初三年级数学试卷深圳市学府中学

合集下载

广东省深圳市南山区南山二外(集团)学府中学2023-2024学年九年级下学期开学考数学试题

广东省深圳市南山区南山二外(集团)学府中学2023-2024学年九年级下学期开学考数学试题

A. (x 2)2 0 B. (x 2)2 5
C. (x 1)2 1
D. (x 1)2 5
3.不透明的盒子放有三张大小、形状及质地相同的卡片,卡片上分别写有李白《峨眉
山月歌》,李白《渡荆门送别》和王维《寄荆州张丞相》三首诗,小明从盒子中随机抽
取两张卡片,卡片上诗的作者都是李白的概率( )
A.点 O 为Y ABCD 的对称中心 C. S△ ABE : S△ BDF AE : ED
B. BE 平分 ABD D.四边形 BEDF 为菱形
试卷第 2 页,共 7 页
10.如图 1,在平行四边形 ABCD 中, B=60, BC 2AB ,动点 P 从点 A 出发,以 每秒 1 个单位的速度沿线段 AB 运动到点 B 停止,同时动点 Q 从点 B 出发,以每秒 4 个 单位的速度沿折线 B C D 运动到点 D 停止.图 2 是点 P、Q 运动时,VBPQ 的面积 S 与运动时间 t 函数关系的图象,则 a 的值是( )
广东省深圳市南山区南山二外(集团)学府中学 2023-2024 学年九年级下学期开学考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题 1.右图是我们生活中常用的“空心卷纸”,其主视图为( )
A.
B.
C.
D.
2.用配方法解一元二次方程 x2 4x 1,变形正确的是( )
【探究与延伸】
(1)以下是某中学九年级(4)班同学们的一些猜测,其中正确的是(填序号);
①运动过程中,△APQ 的周长不变;
②运动过程中,△APQ 面积不变;
③运动过程中,△APQ 的形状不变;
④运动过程中, APQ 的大小不变.

深圳南山区学府中学九年级数学上册第二十四章《圆》经典测试卷(培优练)

深圳南山区学府中学九年级数学上册第二十四章《圆》经典测试卷(培优练)
24.在△ABC中,已知∠ACB=90°,BC=3,AC=4,以点C为圆心,2.5为半径作圆,那么直线AB与这个圆的位置关系分别是_________.
25.如图,若∠BOD=140°,则∠BCD=___________.
26.如图,直线AB,CD相交于点O,∠AOC=30°,半径为1cm的的圆心P在射线OA上,且与点O的距离为6cm,以1cm/s的速度沿由A向B的方向移动,那么与直线CD相切时,圆心P的运动时直径,CD是 的一条弦,且 于点E.
(1)若 ,求 的度数;
(2)若 , ,求 的半径.
28.如图,点 为 弦 的中点,过点 , 作直径 ,连接 ,过点 的弦 交 于 .求证: .
29.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠CAE=∠ADC.
(1)求证:AE是⊙O的切线;
A.1B. C.2D.4
14.如图,AB为圆O的直径,点C在圆O上,若∠OCA=50°,OB=2,则弧BC的长为( )
A. B. C. D.
15.如图,点M是矩形ABCD的边BC、CD上的点,过点B作BN⊥AM于点P,交矩形ABCD的边于点N,连接DP,若AB=6,AD=4,则DP的长的最小值为()
A.2B. C.4D.5
二、填空题
16.如图,点 , , 在圆 上, ,则 的度数是______.
17.如图, ,点 是 上的一点,且 ,则以4为半径的 与直线 的公共点的个数______.
18.已知扇形的圆心角为 ,面积为 ,则扇形的半径是___________.
19.如图,点 , , 在 上,顺次连接 , , , .若四边形 为平行四边形,则 ________ .
A. B. C. D.
11.如图,AB是⊙O的直径,C,D是⊙O上的点, ,过点C作⊙O的切线交AB的延长线于点E,则 等于()

深圳南山区学府中学九年级数学上册第五单元《概率初步》检测卷(有答案解析)

深圳南山区学府中学九年级数学上册第五单元《概率初步》检测卷(有答案解析)

一、选择题1.现有三张正面分别标有数字1-,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点()P m n ,在第二象限的概率为( )A .12B .13C .23D .292.在“众志成城,共战疫情”党员志愿者进社区服务活动中,小晴和小霞分别从“A ,B ,C 三个社区”中随机选择一个参加活动,两人恰好选择同一社区的概率是( )A .13B .23C .19D .293.下列说法正确的是( )A .调查舞水河的水质情况,采用抽样调查的方式B .数据2.0,﹣2,1,3的中位数是﹣2C .可能性是99%的事件在一次实验中一定会发生D .从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生 4.下列事件中,属于必然事件的是( )A .三角形的外心到三边的距离相等B .某射击运动员射击一次,命中靶心C .任意画一个三角形,其内角和是 180°D .抛一枚硬币,落地后正面朝上5.下列事件中,是必然事件的是( )A .购买一张彩票,中奖B .打开电视,正在播放广告C .抛掷一枚质地均匀且6个面上分别标上数字1~6的骰子,朝上一面的数字小于7D .一个不透明的袋子中只装有2个黑球,搅匀后从中随机摸出一个球,结果是红球 6.甲、乙两人玩游戏:从1,2,3三个数中随机选取两个不同的数,分别记为a 和c ,若关于x 的一元二次方程230ax x c ++=有实数根,则甲获胜,否则乙获胜,则甲获胜的概率为( )A .14B .13C .12D .167.“明天的降水概率为90%”的含义解释正确的是( )A .明天90%的地区会下雨B .90%的人认为明天会下雨C .明天90%的时间会下雨D .在100次类似于明天的天气条件下,大约有90次会下雨8.如图,在△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,现给出以下四个结论:(1)AE =CF ;(2)△EPF 是等腰直角三角形;(3)S四边形AEPF=12S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是()A.1个B.3个C.14D.349.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A,从乙袋中摸出红球记为事件B,则A.P(A)>P(B) B.P(A)<P(B) C.P(A)=P(B) D.无法确定10.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是()A.19B.16C.13D.2311.下列说法正确的是()A.“穿十条马路连遇十次红灯”是不可能事件B.任意画一个三角形,其内角和是180°是必然事件C.某彩票中奖概率为1%,那么买100张彩票一定会中奖D.“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是1 212.有下列事件:①367人中必有2人的生日相同;②抛掷一枚均匀的骰子两次,朝上一面的点数之和一定不小于2;③在标准大气压下,温度低于0℃时冰融化;④如果a,b 为实数,那么a+b=b+a.其中是必然事件的有( )A.1个B.2个C.3个D.4个二、填空题13.有一个转盘如图所示,转动该转盘两次,则指针两次都落在黄色区域的概率是________.14.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为57,则盒子中原有的白球的个数为_________个.15.—个不透明的口袋里有4颗球,除颜色以外完全相同,其中2颗红球,2颗白球,从口袋中随机摸出两颗球,则恰好摸出1颗红球1颗白球的概率是______.16.在一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一个球,不再放回袋中,充分搅匀后再随机摸出一球,则两次都摸到红球的概率是_____.17.如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.18.从122,,23-,三个数中,任取一个数记为k,再从余下的两个数中,任取一个数记为b.则一次函数y kx b=+的图象不经过第四象限的概率是___________19.一只小狗在如图所示的地板上走来走去,地板是由大小相等的小正方形铺成的.最终停在黑色方砖上的概率是_______.20.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,定义点(),m n在反比例函数kyx=上为事件kQ(44,k k-≤≤为整数),当kQ的概率最大时,则k的所有可能的值为__________.三、解答题21.两个不透明的箱子里各装有两个完全相同的球,分别标有数字1,2和3,4.每次分别从两个箱子里各摸出一个球,计算两个球上的数字之积.(1)利用树状图或列表法表示这两个球上的数字之积可能出现的结果;(2)求积的结果为3的倍数的概率是多少?22.如图,依据闯关游戏规则,请你探究“闯关游戏”的奥秘:(1)用列表的方法表示有可能的闯关情况;(2)求出闯关成功的概率.23.在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出一个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑球的概率等于45,求m的值.24.A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是_______;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.25.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?参考答案26.图2是中国象棋棋盘的一部分,图中红方有两个马,黑方有三个卒子和一个炮,按照中国象棋中马的行走规则(马走日字,例如:按图1中的箭头方向走),红方的马现在走一步能吃到黑方棋子的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】画树状图展示所有9种等可能的结果数,利用第二象限内点的坐标特征确定点(,)P m n 在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有9种等可能的结果数,其中点(,)P m n 在第二象限的结果数为2,所以点(,)P m n 在第二象限的概率29. 故选:D .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.2.A解析:A【分析】画树状图展示所有9种等可能的结果数,找出两人恰好选择同一社区的结果数,然后根据概率公式求解即可.【详解】画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一社区的结果为3种,∴两人恰好选择同一社区的概率=39=13.故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3.A解析:A【解析】分析:根据调查的方式、中位数、可能性和样本知识进行判断即可.详解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2.0,-2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选A.点睛:此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.4.C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.C解析:C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A错误;B、是随机事件,故B错误;C、是必然事件,故C正确;D、是不可能事件,故D错误;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.B解析:B【分析】画树状图展示所有6种等可能的结果数,找出满足△=9-4ac≥0的有a=1,c=2或a=2,c=1,然后根据概率公式求解.【详解】解:画树状图为:共有6种等可能的结果数,其中满足△=9-4ac≥0的结果数有2种,即a=1,c=2或a=2,c=1;∴甲获胜的概率=21=.63故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了根的判别式.7.D解析:D【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确;故选:D.【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.8.D解析:D【分析】根据题意,容易证明△AEP≌△CFP,然后能推理得到选项A,B,C都是正确的,当EF=AP 始终相等时,可推出222AP PF=,由AP的长为定值,而PF的长为变化值可知选项D不正确.从而求出正确的结论的概率.【详解】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴1245EAP BAC∠=∠=︒,12AP BC CP==.(1)在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP∴AE=CF.(1)正确;(2)由(1)知,△AEP≌△CFP,∴PE=PF,又∵∠EPF=90°,∴△EPF是等腰直角三角形.(2)正确;(3)∵△AEP≌△CFP,同理可证△APF≌△BPE.∴12AEP APF CPF BPE ABCAEPFS S S S S S=+=+=四边形.(3)正确;(4)当EF=AP始终相等时,由勾股定理可得:222EF PF=则有:222AP PF=,∵AP的长为定值,而PF的长为变化值,∴2AP与22PF不可能始终相等,即EF与AP不可能始终相等,(4)错误,综上所述,正确的个数有3个,故正确的结论的概率是34.故选:D.【点睛】用到的知识点为:概率=所求情况数与总情况数之比;解决本题的关键是利用证明三角形全等的方法来得到正确结论.9.C解析:C【分析】根据P(A)=mn分别计算事件发生的概率,进行比较.【详解】解:P(A)=22=3+25,P(B)=20230205=+∴P(A)=P(B)故选:C.【点睛】掌握事件发生的概率的求法P(A)=mn是本题的解题关键.10.C解析:C【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.11.B解析:B【分析】直接利用随机事件的定义以及确定事件的定义分别分析得出答案.【详解】A、“穿十条马路连遇十次红灯”是随机事件,错误;B、三角形内角和是180°,所以任意画一个三角形,其内角和是180°,是必然事件,是正确的;C、“彩票中奖概率为1%,那么买100张彩票不一定会中奖”是随机事件,故原选项错误;D、“福山福地福人居”这句话中任选一个汉字,这个字是“福”字的概率是37,故原选项错误.故选:B.【点睛】此题主要考查了随机事件以及确定事件,正确把握定义是解题关键.12.C解析:C【分析】必然事件指的是一定发生的事件,据此分别判断即可.【详解】①中,一年最多366天,则367人中,必有2人生日相同,是必然事件;②中,骰子朝上面最小为1,两次之和最小为2,即一定不小于2,是必然事件;③中,标准大气压下,低于0℃,冰不会融化,不是必然事件;④中,根据加法交换律,a+b=b+a一定成立,是必然事件故选:C【点睛】本题考查必然事件的判定,注意事件可分为3类:随机事件,必然事件,不可能事件.二、填空题13.;【分析】将黄色的部分再平均分成2份使出现每一种情况的可能性均等再利用列表法表示所有可能出现的结果进而求出相应的概率【详解】如图将黄色的部分再平均分成2份分别记作黄1黄2这样就可以列举法表示所有可能解析:49;【分析】将黄色的部分再平均分成2份,使出现每一种情况的可能性均等,再利用列表法表示所有可能出现的结果,进而求出相应的概率.【详解】如图,将黄色的部分再平均分成2份,分别记作黄1,黄2,这样就可以列举法表示所有可能出现的开个情况如下:共有9种等可能出现的结果情况,其中两次都是黄色的有4种,∴P两次黄色=49,故答案为:49.【点睛】本题考查用列表法求简单事件发生的可能性,列举出所有空白出现的结果情况是解决问题的关键.14.25【分析】设盒子中原有的白球的个数为个利用简单事件的概率计算公式可得一个关于x的方程再解方程即可得【详解】设盒子中原有的白球的个数为个由题意得:解得经检验是所列分式方程的解则盒子中原有的白球的个数解析:25【分析】设盒子中原有的白球的个数为x个,利用简单事件的概率计算公式可得一个关于x的方程,再解方程即可得.【详解】设盒子中原有的白球的个数为x个,由题意得:5 107xx=+,解得25x=,经检验,25x=是所列分式方程的解,则盒子中原有的白球的个数为25个,故答案为:25.【点睛】本题考查了简单事件的概率计算、分式方程的应用,熟练掌握简单事件的概率计算方法是解题关键.15.【分析】画树状图展示所有12种等可能的结果找出摸出的一颗红球和一颗白球的结果数然后根据概率公式计算【详解】画树状图为:共有12种等可能的结果其中摸出的1颗红球1颗白球的结果数为8所以摸出的一个红球和解析:2 3【分析】画树状图展示所有12种等可能的结果,找出摸出的一颗红球和一颗白球的结果数,然后根据概率公式计算.【详解】画树状图为:共有12种等可能的结果,其中摸出的1颗红球1颗白球的结果数为8,所以摸出的一个红球和一个白球的概率=82 123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.16.【分析】先画树状图展示所有20种等可能的结果数再找出两次都摸到红球的结果数然后根据概率公式求解【详解】解:画树状图为:共有20种等可能的结果数其中两次都摸到红球的结果数为6种所以两次都摸到红球的概率解析:3 10【分析】先画树状图展示所有20种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有20种等可能的结果数,其中两次都摸到红球的结果数为6种,所以两次都摸到红球的概率=6 20=310.故答案为310.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】据已知条件证得△ABD≌△AED根据全等三角形的性质得到BD=ED得出S△ABD=S△AEDS△BCD=S△DCE推出S△ACD=S△ABC根据概率公式可得的答案【详解】延长BD交AC于E∵解析:12【分析】据已知条件证得△ABD≌△AED,根据全等三角形的性质得到BD=ED,得出S△ABD=S△AED,S△BCD=S△DCE,推出S△ACD=12S△ABC,根据概率公式可得的答案.【详解】延长BD交AC于E,∵AD平分∠BAC,∴∠BAD=∠EAD,∵BD⊥AD,∴∠ADB=∠ADE=90°,在△ABD和△AED中,ADB ADEAD ADBAD EAD∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△ABD≌△AED(ASA),∴BD=ED,∴S△ABD=S△AED,S△BCD=S△DCE,,∴S△ACD =12S△ABC,则点P落在△ADC内(包括边界)的概率为:12ACDABCSS=.故答案为12.【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.18.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与一次函数y=kx+b的图象不经过第四象限的情况再利用概率公式即可求得答案【详解】解:画树状图如下∵一次函数y=kx+b的图象不经过第四解析:1 . 3【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一次函数y=kx+b的图象不经过第四象限的情况,再利用概率公式即可求得答案.【详解】解:画树状图如下,∵一次函数y=kx+b的图象不经过第四象限,∴k>0、b≥0,∴一次函数不经过第四象限的等可能的结果有2种,则一次函数y=kx+b的图象不经过第四象限的概率为21, 63 =故答案为:13.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比,同时考查了一次函数的性质,掌握以上知识是解题的关键.19.【分析】先观察次地板一共有多少块小正方形铺成再把是黑色的小正方块数出来用黑色的小整块数目比总的小正方块即可得到答案【详解】解:由图可知该地板一共有3×5=15块小正方块黑色的小正方块有5块因此停在黑解析:1 3【分析】先观察次地板一共有多少块小正方形铺成,再把是黑色的小正方块数出来,用黑色的小整块数目比总的小正方块即可得到答案.【详解】解:由图可知,该地板一共有3×5=15块小正方块,黑色的小正方块有5块,因此,停在黑色方砖上的概率是51 153=,故答案是1 3 .【点睛】本题主要考查了随机事件的概率,概率是对随机事件发生之可能性的度量;能正确数出黑色的小正方块是做对题目的关键,还需要注意,每个小正方块的大小是否一样,才能避免错误.20.±2【分析】首先根据题意列出表格然后根据表格求得k取不同值时的概率比较大小即可确定k的所有可能的值【详解】列表得:(1−2)(−1−2)(2−2)(−2−2)(12)(−12)(22)解析:±2.【分析】首先根据题意列出表格,然后根据表格求得k取不同值时的概率,比较大小即可确定k的所有可能的值.【详解】列表得:∵若点(m,n)在反比例函数kyx=上,则k =mn ,∵P (k =−4)=21168=,P (k =−1)=21168=,P (k =−2)=41164=,P (k =1)=21168=,P (k =2)=41164=,P (k =4)=21168=,∴当Q k 的概率最大时,k =±2. 故答案为:±2. 【点睛】此题考查了列表法或树状图法求概率与反比例函数的性质.此题难度适中,解题时注意列表法与树状图法可以不重不漏的列出所有等可能的情况,然后根据概率公式求得概率.三、解答题21.(1)见解析;(2)12【分析】(1)画树状图即可得出两个球上的数字之积可能出现的结果; (2)找出是3的倍数的结果,利用概率公式计算即可. 【详解】解:(1)画树状图如下:由树状图可知,这两个球上的数字之积共有4种等可能的结果,即3,4,6,8; (2)∵这个积为3的倍数的结果有2种, ∴P(这个积为3的倍数)=2142=. 【点睛】本题考查了树状图法或列表法求概率、概率公式,熟练掌握树状图法求概率的步骤是解答的关键.22.(1)(1,1),(1,2),(2,1),(2,2);(2)14. 【分析】(1)用列举法列举出可能闯关的所有情况,即可得出答案; (2)根据图表得出所有可能,进而得出闯关成功的概率. 【详解】(1)所有可能闯关的情况列表如下:(2)只有(1,2)组合才能闯关,故闯关成功的可能性为14.【点睛】此题主要考查了列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23.(1) 4;2或3;(2)m=2.【解析】试题分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.试题(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;当摸出2个或3个时,摸到黑球为随机事件,故答案为4;2,3.(2)根据题意得:64= 105m,解得:m=2,所以m的值为2.24.(1)23(2)13【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.【详解】解:(1)A盒里有三张卡片上,有两张是奇数,∴抽到的卡片上标有数字为奇数的概率是23,故答案为:23;(2)根据题意可列表格如下:(2,6),(3,5),(3,6),P∴(两张卡片数字之和大于7)31 93 ==.【点睛】本题考查了概率的计算和用列表法或树状图法求概率,掌握计算方法是解题关键.25.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.26.3 14【解析】试题分析:根据概率的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率.试题红方马走一步可能的走法有14种,其中有3种情况吃到了黑方棋子,3 14.则红马现在走一步能吃到黑方棋子的概率是。

