趾半径比较图Fig.12 Comparison map of fatigue life-toe radius表 4 焊缝表面凹凸曲线半径-疲劳寿命对照表Tab.4 Comparison table of radius of concave convex curve ofweld surface-fatigue life曲线类型N fr 0=0.2 mm r 0=0.5 mm r 0=1.0 mm r 0=2.0 mm 凹陷 4.719.7618.3127.53凸起27.2210.326.375.98表 3 焊趾不平整参数表Tab.3 Unevenness parameter for welding toe类型r 0/mm h 0/mm 发生位置一个凹陷0.2、0.5、1.0、2.00.5焊趾中点一个凸起0.2、0.5、1.0、2.00.5焊趾中点图 10 焊接表面不平整形式Fig.10 Form of roughness welding surface图 11 焊接表面不平整对等效塑性应变的影响Fig.11 Effect of roughness on equivalent plastic strain at weld toe36浙 江 大 学 学 报(工学版)第 55 卷4 结 论(1)Arlequin 法结合Abaqus 平台,可以有效地进行结构多尺度的弹塑性分析.(2)当钢板较厚时,按照规范(埋弧焊的推荐坡口)的坡口面可以保证带未熔透区构件与全熔透构件的超低周疲劳基本接近,在未熔透区首先发生超低周疲劳破坏的可能性较小.(3)焊趾位置是塑性应变集中的位置,增大焊趾半径可以减少焊趾的局部塑性应变,改善焊接头的抗超低周疲劳性能;在焊趾半径增大到一定程度后,增大焊趾半径的效果不再明显.(4)焊趾处焊接表面凹坑对焊趾的超低周疲劳性能有不利的影响,特别是尖锐的凹坑会显著降低焊趾的超低周疲劳寿命. 磨平焊趾表面可以改善接头的超低周疲劳性能.参考文献(References):GATES W E, MORDEN M. Professional structural engineeringexperience related to welded steel moment frames following the Northridge earthquake [J]. Structural Design of Tall and Special Buildings , 1996, 5(1): 29–44.[1]NAKASHIMA M, INOUE K, TADA M. Classification ofdamage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake [J]. Engineering Structures , 1998, 20(4/6): 271–281.[2]周晖, 王元清, 石永久, 等. 基于微观机理的梁柱节点焊接细节断裂分析[J]. 工程力学, 2015, 32(5): 37–50.ZHOU Hui, WANG Yuan-qing, SHI Yong-jiu, et al. Fracture analyses of welded details in beam-to-column connections using micromechanics-based models [J]. Engineering Mechanics ,2015, 32(5): 37–50.[3]GE H B, KANG L, TSUMURA Y. Extremely low-cycle fatiguetests of thick-walled steel bridge piers [J]. Journal of Bridge Engineering, ASCE , 2013, 18(9): 858–870.[4]TATEISHI K, CHEN T, HANJI T. Extremely low cycle fatigueassessment method for un-stiffened cantilever steel columns [J].Doboku Gakkai Ronbunshuu A , 2008, 64(2): 288–296.[5]USAMI T, WANG C L, FUNAYAMA J. Low-cycle fatigue testsof a type of buckling restrained braces [J]. Procedia Engineering , 2011, 14(14): 956–964.[6]廖燕华, 谢旭, 唐站站. Q345qC 钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报: 工学版, 2018, 52(1): 73–81.LIAO Yan-hua, XIE Xu, TANG Zhan-zhan. Low cycle fatigue[7]properties and fracture mechanism of Q345qC steel and its welded joint [J]. Journal of Zhejiang University: EngineeringScience , 2018, 52(1): 73–81.TATEISH K, HANJI T, MINAMI K. A prediction model forextremely low cycle fatigue strength of structural steel [J].International Journal of Fatigue , 2007, 29(5): 887–896.[8]XUE L. A unified expression for low cycle fatigue and extremelylow cycle fatigue and its implication for monotonic loading [J].International Journal of Fatigue , 2008, 30(10/11): 1691–1698.[9]KANVINDE A M, DEIERLEIN G G. Cyclic void growth modelto assess ductile fracture initiation in structural steels due to ultra-low cycle fatigue [J]. Journal of Engineering Mechanics , 2007,133(6): 701–712.[10]ANDERSON T L. Fracture mechanics: fundamentals andapplications [M]. 3rd ed. Boca Raton: CRC Press, 2005.[11]TONG L W, HUANG X W, ZHOU F, et al. Experimental andnumerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints [J]. Journal of Constructional Steel Research , 2016, 119(1): 98–112.[12]BONORA N. On the effect of triaxial state of stress on ductilityusing nonlinear CDM model [J]. International Journal ofFracture , 1997, 88(4): 359–371.[13]TATAISHI K, CHEN T, HANJI T. A new local strain basedapproach to low cycle fatigue assessment of welded joint [J].JSSC Steel Construction Engineering , 2006, 13(52): 73–81.[14]加藤弘務, 葛漢彬, 羽田新輝. ルートギャップを有さない溶接継手部の未溶着比率が鋼製橋脚隅角部の延性き裂発生·進展に及ぼす影響[J]. 土木学会論文集A1(構造地震工学), 2015,71(4): I-349–362.KATO H, GE H, HADA S. Effect of unwelded ratio on ductile crack initiation and propagation of cross joints in steel beam-column connections without root gap [J]. Journal of Structural Engineering and Earthquake Engineering, JSCE , 2015, 71(4):I-349–362.[15]廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D].杭州: 浙江大学, 2018.LIAO Yan-hua. Research on ultra low cycle fatigue properties and fracture mechanism of steel bridge welded joint [D].Hangzhou: Zhejiang University, 2018.[16]田村洋, 佐々木栄一, 山田均. 応力三軸度に着目した鋼製橋脚における 地震時脆性破壊発生要因に関する解析的検討[J].土木学会論文集A, 2010, 66(3): I–420-434.TAMURA H, SASAKI E, YAMADA H, et al. Analytical study focusing on stress triaxiality on factor of brittle fracture during earthqakes in steel bridge bents [J]. Doboku Gakkai Ronbunshuu A , 2010, 66(3): I–420-434.[17](下转第95页)测[J]. 华中科技大学学报: 自然科学版, 2017, 45(10): 128–132.ZHANG Qin, LUO Wu-yi, HUANG Bo, et al. Prediction of continuous motion of lower limb joints based on EMG signals [J].Journal of Huazhong University of Science and Technology:Natural Science Edition , 2017, 45(10): 128–132.CAI S, CHEN Y, HUANG S, et al. SVM-based classification ofsEMG signals for upper-limb self-rehabilitation training [J].Front Neurorobot , 2019, 13: 31.[11]陈树, 张继中. 基于自适应均值粒子群算法的 SVM 参数优化方法[J]. 测控技术, 2018, 37(4): 6–10.CHEN Shu, ZHANG Ji-zhong. SVM parameter optimization method based on adaptive mean particle swarm optimization [J].Measurement and Control Technology , 2018, 37(4): 6–10.[12]范光辉, 葛科铎, 王璐, 等. 基于下肢表面肌电信号的动作模式识别研究[J]. 齐齐哈尔大学学报: 自然科学版, 2018, 34(6):44–48.FAN Guang-hui, GE Ke-duo, WANG Lu, et al. Research on the action pattern recognition based on the electromyographic signal of the lower limb surface [J]. Journal of Qiqihar University:[13]Natural Science Edition , 2018, 34(6): 44–48.SHULTZ A H, LAWSON B E, GOLDFARB M. Variablecadence walking and ground adaptive standing with a powered ankle prosthesis [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering , 2016, 24(4): 495–505.[14]张仁志, 崔慧娟. 基于短时能量的语音端点检测算法研究[J].电声技术, 2005, 7: 52–54.ZHANG Ren-zhi, CUI Hui-juan. Research on speech endpoint detection algorithm based on short-term energy [J]. Electronic Acoustic Technology , 2005, 7: 52–54.[15]卢祖能, 曾庆杏, 李承晏, 等. 实用肌电图学[M]. 北京: 人民卫生出版社, 2000: 424–434.[16]戴虹, 钱晋武, 张震, 等. GRNN 在肌电预测踝关节运动中的应用[J]. 仪器仪表学报, 2013, 34(4): 845–852.DAI Hong, QIAN Jin-wu, ZHANG Zhen, et al. Application of GRNN in ankle movement prediction based on surface electromyography [J].ChineseJournalofScientificInstrument , 2013, 34(4): 845–852.[17](上接第37页)BEN D H. Multiscale mechanical problems: the Arlequinmethod [J]. Comptes Rendus de l Académie des Sciences-Series IIB – Mechanics – Physics – As tronomy , 1998, 326(12):899–904.[18]乔华. Arlequin 构架下结构多尺度数值模拟[D]. 杭州: 浙江大学, 2011.QIAO Hua. Multi-scale numerical simulation of structures within the arlequin framework [D]. Hangzhou: Zhejiang University,2011.[19]GHANEM A, TORKHANI M, MAHJOUBI N, et al. Arlequinframework for multi-model, multi-time scale and heterogeneous[20]time integrators for structural transient dynamics [J]. Computer Methods in Applied Mechanics and Engineering , 2013, 254:292–308.PFALLER S, RAHIMI M, POSSART G, et al. An Arlequin-based method to couple molecular dynamics and finite element simulations of amorphous polymers and nanocomposites [J].Computer Methods in Applied Mechanics and Engineering ,2013, 260(260): 109–129.[21]COFFIN L F J. A study of the effects of cyclic thermal stresses ona ductile metal [J]. Transaction of ASME , 1954, 97(1): 931–950.[22]MANSON S S. Behavior of material under conditions of thermalstress [R]. Washington D. C.: National Advisory Committee for Aeronautics, 1954.[23]。
掺铒单模光纤飞秒脉冲激光器和放大器
文章编号:1005-5630(2020)06-0066-07DOI : 10.3969/j.issn.1005-5630.2020.06.011掺铒单模光纤飞秒脉冲激光器和放大器曹 顺1,郝 强1,曾和平2(1.上海理工大学 光电信息与计算机工程学院,上海 200093;2.华东师范大学 精密光谱科学与技术国家重点实验室,上海 200062)摘要:为了获得一种被动锁模掺铒光纤振荡器及功率放大器,数值模拟出超短脉冲在光纤中的传输和演化过程,并基于此搭建了一种被动锁模掺铒光纤飞秒振荡器及功率放大器。
实验获得了中心波长1 560 nm 、重复频率100 MHz 、输出功率30 mW 、脉冲宽度85 fs 超短脉冲。
通过采用PPLN 晶体进行倍频,进一步获得了输出功率5 mW ,中心波长780 nm 的飞秒脉冲。
该光纤激光器为全保偏光纤结构,具有体积小巧、可靠性高、稳定性好的特点。
关键词:掺铒光纤激光器;锁模激光器;超短脉冲;倍频中图分类号:TN 248 文献标志码:AErbium-doped single-mode fiber femtosecondpulse laser and amplifierCAO Shun 1,HAO Qiang 1,ZENG Heping2(1. School of Optical-Electrical and Computer Engineering, University ofShanghai for Science and Technology, Shanghai 200093, China;2. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China )Abstract: Based on the numerical simulation of the transmission and evolution of ultrashort pulses in the fiber, a passively mode-locked erbium-doped femtosecond fiber laser was developed.Ultrashort pulses with 1 560 nm central wavelength of, 100 MHz repetition rate, 30 mW output power, and 80 fs pulse width was obtained. By using a PPLN crystal, the femtosecond pulse is frequency-doubled to 780 nm with 5 mW average power. The fiber laser system with all polarization-maintaining fibers could be compact in a small box facilitating high reliability and stability.Keywords: erbium-doped fiber laser ;mode-locked laser ;ultrashort pulse ;frequency doubling收稿日期 :2020-04-17基金项目 :国家重点研发计划(2018YFB0407100)作者简介 :曹 顺(1995—),男,硕士研究生,研究方向为超快激光技术方面的研究。