2024年广东省深圳市南山二外(集团)学府中学中考数学模拟试卷(3月份)(含解析)

2024年广东省深圳市南山二外(集团)学府中学中考数学模拟试卷(3月份)(含解析)

2024年广东省深圳市南山二外(集团)学府中学中考数学模拟试卷(3月份)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.国家级非物质文化遗产之一的东北大鼓是中国北方曲种,流行于辽宁、吉林、黑龙江3省.如图是奉天大鼓的立体图形,该立体图形的主视图是( )A. B. C. D.2.已知∠A是锐角,sinA=35,则cosA的值为( )A. 34B. 45C. 25D. 133.若x=m是方程x2+x−4=0的根,则m2+m+2020的值为( )A. 2024B. 2022C. 2020D. 20164.如图,在⊙O中,弦AB,CD相交于点P,∠D=35°,∠DPB=110°,则∠BCP=( )A. 35°B. 75°C. 40°D. 25°5.某班的一个数学兴趣小组为了考察本市某条斑马线上驾驶员礼让行人的情况,每天利用放学时间进行调查,下表是该小组一个月内累计调查的结果,由此结果可估计驾驶员能主动给行人让路的概率为( )抽查车辆数1005001000200030004000能礼让的驾驶员人数95486968194029073880能礼让的频率0.950.9720.9680.970.9690.97A. 0.95B. 0.96C. 0.97D. 0.986.已知如图,在▱ABCD中,AD>AB,∠ABC为锐角,将△ABC沿对角线AC边平移,得到△A′B′C′,连接AB′和C′D,若使四边形AB′C′D是菱形,需添加一个条件,现有三种添加方案,甲方案:AB′=DC′;乙方案:B′D⊥AC′;丙方案:∠A′C′B′=∠A′C′D;其中正确的方案是( )A. 甲、乙、丙B. 只有乙、丙C. 只有甲、乙D. 只有甲7.已知二次函数y=−x2+2x+4,则下列说法正确的是( )A. 该函数的图象开口向上B. 该函数图象与y轴的交点坐标为(0,5)C. 当x=1时,y有最大值为5D. 当x>1时,y随x的增大而增大8.下列命题正确的是( )A. 过一点有且只有一条直线与已知直线平行B. 同旁内角互补C. 凸多边形的外角和都等于360°D. 平分弦的直径垂直于弦9.若二次函数y=(x+2)2−1的图象经过点A(−1,y1),B(−2,y2),C(3,y3),则y1,y2,y3的大小关系为( )A. y1>y3>y2B. y2>y3>y1C. y1>y2>y3D. y3>y1>y210.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=1,以下4个结论:①abc<0;②(a+c)2<b2;③a+b<m(am+b),其中m≠1;④4a+2b+c>0.其中正确结论的有( )A. 4个B. 3个C. 2个D. 1个二、填空题:本题共5小题,每小题3分,共15分。

深圳南山区学府中学数学九年级上册期末试卷(含答案)

深圳南山区学府中学数学九年级上册期末试卷(含答案)

深圳南山区学府中学数学九年级上册期末试卷(含答案)一、选择题1.已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x <0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A.①②B.②③C.①③D.①②③2.在△ABC中,若|sinA﹣12|+(2﹣cosB)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°3.如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N.则线段BM,DN的大小关系是()A.BM>DN B.BM<DN C.BM=DN D.无法确定4.如图,以AB为直径的⊙O上有一点C,且∠BOC=50°,则∠A的度数为()A.65°B.50°C.30°D.25°5.sin30°的值是()A.12B.22C.32D.16.已知52xy=,则x yy-的值是()A.12B.2 C.32D.237.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A .1B .2C .3D .48.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3)B .(1,3)-C .(1,3)-D .(1,3)--9.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-10.已知关于x 的一元二次方程 (x - a )(x - b ) -12= 0 (a < b ) 的两个根为 x 1、x 2,(x 1< x 2)则实数 a 、b 、x 1、x 2的大小关系为( ) A .a < x 1< b <x 2B .a < x 1< x 2 < bC .x 1< a < x 2 < bD .x 1< a < b < x 211.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x k =-++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .231y y y >>D .312y y y >>12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2 D .中位数是3,众数是4 13.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .314.2的相反数是( ) A .12-B .12C .2D .2-15.用配方法解方程2250x x --=时,原方程应变形为( ) A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .17.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.18.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.19.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.20.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.21.抛物线y=ax 2-4ax+4(a≠0)与y 轴交于点A .过点B(0,3)作y 轴的垂线l ,若抛物线y=ax 2-4ax+4(a≠0)与直线l 有两个交点,设其中靠近y 轴的交点的横坐标为m ,且│m│<1,则a 的取值范围是______.22.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).23.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.24.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 25.如图,在ABC 中,62BC =,45C ∠=︒,2AB AC =,则AC 的长为________.26.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.27.有一块三角板ABC ,C ∠为直角,30ABC ∠=︒,将它放置在O 中,如图,点A 、B 在圆上,边BC 经过圆心O ,劣弧AB 的度数等于_______︒28.若点 M (-1, y 1 ),N (1, y 2 ),P (72, y 3 )都在抛物线 y =-mx 2 +4mx+m 2 +1(m >0)上,则y 1、y 2、y 3 大小关系为_____(用“>”连接).29.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.30.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题31.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B (0,4),在第一象限内有一点P (m,n),且满足4m+3n=12. (1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.32.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.33.为了扎实推进精准扶贫工作,某地出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种4种和5种帮扶措施的贫困户分别称为A 、B 、C 、D 类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成下面两幅不完整的统计图:请根据图中信息回答下面的问题: (1)本次抽样调查了 户贫困户;(2)本次共抽查了 户C 类贫困户,请补全条形统计图;(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户? 34.已知关于x 的一元二次方程()222140x m x m +++-=.(1)当m 为何值时,方程有两个不相等的实数根?(2)设方程两根分别为1x 、2x ,且21x 、22x 分别是边长为5的菱形的两条对角线,求m 的值.35.(问题呈现)阿基米德折弦定理:如图1,AB 和BC 是⊙O 的两条弦(即折线ABC 是圆的一条折弦),BC >AB ,点M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD =DB +BA .下面是运用“截长法”证明CD =DB +BA 的部分证明过程.证明:如图2,在CD 上截取CG =AB ,连接MA 、MB 、MC 和MG . ∵M 是ABC 的中点, ∴MA =MC ① 又∵∠A =∠C ② ∴△MAB ≌△MCG ③ ∴MB =MG 又∵MD ⊥BC ∴BD =DG ∴AB +BD =CG +DG 即CD =DB +BA根据证明过程,分别写出下列步骤的理由: ① , ② , ③ ;(理解运用)如图1,AB 、BC 是⊙O 的两条弦,AB =4,BC =6,点M 是ABC 的中点,MD ⊥BC 于点D ,则BD = ;(变式探究)如图3,若点M 是AC 的中点,(问题呈现)中的其他条件不变,判断CD 、DB 、BA 之间存在怎样的数量关系?并加以证明.(实践应用)根据你对阿基米德折弦定理的理解完成下列问题:如图4,BC 是⊙O 的直径,点A 圆上一定点,点D 圆上一动点,且满足∠DAC =45°,若AB =6,⊙O 的半径为5,求AD 长.四、压轴题36.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为(3,4),一次函数23y x b =-+的图像与边OC 、AB 分别交于点D 、E ,并且满足OD BE =,M 是线段DE 上的一个动点 (1)求b 的值;(2)连接OM ,若ODM △的面积与四边形OAEM 的面积之比为1:3,求点M 的坐标; (3)设N 是x 轴上方平面内的一点,以O 、D 、M 、N 为顶点的四边形是菱形,求点N 的坐标.37.问题提出(1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.38.如图1,Rt △ABC 两直角边的边长为AC =3,BC =4.(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边BC 相切于点Y .请你在图2中作出并标明⊙O 的圆心(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙P 的面积为S ,你认为能否确定S 的最大值?若能,请你求出S 的最大值;若不能,请你说明不能确定S 的最大值的理由. 39.如图,在边长为5的菱形OABC 中,sin∠AOC=45,O 为坐标原点,A 点在x 轴的正半轴上,B ,C 两点都在第一象限.点P 以每秒1个单位的速度沿O→A→B→C→O 运动一周,设运动时间为t (秒).请解答下列问题: (1)当CP⊥OA 时,求t 的值;(2)当t <10时,求点P 的坐标(结果用含t 的代数式表示);(3)以点P 为圆心,以OP 为半径画圆,当⊙P 与菱形OABC 的一边所在直线相切时,请直接写出t 的值.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF ,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】①根据对称轴及增减性进行判断; ②根据函数在x=1处的函数值判断;③利用抛物线与直线y=-2有两个交点进行判断. 【详解】解:∵a <0<b ,∴二次函数的对称轴为x=2ba->0,在y 轴右边,且开口向下, ∴x <0时,y 随x 增大而增大; 故①正确;根据二次函数的系数,可得图像大致如下, 由于对称轴x=2ba-的值未知, ∴当x=1时,y=a+b+c 的值无法判断, 故②不正确;由图像可知,y==ax 2+bx +c ≤0,∴二次函数与直线y=-2有两个不同的交点,∴方程ax2+bx+c=-2有两个不相等的实数根.故③正确.故选C.【点睛】本题考查了二次函数的图像的性质,二次函数的图像与系数的关系,二次函数与方程的关系,借助图像解决问题是关键.2.C解析:C【解析】【分析】根据非负数的性质列出关系式,根据特殊角的三角函数值求出∠A、∠B的度数,根据三角形内角和定理计算即可.【详解】由题意得,sinA-12=0,22-cosB=0,即sinA=12,22=cosB,解得,∠A=30°,∠B=45°,∴∠C=180°-∠A-∠B=105°,故选C.【点睛】本题考查的是非负数的性质的应用、特殊角的三角函数值的计算和三角形内角和定理的应用,熟记特殊角的三角函数值是解题的关键.3.C解析:C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出∠DPN=∠BPM,从而得出三角形全等,得出答案.详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,∵以P为圆心作圆,∴P又是圆的对称中心,∵过P的任意直线与圆相交于点M、N,∴PN=PM,∵∠DPN=∠BPM,∴△PDN≌△PBM(SAS),∴BM=DN.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型.理解平行四边形的中心对称性是解决这个问题的关键.4.D解析:D【解析】【分析】根据圆周角定理计算即可.【详解】解:由圆周角定理得,1252A BOC∠=∠=︒,故选:D.【点睛】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.A解析:A【解析】【分析】根据特殊角的三角函数值计算即可.【详解】解:sin30°=12.故选:A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.6.C解析:C【解析】【分析】设x=5k(k≠0),y=2k(k≠0),代入求值即可.【详解】解:∵52 xy=∴x=5k(k≠0),y=2k(k≠0)∴52322 x y k ky k--==故选:C.【点睛】本题考查分式的性质及化简求值,根据题意,正确计算是解题关键.7.B解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x 轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c ,即二次函数的最大值为a+b+c ,故①正确;②当x=﹣1时,a ﹣b+c=0,故②错误;③图象与x 轴有2个交点,故b 2﹣4ac >0,故③错误;④∵图象的对称轴为x=1,与x 轴交于点A 、点B (﹣1,0),∴A (3,0),故当y >0时,﹣1<x <3,故④正确.故选B .点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.8.A解析:A【解析】【分析】根据二次函数顶点式即可得出顶点坐标.【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3).故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ). 9.C解析:C【解析】【分析】利用两个根和的关系式解答即可.【详解】两个根的和=1122b a , 故选:C.【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 10.D解析:D【分析】根据二次函数的图象与性质即可求出答案.【详解】如图,设函数y =(x−a )(x−b ),当y =0时,x =a 或x =b ,当y =12时, 由题意可知:(x−a )(x−b )−12=0(a <b )的两个根为x 1、x 2, 由于抛物线开口向上,由抛物线的图象可知:x 1<a <b <x 2故选:D .【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程与二次函数之间的关系,本题属于中等题型.11.A解析:A【解析】【分析】根据二次函数的性质得到抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线y =-(x +1)2+k (k 为常数)的开口向下,对称轴为直线x =﹣1,而A (2,y 1)离直线x =﹣1的距离最远,C (﹣2,y 3)点离直线x =1最近,∴123y y y >>. 故选A .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.12.A解析:A【解析】先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.【详解】解:将这组数据从小到大排列为:2,2,2,3,5,6,8,最中间的数是3,则这组数据的中位数是3;2出现了三次,出现的次数最多,则这组数据的众数是2;故选:A.【点睛】此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.13.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.A解析:A【解析】【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=6,即(x−1)2=6.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.二、填空题16.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 17.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.18.【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100解析:9π【解析】【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算SS半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,边长为30cm的正方形ABCD的面积=302=900cm2,∴P(飞镖落在圆内)=100==9009SSππ半圆正方形,故答案为:9π.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.19.、、【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=解析:83、103、54【解析】【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D的直线与△ABC的另一个交点为E,∵AC=4,BC=3,∴AB=2234+=5设AD=x,BD=5-x,∵DE平分△ABC周长,∴周长的一半为(3+4+5)÷2=6,分四种情况讨论:①△BED∽△BCA,如图1,BE=1+x∴BE BDBC AB=,即:5153x x-+=,解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x∴AD AEAC AB=,即:645x x-=,解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.20.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式. 21.a>或a<.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a 越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围. 【详解】解:如解析:a>13或a<15-.【解析】【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线422axa-=-= ,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=1 3 ,∴a>1 3 ;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=1 5 - ,∴a<1 5 -.a的取值范围是a>13或a<15-.故答案为:a>13或a<15-.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.22.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab<0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.23.【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:,三月份的产量为:.【详解】二月份的产量为:,三月份的产量为:.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟解析:2500(1)720x +=【解析】【分析】根据增长率的定义列方程即可,二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【详解】二月份的产量为:500(1)x +,三月份的产量为:2500(1)720x +=.【点睛】本题考查了一元二次方程的增长率问题,解题关键是熟练理解增长率的表示方法,一般用增长后的量=增长前的量×(1+增长率). 24.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.25.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】过A 作AD BC ⊥于D 点,设AC =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得BD ==,因为BC =,所以BC x =+=x 2AC =.【点睛】 本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 26.【解析】如图,由题意可知∠ADB=90°,BD=,AB=,∴sinA=.解析:5 【解析】如图,由题意可知∠ADB=90°,BD=221+1=2,AB=223+1=10,∴sinA=25510BD AB ==.27.120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴,∴,∴劣弧的度数等于,故答案为:1解析:120°【解析】【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得AOB ∠,继而求得答案.【详解】如图,连接OA ,∵OA ,OB 为半径,∴30OAB ABO ∠=∠=︒,∴180120AOB OAB ABO ∠=︒-∠-∠=︒,∴劣弧AB 的度数等于120︒,故答案为:120.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.28.y1<y3<y2【解析】【分析】利用图像法即可解决问题.【详解】y =mx2 +4mx+m2 +1(m >0),对称轴为x = ,观察二次函数的图象可知:y1<y3<y2.故答案为:y解析:y 1<y 3<y 2【解析】【分析】利用图像法即可解决问题.【详解】y =-mx 2 +4mx+m 2 +1(m >0),对称轴为x = 422m m-=-, 观察二次函数的图象可知:y 1<y 3<y 2.故答案为:y1<y3<y2.【点睛】本题考查二次函数图象上的点的特征,解题的关键是学会利用图象法比较函数值的大小.29.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.30.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l=(n是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题31.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12 ∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO的角平分线:y=13 22x+,∴134=4 223x x+-+,∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下:如图,A´(3,0),可得直线L A´B的表达式为443y x=-+,∴P点在直线A´B上,∵∠PA´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE⊥AG于G点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4, ∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.32.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.33.(1)500户;(2)120户,图见解析;(3)5200户【解析】【分析】(1)用A类贫困户的人数除以它所占的百分比即可得出答案;(2)用总人数减去A,B,D类贫困户的人数即可得到C类贫困户,然后补全条形统计图即可;(3)用总人数乘以C,D类所占的百分比的和即可得出答案.【详解】解:(1)260÷52%=500(户);(2)500-260-80-40=120(户),如图:(3)13000×(24%+16%)=13000×40%=5200(户)答:估计至少得到4项帮扶措施的大约有5200户.【点睛】本题主要考查条形统计图与扇形统计图,能够将条形统计图和扇形统计图相结合并掌握用样本估计整体的方法是解题的关键.34.(1)174m>-;(2)4m=-【解析】【分析】(1)由根的判别式2=40b ac ∆->即可求解;(2)根据菱形对角线互相垂直且平分,由勾股定理得222125x x +=,又由一元二次方程根与系数的关系1212, b c x x x x a a+=-=,所以有()2221212122x x x x x x +-=+,据此列出关于m 的方程求解.【详解】 (1)∵方程有两个不相等的实数根,∴()()22=2144=417m m m ∆+--+>0 解得:174m >-∴当174m >-时,方程有两个不相等的实数根; (2)由题意得:2221212212521?4x x x x m x x m ⎧+=⎪+=--⎨⎪=-⎩ ∴()()()222222121212=2212424925x x x x x x m m m m ++-=----=++= 解得:2m =或4m =-∵21x 、22x 分别是边长为5的菱形的两条对角线∴122 1 0x x m +=-->,即12m <-∴4m =-【点睛】本题考查一元二次方程根的判别式、结合菱形的性质考查勾股定理和韦达定理,熟知一元二次方程根与系数的关系是解题关键.35.(问题呈现)相等的弧所对的弦相等;同弧所对的圆周角相等;有两组边及其夹角分别对应相等的两个三角形全等;(理解运用)1;(变式探究)DB =CD +BA ;证明见解析;(实践应用).【解析】【分析】(问题呈现)根据圆的性质即可求解;(理解运用)CD =DB +BA ,即CD =6﹣CD +AB ,即CD =6﹣CD +4,解得:CD =5,即可求解;(变式探究)证明△MAB ≌△MGB (SAS ),则MA =MG ,MC =MG ,又DM ⊥BC ,则DC =DG ,即可求解;。

深圳南山区学府中学九年级数学上册第二十三章《旋转》经典测试卷(培优练)

深圳南山区学府中学九年级数学上册第二十三章《旋转》经典测试卷(培优练)