超薄热管传热性能的数值模拟
thv filling rata is about 50% , thv 0X60— velocity of thv mixed working fluib reachas thv peak veluv of
1.4 m/s. At this tima, thv temperature fluctuation of thv ultra—thin heat pipa is small, and thv heat transfar
IiIo! iiii'** 腳 ■・・删一・』
||[||||[||
兀
▲图2超薄热管网格划分
3控制方程
在模拟超薄热管蒸发与冷凝过程中,采用流体体 积模型,主要用于捕捉蒸发、冷凝过程 液两相之间 的界面变化。在计算过程中,流体体积模型可以追踪
每一种相在计
的体积
%
别用*
和*表示超薄热管内部液相和气相所占的体积
式中:p为密度,kg/m3 ; u为速度矢量,m/s; @为时间,
蒸发段
吸收热量 热管工作原理
为了计算的准确性,模型二维截面采用自由网格 划分%由于涉及到蒸发段的相变过程,因此蒸发段的
38 I 2021,59(6)
动量守恒方程为:
( /-(pu) + V • (ppu) h-!p + ! $ !u +
- g V • u) ] +pg + Fy
(2)
式中:P为重力加速度,m/s2 ;p为压力,Pa;$为动力黍占
总第682期机植制造®
度系数,Pa • s;)为单位张量;F为表面张力,N/m。 能量守恒方程为:
—(pE# + ![ ((pE +p# ] = ! o ( ^cfVr) +S( (3 ) dt
考虑低碳排放的并网型风电制氢加氢站优化运行
第 38 卷电力学报3.4 修正计算范例 以某350 MW 等级超临界燃煤发电机组为例,对其煤耗进行修正,该机组2022年的部分运行数据见表3,所用燃煤主要成分及修正系数见表4。
根据《火力发电厂技术经济指标计算方法》(DL/T 904),可以计算出该机组2022年度供电煤耗的平均值为295.66 g/(kW ·h );根据机组供热平均抽汽压力值0.35 MPa ,可以计算出折算系数为0.213,利用式(22)可以计算出供热修正煤耗为301.53 g/(kW ·h );由于该机组年均负荷率为73.00%,根据图3,可取负荷修正系数为1.02;根据表4中计算结果,可以计算出煤质修正系为1.003 24,因此对供热修正煤耗做进一步修正后可得该机组参与对标的煤耗值为301.53÷1.02÷1.003 24=294.67,g/(kW ·h )。
4 结论本文提出了适合燃煤发电机组的一套全新综合对标方法,该方法可以更加真实地反映出机组实际技术与管理水平,能够用来进行机组的综合对标及评价工作,也能够为其他类型发电机组开展综合对标提供很好的技术参考。
该方法可大力推进我国发电企业开展对标活动,有利于找出燃煤发电机组在日常运行管理中的差距与不足,能够有效指导发电企业进一步提高管理理念与管理措施,不断提高电厂的精细化管理水平,促进发电企业提高设备的安全性、可靠性与经济性。
这不仅有利于我国发电企业全面提升管理水平及经济效益,同时对提升我国发电相关的规划设计、设备制造及建设安装等相关企业全球竞争力,提高我国发电行业在世界发电领域的地位乃至提升我国的国际影响力都有着重要作用。
参考文献:[1] 李润国,李静.对标管理在铁路运输行业的应用研究[J ].管理现代化,2014,34(6):52-54.[2] 陈廉,陈强.基于VRS 包络模型的工业企业对标实证研究[J ].工业技术经济,2017,36(10):108-116.CHEN Lian ,CHEN Qiang.Empirical Study on Industrial Enterprises Based on VRS Envelopment Model [J ].Journal of In⁃dustrial Technological & Economics ,2017,36(10):108-116.[3] 黄岗,董发俊,赵凯,等.对标管理在库什塔依水电站工程管理中的应用[J ].水力发电,2012,38(4):79-81.HUANG Gang ,DONG Fajun ,ZHAO Kai ,et al.Application of Benchmarking Management in the Construction of Kushi⁃tayi Hydropower Station [J ].Water Power ,2012,38(4):79-81.[4] 于菲菲,田文浩,王廷春.石油化工企业过程安全管理评估系统的设计与应用研究[J ].中国安全生产科学技术,2015,11(4):112-115.YU Feifei ,TIAN Wenhao ,WANG Tingchun.Design and Application of Assessment System for Process Safety Manage⁃ment in Petrochemical Enterprises [J ].Journal of Safety Science and Technology ,2015,11(4):112-115.[5] 梅杰,刘成刚,苗雨阳.企业能效对标系统的设计与实现[J ].计算机应用与软件,2018,35(1):137-141.表3 机组部分运行数据Tab.3 Partial unit operation data项目机组平均负荷率/%标准煤消耗/万t机组供电量/(亿kW⋅h )数值73.0052.1716.89项目供热量/万GJ 供热比平均抽汽压力/MPa 数值61.100.040.35表4 主要煤质参数与修正系数Tab.4 Main coal quality parameters and correction factors项目干燥无灰基挥发分V daf /%收到基灰分A ar /%含量20.9832.88修正系数1.0001.002 88项目收到基硫分w (S )ar /%收到基全水分M ar /%含量1.0913.55修正系数1.000 361.000496497第 6 期李建锋:燃煤发电机组综合对标方法研究MEI Jie,LIU Chenggang,MIAO Yuyang.Design and Implementation of Enterprise Energy Efficiency Benchmarking Sys⁃tem[J].Computer Applications and Software,2018,35(1):137-141.[6]黄新,王健,兰吉勇.火电机组节能对标管理系统的研究与开发[J].华东电力,2011,39(10):1733-1736.HUANG Xin,WANG Jian,LAN Jiyong.Research and Development on Energy Saving Benchmarking Management for Thermal Power Generation Units[J].East China Electric Power,2011,39(10):1733-1736.[7]王长庚.以对标管理促发电企业全面提质增效[J].企业管理,2017(S1):342-343.[8]张玫.大型发电集团全方位对标管理实践[J].企业管理,2017(S2):582-583.[9]李斌,李建锋,盛建华,等.300 MW级循环流化床锅炉机组运行分析[J].中国电力,2012,45(2):35-39.LI Bin,LI Jianfeng,SHENG Jianhua,et al.Status of 300 MW Circulating Fluidized Bed Boiler Unit Operation[J].Electric Power,2012,45(2):35-39.[10]李斌,李建锋,吕俊复,等.我国大型循环流化床锅炉机组运行现状[J].锅炉技术,2012,43(1):22-28.LI Bin,LI Jianfeng,LYU Junfu,et al.Status of Large Scale Circulating Fluidized Bed Boiler Operation in China[J].Boiler Technology,2012,43(1):22-28.[11]张家宽,张友辉,程东涛.引风机驱动汽轮机排汽压力高原因分析[J].发电设备,2021,35(6):446-449.ZHANG Jiakuan,ZHANG Youhui,CHENG Dongtao.Cause Analysis of High Exhaust Steam Pressure of Driving Steam Turbine of Induced Draft Fan[J].Power Equipment,2021,35(6):446-449.[12]李建锋,李斌,吕俊复.涡扇发动机技术用于降低火电机组厂用电分析[J].机械工程学报,2012,48(18):137-143.LI Jianfeng,LI Bin,LYU Junfu.Analysis of Transplanting Turbofan Engine Technology to Reducing Power Consumption Rate of Thermal Power Unit[J].Journal of Mechanical Engineering,2012,48(18):137-143.[13]李斌,李建锋,高志宏,等.260 t/h循环流化床锅炉秸秆混烧试验[J].中国电力,2012,45(6):35-38.LI Bin,LI Jianfeng,GAO Zhihong,et al.Straw Co-Combustion Experiment in a 260 t/h Circulating Fluidized Bed Boiler [J].Electric Power,2012,45(6):35-38.[14]王爽奇,田宇,龚迎莉,等.330 MW煤粉锅炉掺烧生物质气化气对锅炉性能的影响分析[J].