一、选择题1.以下四幅图案,其中图案是中心对称图形的是( )A .B .C .D .A解析:A【分析】 根据中心对称图形的定义逐一分析即可.【详解】解:A 、是中心对称图形,故此选项符合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、不是中心对称图形,故此选项不合题意.故选:A .【点睛】本题考查中心对称图形的识别,掌握中心对称图形的定义是解题的关键.2.下列图形中,是中心对称但不是轴对称的图形是( )A .平行四边形B .矩形C .菱形D .等边三角形A 解析:A【分析】根据轴对称及中心对称的概念,结合选项进行判断.【详解】A 、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B 、矩形是中心对称图形,也是轴对称图形,故本选项错误;C 、菱形是中心对称图形,也是轴对称图形,故本选项错误;D 、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误;故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .45A解析:A【分析】 先利用互余计算出∠BAC =30°,再根据含30度的直角三角形三边的关系得到AB =2BC =2,接着根据旋转的性质得A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B ' C =∠B =60°,于是可判断CA A '为等腰三角形,所以∠CA A '=∠A '=30°,再利用三角形外角性质计算出∠B 'CA =30°,可得B 'A =B 'C =1,然后利用A A '=A B '+A 'B '进行计算.【详解】解:∵∠ACB =90°,∠B =60°,∴∠BAC =30°,∴AB =2BC =2×1=2,∵ABC 绕点C 顺时针旋转得到A 'B 'C , ∴A 'B '=AB =2,B 'C =BC =1,A 'C =AC ,∠A '=∠BAC =30°,∠A 'B 'C =∠B =60°,∴CA A '为等腰三角形, ∴∠CA A '=∠A '=30°,∵A 、B '、A '在同一条直线上,∴∠A 'B 'C =∠B 'AC +∠B 'CA ,∴∠B 'CA =60°﹣30°=30°,∴B 'A =B 'C =1,∴A A '=A B '+A 'B '=2+1=3.故选:A .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系. 4.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A.22B.23C.3 D.32A解析:A【分析】由△ABP绕点B顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到PP′=2BP,即可得到答案..【详解】解:解:∵△ABP绕点B顺时针旋转90°得到△CBP',而四边形ABCD为正方形,BA=BC,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴PP′=2BP=22.故选:A.【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.5.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是()A.B.C.D.D解析:D【分析】根据中心对称图形的定义对各选项分析判断即可得解.【详解】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转34°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为( )A .60°B .64°C .66°D .68°B解析:B【分析】 由旋转性质得到∠D 和∠DCF 的度数,再由外角性质得到∠EFC 的度数即可.【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B .【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键. 7.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .8C解析:C【分析】 由于将线段OP 绕点O 逆时针旋转60°得到线段OD ,当点D 恰好落在BC 上时,易得:△ODP 是等边三角形,根据旋转的性质可以得到△AOP ≌△CDO ,由此可以求出AP 的长.【详解】解:当点D 恰好落在BC 上时,OP=OD ,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.8.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合.9.如图:在△ABC中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC绕点C逆时针旋转至△EFC,使点E恰巧落在AB上,连接BF,则BF的长度为()A.3B.2 C.1 D.2A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC,所以△ACE是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF,所以△CBF是等边三角形,所以∠CBF=60°,∠FBE=60°+30°=90°,△BEF是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,BF=21-=,故选A.213考点:1.旋转性质;2.直角三角形性质.10.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,ΔAEM与ΔADM关于AM所在的直线对称,将ΔADM按顺时针方向绕点A旋转90°得到ΔABF,连接EF,则线段EF的长为()A.3 B.23C.13D.15C解析:C【分析】连接BM.证明△AFE≌△AMB得FE=MB,再运用勾股定理求出BM的长即可.【详解】连接BM,如图,由旋转的性质得:AM=AF.∵四边形ABCD 是正方形,∴AD=AB=BC=CD ,∠BAD=∠C=90°,∵ΔAEM 与ΔADM 关于AM 所在的直线对称,∴∠DAM=∠EAM.∵∠DAM+∠BAM=∠FAE+∠EAM=90°,∴∠BAM=∠EAF,∴△AFE ≌△AMB∴FE=BM.在Rt △BCM 中,BC=3,CM=CD-DM=3-1=2,∴BM=22223213BC CM +=+=∴FE=13.故选C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.二、填空题11.如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形AB C D ''',若8CD =,6DA =,那么AC '=______.10【分析】根据旋转的性质可得在中利用勾股定理即可求解【详解】ABCD 为矩形CD=8DA=6由旋转的性质可得:在中由勾股定理得:即故答案为:10【点睛】本题考查旋转性质及勾股定理的综合应用根据旋转性解析:10【分析】根据旋转的性质可得8CD C D ''==,6DA D A '==,在Rt ''△AD C 中利用勾股定理即可求解.【详解】ABCD 为矩形,CD=8,DA=6由旋转的性质可得:8CD C D ''==,6DA D A ='=,90CDA C D A ''∠=∠=︒ ∴在Rt ''△AD C 中由勾股定理得:22AC D A C D ''''=+226810AC '=+= 故答案为:10.本题考查旋转性质及勾股定理的综合应用,根据旋转性质得到直角三角形的基础上应用勾股定理求出边的长度是解题关键.12.已知点(,2)A m m 在直线3y x 上,则点A 关于原点对称点B 的坐标为______.【分析】先由点在直线上求出m 的值然后根据关于原点对称的点的坐标特点:横纵坐标均互为相反数解答即可【详解】解:∵点在直线上∴2m=m+3∴m=3∴点A 坐标是(36)∴点(36)关于原点对称的点的坐标为 解析:(3,6)--【分析】先由点(,2)A m m 在直线3y x 上求出m 的值,然后根据关于原点对称的点的坐标特点:横纵坐标均互为相反数解答即可. 【详解】解:∵点(,2)A m m 在直线3y x 上, ∴2m =m +3,∴m =3,∴点A 坐标是(3,6),∴点A (3,6)关于原点对称的点B 的坐标为(﹣3,﹣6).故答案为:(﹣3,﹣6).【点睛】本题考查了一次函数图象上点的坐标特点和关于原点对称的点的坐标特征,属于基本题型,熟练掌握基本知识是解题的关键.13.如图,已知EAD 32∠=,ADE 绕着点A 旋转50后能与ABC 重合,则BAE ∠=________度.【分析】根据旋转对称图形的定义解答【详解】解:∵△ADE绕着点A 旋转50°后能与△ABC 重合∴∠BAD=50°又∵∠EAD=32°∴∠BAE=∠BAD−∠EAD=50°−32°=18°故答案为18【解析:18【分析】根据旋转对称图形的定义解答.【详解】解:∵△ADE 绕着点A 旋转50°后能与△ABC 重合,∴∠BAD=50°,又∵∠EAD=32°,∴∠BAE=∠BAD−∠EAD=50°−32°=18°.故答案为18.本题考查了旋转的性质,解题的关键是根据旋转对称图形的定义解答.14.如图,平行四边形ABCD 的两条对角线AC 与BD 相交于直角坐标系的原点.若点A 的坐标为(-2,3),则点C 的坐标为___________.【分析】根据平行四边形是中心对称的特点可知点A 与点C 关于原点对称所以C 的坐标为(2-3)【详解】∵在平行四边形ABCD 中A 点与C 点关于原点对称∴C 点坐标为(2-3)故答案为:(2-3)【点睛】本题主 解析:(2,3)-【分析】根据平行四边形是中心对称的特点可知,点A 与点C 关于原点对称,所以C 的坐标为(2,-3).【详解】∵在平行四边形ABCD 中,A 点与C 点关于原点对称,∴C 点坐标为(2,-3).故答案为:(2,-3).【点睛】本题主要考查了平行四边形的性质和坐标与图形的关系.要会根据平行四边形的性质得到点A 与点C 关于原点对称的特点,是解题的关键.15.如图,在平面直角坐标系中,将ABC 绕点A 顺时针旋转到111A B C △的位置,点,B O 分别落在点11,B C 处,点1B 在x 轴上,再将111A B C △绕点1B 顺时针旋转到112A B C 的位置,点2C 在x 轴上,再将112A B C 绕点2C 顺时针旋转到222A B C △的位置,点2A 在x轴上,依次进行下去,······,若点()3,0,0,2,2A B ⎛⎫⎪⎝⎭则点2020B 的坐标为__________________. (60602)【分析】首先根据已知求出三角形三边长度然后通过旋转发现BB2B4…每偶数之间的B 相差6个单位长度根据这个规律可以求得B2020的坐标【详解】∵A(0)B(02)则OA=OB=2∴Rt △解析:(6060,2)首先根据已知求出三角形三边长度,然后通过旋转发现,B、B2、B4…每偶数之间的B相差6个单位长度,根据这个规律可以求得B2020的坐标.【详解】∵A(32,0),B(0,2),则OA=32,OB=2,∴Rt△AOB中,AB=222235222 OA OB⎛⎫+=+=⎪⎝⎭,∴OA+AB1+B1C2=352622++=,∴B2的横坐标为:6,且B2C2=2,即B2(6,2),∴B4的横坐标为:2×6=12,∴点B2020的横坐标为:2020÷2×6=6060,点B2020的纵坐标为:2,即B2020的坐标是(6060,2),故答案为:(6060,2) .【点睛】本题考查了坐标与旋转规律问题以及勾股定理的运用,通过图形旋转,找到所有B点之间的关系是解决本题的关键.16.如图,在平面直角坐标系中,四边形OBCD是菱形,OB=OD=2,∠BOD=60°,将菱形OBCD绕点O旋转任意角度,得到菱形OB1C1D1,则点C1的纵坐标的最小值为_____.【分析】连接OC过点C作CE⊥x轴于E由直角三角形的性质可求BE=BC=1CE=由勾股定理可求OC的长据此进一步分析即可求解【详解】如图连接OC过点C作CE⊥x轴于点E∵四边形OBCD是菱形∴OD∥解析:3-【分析】连接OC,过点C作CE⊥x轴于E,由直角三角形的性质可求BE=12BC=1,CE3勾股定理可求OC的长,据此进一步分析即可求解.【详解】如图,连接OC,过点C作CE⊥x轴于点E,∵四边形OBCD是菱形,∴OD∥BC,∴∠BOD=∠CBE=60°,∵CE⊥OE,∴BE=1BC=1,CE=3,2∴2223=+=,OC OE CE∴当点C1在y轴上时,点C1的纵坐标有最小值为23-,-.故答案为:23【点睛】本题主要考查了菱形的性质与勾股定理的综合运用,熟练掌握相关概念是解题关键. 17.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2.下面四个结论:①BF=22②∠CBF=45°;③∠CED=30°;④△ECD的面积为223,其中正确的结论有_____.(填番号)参考答案①②④【分析】利用旋转的性质得CF=CB=2∠BCF=90°则可得△CBF为等腰直角三角形于是可对①②进行判断;由于直线DF垂直平分AB 则FA=FBBE=AE于是根据等腰三角形的性质和三角形外角性质解析:①②④【分析】利用旋转的性质得CF=CB=2,∠BCF=90°,则可得△CBF为等腰直角三角形,于是可对①②进行判断;由于直线DF垂直平分AB,则FA=FB,BE=AE,于是根据等腰三角形的性质和三角形外角性质可计算出∠ECA=∠A=22.5°,然后根据三角形内角和可计算出∠CEF,从而可对③进行判断;作EH⊥BD于H,如图,根据三角形中位线性质得EH=1AC=2+1,利用旋转性质得CD=CA=2+22,则利用三角形面积公式可计算出2△ECD的面积,从而可对④进行判断.【详解】∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CF=CB=2,∠BCF=90°,∴△CBF为等腰直角三角形,∴BF=2BC=22,∠CBF=45°,所以①②正确;∵直线DF垂直平分AB,∴FA=FB,BE=AE,∴∠A=∠ABF,而∠BFC=∠A+∠ABF=45°,∴∠A=22.5°,∵CE为斜边AB上的中线,∴EC=EA,∴∠ECA=∠A=22.5°,∴∠CEF=180°﹣90°﹣2×22.5°=45°,所以③错误;作EH⊥BD于H,如图,∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CD=CA=2+22,∵点E为AB的中点,∴EH=1AC=2+1,2∴△ECD的面积=1•(2+1)•(2+22)=22+3,所以④正确.2故答案为:①②④.【点睛】考查了旋转的性质,旋转的性质有:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.如图,在△ABC中,∠C=90°,BC=3,AC=5,点D为线段AC上一动点,将线段BD 绕点D逆时针旋转90°,点B的对应点为E,连接AE,则AE长的最小值为_____.【分析】由旋转的性质可知BD =DE ∠C =90°则容易想到构造一个直角三角形与Rt △BCD 全等即过E 点作EH ⊥AD 于点H 设CD =x 则可用x 表示AE 的长从而判断什么时候AE 取得最小值【详解】设CD =x 则 解析:2【分析】由旋转的性质可知BD =DE ,∠C =90°,则容易想到构造一个直角三角形与Rt △BCD 全等,即过E 点作EH ⊥AD 于点H ,设CD =x ,则可用x 表示AE 的长,从而判断什么时候AE 取得最小值.【详解】设CD =x ,则AD =5﹣x ,过点E 作EH ⊥AD 于点H ,如图:由旋转的性质可知BD =DE ,∵∠ADE +∠BDC =90°,∠BDC +∠CBD =90°,∴∠ADE =∠CBD ,又∵∠EHD =∠C ,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 2.2【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 19.点)1,5A a -与点()2,5B b +-关于原点对称,则(a +b )2 020=____ .【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出ab 的值然后相加计算即可得解【详解】∵点与点关于原点对称∴∴∴故答案为1【点睛】本题考查了关于原点对称的点的坐标关于原点的对称点横纵坐标都解析:1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出a 、b 的值,然后相加计算即可得解.【详解】∵点()1,5A a -与点()2,5B b +-关于原点对称 ∴1+2=0a b -+∴1,2a b ==- ∴()()2 020 2 020211a b =++=- 故答案为1.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数. 20.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____. 【分析】将△PBA 沿B 点顺时针旋转90°此时A 与C 点重合P 点旋转到E 点连接PE 易证△BPE 是等腰直角三角形利用勾股定理可求出PE 的长再证明△PCE 是直角三角形利用勾股定理求出CE 的长即可得到PA 的长 解析:6【分析】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,易证△BPE 是等腰直角三角形,利用勾股定理可求出PE 的长,再证明△PCE 是直角三角形.利用勾股定理求出CE 的长,即可得到PA 的长.【详解】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,∴PB=BE=1,PA=EC ,∠BPE=90°∴△PEB 是等腰直角三角形,∴∠PEB=∠EPB =45°,∴PE=2PB=2,又∵∠BPC=135°,∴∠EPC=135°-45°=90°,∴在直角△PEC中,EC=()2222+=+=,226PC PE∴PA=EC6=,故答案为:6.【点睛】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.三、解答题21.在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.解析:(1)图见解析,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)P1的坐标为(n,﹣m);(3)见解析【分析】(1)依据点(0,0)为旋转中心,将△ABC顺时针转动90°,即可得到△A1B1C1;(2)依据旋转前后坐标的变化规律,即可得到对应点P1的坐标;(3)依据中心对称的性质,即可得到△ABC关于点O的中心对称图形△A2B2C2.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC 上有一点P (m ,n ),则对应点P 1的坐标为(n ,﹣m ).(3)如图所示,△A 2B 2C 2即为所求.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △; (3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标. 解析:(1)图见解析,()12,2A ,()10,1B-;(2)图见解析;(3)(0,2)-. 【分析】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得,然后根据点C 是11,A A B B 的中点即可求出点11,A B 的坐标;(2)先根据点2,A A 的坐标得出平移方式,再根据点坐标的平移变换规律可得点22,B C 的坐标,然后画出点222,,A B C ,最后顺次连接点222,,A B C 即可得;(3)先根据旋转中心的定义可得线段12B B 的中点P 即为旋转中心,再根据点12,B B 的坐标即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A B C 即可得11A B C ,如图所示:设点1A 的坐标为1(,)A a b ,点C 是1A A 的中点,且()2,2A -,()0,2C ,202222a b -+⎧=⎪⎪∴⎨+⎪=⎪⎩,解得22a b =⎧⎨=⎩, 1(2,2)A ∴,同理可得:1(0,1)B -;(2)()()2,62,2,2A A ---,∴从点A 到点2A 的平移方式为向下平移8个单位长度,()()0,5,0,2B C ,()()220,58,0,28B C ∴--,即()()220,3,0,6B C --,先画出点222,,A B C ,再顺次连接点222,,A B C 即可得222A B C △,如图所示:(3)由旋转中心的定义得:线段12B B 的中点P 即为旋转中心,()12(0,1),0,3B B --,0013(,)22P +--∴,即(0,2)P -, 故旋转中心的坐标为(0,2)-.【点睛】本题考查了画旋转图形和平移图形、求旋转中心的坐标,熟练掌握旋转图形和平移图形的画法是解题关键.23.如图将三角形绕点B 顺时针旋转得到A BC ''△,使点A '落在AC 上,已知45,4,2,//C BC A A C C BC '∠==︒'=求:(1)A BC '∠的度数;(2)AC 的长度.解析:(1)22.5︒;(2)4【分析】(1)根据平行和旋转的性质证明ABC 和ABA '△是等腰三角形,利用等腰三角形的性质求出A BC ∠''的度数,就可以求得A BC '∠的度数;(2)由(1)知ABC 是等腰三角形,可得AC=BC=4.【详解】解:(1)∵//AC BC ',∴AA B A BC '''∠=∠,∵旋转,∴AB A B '=,∴A AA B '∠=∠,∴A A BC ''∠=∠,∵ABC A BC ''∠=∠,∴A ABC ∠=∠,∵45C ∠=︒, ∴1804567.52A BC ABC ︒-︒''∠=∠==︒, ∵//AC BC ',∴45C CBC '∠=∠=︒,∴67.54522.5A BC A BC CBC ''''∠=∠-∠=︒-︒=︒;(2)由(1)知A ABC ∠=∠,∴AC=BC=4.【点睛】本题考查等腰三角形的性质,旋转和平行的性质,解题的关键是熟练运用这些性质定理进行求解.24.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .解析:(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.25.如图,等边△ABC中,P是BC边上任意一点,将△ABP绕点A逆时针旋转60°.(1)请用圆规和无刻度的直尺作出旋转后的三角形(保留作图痕迹,不写作法和证明);(2)记点P的对应点为Pʹ,试说明△APPʹ的形状,并说明理由解析:(1)见解析;(2)△APPʹ是等边三角形,理由见解析.【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)根据“含有60°角的等腰三角形是等边三角形”进行判断△APPʹ的形状.【详解】解:(1)如图所示,(2)△APPʹ是等边三角形,如图,连接PPʹ,根据作图得∠PAPʹ=60°,AP=APʹ,∴△APPʹ是等边三角形.【点睛】本题考查的是作图-旋转变换和等边三角形的判断,熟知图形旋转的性质及等边三角形的判定定理是解答此题的关键.26.己知,如图,点P是等边△ABC 内一点,∠APB=112°,如果把△APB绕点A旋转,使∠的度数.点 B与点C 重合,此时点P落在点P'处,求PP C'解析:52°【分析】根据旋转的性质得到AP'=AP,∠BAP=∠CAP',利用等边三角形的性质及角的和差得到△PAP'是等边三角形,即可求解.【详解】解∶∵△APB≌AP'C,∴∠AP'C=∠APB=112°,且AP'=AP,∠BAP=∠CAP',又∵∠BAP+∠PAC=60°,∴∠CAP'+∠PAC=60°,即∠PAP'=60°,∴△PAP'是等边三角形,∴∠PP'C=∠AP'C-∠AP'P=112°-60°=52°.【点睛】本题考查旋转的性质、等边三角形的判定与性质,掌握旋转的性质是解题的关键.27.江都大润发超市销售一种利润为每千克10元的水产品,一个月能销售出500千克.经市场分析,销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,若设单价每千克涨价x元,请解答以下问题:(1)填空:每千克水产品获利元,月销售量减少千克;(2)要使得月销售利润达到8000元,又要“薄利多销”,销售单价应涨价为多少元?解析:(1)(10+x);10x;(2)10【分析】(1)根据获利=原利润+涨价即可得出答案;根据销售单价每涨价1元,月销售量就减少10千克即可得出月销售量减少的数量;(2)利用“每千克水产品获利×月销售量=总利润”列出方程,解方程即可求出结果.【详解】解:(1)(10+x),10x;(2)由题意,得:(10+x)(500﹣10x)=8000;化简为:x2﹣40x+300=0;解得:x1=10,x2=30.∵“薄利多销”,∴x=30不符合题意,舍去.答:销售单价应涨价10元.【点睛】本题考查了一元二次方程的应用,正确表示出月销售量是解题的关键.28.在6×6方格中,每个小正方形的边长为1,点A,B在小正方形的格点上,请按下列要求画一个以AB为一边的四边形,且四边形的四个顶点都在格点上.(1)在图甲中画一个是中心对称图形但不是轴对称图形;(2)在图乙中画一个既是中心对称图形又是轴对称图形.参考答案解析:(1) (2)【分析】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形;(2)根据是中心对称图形又是轴对称图形可以确定是菱形或者正方形;【详解】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形画图如下:(2)根据是中心对称图形又是轴对称图形可以确定是正方形画图如下:【点睛】本题考查了作图应用设计,熟练掌握轴对称图形和中心对称图形是解题关键.。

深圳南山区学府中学九年级数学上册第二十一章《一元二次方程》经典测试卷(培优练)

深圳南山区学府中学九年级数学上册第二十一章《一元二次方程》经典测试卷(培优练)

一、选择题1.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++=C解析:C 【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解. 【详解】解:设月平均增长率为x , 根据题意得:400(1+x )2=900. 故选:C . 【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.2.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( ) A .k-4且k≠0 B .k≥-4C .k>-4且k≠0D .k>-4B解析:B 【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论. 【详解】解:当k=0时,原方程为-4x+1=0, 解得:x=14, ∴k=0符合题意; 当k≠0时,∵方程kx 2-4x-1=0有实数根, ∴△=(-4)2+4k≥0, 解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4. 故选:B . 【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.下列方程属于一元二次方程的是( ) A .222-=x x x B .215x x+= C .220++=ax bx c D .223x x +=D解析:D 【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可. 【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误; C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误; D 223x x +=符合一元二次方程的定义,故D 正确; 故选:D . 【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2. 4.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -= C .2(1)0x -= D .2(1)20x ++=D 解析:D 【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得. 【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D . 【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.5.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .20C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .7B解析:B 【分析】根据球赛问题模型列出方程即可求解. 【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0, 解得x 1=5,x 2=-4(舍去), ∴参加此次比赛的球队数是5队. 故选:B . 【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.不解方程,判断方程23620x x --=的根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确C解析:C 【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论. 【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0, ∴方程23620x x --=有两个不相等的实数根. 故选: C 【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =- C .10x =,21x =- D .121x x ==A 解析:A 【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】 解:∵x 2-x=0, ∴x (x-1)=0, 则x=0或x-1=0, 解得:x 1=0,x 2=1, 故选:A . 【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.9.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5C .10319-D .10319A 解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.10.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( ) A .0 B .2020C .1D .-2020A解析:A 【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案. 【详解】解:∵方程2202030x x +-=的根分别为a 和b ∴2202030a a +-=,即220302a a =- ∴2a a 2020a b ++=32020a -+ab+2020a=3+ab ∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0 故选:A . 【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019 【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019. 【详解】解:对于一元二次方程2(1)(1)1a x b x +++=, 设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020, 所以at 2+bt-1=0有一个根为t=2020, 则x+1=2020, 解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019. 故答案为:x=2019. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.方程2(3)30x x -+=的二次项系数为________,一次项系数为________,常数项为________.该方程判别式的值为_________,由此可以判断它的根的情况为___________.2-6312有两个不相等的实数根【分析】先将方程化为一般形式再计算出判别式的值根据结果判断根的情况【详解】解:化简可得:二次项系数为2一次项系数为-6常数项为3该方程判别式的值为由此可以判断它的根的解析:2 -6 3 12 有两个不相等的实数根 【分析】先将方程化为一般形式,再计算出判别式的值,根据结果判断根的情况. 【详解】解:化简可得:22630x x -+=,二次项系数为2,一次项系数为-6,常数项为3, 该方程判别式的值为()2642312--⨯⨯=,由此可以判断它的根的情况为:有两个不相等的实数根, 故答案为:2;-6;3;12;有两个不相等的实数根. 【点睛】本题考查了一元二次方程,解题的关键是掌握定义和根的判别式.13.写出有一个根为1的一元二次方程是______.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考解析:20x x -=(答案不唯一) 【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1. 【详解】可以用因式分解法写出原始方程,然后化为一般形式即可, 如()10x x -=,化为一般形式为:20x x -= 故答案为:20x x -=. 【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.14.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1 【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得. 【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--,3p a ∴-=-,36a -=-,解得2a =, 则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=, 解得1p =, 故答案为:1. 【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.15.一元二次方程()422x x x +=+的解为__.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +. 【详解】解:()422x x x +=+()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法. 16.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解解析:1(答案不唯一) 【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可. 【详解】解:若关于x 的一元二次方程()23x c -=有实根, 则0c ≥,所以c 的值可以是1(答案不唯一). 故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 17.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0解析:6 【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值. 【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6, 即m 2﹣5m ﹣6=0. ∴(m ﹣6)(m +1)=0, 解得m 1=6,m 2=﹣1. ∵m =x 2+y 2≥0, ∴x 2+y 2=6. 故答案为:6. 【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.18.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1 【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值. 【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0, 整理得:220m m --=, 因式分解得:()()120m m +-=, 解得:m =-1或m =2, ∵m -2≠0 ∴m =-1, 故答案为:-1. 【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.19.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】解析:-1 【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算. 【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5, ∴m 、n 为方程x 2+2x ﹣1=0的两个根, ∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1. 故答案为﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a.20.当m =___________时,方程(2150mm xmx --+=是一元二次方程.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答. 【详解】∵(2150m m xmx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.三、解答题21.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.解析:(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义. 22.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.解析:(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.23.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,我市一家“大学生自主创业”的快递公司,今年7月份与9月份完成投递的快递总件数分别是10万件和12.1万件,现假设该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果每人每月最多可投递0.6万件,那么该公司现有的22名快递业务员能否完成今年10月份的快递投递任务?请说明理由.解析:(1)该快递公司投递总件数的月平均增长率为10%;(2)不能,理由见解析【分析】(1)设该快递公司投递总件数的月平均增长率为x ,根据“今年7月份与9月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年10月份的快递投递任务,再求出22名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年10月份的快递投递任务.【详解】解:(1)设该快递公司投递总件数的月平均增长率为x ,根据题意得:210(1)12.1x +=,解得:10.1x =,2 2.1x =-(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年10月份的快递投递任务是12.1(110%)13.31⨯+=(万件).平均每人每月最多可投递0.6万件, 22∴名快递投递员能完成的快递投递任务是:0.62213.213.31⨯=<,∴该公司现有的22名快递投递业务员不能完成今年10月份的快递投递任务.【点睛】此题主要考查了一元二次方程的应用,根据增长率一般公式列出方程即可解决问题. 24.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元?解析:(1)2160y x =-+;(2)商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【分析】(1)用待定系数法求解即可;(2)根据总利润=每千克利润×数量列方程求解即可.【详解】解:(1)设一次函数解析式为:y kx b =+,将:()25,110;()30,100代入,得 ∴2511030100k b k b +=⎧⎨+=⎩解得:2160k b =-⎧⎨=⎩, ∴一次函数解析式为:2160y x =-+;,(2)由题意得:()()2021601000x x --+=整理得:210021000x x -+=,解得130x =,270x =(不合题意,舍去),即商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【点睛】本题考查了待定系数法求函数解析式,一元二次方程的应用,熟练掌握待定系数法是解(1)的关键,列出方程式解(2)的关键.25.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.解析:(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用求解. 26.请回答下列各题:(1)先化简,再求值:2319369x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.解析:(1)1-2)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】(1)由题意得:原式23193(3)x x x x x x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式313-===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.27.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.解析:(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.28.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。