电力学报,2021,36(5):397-403.WANG Shuangqi,TIAN Yu,GONG Yingli,et al.Analysis on Effect of Boiler Performance of Mixed Burning Biomass Gasification Gas in a 330 MW Pulverized Coal Boiler[J].Journal of Electric Power,2021,36(5):397-403.[15]张荔,汪靖,汪旭宁,等.330 MW太阳能协同燃煤发电机组的性能分析[J].电力学报,2022,37(4):343-350.ZHANG Li,WANG Jing,WANG Xuning,et al.Performance Analysis of 330 MW Solar Cooperative Coal-Fired Genera⁃tor Unit[J].Journal of Electric Power,2022,37(4):343-350.[16]BANDYOPADHYAY S,BERA N C,BHATTACHARYYA S.Thermoeconomic Optimization of Combined Cycle Power Plants[J].Energy Conversion and Management,2001,42(3):359-371.[17]张东.热电联产机组供热煤耗计算方法分析[J].华电技术,2013,35(7):44-46,78.ZHANG Dong.Analysis on Calculation Method of Coal Consumption for Heat Supply of Cogeneration Unit[J].Huadian Technology,2013,35(7):44-46,78.[18]MORAN A L,MAGO P J,CHAMRA L M.Thermoeconomic Modeling of Micro-CHP (Micro-Cooling,Heating,and Power) for Small Commercial Applications[J].International Journal of Energy Research,2008,32(9):808-823.[19]李建锋,吕俊复,论立勇,等.燃煤热电联产机组性能评价方法研究[J].中国科学:技术科学,2017,47(1):60-70.LI Jianfeng,LYU Junfu,LUN Liyong,et al.Calculation Method Research of Power Supply Coal Consumption of Coal-Fired Cogeneration Unit[J].Scientia Sinica (Technologica),2017,47(1):60-70.[20]李斌,金昱,肖显斌.多变量煤质特性对循环流化床锅炉效率的影响[J].电力科技与环保,2019,35(2):23-27.LI Bin,JIN Yu,XIAO Xianbin.Effect of Multivariable Coal Quality Characteristics on Efficiency of CFB Boilers[J].Elec⁃tric Power Technology and Environmental Protection,2019,35(2):23-27.[21]于婷俐,李伟伟,张立栋.600 MW超临界锅炉煤质变化对锅炉效率的影响[J].应用能源技术,2019(2):30-34.YU Tingli,LI Weiwei,ZHANG Lidong.Effect of Coal Quality Change for 600 MW Supercritical Boiler on Boiler Efficien⁃cy[J].Applied Energy Technology,2019(2):30-34.[责任编辑:常建峰]第 38 卷第 6 期2023 年 12 月Vol.38 No.6Dec. 2023电力学报JOURNAL OF ELECTRIC POWER文章编号:1005-6548(2023)06-0498-10 中图分类号:TM621 文献标识码:A 学科分类号:47040 DOI:10.13357/j.dlxb.2023.053开放科学(资源服务)标识码(OSID):W火焰锅炉氮氧化物排放特性数值模拟研究杨希刚1,2,陈辉2,王圣2,赖金平2,黄林滨2,李朝兵2,戴维葆2(1.东南大学能源与环境学院,南京 210096;2.国家能源集团科学技术研究院有限公司,南京 210031)摘要:W火焰锅炉将面临NO x超低排放改造的要求,需要在现有的SCR脱硝系统上增加炉膛SNCR脱硝技术,而炉内NO x浓度分布对SNCR脱硝效率有影响。
基于测量基优化的低采样率单像素成像
光学 精密工程Optics and Precision Engineering第 29 卷 第 5 期2021年5月Vol. 29 No. 5May 2021文章编号 1004-924X(2021)05-1008-06基于测量基优化的低采样率单像素成像赵梓栋】,杨照华",李高亮2(1.北京航空航天大学仪器科学与光电工程学院,北京100191;2.北京华航无线电测量研究所,北京100010)摘要:单像素成像结合压缩感知相关算法利用很少一部分无空间分辨的桶探测器采样值就能重构出成像物体的高质量 图像。
然而,随机地选取投射的散斑序列无法在更低的采样率下成像。
为进一步实现单像素成像在极低采样率下的成像效果,本文提出了基于数据驱动的哈达玛矩阵排序方案,利用对整个数据集的训练效果来自适应地选择透射的散斑信号序列,在重构图像过程中使用两种不同的压缩感知相关算法在数值仿真和实验条件下实现了 5%超低采样率下对成像物体的图像重构,并和目前最优的哈达玛矩阵排序方案进行了比较,发现在1%〜5%的采样率下本文方法的重构效果更优。
本文研究成果可用于提升单像素成像的成像速度,在成像制导和医学成像中有着极大的应用前景。
关 键 词:鬼成像;单像素成像;压缩感知;哈达玛矩阵排序;数据驱动中图分类号:O431. 2 文献标识码:A doi :10. 37188/OPE. 20212905. 1008Sub -Nyquist single -pixel imaging by optimizing sampling basisZHAO Zi -dong 1 , YANG Zhao -hua 1* , LI Gao -liang(1. Beijing University of A eronautics and Astronautics , Beijing 100191, China ;2. Beijing Huahang Radio Measure/nent Institute , Beijing 100010, China )* Corresponding author , E -mail : yangzh@buaa. edu. cnAbstract : Single -pixel imaging combined with compressed sensing can reconstruct high -quality images ofan imaged object from a small part of the measurement results of a bucket detector without a spatial resolu tion. However , at low sampling rates , randomly selected projected speckle sequences limit the quality ofreconstructed images. To achieve improved imaging at very low sampling rates , this paper proposes a da ta -driven Hadamard matrix sorting scheme , which uses the training effect of an entire dataset to adaptively select transmitted speckle signal sequences. In the process of reconstructing an image , two different com pressed -sensing -related algorithms are employed to realize the image reconstruction of an imaged object atan ultra -low sampling rate of 5% in a numerical simulation and physical experiment , and it is sorted with the current optimal correlation Hadamard matrix. The schemes are compared , and it is found that the re construction effect of the method proposed in this paper is better at sampling rates of 1% to 5%. The re search results presented in this paper can be used to increase the imaging speed of single -pixel imaging , and can be applied to fields such as imaging guidance and medical imaging.Key words : ghost imaging ; single pixel imaging ; compressed sensing ; Hadamard matrix reordering ; datadriven收稿日期:2020-10-14;修订日期:2020-10-29.基金项目:国家自然科学基金资助项目(No. 61973018,No. 61801452);国家民用航天项目资助(No.G040301)第5期赵梓栋,等:基于测量基优化的低采样率单像素成像10091引言二维图像是如今应用最为广泛的光电信息之一。