深圳市南山区学府中学九年级下学期期初数学试卷与答案

深圳市南山区学府中学九年级下学期期初数学试卷与答案

深圳市南山区学府中学九年级下学期期初数学试卷一、选择题(本部分共10小题,每小题3分,共30分,每小题给出4个选项,其中只有一个是正确的)1.(3分)下列几何体中,从正面和上面看得到的图形形状不一样的是()A.B.C.D.2.(3分)已知关于x的一元二次方程x2+3x﹣m=0的一个根是2,则m的值为()A.5B.8C.10D.143.(3分)若函数y=的图象在第一、三象限内,则m的取值范围是()A.m>﹣2B.m<﹣2C.m>2D.m<24.(3分)在一个不透明的口袋中装有2个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在20%附近,则口袋中白球可能有()A.5个B.6个C.7个D.8个5.(3分)如图,四边形ABCD的对角线AC、BD相交于O,下列判断正确的是()A.若AC⊥BD,则四边形ABCD是菱形B.若AC=BD,则四边形ABCD是矩形C.若AC⊥BD,AC=BD,则四边形ABCD是正方形D.若AO=OC,BO=OD,则四边形ABCD是平行四边形6.(3分)在△ACB中,∠ABC=90°,用直尺和圆规在AC上确定点D,使△BAD∽△CBD,根据作图痕迹判断,正确的是()A.B.C.D.7.(3分)如图是某数学兴趣小组设计用手电筒来测量某古城墙高度的示意图,在点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,CD⊥BD,且测得AB=4m,BP=6m,PD=12m,那么该古城墙CD的高度是()A.8m B.9m C.16m D.18m8.(3分)某市2020年投入了教育专项经费7200万元,用于发展本市的教育,预计到2022年将投入教育专项经费三年共需23832万元,若每年增长率都为x,下列方程正确的是()A.7200(1+x)=23832B.7200(1+x)2=23832C.7200+7200(1+x)+7200(1+x)2=23832D.7200x2=238329.(3分)如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD 的最小值是()A.B.3+3C.6+D.10.(3分)如图,正方形ABCD中,E为CD的中点,AE的垂直平分线分别交AD、BC及AB的延长线于点F、G、H,连接HE,HC、ED,连接CO并延长交AD于点M,则下列结论中:①FG=2AO;②HE=5BH;③OD⊥CM;④OD∥HE;⑤;⑥2OE2=AH•DE;正确的结论的个数为()A.3B.4C.5D.6二.填空题(本大题共5小题,每小题3分,共15分)11.(3分)若3x=4y,则=.12.(3分)抛物线y=x2+2向下平移1个单位,再向右平移3个单位,得到的抛物线的函数解析式为.13.(3分)如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为米.14.(3分)如图,已知平行四边形ABCD的面积为24,以B为位似中心,作平行四边形ABCD的位似图形平行四边形EBFG,位似图形与原图形的位似比为,连接AG、DG.则△ADG的面积为.15.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②4a+2b+c>0;③5a﹣b+c=0;④若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣8,其中正确的结论有.三、解答题(本题共7小题,其中第16题5分,第17题8分,第18题8分,第19题7分,第20题8分,第21题9分,第22题10分,共55分)16.(5分)计算:17.(8分)解方程:(1)x2﹣2x﹣8=0;(2)(x+4)2=5(x+4).18.(8分)为喜迎中国共产党第二十次全国代表大公的召开,某中学举行党史知识竞赛.团委随机抽取了部分学生的成绩作为样本,把成绩按达标,良好,优秀,优异四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查的学生数是人,圆心角β=度;(2)补全条形统计图;(3)已知该中学共有1500名学生,估计此次竞赛该校获优异等级的学生人数为多少?(4)若在这次竞赛中有A、B、C、D四人成绩均为满分,现从中抽取2人代表学校参加区级比赛,请用列表或画树状图的方法求出恰好抽到A、C两人同时参赛的概率.19.(7分)如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.20.(8分)某超市以每千克40元的价格购进菠萝蜜,计划以每千克60元的价格销售,为了让顾客得到实惠.现决定降价销售,已知这种菠萝蜜销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数关系式.(2)当每千克菠萝蜜降价4元时,超市获利多少元?(3)若超市要想获利2400元,且让顾客获得更大实惠,这种菠萝蜜每千克应降价多少元?21.(9分)在学习人教版九下《锐角三角函数》一章时,小明同学对一个角的三角函数值和它的倍角的三角函数值是否具有关系产生了浓厚的兴趣,进行了一般研究.(1)初步尝试:我们知道:tan60°=,tan30°=,发现结论:tan A=2tan(∠A)(填“=”或“≠”)(2)实践探究:如图1,在Rt△ABC中,∠C=90°,AC=2,BC=1,求tan(∠A)的值;小明想构造包含∠A的直角三角形,延长CA到D,使DA=AB,连接BD,所以得∠D=∠A,即转化为求∠D 的正切值,请按小明的思路进行余下的求解:(3)拓展延伸:如图2,在Rt△ABC中,∠C=90°,AC=3,tan A=.①tan2A=;②求tan3A的值.22.(10分)如图,在平面直角坐标系中,C(8,0)、B(0,6)是矩形ABOC的两个顶点,点D是线段AB 上的一个动点(不与A、B重合),双曲线y=(k>0)经过点D,与矩形ABOC的边AC相交于点E.(1)如图①,当点D为AB中点时,k的值为,点E的坐标为.(2)如图②,当点D在线段AB上的任意位置时(不与A、B重合),连接BC、DE,求证:BC∥DE.(3)是否存在反比例函数上不同于点D的一点F,满足:△ODF为直角三角形,∠ODF=90°,且tan ∠DOF=,若存在,请直接写出满足以上条件时点D的横坐标,若不存在,请说明理由.深圳市南山区学府中学九年级下学期期初数学试卷答案1.【分析】从正面看到的图形即为主视图,从上面看到的图形即为俯视图,结合图形找出各图形的俯视图以及主视图,然后进行判断即可.【解答】解:A、主视图为正方形,俯视图为正方形,故此选项不符合题意;B、主视图为矩形,俯视图为矩形,故此选项不符合题意;C、主视图为三角形,俯视图为中间有点的圆,故此选项符合题意;D、主视图为圆形,俯视图为圆形,故此选项不符合题意.故选:C.【点评】本题考查了简单几何体的三视图.解题的关键是明确从正面看到的图形即为主视图,从上面看到的图形即为俯视图.2.【分析】把x=2代入方程x2+3x﹣m=0得4+6﹣m=0,然后解关于m的方程即可.【解答】解:把x=2代入方程x2+3x﹣m=0得4+6﹣m=0,解得m=10.故选:C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.【分析】先根据函数的图象在第一、三象限列出关于m的不等式,求出m的取值范围即可.【解答】解:∵函数y=的图象在第一、三象限,∴m+2>0,解得m>﹣2.故选:A.【点评】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k>0时,函数的图象在第一、三象限是解答此题的关键.4.【分析】由摸到红球的频率稳定在20%附近得出口袋中得到白色球的概率,进而求出白球个数即可.【解答】解:设袋中白球的个数为x,根据题意,得:=20%,解得x=8,经检验x=8是分式方程的解,所以口袋中白球可能有8个,故选:D.【点评】此题主要考查了利用频率估计概率,掌握大量反复试验下频率稳定值即概率是解题关键.5.【分析】根据矩形,菱形,正方形,平行四边形的判定定理即可得到结论.【解答】解:A、若AC⊥BD,则四边形ABCD不一定是菱形,故选项A不符合题意;B、若AC=BD,则四边形不一定ABCD是矩形,故选项B不符合题意;C、若AC⊥BD,AC=BD,则四边形ABCD不一定是正方形,故选项C不符合题意;D、∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,故选项D符合题意;故选:D.【点评】本题考查了正方形、矩形、菱形、平行四边形的判定,熟练掌握各判定定理是解题的关键.6.【分析】若△BAD∽△CBD,可得∠ADB=∠BDC=90°,即BD是AC的垂线,根据作图痕迹判断即可.【解答】解:当BD是AC的垂线时,△BAD∽△CBD.∵BD⊥AC,∴∠ADB=∠CDB=90°,∵∠ABC=90°,∴∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∴△BAD∽△CBD.根据作图痕迹可知,A选项中,BD是∠ABC的平分线,不与AC垂直,不符合题意;B选项中,BD是AC边上的中线,不与AC垂直,不符合题意;C选项中,BD是AC的垂线,符合题意;D选项中,AB=AD,BD不与AC垂直,不符合题意.故选:C.【点评】本题考查尺规作图、相似三角形的判定,熟练掌握相似三角形的判定是解答本题的关键.7.【分析】利用入射与反射得到∠APB=∠CPD,则可判断Rt△ABP∽Rt△CDP,于是根据相似三角形的性质即可求出CD.【解答】解:根据题意得∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴Rt△ABP∽Rt△CDP,∴=,即=,解得:CD=8.答:该古城墙CD的高度为8m.故选:A.【点评】本题考查了相似三角形的应用:利用入射与反射的原理构建相似三角形,然后利用相似三角形的性质即相似三角形的对应边的比相等解决.8.【分析】根据该市2020年及三年年投入教育专项经费的金额,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意得:7200+7200(1+x)+7200(1+x)2=23832,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【分析】过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.10.【分析】过G作GK⊥AD于K,证明△ADE≌△GKF得到FG=AE,可得FG=2AO,即可判断①;设OF =x,AO=2x,得到AE=FG=OH=4x,根据勾股定理可得,根据相似三角形的性质可得,即可判断②;延长DO交AB于P,则OD=OP,根据全等三角形的性质可得PD=PC,求得PC >CD,由PO=DO,得到OD不垂直CM,即可判断③;证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行,即可判断④;设正方形ABCD的边长为2x,则AD=AB=2x,证明△ADE∽△HOA,得到HO,AH,根据AR∥CD即可得到结论,即可判断⑤;根据相似三角形的判定和性质即可得到结论,即可判断⑥,从而得到答案.【解答】解:如图,过G作GK⊥AD于K,∴∠GKF=∠GKA=90°,∵四边形ABCD是正方形,∴∠ADE=∠DAB=∠ABC=90°,AD=AB=CD,∴∠GKA=∠KAB=∠ABG=90°,∠ADE=∠GKF,∴四边形ABGK是矩形,∴AB=GK,∴AD=AB=GK,∵AE⊥FH,∴∠AOF=∠OAF+∠AFO=90°,∵∠OAF+∠AED=90°,∴∠AFO=∠AED,在△ADE和△GKF中,,∴△ADE≌△GKF(AAS),∴FG=AE,∵FH是AE的中垂线,∴AE=2AO,∴FG=2AO,故①正确,符合题意;∵E为CD的中点,∴,∵,∴设OF=x,AO=2x,∴AE=FG=4x,∵,∴HO=4x,∴FH=HO+FO=5x,∴GH=HF﹣GE=5x﹣4x=x,∵HF是AE的垂直平分线,∴,∵∠BHG=∠OHA,∠AOH=∠GBH=90°,∴△HBG∽△HOA,∴,∴,∴,∴,∴EH=5BH,故②正确,符合题意;延长DO交AB于P,∵HF是AE的垂直平分线,∴AO=EO,∵四边形ABCD是正方形,∴AB∥CD,∴∠OAP=∠OED,∴△AOP≌△EOD(ASA),∴AP=DE,∴AP=PB,∴△ADP≌△BCP(SAS),∴PD=PC,∵PC>BC,∴PC>CD,∵PO=DO,∴OD不垂直于CM,故③错误,不符合题意;∵FH是AE的中垂线,∴AH=EH,∴∠HAE=∠HEA,∵AB∥CD,∴∠HAE=∠AED,在Rt△ADE中,∵O是AE的中点,∴,∴∠ODE=∠AED,∴∠HEA=∠AED=∠ODE,当∠DOE=∠HEA时,OD∥HE,但AE>AD,即AE>CD,∴OE>DE,即∠DOE≠∠HEA,∴OD与HE不平行,故④错误,不符合题意;设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,∴,,∵AE⊥HF,∴∠AOH=∠ADE=90°,∴∠OAH+∠AHO=90°,∵∠DAE+∠OAH=90°,∴△ADE∽△HOA,∴,∴,∴,在Rt△AHO中,由勾股定理得:,∴,∴,延长CM、BA于R,∵RA∥CE,∴∠ARO=∠ECO,∵AO=EO,∠ROA=∠COE,∴△ARO≌△ECO,∴AR=CE,∵AR∥CD,∴,∴,∴,故⑤正确,符合题意;∵∠HAE=∠AEH=∠OED=∠ODE,∴,∵AE=2DE,∴OE⋅2DE=AH⋅DE,∴2OE=AH,∴2OE2=AH⋅OE,故⑥正确,符合题意,综上所述,正确的有:①②⑤⑥,共4个,故选:B.【点评】本题考查了相似三角形的判定与性质、勾股定理、线段垂直平分线的性质、正方形的性质、三角形全等的判定与性质,熟练掌握以上知识点,添加适当的辅助线,是解此题的关键.11.【分析】直接利用已知将原式变形得出答案.【解答】解:∵3x=4y,∴=.故答案为:.【点评】此题主要考查了比例的性质,正确将已知变形是解题关键.12.【分析】根据函数图象“左加右减,上加下减”可得答案.【解答】解:抛物线y=x2+2向下平移1个单位,再向右平移3个单位,得到的抛物线的函数解析式为y=(x﹣3)2+2﹣1,即y=(x﹣3)2+1.故答案为:y=(x﹣3)2+1.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.13.【分析】由题意可得四边形AEFD是矩形,由AB的坡角α=45°,得出AE的长,利用背水坡CD的坡度i=1:得出∠C的度数,即可求解.【解答】解:∵迎水坡AB的坡角α=45°,坡长AB=10米,∴AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan∠C===,∴∠C=30°,则DC=2DF=2AE=20(米),故答案为:20.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.14.【分析】延长EG交CD于点H,由题意可得四边形AEHD是平行四边形,则可得此平行四边形的面积为8,从而可得△ADG的面积.【解答】解:延长EG交CD于点H,如图,∵四边形ABCD是平行四边形,四边形EBFG是平行四边形,∴AB∥CD,AD∥BC;BF∥EG,∴AD∥EG,∴四边形AEHD是平行四边形,∴.∵位似图形与原图形的位似比为,∴,即,∴,∴.故答案为:4.【点评】本题考查了位似图形的性质,平行四边形的性质与判定,掌握这些性质是解题的关键.15.【分析】利用顶点式得到y=ax2+4ax﹣5a,根据抛物线的开口向上得到a>0,则b>0,c<0,于是可对①进行判断;解方程ax2+4ax﹣5a=0得抛物线与x轴的交点坐标为(﹣5,0),(1,0),利用x=2时,y >0可对②进行判断;把b =4a ,c =﹣5a 代入5a ﹣b +c 中可对③进行判断;根据抛物线y =a (x +5)(x ﹣1)与直线y =﹣1有两个交点,交点的横坐标分别为x 1和x 2,则可对④进行判断;由于方程ax 2+bx +c=1有2个根,方程ax 2+bx +c =﹣1有2个根,则利用根与系数的关系可对⑤进行判断.【解答】解:∵抛物线的顶点坐标为(﹣2,﹣9a ),∴y =a (x +2)2﹣9a =ax 2+4ax ﹣5a ,∵抛物线的开口向上,∴a >0,∴b =4a >0,c =﹣5a <0,∴abc <0,所以①正确;当y =0时,ax 2+4ax ﹣5a =0,解得x 1=﹣5,x 2=1,∴抛物线与x 轴的交点坐标为(﹣5,0),(1,0),∵x =2时,y >0,∴4a +2b +c >0,所以②正确;∵5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a ,而a >0,∴5a ﹣b +c <0,所以③错误;∵方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,∴抛物线y =a (x +5)(x ﹣1)与直线y =﹣1有两个交点,交点的横坐标分别为x 1和x 2,∴﹣5<x 1<x 2<1,所以④正确;∵方程|ax 2+bx +c |=1有四个根,∴方程ax 2+bx +c =1有2个根,方程ax 2+bx +c =﹣1有2个根,∴所有根之和为2×(﹣)=2×(﹣)=﹣8,所以⑤正确.故答案为①②④⑤.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置.当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由△决定:Δ=b 2﹣4ac >0时,抛物线与x 轴有2个交点;Δ=b 2﹣4ac =0时,抛物线与x 轴有1个交点;Δ=b 2﹣4ac <0时,抛物线与x 轴没有交点.16.【分析】首先计算零指数幂、负整数指数幂、特殊角的三角函数值和绝对值,然后计算乘法,最后从左向右依次计算即可.【解答】解:===4.【点评】本题主要考查了实数的运算,零指数幂,负整数指数幂,特殊角三角函数值,绝对值的化简,掌握特殊角三角函数值,零指数幂,负整数指数幂的运算法则是解题关键.17.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)x 2﹣2x ﹣8=0.(x ﹣4)(x +2)=0,(x ﹣4)=0,(x +2)=0,∴x 1=4,x 2=﹣2;(2)(x +4)2﹣5(x +4)=0,(x +4)(x +4﹣5)=0,∴x +4=0或x ﹣1=0,∴x 1=﹣4,x 2=1.【点评】本题主要考查解一元二次方程,熟练掌握解一元二次方程的简便的方法是解题的关键.18.【分析】(1)用良好等级的人数除以它所占的百分比得到调查的总人数,然后用360°乘以优异等级的人数所占的百分比得到圆心角β的度数;(2)先计算出优秀等级的人数,然后补全条形统计图;(3)用1500乘以样本中优异等级的人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果,再找出恰好抽到A 、C 两人的结果数,然后根据概率公式计算.【解答】解:(1)本次调查的学生数为10÷20%=50(人);圆心角β的度数为360°×=144°;故答案为:50;144;(2)优秀等级的人数为50﹣2﹣10﹣20=18(人),补全条形统计图为:(3)1500×=600(人),所以估计此次竞赛该校获优异等级的学生人数为600人;(4)画树状图为:共有12种等可能的结果,其中恰好抽到A、C两人的结果数为2,所以恰好抽到A、C两人同时参赛的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求出事件A或B的概率.也考查了统计图.19.【分析】(1)由“AAS”证△AOE≌△COF,得OF=OE,证出四边形AFCE是平行四边形,再证CE=CF,即可得出结论;(2)由含30°角的直角三角形的性质得出OE=AO=,则EF=2OE=2,由菱形面积公式即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,AO=CO,∴∠AEF=∠CFE,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE,∵AO=CO,∴四边形AFCE是平行四边形;∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,AO=CO=AC=1,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OE=AO=,∴EF=2OE=2,∴四边形AFCE的面积=AC×EF=×2×2=2.【点评】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握菱形的判定与性质是解题的关键.20.【分析】(1)观察函数图象,根据图象上点的坐标,利用待定系数法,即可求出y与x之间的函数关系式;(2)利用总利润=每千克的销售利润×销售数量,即可求出结论;(3)利用总利润=每千克的销售利润×销售数量,即可得出关于x的一元二次方程,解之即可求出x 的值,再结合要让顾客获得更大实惠,即可得出这种干果每千克应降价7元.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(2,100),(5,160)代入y=kx+b得:,解得:,∴y 与x 之间的函数关系式为y =20x +60(0<x <20).故答案为:y =20x +60(0<x <20).(2)(60﹣4﹣40)×(20×4+60)=16×140=2240(元).答:当每千克干果降价4元时,超市获利2240元.(3)根据题意得:(60﹣x ﹣40)(20x +60)=2400,整理得:x 2﹣17x +60=0,解得:x 1=5,x 2=12,又∵要让顾客获得更大实惠,∴x =12.答:这种干果每千克应降价12元.【点评】本题考查了一元二次方程的应用、一次函数的应用以及有理数的混合运算,解题的关键是:(1)根据图中点的坐标,利用待定系数法求出y 与x 之间的函数关系式;(2)根据各数量之间的关系,列式计算;(3)找准等量关系,正确列出一元二次方程.21.【分析】(1)直接利用特殊角的三角函数值得结论;(2)根据题意,利用勾股定理求AB ,得结论.(3)①作AB 的垂直平分线交AC 于E ,连接BE ,则∠BEC =2∠A ,在Rt△EBC 中,利用勾股定理求出EC ,求tan∠BEC 得结果;②作BM 交AC 于点M ,使∠MBE =∠EBA ,则∠BMC =3∠A .利用角平分线的性质和勾股定理求出EM 的长,求tan∠BMC 得结果.【解答】解:(1)tan60°=,tan30°=,发现结论:tan A ≠2tan(∠A ),故答案为:,,≠;(2)在Rt△ABC 中,∠C =90°,AC =2,BC =1,∴AB ==,延长CA 至D ,使得DA =AB ,∴AD =AB =,∴∠D =∠ABD ,∴∠BAC =2∠D ,CD =AD +AC =2+,∴tan(∠A )=tan∠D ===﹣2;(3)①作AB 的垂直平分线交AC 于E ,连接BE .则∠BEC =2∠A ,AE =BE ,∵Rt△ABC 中,∠C =90°,AC =3,tan A =.∴BC =1,AB =设AE =x ,则EC =3﹣x在Rt△EBC 中,x 2=(3﹣x )2+1,解得x =,即AE =BE =,EC =∴tan2A =tan∠BEC ==.故答案为:.②如图,作BM 交AC 于点M ,使∠MBE =∠EBA ,则∠BMC =∠A +∠MBA =3∠A .设EM =y ,则MC =EC ﹣EM =﹣y∵∠MBE =∠EBA ,设点E 到边BM 的距离为m ,到边AB 的距离为n ,∴m =n .∴S △ABE =AB •n ,S △MBE =BM •m ,∴,∵(同高的两三角形的面积的比等于底的比),∴=,即=,∴BM =y在Rt△MBC 中,BM 2=CM 2+BC2即(y )2=(﹣y )2+1,整理,得117y 2+120y ﹣125=0,解得,y 1=,y 2=﹣(不合题意,舍去)即EM =,CM =﹣=.∴tan3A =tan∠BMC ===.【点评】本题考查了锐角三角函数、勾股定理、等腰三角形的性质等知识点,难度较大,在直角三角形中作辅助线构造2∠A 、3∠A 是解决本题的关键.22.【分析】(1)根据矩形的性质得点A 的坐标,再利用中点坐标公式得点D 的坐标,从而得出k 的值,再将y =6代入即可;(2)根据点D 、E 的坐标,可得出AD 、AE 的长度,根据即即可证出BC ∥DE ;(3)根据题意可知,需要分两种情况:①当点F 在直线AB 上方时,过点D 作DG ⊥x 轴于点G ,过点F 作FM ⊥DG 于点M ,②当点F 在直线AB 下方时,如图,过点D 作DG ⊥x 轴于点G ,过点F 作FN ⊥AB 于点N ,分别设出点D 的横坐标,表达点F 的坐标,进而得出方程,求解即可.【解答】(1)解:∵C (8,0)、B (0,6)是矩形ABOC 的两个顶点,∴AB =OC =8,AC =OB =6,∴A(8,6),∵点D是AB的中点,∴D(4,6),∴k=8×3=24,∴y=,当x=8时,y=3,∴E(8,3),故答案为:24,(8,3);(2)证明:设点D的横坐标为m,∴点D的坐标为(m,6),∴k=6m,∴反比例函数的解析式为:y=,∴点E的坐标为(8,),∴AD=8﹣m,AE=AC﹣CE=6﹣=,∵==,==,∴=,即,∴BC∥DE;(3)解:根据题意可知,需要分两种情况:①当点F在直线AB上方时,如图,过点D作DG⊥x轴于点G,过点F作FM⊥DG于点M,∴∠OGD=∠DMF=90°,∴∠ODG+∠DOG=∠ODG+∠FDM=90°,∴∠DOG=∠FDM,∴△ODG∽△DFM,∴OD:DF=OG:DM=DG:FM,∵tan∠DOF=,∴DF:OD=1:3,∴OD:DF=OG:DM=DG:FM=3,∵DG=OB=6,∴FM=2,设点D的横坐标为t,则OG=t,∴DM=,∴D(t,6),F(t﹣2,6+),∴6t=(t﹣2)(6+),解得t=1+(负值舍去).即此时点D的横坐标为:1+.②当点F在直线AB下方时,如图,过点D作DG⊥x轴于点G,过点F作FN⊥AB于点N,∴∠OBD=∠DNF=90°,∵∠ODF=90°,∴∠ODB+∠DOB=∠ODB+∠FDN=90°,∴△ODB∽△DFN,∴OD:DF=OB:DN=DB:FN,∵tan∠DOF=,∴DF:OD=1:3,∴OD:DF=OB:DN=DB:FN=3,∵OB=6,∴FN=2,设点D的横坐标为n,则BD=n,∴FN=,∴D(n,6),F(n+2,6﹣),∴6n=(n+2)(6﹣),解得n=﹣1+(负值舍去).即此时点D的横坐标为:﹣1+.综上,满足题意的点D的横坐标为:1+或﹣1+.【点评】本题属于反比例函数与几何综合题,主要考查了反比例函数图象上点的坐标特征、矩形的性质以及平行线的性质,根据反比例函数图象上点的坐标特征找出点D、E的坐标是解题的关键.。

【单元练】深圳南山区学府中学九年级数学下册第二十七章《相似》经典测试卷(培优练)

【单元练】深圳南山区学府中学九年级数学下册第二十七章《相似》经典测试卷(培优练)

一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4C 解析:C【分析】根据题意易得ADF AEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==.故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键. 2.下列各组线段能成比例的是( )A.1.5cm,2.5cm, 3.5cm,4.5cm B.1cm,2cm,3cm,4cmC.3cm, 6cm, 4cm, 8cm D.2cm,10cm,5cm,15cm C 解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A、1.5×4.5≠2.5×3.5,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D、215105⨯≠⨯,故本选项错误.故选:C.【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.3.下列每个选项的两个图形,不是相似图形的是()A. B.C.D.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.【点睛】本题考查的是相似形的定义,是基础题.∆中,E为BC边上的一点,F为AC边上的一点,连接BF,AE,4.如图,在ABC交于点D ,若D 为BF 的中点,CF 2AF =,则:BE CE 的值为( )A .1:2B .1:3C .1:4D .2:3B解析:B【分析】 过点F 作FG//BC 交AE 于点G ,证明DFG DBE ∆∆可得FG BE =,再由//FG BC 可证得13BE GF AF CE CE AC ===,故可得结论. 【详解】解:过点F 作FG//BC 交AE 于点G∵D 是BF 的中点,∴DB DF =∵//FG BC∴DFG DBE ∆∆∴1FG DF BE DB== ∴FG BE =又∵//FG BC∴F CEC G AF A = ∵CF 2AF =∴3AC AF =∴13BE GF AF CE CE AC === 故选:B .【点睛】此题主要考查了相似三角形的判定与性质以及平行线分线段成比例定理,熟练掌握相关定理与性质是解答此题的关键.5.如图,在边长为2的正方形ABCD 中,对角线AC 与BD 相交于点O ,点P 是BD 上的一个动点,过点P 作EF ∥AC ,分别交正方形的两条边于点E ,F ,连接OE ,OF ,设BP =x ,△OEF 的面积为y ,则能大致反映y 与x 之间的函数关系的图像为( )A .B .C .D .C 解析:C【分析】 根据题意易得2BO =EF 与x 的关系,进而分两种情况,依情况来判断函数图像即可.【详解】解:∵四边形ABCD 是正方形,边长为2, ∴22AC BD ==122BO OD BD === ①当P 在OB 上时,即02x ≤≤∵EF ∥AC ,∴△BEF ∽△BAC , ∴EF BP AC OB=, ∴22EF BP x ==, ∵2OP x =, ∴)212222y x x x x =⨯⨯=-+;②当P 在OD 上时,即222x <≤, ∵EF ∥AC ,∴△DEF ∽△DAC , ∴EF DP AC OD =, 即22222EF x -=, ∴()222EF x =-,∵BP=x ,∴2OP x =-,∴()()2122223242y x x x x =-⋅-=-+-, 这是一个二次函数,根据二次函数的性质可知:二次函数的图像是一条抛物线,开口向下,故选C .【点睛】本题主要考查相似三角形的性质与判定、二次函数的图像与性质及正方形的性质,关键是利用三角形相似和面积来列出二次函数的解析式,进而求解.6.下列相似图形不是位似图形的是( )A .B .C .D .D 解析:D【分析】根据位似变换的概念判断即可.【详解】解:D 中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D.【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.7.已知如图,DE是△ABC的中位线,AF是BC边上的中线,DE、AF交于点O.现有以下结论:①DE∥BC;②OD =14BC;③AO=FO;④AODS=14ABCS.其中正确结论的个数为()A.1 B.2 C.3 D.4C解析:C【分析】①根据三角形中位线定理进行判断;②根据三角形中位线定理进行判断;③根据三角形中位线定理进行判断;④由相似三角形△ADO∽△ABF的面积之比等于相似比的平方进行判断.【详解】∵DE是△ABC的中位线,∴DE∥BC,故①正确;∴DE=12BC,∴OD=12BF,∵AF是BC边上的中线,∴BF=12BC,∴OD=12BF=14BC,故②正确;∵DE是△ABC的中位线,∴AD=DB,DE∥BC,∴AO=FO,故③正确;④∵DE∥BC,即DO∥BF,∴△ADO∽△ABF,∴22ADOABF1124S ADS AB⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,又∵AF 是BC 边上的中线, ∴ABF ABC 12SS =, ∴ADO ABC 18S S =,故④错误. 综上所述,正确的结论是①②③,共3个.故选:C .【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质.本题利用了“相似三角形的面积之比等于相似比的平方”的性质.正确的识别图形是解题的关键.8.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .25B解析:B【分析】 根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15,∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 9.已知四个数2,3,m 3m 的值是( )A .3B 23C 2D .23解析:B【分析】 利用比例线段的定义得到233m =::m 即可.【详解】 根据题意得233m =::所以323m =, 所以233m =. 故选:B .【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.10.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ). A .2B .51-C .2或51-D .35-C 解析:C【分析】若点P 是靠近点B 的黄金分割点,则512AP AB -=,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则()515151222AP AB --==⨯+=; 若P 是靠近点A 的黄金分割点,则()515151222BP AB --==⨯+=,∴51251AP AB BP =-=+-=-;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为512-是解题的关键. 二、填空题11.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位解析:19 【分析】 由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】 解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 12.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个. 3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可; 解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;13.如图,点О是正方形ABCD 的中心,DE 与О相切于点E ,连接,BE 若10,DE =102BE =,则О的面积是________________.25【分析】连接EO 可知EO ⊥ED 延长DE 到点F 作BF ⊥DF 根据题意可知△DEO ∽△DFB 在△EFB 中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO 可知EO ⊥ED 解析:25π【分析】连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,根据题意可知△DEO ∽△DFB ,在△EFB 中,222EB EF FB =+,根据勾股定理求解得出半径的长,然后再根据圆的面积公式求解即可;【详解】如图:连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,∵∠FDB=∠EDO ,∠DEO=∠DFB ,∴△DEO ∽△DFB ,∵EO=r ,ED=10,EB=2∵DO=OB ,∴12DO EO DE DB FB DF===, ∴EF=10,FB=2r , 在△EFB 中,222EB EF FB =+,(222=1004r +,∴ r=5,∴ 圆的面积为225r ππ=,故答案为:25π【点睛】本题考查了圆的面积公式、相似三角形的判定、勾股定理等知识,熟练掌握这些公式是解题的关键;14.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x =∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD =∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.15.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键. 16.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(454)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()5151845422AP AB cm --∴==⨯=- 故答案为:(454-)cm.【点睛】此题考查黄金分割的定义,黄金分割物体的较大部分等于与整体的512-. 17.若25x y =,则x y y+=____________.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形解析:75【分析】由25x y =,根据比例的性质,即可求得x y y+的值. 【详解】解:∵25x y = ∴x y y +=2+57=55. 故答案为:75. 【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.18.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为__________.(255)【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A 点坐标【详解】解:∵以原点O 为位似中心在第一象限内将线段CD 放大得到线段AB ∴B 点与D 点是对应点则位似比为:5:2∵C (12)∴解析:(2.5,5).【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出A点坐标.【详解】解:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为:5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故答案为(2.5,5).【点睛】本题考查位似图形的应用,熟练掌握位似图形的相似比和两点间的距离公式是解题关键.19.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为__________.【分析】连接BEDE则BE⊥AC由勾股定理可求得BE再证明△EBF∽△CBE列比例式可求得CF的长即BC的长由勾股定理求得CE的长进而可求得AC的长再根据圆内接四边形的外角等于内对角证明△ADE∽△解析:13 2【分析】连接BE,DE,则BE⊥AC,由勾股定理可求得BE,再证明△EBF∽△CBE,列比例式可求得CF的长,即BC的长,由勾股定理求得CE的长,进而可求得AC的长,再根据圆内接四边形的外角等于内对角证明△ADE∽△ACB,则有AD AEAC AB=,即可求得AD的长.【详解】解:连接BE,∵BC为半圆O的直径,∴BE⊥AC,即∠AEB=∠BEC=90°,在Rt△ABE中,AB=8,AE=2,由勾股定理得:222282215AB AE--=∵EF⊥BC,∴∠EFB=∠BEC=90°,又∠EBF=∠EBC,∴△EBF∽△CBE,∴BE BFBC BE=,∵BF:FC=5:1,∴BF=5FC ,BC=6CF , ∴21556215CF CF =, 解得:CF=2,则BC=62, ∴在Rt △BEC 中,CE=2222(62)(215)23BC BE -=-=,∴AC=2+23,∵∠DAE=∠CAB ,∠ADE=∠ACB ,∴△ADE ∽△ACB, ∴AD AE AC AB =, 即28223AD =+, 解得:AD=2(223)1382⨯++=, 故答案为:132+.【点睛】本题考查了圆的基本性质、勾股定理、相似三角形的判定与性质、圆内接四边形外角性质,熟练掌握相似三角形的判定与性质是解答的关键.20.若233a b c ==,且233a b c ++=,则a b c -+=__________.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9 解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】解:由233a b c ==可设a=2k ,b=3k ,c=3k ,代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键.三、解答题21.如图,在每个小正方形的边长为1的网格中,△ABC 的项点A ,B ,C 均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)解析:(I )29;(II )见解析.【分析】(I )利用勾股定理即可解决问题.(2)连接AP ,想办法在AP 上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I )222529AC =+=.故答案为29.(II )如图,点B′即为所求.取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.如图,在ABC 中,点D 、E 分别在AB 、AC 上,//DE BC ,若4AE =,2DB =,2AD CE =,求AD 的长.解析:AD =4【分析】设AD =x ,则12CE x =,根据平行线分线段成比例定理可得关于x 的方程,解方程即可求出答案.【详解】解:∵DE ∥BC , ∴AD AE DB EC=, 设AD =x ,则12CE x =, ∴4122x x =, 解得:x =4或﹣4(舍去),即AD =4.【点睛】本题考查了平行线分线段成比例定理和简单的一元二次方程的解法,熟练掌握上述知识、灵活应用方程思想是解题的关键.23.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴的正半轴上.双曲线(0)k y x x=>经过BC 边的中点(2,4)D ,与AB 交于点E ,连结DE ,CE .(1)求k 的值及CDE ∠的度数.(2)在直线AB 上找点F ,使得以点A 、D 、F 为顶点的三角形与CDE △相似,求F 点的坐标.解析:(1)8k,135CDE ∠=︒;(2)点F 的坐标为:(4,10)或(4,2).【分析】(1)把D 点的坐标代入反比例函数可求得k 的值,然后得出B 、E 的坐标,求得BD=BE ,得出BDE 为等腰直角三角形,并用补交的定义求得CDE ∠的度数. (2)连接AD ,得出()SAS BCE BAD ≌△△,进而得出BCE BAD ∠=∠,设(4,)F t ,则AF t =,所以分两种情况讨论①CDE ADF △∽△,②CDE AFD ∽△△,根据相似三角形的性质得出比例式建立方程求解即可.【详解】(1)∵点D 为BC 的中点,(2,4)D ,(0,4)C ∴,(4,4)B ,将点(2,4)D 代入k y x=得:8k , 8y x∴=, ∴四边形OABC 是矩形,(4,0)A ∴,点E 的横坐标为:4,∴当4x =时,2y =,(4,2)E ∴,2BD BE ∴==,又90B ∠=︒BDE ∴为等腰直角三角形,则45BDE ∠=︒,180135CDE BDE ∴∠=︒-∠=︒.(2)如图,连接AD ,(4,4)B ,(4,0)A ,(0,4)C ,4AB BC ∴==,在BCE 和BAD 中,BC BA CBE ABD BD BE =⎧⎪∠=∠⎨⎪=⎩,()SAS BCE BAD ∴≌△△,BCE BAD ∴∠=∠,(0,4)C ,(2,4)D ,(4,2)E ,(4,0)A ,2CD ∴=,224(24)25CE =+-=,22(42)425AD =-+=,设(4,)F t ,则AF t =,①CDE ADF △∽△,CD CE AD AF ∴=,22525t=, 解得:110t =,(4,10)F ∴,②CDE AFD ∽△△,CD CE AF AD ∴=,22525t =, 解得:22t =,(4,2)F ∴,综上所述,点F 的坐标为:(4,10)或(4,2).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,等腰直角三角形的性质,相似三角形的判定和性质,解题时注意点的坐标与线段长的转化.24.如图,在△ABC 中,AB =23,AC 43=,点D 在AC 上,且AD =12AB , (1)用尺规作图作出点D(保留作图痕迹,不必写作法);(2)连接BD ,并证明:△ABD ∽△ACB .解析:(1)见解析;(2)见解析【分析】(1)先尺规作线段AB 的垂直平分线,再以点A 为圆心,以AB 的一半作弧,与AC 的交点即为点D 的位置;(2)根据两边成比例且夹角相等证明即可.【详解】解:(1)点D 的位置如图所示:(2)∵31231,222343AD AB AB AC ====,且∠A=∠A , ∴△ABD ∽△ACB .【点睛】本题考查了线段垂直平分线的尺规作图和相似三角形的判定,熟练掌握上述知识是解题的关键.25.如图,正方形ABCD 的边长为4,E 是CD 中点,点P 在射线AB 上,过点P 作线段AE 的垂线段,垂足为F .(1)求证:PAF AED △∽△;(2)连接PE ,若存在点P 使PEF 与AED 相似,直接写出PA 的长____.解析:(1)见解析;(2)2或5【分析】(1)根据两角对应相等两三角形相似证明即可.(2)分两种情形:当PA=PB=2时,易知PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,分别求解即可.【详解】(1)证明:在正方形ABCD 中,90D ∠=︒,//CD AB ,∴DEA PAE ∠=∠.∵PF AE ⊥,∴D AFP ∠=∠.∴PAF AED △∽△.(2)当PA=PB=2时,∵DE=EC ,AP=PB ,∴PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,∵CD ∥AB ,∴∠AED=∠EAP=∠AEP ,∴PA=PE ,∵PF ⊥AE ,∴AF=FE ,∵AD=4,DE=EC=2,∠D=90°, ∴22222425=+=+=AE DE AD , ∴5AF =,∵△PAF ∽△AED ,∴PA AF AE DE =, ∴5225PA =, ∴PA=5,综上所述,满足条件的PA 的值为2或5.故答案为:2或5.【点睛】本题考查相似三角形的判定和性质,正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.26.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .解析:这座建筑物的高BC 为 14米【分析】根据两组相似三角形ACF EDF ∆∆∽和BCG EDG ∆∆∽,利用对应边成比例,列出CD 和BC 的关系式,然后解方程求出BC 的长.【详解】解:由题意可得90ACF EDF AFC EFD ︒∠∠∠∠==,=,ACF EDF ∴∆∆∽, AC CF ED DF ∴=, 即3545BC CD ++=, 554BC CD -∴=, 由题意可得,90BCG EDG BGC EGD ︒∠∠∠∠==,=,BCG EDG ∴∆∆∽,BC CG ED DG∴=, 即5 1.545 1.5BC CD ++=+, 6.54( 6.5)BC CD ∴+=,556.54264BC BC -∴=⨯+, 14BC ∴=,∴这座建筑物的高BC 为 14米.【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形对应边成比例的性质列式求边长.27.如图,在ABC ∆中,AD 平分,BAC E ∠是AD 上一点,且BE BD =.(1)求证:ABE ACD ∆~∆;(2)若E 是线段AD 的中点,求BD CD的值..解析:(1)见解析;(2)12【分析】(1)根据三角形相似的判定定理,即可得证;(2)根据△ABE ∽△ACD ,可得: AE BE AD CD =,再由等量代换即可求解. 【详解】(1)∵BE=BD ,∴∠BED=∠BDE ,∴∠AEB=180°-∠BED=180°-∠BDE=∠ADC ,∵AD 平分∠BAC ,∴∠BAE=∠CAD ,∴△ABE ∽△ACD ;(2)∵△ABE ∽△ACD ,∴AE BE AD CD=, ∵E 是线段AD 的中点,1=2AE BE AD CD = ∵BE=BD ,∴1=2BD CD 【点睛】 本题主要考查相似三角形的判定定理和性质定理,熟练掌握相似三角形的判定和性质,是解题的关键.28.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .解析:见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD⊥BC,即∠ADC=90°,∴∠ABE=∠ADC,∴△ABE∽△ADC.【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB=∠ACB,然后即可得出结论.。

初三深圳数学试题及答案

初三深圳数学试题及答案

初三深圳数学试题及答案一、选择题(每小题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 圆D. 双曲线答案:B2. 计算下列哪个表达式的值等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 1 - 1答案:C3. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A4. 一个数的立方等于8,这个数是多少?A. 2B. -2C. 2或-2D. 以上都不对答案:C5. 下列哪个选项是不等式?A. x + 3 = 7B. x - 3 > 7C. x × 3 = 9D. x ÷ 3 = 3答案:B6. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 720度答案:B7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 10D. -10答案:A8. 一个数的绝对值是5,这个数可以是?A. 5或-5B. 5C. -5D. 以上都不对答案:A9. 以下哪个选项是正确的因式分解?A. x^2 - 1 = (x + 1)(x - 1)B. x^2 - 1 = (x + 1)(x + 1)C. x^2 - 1 = (x - 1)(x - 1)D. x^2 - 1 = (x - 1)(x + 1)答案:A10. 一个数的平方根是3,这个数是多少?A. 9B. -9C. 3D. -3答案:A二、填空题(每小题3分,共30分)1. 一个数的平方是16,这个数是______。

答案:±42. 一个数的立方是27,这个数是______。

答案:33. 一个数的绝对值是8,这个数可以是______。

答案:8或-84. 一个数的相反数是-7,这个数是______。

答案:75. 一个数的倒数是1/2,这个数是______。

答案:26. 一个三角形的两个内角分别是30度和60度,第三个内角是______。

广东省深圳市南山区学府中学2019-2020学年第一学期九年级期中考试数学试卷(word版,含答案)

广东省深圳市南山区学府中学2019-2020学年第一学期九年级期中考试数学试卷(word版,含答案)

南山区学府中学2019-2020学年第一学期九年级期中考试数学试卷一、选择题(每题3分,共36分) 1.下列方程是一元二次方程的是( ) A.032=+xx B.03652=--y x C.022=+-x ax D. 252=-x x 2.如图所示,几何体的主视图是( )A. B. C. D.3.如图,已知AB ∥CD ∥EF ,AD :DF=3:2,BC=6,CE 的长为( ) A.2 B . 7 C. 4 D. 54.如图,在△ABC 中,点D 、E 、F 分别是边AB ,BC ,CA 上的中点,且AB=6cm ,AC=8cm ,则四边形ADEF 的周长等于( )cm A.12 B . 7 C. 28 D. 145.如图,在平面直角坐标系中,已知正比例函数x k y 11=的图象与反比例函数xk y 22=的图象交于A (-4,-2),B (4,2)点,当1y >2y 时,自变量x 的取值范围是( )A.x >4 B . -4<x <0 C. x <-4或0<x <4 D. -4<x <-4或x >46.在下面网格中,小正方形的边长为1,△ABC 的顶点都是格点,则sin ∠BAC 的值为( ) A.55B . 1 C. 5 D. 57. 关于二次函数122+-=x y ,则下列说法正确的是( )A. 开口方向向上 B . 当x <0时,y 随x 的增大而增大 C. 顶点坐标是(-2,1) D. 当x =0时,y 有最小值1 8. 在同一坐标系中,函数bx ax y +=2与xby =的图象大致是图中的( )A. B. C. D.9.如图,在平行四边形ABCD 中,点E 在边DC ,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( ) A.3:4 B . 9:16 C. 9:1 D. 3:110.如图 ,在平面直角坐标系中,直线21+=x k y 与x 轴交于点A ,与y 轴交于点C ,与反比例函数xk y 2=在第一象限的图象交于点B ,连接BO ,若1=∆OBC S ,tan ∠BOC=31,则2k 的值是( )A.3 B . 2 C. 1 D. -311.如图,路灯距地面8米,身高1.6米的小时从点A 处沿AO 所在的直线行走14m 到点B 时,人影长度( ) A.变长3.5m B. 变长2.5m C. 变短3.5m D. 变短2.5m12.在矩形ABCD 中,AB=12,P 是边AB 上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是G ,过点B 作BE ⊥CG ,垂足为E ,且在AD 上,BE 交PC 于点F ,那么下列选项正确的是( ) ①BP=BF ;②如图1,若点E 是AD 的中点,那么△AEB ≌△DEC ;③当AD=25,且AE <DE 时,则DE=16;④在③的条件下,可得sin ∠PCB=10103;⑤当BP=9时,BE∙EF=108.A. ①②③④B.①②④⑤C.①②③⑤D.①②③④⑤二、填空题(每题3分,共12分)13.二次函数9822+-=x x y 的图象的顶点坐标为 .14.已知关于x 的一元二次方程()01212=+--x x k 有实数根,则k 的取值范围是 . 15.如图,正方形ABCD 的边长为5,E 是AD 边上一点,AE=3,动点P 由点D 向点C 运动,速度为每秒2个单位长度,EP 的垂直平分线交AB 于M ,交CD 于N ,设运动时间为t 秒,当PM ∥BC 时,t 的值为 .16.如图,已知直线b ax y +=过A (-1,6)与xmy =交于A 点、B 点,与xky =交于E 点,直线b ax y +=与x 轴交于C 点,且AB=2BC=BE ,则k = .三、解答题 17.(8分)计算(1)计算:20)3()23(60cos 24---+--ο(2)解方程:)1(212+=+x x )(18.(6分)如图,在路灯下,小明的身高如图中线段AB 所示,他在地面上的影子如图中线段AC 所示,小亮的身高如图中线段FG 所示,路灯灯泡在线段DE 上. (1)请你确定灯泡所在的位置,并画出小亮在灯光下形成的影子. (2)如果小明的身高AB=1.6m ,他的影子长AC=1.4m ,且他到路灯的距离AD=2.1m ,求灯泡的高.19.(6分)如图,在△ABC 中,∠C=90°,AB=10,sinB=53,点D 为边BC 的中点.(1)求BC 的长; (2)求∠BAD 的正切值.20.(7分)如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,AE 的延长线与BC 的延长线交于点F ,连结CE ,DF. (1)求证:四边形CEDF 是平行四边形;(2)①当AE= cm 时,四边形CEDF 是矩形;(3)当AE= cm 时,四边形CEDF 是菱形.(直接写出答案,不需要说明理由)21.(8分)如图,直线分别673+-=x y 与x 轴y 轴交于点D 、A 、CD ⊥x 轴,且CD=4,点P在线段OD 上运动.(1)求出点A 和点D 的坐标;(2)是否存在这样的点P 使△AOB 与△PCD 相似,若存在,求出点P 的坐标,若不存在,说明理由.22.(8分)“端午节”又称为端阳节、重午节、龙舟节、正阳节、洛兰节等,是中国四大传统节日之一,端午习俗众多,其中吃粽子是端午节的习俗主题之一,某超市5月以50元/盒的进价购进一款粽子1000盒,以100元/盒的售价全部销售完.销售人员根据市场调研预测,该款粽子每盒的售价在5月售价基础上每降价5元,月销量就会相应增加100盒,该超市6月计划购进该款粽子不超过1400盒.(1)根据该超市6月计划,该款粽子6月的售价最少每盒可以定价多少元? (2)实际上,6月该超市购进该款粽子的进价比5月便宜了2m元,而实际售价在5月基础上降了m 元,已知6月的销售利润比5月增加8%,求m 的值.23.(9分)如图,矩形OABC 的项点A 、C 分别在x 、y 轴的正半轴上,点B 点反比例函数xky =(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P 在x 轴的上方,且满足OABC PAO S S 矩形103=∆ (1)若点P 在这个反比例函数的图象上,求点P 的坐标; (2)连接PO 、PA ,求PO+PA 的最小值;(3)若点Q 在平面内一点,使得以A 、B 、P 、Q 为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q 的坐标.参考答案一、选择题:二、填空题: 13. (2,1)14. 21≤≠k k 且 15. 2 16. 10 三、解答题17.(1)5-(2)1121-==x x ,18.(1)画图略(2)灯泡高为4m 19. (1)BC=8(2)176BAD tan =∠ 20. (1)证明略(2)AE=3.5(3)AE=221.(1)A (0,6),D (14,0)(2)P (12,0)或(2,0)或(8.4,0) 22.(1)最少每盒定价80元(2)m=1023.(1)P (5,3) (2)最小值为53(3)Q (1-,8)或(7,8)或(213-,2-)或(213+,2-)。