小口径非球面玻璃透镜模压成形_尹韶辉
0
前言
*
随着光电通信、光学、汽车、生物工程、航空 航天技术、电子及军用武器装备的迅速发展,光学 玻璃应用日趋广泛。非球面玻璃透镜因为能够有效 减小影像畸变、彗星像差,改善成像质量,提高系 统鉴别能力, 并简化仪器结构等[1]而成为备受重视。
* 国家科技重大专项(2010ZX04001-151)、国家自然科学基金(50975804) 和 江 苏 省 科 技 计 划 (BE2011053) 资 助 项 目 。 20111228 收 到 初 稿 , 20120508 收到修改稿
Abstract:The growth of the consumer electronics industry and a desire for light weight, compact, portable and high performance products has led to an increasing demand for aspherical glass lens. Glass lens molding offers a promising approach for large volume, cost effective production of precision micro aspherical glass lens which is difficult to make using conventional abrasive lens fabrication techniques. The glass lens molding technology is a comprehensive processing strategy and keeps close relations with such fields as optical design, glass materials, ultra-precision mold process, coating, glass molding process, molding simulation and so on. Therefore, it is necessary to make systematic analysis and intensive review on these key technologies which influence the molding quality. The retrospection of the development history and status of glass molding process is presented. The characteristic of optical glass, major components, low melting point and environmental trends are analyzed. The development of mold materials, nano-grinding, ultra-precision polishing, coating materials and coating technology are analyzed. Molding technology status and simulation techniques are analyzed. The development trend is pointed out. Key words:Micro aspherical glass lens Aspheric mold machining Molding technology Numerical simulation
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Progress In Electromagnetics Research,PIER65,59–69,2006 NUMERICAL ANALYSIS OF A SMALL ULTRA WIDEBAND MICROSTRIP-FED TAP MONOPOLE ANTENNAA.A.EldekDepartment of Computer EngineeringJackson State UniversityJSU Box17098,Jackson,MS39217-0198,USAAbstract—This paper presents a planar microstrip-fed tab monopole antenna for ultra wideband wireless communications applications.The impedance bandwidth of the antenna is improved by adding slit in one side of the monopole,introducing a tapered transition between the monopole and the feed line,and adding two-step staircase notch in the ground plane.Numerical analysis for the antenna dimensional parameters using Ansoft HFSS is performed and presented.The proposed antenna has a small size of16×19mm,and provides an ultra wide bandwidth from2.8to28GHz with low VSWR level and good radiation characteristics to satisfy the requirements of the current and future wireless communications systems.1.INTRODUCTIONFrom mobile telephones to wireless Internet access to networked appliances and peripherals,there is an increasing reliance on wireless communications to provide functionality for products and services.Therefore,the technologies for wireless communications always need further improvement to satisfy higher resolution and data requirements.That is why ultra wideband(UWB)communications systems covering 3.1GHz to10.6GHz released by the Federal Communications Commission(FCC)in2002[1]are currently under development.However,there is always an increasing demand for smaller size,and greater capacities and transmission speeds,which will certainly require more operating bandwidth in the near future.In the last few years,researchers have investigated several kinds of microstrip slot and printed antennas for UWB applications[2–15].One60Eldek of the best antennas in the last decade is the tap monopole antenna. The planar tap monopole antennas have been adopted and studied extensively for UWB communications systems because of their many appealing features.These features include wide impedance bandwidth, simple structure,small size,low profile,and omni-directional radiation patterns.Number of wideband tap monopole configurations,such as rectangular,elliptical,pentagonal,and hexagonal has been proposed for UWB applications[5:15].Wide impedance bandwidth of(1:1.7), (1:2.25),(1:2.87),(1:3.4),(1:3.5),(1:3.7),(1:3.75)and(1:10.7)for VSWR<2,and an antenna size of20,24,20,23,16,26,30,and more than52mm are reported in[7–14],respectively.Recently,we