深圳市学府中学07~08学年度九年级数学第二学期3月自主性反馈测评试卷北师大版

深圳市学府中学07~08学年度九年级数学第二学期3月自主性反馈测评试卷北师大版

某某市学府中学07~08学年度九年级第二学期3月自主性反馈测评数学试卷说明:1.全卷23题,共8页,考试时间90分钟,满分100分.2.答题前,请将考场、试室号、座位号、考生号和某某写在试卷密封线内,不得在试卷上做任何标记.3.做选择题时,将选项的字母代号写在答题表一内;做填空题时,答案写在答题表二内;做解答题时,将解答过程写在指定的位置上.题号一二三1~10 11~15 6789123得分一、选择题(本题10小题,每题3分,共30分)每小题有4个选项,其中只有一个是正确的,请把正确选项的字母代号填在答..............题表一内....,否则不给分...... 答题表一题 号 1 2 3 4 5 6 7 8 9 10 答 案1. 已知⊙O 的半径是7,点P 在⊙O 上,那么A .7OP >B .7OP =C .7OP <D .7OP ≠2.如图1,在半径为6cm 的⊙O 中,弦6AB cm =,则圆心角AOB ∠的度数是A .30OB .45OC .60OD .90O3.如图2,⊙O 是△ABC 的外接圆,且∠AO B =130°,则∠C 的大小为( )A .45°B .50°C .60°D .65°得分 阅 卷 人图1O BA4.如图3,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是A .4cmB .6cmC .8cmD .10cm5.已知:⊙O 的半径为3cm ,圆心O 到直线a 的距离为2cm ,则直线a 与⊙O 的位置关系是 A.相离B .相切C .相交D .不能确定6.已知:⊙1O 和⊙2O 的半径分别为5cm 和3cm ,两圆的圆心距是8cm ,则两圆的位置关系是A.外离B.外切C.相交D.内切7.木匠小王明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是A.B.C. D.8.如图4,已知Rt △ABC 的斜边AB=5,一条直角边AC=3,以直线BC 为轴旋转一周得到一个圆锥,则这个圆锥的侧面积是 A .8πB . 12π C .15πD .20π9.如图5,OAB 是以6cm 为半径的扇形,AC 切弧AB 于点A 交OB 的延长 线于点C,如果弧AB 的长等于3cm,AC=4cm,则图中阴影部分的面积为 A . 15cm 2B . 6 cm 2C . 4 cm 2D . 3 cm 210.下列几个命题:①圆既是轴对称图形,又是中心对称图形;②直径所对的圆周角是直角; ③在同圆中,相等的圆周角所对的弦相等;④在同圆中,相等的弦所对的圆周角相等; ⑤平分弦的直径垂直这条弦;⑥三点确定一个圆.其中正确命题是 A.①②③B.①②⑥C.①③⑤D.②④⑥二、填空题(本题5小题,每题3分,共15分)请把答案填在答题表二内.答题表二题 号 11 12 13 14 15 答 案得分 阅 卷 人11.如图6,在直径为10cm 的圆柱形油槽内装入一些油后,截面所示,如果油面AB =8cm ,那么油的最大深度是_____cm .12.若面积为54π2cm 的扇形的弧长是6cm π,则该扇形的半径的长是 __..13.如图7,在△ABC 中,∠A=68°,点I 是△ABC 的内心,则∠BIC 的度数是 ________________________.14.如图8,点A ,B ,C ,D 在⊙O 上,点E 在DC 的延长线的上,且140BOD O∠=,那么BCE ∠的度数是 ______.15.如图9,在半径为1的⊙O 中,弦AB 长是3,另有一条弦AC 长是2,则BAC ∠的度数是.三、解答题(本大题共有8小题,其中第16题、17题、18题各6分,第19题、20题、21题各7分,第22题、23题各8分,共55分)16.(6分)如图10,已知直线AB 与⊙O 相切于点C ,⊙O 的直径是8cm ,且OA OB =,10AB cm =.(1)求证:AC BC = 证明:(2)求OA 的长. 解:答案请填在上面答题表二内答案请填在上面答题表二内 得分 阅 卷 人 答案请填在上面答题表二内图7答案请填在上面答题表二内 A图8OED CB答案请填在上面答题表二内图9OB图10OCBA17.(6分)如图11,已知圆锥的底面半径5r cm =,高102OA cm = (1)求圆锥侧面展开的扇形的弧长l 解:(2)求圆锥侧面展开的扇形的圆心角θ的度数. 解:18.(6分)已知:如图12,点A B C D 、、、是⊙O 上的四个点,AB AD =,AC 交BD 于E 点,(1)求证:BAE ∆∽CAB ∆证明:(2)若已知2AE =,8CE =,求AB 的长. 解:图11图12Ao E DCB19.(7分)由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的袭击.近日,A城气象局测得沙尘暴中心在A城的正西方向240km 的B 处(如图13),正以每小时12km的速度向北偏东60O的方向移动.距离沙尘暴中心150km 的X 围都是受影响区域.请你应用所学知识解答:(1)(3分)A城是否受到这次沙尘暴的影响?为什么?(2)(4分)若A城受到这次沙尘暴的影响,那么遭受沙尘暴影响的时间有多长?20.(7分)如图14,已知⊙O 是ABC ∆的外接圆,点M 是弧BC 的中点,AD BC ⊥于D 点,(1)(3分)求证:OAM DAM ∠=∠ 证明:(2)(4分)若已知15AB cm =,8AC cm =,6AD cm =,求⊙O 的半径长, 解:21.(7分)如图15,有一个马戏帐篷,它的底面是圆形,其半径为20m ,从A 到B 有一个笔直的栅栏,其长为203m .观众在阴影区域看马戏.(1)(4分)求荫影区域的面积;(3 1.7π≈≈, 3.14,精确到0.1)(2)(3分)如果每2m 可以站3名观众,那么当阴影区域站满了观众时,大约有多少名观图14A oD MCB 图15众看马戏?22.(8分)已知:如图16,在ΔABC 中,∠C=90°,BE 平分∠ABC,DE ⊥EB ,交AB 于D ,⊙O 是ΔBDE 的外接圆(1) (4分)求证:AC 是⊙O 的切线;(2) (4分)若AD=6,AE=26,求DE 的长.23.(本题满分8分)如图16,在平面直角坐标系xoy 中,点A 在x 轴的正半轴上, ⊙A 交x 轴于 B C 、两点,交y 轴于D E 、两点,已知⊙A 的半径是5,点A 的坐标为(3,0).(1)(2分)求D E 、两点的坐标解:图16(2)(3分)过点D 作⊙A 的切线,交x 轴于F 点,连接BD . 求证:BDF BDE ∠=∠(2)(3分)若在弧BD 上有一个动点P ,在弧DC 上有一个动点Q ,使得POD QOD ∠=∠,当点P 运动时,点Q 随之运动(保持POD QOD ∠=∠,如图17),问乘积OP OQ ⋅的值是否发生变化,若不变,求出其值;若变化,请求出其变化的X 围.学府中学07~08学年度九年级(下)第一次月考图17数学试卷参考答案一、选择题答题表一 1_10 BCDCC BBCDA二、填空题(本题5小题,每题3分,共15分)请把答案填在答题表二内.三、解答题(本大题共有8小题,其中第16题、17题、18题各6分,第19题、20题、21题各7分,第22题、23题各8分,共55分)16.(6分)如图10,已知直线AB 与⊙O 相切于点C ,⊙O 的直径是8cm ,且OA OB =,10AB cm =.(1)求证:AC BC =证明:连接OC ,∵直线AB 与⊙O 相切于点C ∴OC AB ⊥(切线的性质)…………(2分) 又∵OA OB =∴AC BC =(等腰三角形“三线合一”)…………(3分) (2)求OA 的长. 解:∵⊙O 的直径是8cm∴4OC cm =…………(1分) 又∵152AC AB cm == ∴在Rt AOC ∆中,根据勾股定理得:22224541OA AC OC =+=+=…(2分)因此。

初三年级数学试卷 - 深圳市学府中学

初三年级数学试卷 - 深圳市学府中学

初三年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1、图中几何体的主视图是2、抛物线3)1(22+-=x y 的顶点坐标是A 、( 1,3)B 、(-1,3)C 、(1,-3)D 、(-1,-3) 3、已知关于x 的一元二次方程041)1(2=+--x k x k 有实数根,则k 的取值范围是 A 、K 为任意实数 B 、K ≠1 C 、K ≥0 D 、K ≥0且K ≠1 4、抛物线c x x y ++-=22的对称轴是直线A 、 x=2B 、x=-2C 、x=1D 、x=-1 5、下列各图中每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积是小正方形面积的25的是 6、如图,□ABCD 的周长为16cm ,AC 与BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 A 、4 cm B 、6 cm C 、8 cm D 、10 cm7、已知三角形两边的长分别是2和3,第三边的长是方程01282=+-x x 的根,则这个三角形的周长为A 、 7B 、 11C 、7或11D 、8或98、已知二次函数5422-+=x x y ,设自变量的值分别为1x 、2x 、3x ,且-1<1x <2x <3x ,则对应的函数值1y 、2y 、3y 的大小关系为A 、321y y y >>B 、321y y y <<C 、132y y y <<D 、132y y y >>9、在同一直角坐标系中,函数y =kx -k 与ky=(k ≠0)的图象大致是10、如图,在梯形ABCD 中,DC ∥AB ,AB=AC ,E 为BC 的中点,BD 交AC 于F ,交AE 于G ,连结CG 。

下列结论中:① AE 平分∠BAC ②BG=CD ③ CD=CG ④ 若BG=6,FG=4 则DF=5 ⑤ DC ∶AB=1∶3,正确的有A 、2个B 、3个 C 、4个 D 、5个二、填空题(本大题共5小题,每题4分,共20分) A B B A CD A B C D正面A BDC12、若关于x 的方程230x x q -+=的一个根1x 的值是2.则另一根2x = , q = ,。

【单元练】深圳南山区学府中学九年级数学下册第二十六章《反比例函数》经典测试卷(培优练)

【单元练】深圳南山区学府中学九年级数学下册第二十六章《反比例函数》经典测试卷(培优练)