presented a modified printed tap monopole antenna for UWB applications with a slit,notched ground plane,and tapered transition between the tap monopole and the feed line with a very wide impedance bandwidth of(1:7.9)[15].In this paper,we present numerical analysis of the antenna in[15]to show the effect of each dimensional parameter.The numerical analysis results in a much better bandwidth of(1:10),with a low VSWR level of less than1.75, and a small size of16mm,which is smaller than the antennas presented in[2–14].The results in this paper are obtained from Ansoft HFSS simulations,which are based on the Finite Element Method(FEM). Verification of thefinal results is performed using a FDTD based code designed by the author.2.ANTENNA GEOMETRY AND PARAMETERSThe geometry and parameters of the proposed broadband tap monopole antenna are depicted in Fig.1.The antenna is printed on an FR4Epoxy substrate with a relative dielectric constant(εr)of4.4,a tangential loss(tanσ)of0.02,a thickness(h)of1.6mm,a width(W s) of16mm and a length(L s)of19mm.The basic antenna structure consists of a rectangular patch with a narrow slit,a tapered transition, a feedline,and a truncated ground plane with a two-step staircase notch.The rectangular patch has a width P1and a height P2.A narrow slit of width S1and depth S2is cut on the patch’s right side and placed at a distance S3away from the lower right corner of the patch. The slit is placed to create additional path for the surface current, which produces an additional resonance,and as a result,increases the bandwidth when the dimensions are properly chosen,which is proven in[15]by comparing VSWRs for antennas with and without slit.Additionally,because this slot is very narrow it does not disturb the existing resonances of the tap monopole.Progress In Electromagnetics Research,PIER 65,200661Top LayerBottom Layerxz y Figure 1.The geometry and parameters of proposed planar tap monopole antenna.The patch is connected to a feed line of width W f and length L f through a tapered transition,which is defined by the parameters T 1to T 6,as shown in Fig.1.The tapering produces a smooth transition,which reduces the reflections resulting from the sudden change from the feedline width to the patch width.On the other side of the substrate,a conducting ground plane of width =W s and length =L G is placed.The truncated ground plane is playing an important role in the broadband characteristics of this antenna,because it helps matching the patch with the feedline in a wide range of frequencies.This is because the truncation creates a capacitive load that neutralizes the inductive nature of the patch to produce nearly-pure resistive input impedance.To further enhance the matching,a two-step staircase notch is embedded in the truncated ground plane.The notch is defined by the parameters N 1to N 4as depicted in Fig.1.In addition,two triangles of height =N 5are added at the notch sides.The two-step staircase notch and the two triangles are used to control the impedance bandwidth and return loss level by modifying the capacitance between the patch and the ground plane.62Eldekf(GHz)f(GHz)(a)(b)f(GHz)Tapered Transition(c)Figure2.The effect of the tapered transition parameters(a)T4,(b) T5,and(c)T6.3.NUMERICAL ANALYSISThe parameters of this antenna are studied by changing one parameter at a time andfixing the others.The initial dimensions of the antenna are as follows:(1)Substrate:W s=16,L s=19,(2)Patch and Slit: P1=7,P2=9,S1=0.3,S2=2.5,S3=0.5,(3)Tapered Transition: T1=1,T2=0.75,T3=0.75,T4=4,T5=1,T6=1,(4)Feedline: W f=2,L f=3,and(5)G round and Notch:L G=4,N1=7,N2= 5,N3=1.5,N4=1,N5=0mm.In this study,the parameters T4:T6,S1:S3and N1:N5are presented in Figs.2,3and4,respectively,to show the effect of the tapered transition,the slit,and the notch on the VSWR of the antenna.The VSWR is computed over a large bandwidth from2to25GHz usingProgress In Electromagnetics Research,PIER65,2006631.52.5f(GHz)f(GHz)(a) (b)1.52.5f(GHz)Slit(c)Figure3.The effect of the slit parameters(a)S1,(b)S2,and(c)S3.the commercial computer software package HFSS of Ansoft.Figure2shows the effects of T4,T5and T6.G enerally,increasing these parameters improves the overall VSWR level because the transition from the feedline to the monopole becomes smoother.The parameter T4has more effect in the middle range.In addition, increasing T4decreases the upper operating frequency resulting in decreasing the bandwidth after T4=5mm.The parameter T6can be used to improve the VSWR at higher frequency,resulting in improving the bandwidth.The maximum bandwidth occurs at T6=1.5mm.On the other hand,the effects of the slit parameters are shown in Fig.3.Increasing the slit width S1does not have significant effect. This may be because of the low coupling between the currents on the sides of the slit.The slit length S2and the slit distance from the edge S3control the VSWR level at11.5GHz.This is mainly because these64Eldekf(GHz)f(GHz)(a)(b)f(GHz)f(GHz)(c)(d)f(GHz)Notched Ground Plane(e)Figure 4.The effect of the notch parameters (a)N 1,(b)N 2,(c)N 3,(d)N 4,and (e)N 5.Progress In Electromagnetics Research,PIER65,200665 two parameters control the impedance of the arm to the right of the slit,which can be considered an open circuit stub.Figure4shows the effect of the notch parameters in the ground plane,which mainly affect the capacitance between the monopole and the ground plane.The overall capacitance is equivalent to number of capacitors connected together in parallel.N1and N2control the number of capacitors while N3and N4control their different capacitances.N5is another parameter for smoothing the notch and matching the feedline with the monopole.N1and N2have a clear effect at higher frequencies because they control the total capacitance.When N1increases and N2decreases the VSWR level decreases.The best bandwidth is obtained when N2=4mm,where the antenna operates from2.8to more than25GHz.The parameters N3and N4affect the VSWR level at the entire band.Increasing N3and N4improve the VSWR at higher frequencies,and increase it at the middle range between4and13G Hz.Finally,increasing N5is found not to be helpful because it increases the VSWR level.The zero value of N5gives the best performance in terms of bandwidth and VSWR level.4.FINAL DESIGNThe best bandwidth and VSWR level are obtained for the antenna with N2=4mm,where the antenna is still working after25G Hz. Therefore the VSWR is recomputed up to30GHz using Ansoft HFSS. Furthermore,to verify the results of HFSS,the antenna is simulated using our own FDTD code with CPML boundary[16].In FDTD,the spatial increments(∆x,∆y,∆z)=(0.05,0.05,0.2mm),and a G aussian waveform was used for excitation.A total number of10000time steps were used in order to ensure that the time domain response approaches zero.A comparison between the computed VSWR and input impedance real and imaginary parts using HFSS and FDTD is presented in Fig.5. Good agreement is observed which validates the design procedure using HFSS.The little differences between the two results are because of using stair case in FDTD to model the transition part,which affects the results,especially at higher frequencies,where∆x/λis relatively high.Both results show that the antenna operates over a wide range that extends from2.8to28G Hz,which is(1:10).The VSWR level is less than1.75in almost the entire operating band.The low VSWR level results from the tapered transition and the good matching achieved by the two-step staircase notch.The average value of the real part of the resulting input impedance is approximately50Ω,while the66Eldekf (GHz)f (GHz)(a) (b)Figure puted(a)VSWR and(b)Input impedance,using HFSS and FDTD for a tap monopole of W s=16,L s=19,P1= 7,P2=9,S1=0.3,S2=2.5,S3=0.5,T1=1,T2=0.75,T3= 0.75,T4=4,T5=1,T6=1,W f=2,L f=3,L G=4,N1= 7,N2=4,N3=1.5,N4=1,and N5=0mm.imaginary part is slightlyfluctuating around zero value.This proves the aforementioned explanation of the effect of truncating the ground plane,and introducing a stair case notch inside it,in producing almost pure resistive input impedance.Although the change in the antenna dimensions results in a considerable enhancement in the antenna bandwidth from(1:7.9)to (1:10),this change does not significantly change the radiation patterns and the antenna gain.In fact,the farfield characteristics of this antenna are quite similar to those of the antenna in[15],as depicted in Figs.6and7,which show the radiation patterns for thefinal design at5,10,15,20,and25G Hz.In the E-plane,as shown in Fig.6,the antenna provides almost dipole-like radiation patterns in entire band that are deteriorated little at higher frequencies and affected by the truncated ground plane.In the H-plane,as depicted in Fig.7,the antenna provides quasi omni-directional at5and10G Hz,then starts to produce four major lobes at15GHz.The antenna provides an approximate average gain of4dB in the entire operating band.The next step will be building and measuring this antenna,which is not possible at this moment because we do not have equipment at Jackson State University.However,the measurement may not be required to verify the HFSS and FDTD results,since they have been already verified by the good comparison between their results.Progress In Electromagnetics Research,PIER 65,200667E-plane patterns at f = 5 GHzE-plane p atterns at f = 10 GHzE-plane patterns at f = 15 GHzE-plane patterns at f = 20 GHzE-plane patterns at f = 25 GHzE-PlaneFigure 6.The computed co (E θ)and cross (E φ)polarized radiation patterns in the E -plane (y -z ).xy H-PlaneH-plane patterns at f = 5 GHzH-plane patterns at f = 10 GHz-40-30 -20 -106030H-plane patterns at f = 15 GHzH-plane patterns at f = 20 GHzH-plane patterns at f = 25 GHzFigure 7.The computed co (E θ)and cross (E φ)polarized radiation patterns in the H -plane (x -z ).68Eldek 5.CONCLUSIONThis paper presents a numerical analysis and design of a printed tap monopole antenna with a small size for UWB wireless communications applications.A slit,tapered transition and two-step staircase notch are implemented to obtain the ultra wide bandwidth of the antenna. The presented antenna exhibits an ultra wide impedance bandwidth of1:10,with a low VSWR level of less than1.75,and a small size compared to the UWB antennas reported recently.This antenna is a good candidate for hand-held UWB applications.REFERENCES1.FCC,“First report and order on ultra-wideband technology,”Tech.Rep.,2002.2.Eldek,A.A.,A.Z.Elsherbeni,and C.E.Smith,“Rectangularslot antenna with patch stub for ultra wideband applications and phased array systems,”Progress In Electromagnetics Research, PIER53,227–237,2005.3.Eldek,A.A.,A.Z.Elsherbeni,and C.E.Smith,“Dual-widebandsquare slot antenna with a U-shaped printed tuning stub for wireless communication systems,”Progress In Electromagnetics Research,PIER53,319–333,2005.4.Eldek,A.A.,A.Z.Elsherbeni,and C.E.Smith,“Square slotantenna for dual wideband wireless communication systems,”J.of Electromagn.Waves and Appl.,Vol.19,No.12,1571–1581, 2005.5.Chen,Z.N.,M.W.Y.Chia,and M.J.Ammann,“Optimizationand comparison of broadband monopole,”Proc.Inst.Elect.Eng., Vol.150,No.6,429–435,Dec.2003.6.Antonino-Daviu,E.,M.Cabedo-Fbre’s,M.Ferrando-Bataller,and A.Valero-Nogueira,“Wideband double-fed planar monopole antennas,”Electronic Lett.,Vol.39,No.23,1635–1636,Nov.2003.7.Lin,C.C.,Y.C.Kuo,and H.R.Chuang,“A planar triangularmonopole antenna for UWB communication,”IEEE Microwave and Wireless Components Lett.,Vol.15,No.10,624–626,Oct.2005.8.Al Sharkawy,M.,A.A.Eldek,A.Z.Elsherbeni,and C.E.Smith,“Design of wideband printed monopole antenna using WIPL-D,”The20th Annual Review of Progress in Applied Computational Electromagnetics,ACES’04,Syracuse,NY,Apr.2004.9.Klemm,M.and G.Troester,“EM energy absorption in the humanProgress In Electromagnetics Research,PIER65,200669 body tissues due to UWB antennas,”Progress In Electromagnetics Research,PIER62,261–280,2006.10.G ao,Y.,B.L.Ooi,and A.P.Popov,“Band-notched ultra-wideband ring-monopole antenna,”Microwave Opt.Tech.Lett., Vol.48,No.1,125–126,Jan.2006.11.Junh,J.,W.Choi,and J.Choi,“A small wideband microstrip-fedmonopole antenna,”IEEE Microwave and Wireless Components Lett.,Vol.15,No.10,703–705,Oct.2005.12.Chung,K.,J.Kim,and J.Choi,“Wideband microstrip-fedmonopole antenna having frequency band-notch function,”IEEE Microwave and Wireless Components Lett.,Vol.15,No.11,766–768,Nov.2005.13.Choi,S.H.,J.K.Park,S.K.Kim,and J.Y.Park,“A new ultra-wideband antenna for UWB applications,”Microwave Opt.Tech.Lett.,Vol.40,No.5,399–401,Mar.2004.14.Agrawall,N.P.,G.Kumar,and K.P.Ray,“Wide-band planarmonopole antennas,”IEEE Trans.Antennas Propag.,Vol.46, No.2,294–295,Feb.1998.15.Eldek,A. A.,“A small ultra wideband planar tap monopoleantenna with slit,tapered transition and notched ground plane,”Microwave Opt.Tech.Lett.,Vol.48,No.8,1650–1654,Aug.2006.16.Roden,J.A.and S.D.G edney,“Convolutional PML(CPML):An efficient FDTD implementation of the CFS-PML for arbitrary media,”Microwave Opt.Tech.Lett.,Vol.27,No.5,334–339,Dec.2000.。