一、选择题1.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .C解析:C 【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k 、b 是同号还是异号,再由一次函数图象判断k 、b 是同号还是异号,如果两者相一致就是正确选项,否则是错误选项. 【详解】 选项逐项分析正误A由反比例函数的性质知k 、b 同号,由一次函数图象得k >0,b <0,得k 、b 异号.两者不一致误B由反比例函数的性质知k 、b 同号,由一次函数图象得k <0,b=0,两者不一致误C由反比例函数的性质知k 、b 异号,由一次函数图象得k <0,b >0,k 、b 异号,两者一致正D 由反比例函数的性质知k 、b 异号,由一次函数图象得k >0,b >0,k 、b 同号,两者不一致.误【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.2.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得kax x<,求出x 的取值范围即可. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.3.如图,已知在平面直角坐标系中,Rt ABC 的顶点()0,3A ,()3,0B ,90ABC ∠=︒,函数()40y x x=>的图象经过点C ,则AC 的长为( )A .32B .5C .26D 26解析:B 【分析】如图(见解析),先根据点A 、B 的坐标可得3,45OA OB OBA ==∠=︒,从而可得45CBD ∠=︒,再根据等腰直角三角形的判定与性质可得BD CD =,设BD CD a ==,从而可得点C 的坐标为(3,)C a a +,然后利用反比例函数的解析式可求出a 的值,最后利用两点之间的距离公式即可得. 【详解】如图,过点C 作CD x ⊥轴于点D ,()()0,3,3,0A B ,3OA OB ∴==,Rt AOB ∴是等腰直角三角形,45OBA ∠=︒, 90ABC ∠=︒,18045CBD OBA ABC ∠=︒-∠-∠=∴︒, Rt BCD ∴是等腰直角三角形, BD CD ∴=,设BD CD a ==,则3OD OB BD a =+=+,(3,)C a a ∴+,将(3,)C a a +代入()40y x x =>得:43a a=+, 解得1a =或40a =-<(不符题意,舍去),(4,1)C ∴,由两点之间的距离公式得:22(40)(13)25AC =-+-= 故选:B .【点睛】本题考查了反比例函数的几何应用、等腰直角三角形的判定与性质、两点之间的距离公式等知识点,熟练掌握等腰直角三角形的判定与性质是解题关键.4.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=3x的图象经过A、B两点,则菱形ABCD的面积是()A.2B.4 C.2D.2A解析:A【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】如图,作AH⊥BC交CB的延长线于H,∵反比例函数y=3x的图象经过A、B两点,A、B两点的横坐标分别为1和3,∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,222222+=,∵四边形ABCD是菱形,∴2,∴菱形ABCD的面积2,故选A.【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.5.已知点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y =﹣2x图象上的点,且x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 1<y 2<y 3C .y 1>y 3>y 2D .无法确定C解析:C 【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小. 【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x=-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -, 而x 1<0<x 2<x 3, ∴y 1>y 3>y 2. 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 6.已知反比例函数aby x=,当x >0时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根C解析:C 【分析】先根据反比例函数的性质得到0ab <,再利用根的判别式进行判断. 【详解】解:因为反比例函数aby x=,当x >0时,y 随x 的增大而增大, 所以0ab <, 所以△440ab =->,所以方程有两个实数根, 再根据120bx x a=<, 故方程有一个正根和一个负根. 故选C .7.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .y =xC .y x +1D .y =3x +2C解析:C 【分析】由一次函数的性质和反比例函数的性质分析即可得到答案. 【详解】∵一次函数y =﹣3x ﹣2中,k=-3<0,b=-2<0∴一次函数y =﹣3x ﹣2的图象经过第三象限,故选项A 不符合题意;∵反比例函数y =x中,0,∴反比例函数y =x的图象的一支在第三象限,故选项B 不符合题意; ∵一次函数yx +1中,0,b=1>0∴一次函数yx +1的图象经过第一、二、四象限,不经过第三象限,故选项C 符合题意;∵一次函数y =3x +2中,k=3>0,b=2>0,∴一次函数y =3x +2的图象经过第一、二、三象限,故选项D 不符合题意. 故选:C . 【点睛】此题主要考查了一次函数和反比例函数的图象和性质,熟记两类函数的各种性质是解题的关键.8.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数ky x=(0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .5C解析:C 【分析】过点D 作DF ⊥BC 于点F ,设BC =x ,在Rt △DFC 中利用勾股定理列方程即可求出x ,然后设OB =a ,即可表示出C ,D 的坐标,再代入ky x=可求出a ,k 的值. 【详解】解:过点D 作DF ⊥BC 于点F ,∵点D 的横坐标为1, ∴BF =DE =1, ∴DF =BE =3DE =3,设BC =x ,则CD =x ,CF =x -1,在Rt △DFC 中,由勾股定理得:222DF CF CD +=, ∴2223(1)x x +-=, 解得:x =5. 设OB =a ,则点D 坐标为(1,a +3),点C 坐标为(5,a ), ∵点D 、C 在双曲线上 ∴1×(a +3)=5a ∴a =34, ∴点C 坐标为(5,34), ∴k =154. 故选:C. 【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,根据勾股定理列出方程求出BC的长度是本题的关键.9.一次函数y=kx﹣k与反比例函数y=kx在同一直角坐标系内的图象大致是()A.B.C.D.C解析:C【分析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k>0∴0k-<∴一次函数y kx k=-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,k0<∴0k->∴一次函数y kx k=-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,k0<∴0k->∴一次函数y kx k=-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,k0<∴0k->∴一次函数y kx k=-的图象经过一、二、四象限.故本选项错误.故选:C【点睛】本题考查的是反比例函数、一次函数图象,解答此题的关键是先根据反比例函数所在的象限判断出k的符号,再根据一次函数的性质进行解答.10.如图,函数y=kx(k>0)与函数2yx=的图象相交于A,C两点,过A作AB⊥y轴于B,连结BC,则三角形ABC的面积为()A .1B .2C .k 2D .2k 2B解析:B 【分析】设点A 坐标2,x x ⎛⎫⎪⎝⎭,根据点A ,C 关于原点对称,可得出点C 坐标,最后根据三角形的面积计算即可. 【详解】设点A 坐标2,x x ⎛⎫ ⎪⎝⎭,则点C 坐标2,x x ⎛⎫-- ⎪⎝⎭, ∵AB ⊥y 轴, ∴()114222ABCA C SAB y y x x=⋅-=⋅=, 故选B . 【点睛】本题考查反比例函数图象上点的坐标特征,熟练掌握双曲线是关于原点对称,两个分支上的点也是关于原点对称是解题的关键.二、填空题11.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为_____. 20【分析】根据点C1的坐标确定y1可求反比例函数关系式由点C1是等腰直角三角形的斜边中点可以得到OA1的长然后再设未知数表示点C2的坐标确定y2代入反比例函数的关系式建立方程解出未知数表示点C3的解析:20【分析】根据点C1的坐标,确定y1,可求反比例函数关系式,由点C1是等腰直角三角形的斜边中点,可以得到OA1的长,然后再设未知数,表示点C2的坐标,确定y2,代入反比例函数的关系式,建立方程解出未知数,表示点C3的坐标,确定y3,……然后再求和.【详解】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=4x,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=4x得:a(4+a)=4,解得:a=22﹣2,即:y2=22﹣2,同理:y3=23﹣22,y4=24﹣23,……y100=2100﹣299∴y1+y2+…+y100=2+22﹣2+23﹣22……2100﹣299=20,故答案为:20.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.12.若点()()125,,3,A y B y --在反比例函数3y x=的图象上,则12,y y ,的大小关系是_________.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答. 【详解】 ∵反比例函数3y x=中30k =>, ∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小.()()125,,3,A y B y --这两点都在反比例函数3y x=的图象上, A B ∴、在第三象限,21y y ∴<,故答案为:21y y <. 【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大. 13.有5张正面分别有数字-1,14-,0,1,3的卡片,它们除数字不同外全部相同,将它们背面朝上,洗匀后从中随机的抽取一张.记卡片上的数字为a ,则使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程2230ax x -+=有实数解的概率是__________.【分析】根据反比例函数图象经过第二四象限关于x 的一元二次方程ax2-2x+3=0有实数解列出不等式求出a 的取值范围从而确定出a 的值再根据概率公式计算即可【详解】解:∵反比例函数图象经过第二四象限∴3解析:25【分析】根据反比例函数图象经过第二、四象限,关于x 的一元二次方程ax 2-2x+3=0有实数解,列出不等式求出a 的取值范围,从而确定出a 的值,再根据概率公式计算即可. 【详解】解:∵反比例函数图象经过第二、四象限,∴3a-7<0,解得73a <关于x 的一元二次方程ax 2-2x+3=0有实数解,则△=4-12a≥0,且a≠0,解得:,a≤13,且(a≠0), 综上,a≤13,且(a≠0), ∴ a 可取-1,-14, ∴使以x 为自变量的反比例函数37a y x-=经过二、四象限,且关于x 的一元二次方程ax 2-2x+3=0有实数解的概率是25. 故答案为:25. 【点睛】本题考查了概率公式,用到的知识点是反比例函数图象的性质、根的判别式、概率公式,熟记性质以及判别式求出a 的值是解题的关键. 14.已知点(,7)M a 在反比例函数21y x=的图象上,则a=______.3【分析】把点代入反比例函数解析式求解即可【详解】解:∵点在反比例函数的图象上∴解得故答案为:3【点睛】本题考查反比例函数上点的坐标特征掌握反比例函数上点的坐标特征是解题的关键解析:3 【分析】把点(,7)M a 代入反比例函数解析式,求解即可. 【详解】解:∵点(,7)M a 在反比例函数21y x=的图象上, ∴217a=,解得3a =, 故答案为:3. 【点睛】本题考查反比例函数上点的坐标特征,掌握反比例函数上点的坐标特征是解题的关键. 15.如图,直线AB 过原点分别交反比例函数6y x=,于A .B ,过点A 作AC x ⊥轴,垂足为C ,则△ABC 的面积为______.6;【分析】通过反比例函数与一次函数交点关于原点成中心对称得到OA 与OB 相等得到△AOC 与△BOC 面积相等再通过反比例函数的几何意义得到△AOC 的面积等于即可得到结果【详解】解:∵反比例函数与正比例解析:6; 【分析】通过反比例函数与一次函数交点关于原点成中心对称,得到OA 与OB 相等,得到△AOC 与△BOC 面积相等,再通过反比例函数的几何意义得到△AOC 的面积等于12k ,即可得到结果. 【详解】解:∵反比例函数与正比例函数的图象相交于A 、B 两点, ∴A 、B 两点关于原点对称, ∴OA=OB, ∴S △BOC =S △AOC ,又∵A 是反比例函数上的点,且AC ⊥x 轴于点C ,∴△AOC 的面积=12k =12×6=3, ∴△ABC 的面积=6 故答案为:6. 【点睛】本题考查反比例函数与一次函数的交点问题,反比例函数几何意义,充分理解反比例的几何意见是快速解题的关键.16.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)ky x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.()【分析】根据等腰直角三角形求得B 得坐标联立方程即可求得C 得坐标【详解】解:将A 点代入得k=8∴双曲线y =(x >0)设点B (mn )m >0∵△ABO 为等腰直角三角形则AO =BO =OB ∴且m >0解得即解析:(6263) 【分析】根据等腰直角三角形求得B 得坐标,联立方程即可求得C 得坐标. 【详解】解:将A 点代入得4=2k , k=8,∴双曲线y =8x(x >0), 设点B (m ,n )m >0∵△ABO 为等腰直角三角形 则AO =BO =22OB ∴()()()222242416{2416n m m n -+-=++=+,且m >0 , 解得62m n ⎧⎨⎩==,即B (6,2), ∴直线OB 得解析式为 y =13x , 联立方程138y x y x ⎧=⎪⎪⎨⎪=⎪⎩,且x >0解得2626x y ⎧=⎪⎨=⎪⎩∴C 点的坐标为:(26263)故答案为:(26,263). 【点睛】本题主要考查双曲线与一次函数的交点问题,掌握等腰直角三角形的性质是解答本题的关键.17.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________. 3【分析】连接OC 设AC 交y 轴于E 根据反比例函数k 的几何意义求出△AOC 的面积再利用反比例函数关于原点对称的性质推出OA=OB 即可解决问题【详解】解:如图连接OC 设AC 交y 轴于E ∵AC ⊥y 轴于E ∴S解析:3 【分析】连接OC ,设AC 交y 轴于E .根据反比例函数k 的几何意义求出△AOC 的面积,再利用反比例函数关于原点对称的性质,推出OA=OB 即可解决问题. 【详解】解:如图,连接OC 设AC 交y 轴于E .∵AC ⊥y 轴于E , ∴S △AOE =12×2=1,S △OEC =12×1=12,∴S△AOC=32,∵A,B关于原点对称,∴OA=OB,∴S△ABC=2S△AOC=3,故答案为:3.【点睛】本题考查反比例函数与一次函数的性质,解题的关键是熟练掌握反比例函数系数k的几何意义.18.如图,点A在曲线y=3x(x>0)上,过点A作AB⊥x轴,垂足为B,OA的垂直平分线交OB、OA于点C、D,当AB=1时,△ABC的周长为_____.4【详解】∵点A在曲线y=(x>0)上AB⊥x轴AB=1∴AB×OB=3∴OB=3∵CD垂直平分AO∴OC=AC∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4故答案为4【点解析:4【详解】∵点A在曲线y=3x(x>0)上,AB⊥x轴,AB=1,∴AB×OB=3,∴OB=3,∵CD垂直平分AO,∴OC=AC,∴△ABC的周长=AB+BC+AC=1+BC+OC=1+OB=1+3=4,故答案为4.【点睛】运用了线段垂直平分线的性质以及反比例函数的性质.解题时注意运用线段垂直平分线上任意一点,到线段两端点的距离相等.19.如图,四边形OABC和ADEF均为正方形,反比例函数8yx的图象分别经过AB的中点M及DE的中点N,则正方形ADEF的边长为___【分析】设正方形的边长为正方形的边长为再由是的中点是的中点可知再代入反比例函数求出的值即可【详解】解:设正方形的边长为正方形的边长为是的中点是的中点反比例函数的图象分别经过的中点及的中点解得故答案为 解析:225-+【分析】设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,再由M 是AB 的中点,N 是DE 的中点可知(,)2a M a ,(,)2b N a b ,再代入反比例函数8y x=求出b 的值即可. 【详解】解:设正方形OABC 的边长为a ,正方形ADEF 的边长为b ,M 是AB 的中点,N 是DE 的中点,(,)2aM a ,(,)2bN ab . 反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N , ∴82a a ,82b ab,解得4a =,225b.故答案为:225-+ 【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 20.已知点A (-1,2)在反比例函数1m y x-=的图象上,则m =_____________.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1 【分析】将点A (-1,2)代入反比例函数1m y x-=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1; 故答案为:-1. 【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.三、解答题21.如图,反比例函数(0,0)ky k x x=≠<经过ABO 边AB 的中点D ,与边AO 交于点C ,且:1:2AC CO =,连接DO ,若AOD △的面积为78,则k 的值为_______.解析:74-【分析】设点D 的坐标为(),y D D D x ,得12DOBD D S x y =-,结合题意得:D D x y k =,从而推导得12DOBSk =-;结合AB 的中点为点D ,得78AODDOBS S==,经计算即可完成求解. 【详解】设点D 的坐标为(),y D D D x ∴12DOBD D Sx y =-∵D D x y k =∴()111222D D DOB SDB OB y x k =⨯=⨯-=- 又∵AB 的中点为点D∴78AODDOBSS==∴1728k -= 故答案为:74-. 【点睛】本题考查了反比例函数、直角坐标系、一元一次方程的知识;解题的关键是熟练掌握反比例函数、直角坐标系、一元一次方程、三角形中线的性质,从而完成求解. 22.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M (-3,1),N (1,n )两点.(1)求这两个函数的表达式;(2)过动点C (m ,0)且垂直于x 轴的直线与一次函数及反比例函数的图象分别交于D 、E 两点,当点E 位于点D 上方时,直接写出m 的取值范围. 解析:(1)y=3x-;2y x =--;(2)m >1或-3<m <0 【分析】(1)把M 代入反比例函数的解析式即可求得k 的值,然后求得n 的值,利用待定系数法即可求得一次函数的解析式;(2)先画出两函数的图象,再根据两函数图象的上下位置关系结合交点的横坐标即可得出m 的取值范围. 【详解】(1)∵点M (-3,1)和N (1,n )在反比例函数ky x=的图象上, ∴3k =-,3n =-. ∴反比例函数表达式为3x=-, 点N 的坐标为N (1,3-),∵点M (-3,1)和N (1,3-)在一次函数y ax b =+的图象上,∴313a b a b -+=⎧⎨+=-⎩,解得12a b =-⎧⎨=-⎩,∴一次函数表达式为2y x =--;(2)一次函数2y x =--的图象与反比例函数3y x=-的图象相交于点M (-3,1)和N (1,3-),观察函数图象可知:若过动点C (m ,0)且垂直于x 轴的直线分别与反比例函数图象和一次函数图象交于E 、D 两点,当点E 位于点D 上方时, 则m 的取值范围是:m >1或-3<m <0. 【点睛】本题是反比例函数与一次函数的综合题,考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.23.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标. 解析:(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭【分析】(1) 观察图象得到当1x <-或04x <<时,直线y=k 1x+b 都在反比例函数2k y x=的图象上方,由此即可得;(2)先把A(-1,4)代入y=2k x 可求得k 2,再把B(4,n)代入y=2k x可得n=-1,即B 点坐标为(4,-1),然后把点A 、B 的坐标分别代入y=k 1x+b 得到关于k 1、b 的方程组,解方程组即可求得答案;(3)设AB 与y 轴交于点C ,先求出点C 坐标,继而求出7.5AOB S ∆=,根据P :1:2AO BOP S S ∆∆=分别求出 2.5AOP S ∆=,5BOP S ∆=,再根据 1.5AOC S ∆=确定出点P 在第一象限,求出1COP S ∆=,继而求出P 点的横坐标23P x =,由点P 在直线3y x =-+上继而可求出点P 的纵坐标,即可求得答案.【详解】(1)观察图象可知当1x <-或04x <<,k 1x+b>2k x ;(2)把()1,4A -代入2k y x =,得24k =-, ∴4y x =-,∵点()4,B n 在4y x =-上,∴1n =-,∴()4,1B -,把()1,4A -,()4,1B -代入11y k x b =+得11441k b k b -+=⎧⎨+=-⎩,解得113k b =-⎧⎨=⎩,∴3y x =-+;(3)设AB 与y 轴交于点C ,∵点C 在直线3y x =-+上,∴()0,3C ,()()113147.522AOB A B S OC x x ∆=⋅+=⨯⨯+=,又:1:2AOD BOP S S ∆∆=, ∴17.5 2.53AOP S ∆=⨯=,5BOP S ∆=, 又131 1.52AOC S ∆=⨯⨯=,∴点P 在第一象限,∴ 2.5 1.51COP S ∆=-=,又3OC =,∴1312P x ⨯⨯=,解得23P x =, 把23P x =代入3y x =-+,得73P y =,∴27,33P ⎛⎫ ⎪⎝⎭.【点睛】本题考查了一次函数与反比例函数的综合题,涉及了待定系数法,函数与不等式,三角形的面积等,熟练掌握相关知识是解题的关键.注意数形结合思想的应用.24.已知A (-2n ,n )、B (n ,-4)两点是一次函数y kx b =+和反比例函数m y x =图像的两个交点.(1)求一次函数与反比例函数的解析式;(2)求△AOB 的面积;(3)观察图像,写出不等式0m kx b x+->的解集.解析:(1)8y x=-,2y x =--;(2)6AOB S ∆=;(3)4x <-或02x << 【分析】 (1)根据反比例函数图像上任意一点的横坐标与纵坐标的乘积相等可得到-2n²=-4n 求出n 的值,进而确定A 、B 两点坐标,求出反比例函数的解析式,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x <-4或0<x <2时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】解:(1)由“反比例函数上任意一点的横坐标与纵坐标的乘积相等”可知:-2n²=-4n ,求得n=0(舍去)或n=2,∴A(-4,2),B(2,-4),∴m=-4×2=-8,故反比例函数的解析式为:8y x =-, 将A 、B 两点代入一次函数y kx b =+中: ∴2442k b k b =-+⎧⎨-=+⎩ ,解得12k b =-⎧⎨=-⎩, ∴一次函数的解析式为:2y x =--,故答案为:8y x=-,2y x =--; (2) y=-x-2中,令y=0,则x=-2, 即直线y=-x-2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =112224622⨯⨯+⨯⨯=, 故答案为:6;(3)0m kx b x+->,变形为:m kx b x +>, 观察图形,即要求一次函数的图像在反比例函数图像的上方,∴解集为:x <-4或0<x <2,故答案为:x <-4或0<x <2.【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.解决问题的关键是掌握用待定系数法确定一次函数的解析式.25.某校园艺社计划利用已有的一堵长为10m 的墙,用篱笆围一个面积为212m 的矩形园子.(1)如图,设矩形园子的相邻两边长分别为()x m 、()y m .①求y 关于x 的函数表达式;②当4y 时,求x 的取值范围;(2)小凯说篱笆的长可以为9.5m ,洋洋说篱笆的长可以为10.5m.你认为他们俩的说法对吗?为什么?解析:(1)①1265y x x ⎛⎫=⎪⎝⎭,②635x ;(2)小凯的说法错误,洋洋的说法正确. 【分析】 (1)①根据矩形的面积公式计算即可,注意自变量的取值范围;②构建不等式即可解决问题;(2)构建方程求解即可解决问题;【详解】(1)①由题意xy =12, 1265y x x ⎛⎫∴= ⎪⎝⎭②y ⩾4时,124x ≥,解得3x ≤ 所以635x . (2)当1229.5x x +=时,整理得:2419240,0x x -+=∆<,方程无解. 当12210.5x x+=时,整理得2421240,570x x -+=∆=>,符合题意; ∴小凯的说法错误,洋洋的说法正确.【点睛】 本题考查反比例函数的应用.(1)①中需注意,因为墙的宽度为10m ,所以y≤10,据此可求得自变量x 的取值范围;②中求得x 的取值要与①中取公共解集;(2)能根据根的判别式判断一元二次方程解的情况是解决此问的关键.26.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标; (3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.解析:(1)32y x -=;(2)8516548⎛ ⎝⎭或851658⎛ ⎝⎭或1224,55⎛⎫-- ⎪⎝⎭;(3)329,9⎛⎫- ⎪⎝⎭或()1,32-【分析】 (1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可;(3)设设点E 的坐标为32,b b ⎛⎫-⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】 解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称,∴点C 坐标为(4,-8). 设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD ==,解得:4a =±点D 坐标为48⎛ ⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.27.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -.()1求一次函数和反比例函数的表达式;()2请直接写出12y y >时,x 的取值范围;()3过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.解析:()1反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;()2当2x 0-<<或x 1>时,12y y >;()3当点C 的坐标为()13,1-或)31,1-时,AC 2CD =.【分析】 (1)利用待定系数法求出k ,求出点B 的坐标,再利用待定系数法求出一次函数解析式;(2)利用数形结合思想,观察直线在双曲线上方的情况即可进行解答;(3)根据直角三角形的性质得到∠DAC=30°,根据正切的定义求出CD ,分点C 在点D 的左侧、点C 在点D 的右侧两种情况解答.【详解】()1点()A 1,2在反比例函数2k y x=的图象上, k 122∴=⨯=,∴反比例函数的解析式为22y x=, 点()B 2,m -在反比例函数22y x =的图象上, 2m 12∴==--, 则点B 的坐标为()2,1--,由题意得,{a b 22a b 1+=-+=-,解得,{a 1b 1==,则一次函数解析式为:1y x 1=+;()2由函数图象可知,当2x 0-<<或x 1>时,12y y >;()3AD BE ⊥,AC 2CD =,DAC 30∠∴=,由题意得,AD 213=+=,在Rt ADC 中,CD tan DAC AD ∠=,即CD 333=, 解得,CD 3=, 当点C 在点D 的左侧时,点C 的坐标为()13,1--,当点C 在点D 的右侧时,点C 的坐标为()31,1+-,∴当点C 的坐标为()13,1--或()31,1+-时,AC 2CD =.【点睛】本题考查一次函数和反比例函数的交点问题,熟练掌握待定系数法求函数解析式的一般步骤、灵活运用分类讨论思想、数形结合思想是解题的关键.28.如图,已知一次函数y kx b =+的图象与反比例函数m y x=的图象交于点()3,A a ,点(142,2)B a -.(1)求反比例函数的表达式;(2)若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,求ACD △的面积.解析:(1)12y x=;(2)18 【分析】 (1)根据点A 、B 都在反比例函数图象上,得到关于a 的方程,求出a ,即可求出反比例函数解析式;(2)根据点A 、B 都在一次函数y kx b =+的图象上,运用待定系数法求出直线解析式,进而求出点C 坐标,求出CD 长,即可求出ACD △的面积.【详解】解:(1)∵点()3,A a ,点(142,2)B a -在反比例函数m y x =的图象上, ∴3(142)2a a ⨯=-⨯.解得4a =.∴3412m =⨯=.∴反比例函数的表达式是12y x=. (2)∵4a =,∴点A ,点B 的坐标分别是(3,4),(6,2).∵点A ,点B 在一次函数y kx b =+的图象上, ∴43,26.k b k b =+⎧⎨=+⎩解得2,36.k b ⎧=-⎪⎨⎪=⎩ ∴一次函数的表达式是263y x =-+. 当0x =时,6y =.∴点C 的坐标是()0,6.∴6OC =.∵点D 是点C 关于原点O 的对称点,∴2CD OC =.作AE y ⊥轴于点E ,∴3AE =. 12ACD S CD AE =⋅ CO AE =⋅63=⨯18=。

深圳南山区学府中学九年级数学下册第二十八章《锐角三角函数》经典测试卷(培优练)

深圳南山区学府中学九年级数学下册第二十八章《锐角三角函数》经典测试卷(培优练)
一、选择题
1.菱形的周长为 ,高为 ,则该菱形两邻角度数比为()
A. B. C. D.
2.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为 ,坡面上的影长为 .已知斜坡的坡角为 ,同一时刻,一根长为 且垂直于地面放置的标杆在地面上的影长为 ,则树的高度为( )
5.在Rt△ABC中,∠ACB=90°,AB= ,tan∠B=2,则AC的长为( )
A.1B.2C. D.2
6.如图,在矩形ABCD中,AB=3,做BD的垂直平分线E,F,分别与AD、BC交于点E、F,连接BE,DF,若EF=AE+FC,则边BC的长为()
A. B. C. D.
7.三角形在正方形网格纸中的位置如图所示,则cos 的值是()
A.2 B.4C.2.8D.2.5
二、填空题
16.如图,河宽CD为100 米,在C处测得对岸A点在C点南偏西30°方向、对岸B点在C点南偏东45°方向,则A、B两点间的距离是_____米.(结果保留根号)
17.如图, 内接于 , ,直径AD交BC于点E,若 , ,则弦BC的长为______.
18.如果在某建筑物的A处测得目标B的俯角为37°,那么从目标B可以测得这个建筑物的A处的仰角为_____.
A. B. C. D.
3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度 为 ,根据以上条件,可以列出的方程为()
题目
测量铁塔顶端到地面的高度
测量目标示意图
相关数据
A. B.
C. D.
4.如图,河坝横断面迎水坡AB的坡比为1: ,坝高BC=3m,则AB的长度为( )
A.6mB.3 mC.9mD.6 m
(2)①若 , ,求 的半径.

深圳南山区学府中学九年级数学上册第二十二章《二次函数》经典测试卷(培优练)

深圳南山区学府中学九年级数学上册第二十二章《二次函数》经典测试卷(培优练)

一、选择题1.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个2.已知抛物线2y x bx c =++的顶点在x 轴上,且经过点(3,)A m n -、(3,)B m n +,则n 的值为( )A .3B .6C .9D .123.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 4.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位B .先向左平移4个单位,在向下平移1个单位C .先向右平移4个单位,在向上平移1个单位D .先向右平移4个单位,在向下平移1个单位5.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .36.如图是二次函数y =ax 2+bx +c 的图像,对于下列说法:①abc >0,②240b ac ->,③a +b +c <0,④当x >0时,y 随x 的增大而增大,其中正确的个数是( )A .1B .2C .3D .47.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 8.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y =D .无法确定 9.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 10.我校门口道路的隔离栏通常会涂上醒目的颜色,呈抛物线形状(如图1),图2是一个长为2米,宽为1米的矩形隔离栏,中间被4根栏杆五等分,每根栏杆的下面一部分涂上醒目的蓝色,颜色的分界处(点E ,点P )以及点A ,点B 落上同一条抛物线上,若第1根栏杆涂色部分(EF )与第2根栏杆未涂色部分(PQ )长度相等,则EF 的长度是( )A .13米B .12米C .25米D .35米 11.设()12,A y -,()21,B y ,()32,C y 是抛物线2(1)y x =-+上的三点,1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >> 12.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( )A .2(1)2y x =-+B .2(1)1y x =++C .21y x =+D .2(1)1y x =-+13.若二次的数2y ax bx c =++的x 与y 的部分对应值如下表: x7- 6- 5- 4- 3- 2- y 27- 13-3- 3 5 3 A .5 B .3- C .13- D .27-14.二次函数2y ax bx c =++的图象如图所示,则下列关于该函数说法中正确的是( )A .0b <B .0c >C .0a b c ++=D .240b ac -< 15.在平面直角坐标系中,将函数22y x =-的图象先向右平移1个单位长度,再向上平移5个单位长度,得到图象的函数解析式是( )A .22(1)5y x =-++B .22(1)5y x =--+C .22(1)5y x =-+-D .22(1)5y x =---第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.抛物线y =﹣12(x +1)2+3的顶点坐标是_____. 17.将抛物线2y x 向上平移1个单位,再向左平移2个单位后,得到的抛物线的顶点坐标是__________.18.二次函数2y ax bx c =++的部分对应值如下表:x -3-2 -1 0 1 2 3 4 5 y12 5 0 -3 -4 -3 0 5 12 利用二次函数的图象可知,当函数值0y >时,x 的取值范围是______.19.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次不等式220x x m -++>的解集为______________________.20.如图,平面直角坐标系中,桥孔抛物线对应的二次函数关系式是y =﹣13x 2,桥下的水面宽AB 为6m ,当水位上涨2m 时,水面宽CD 为_____m (结果保留根号).21.已知抛物线y =x 2+9的最小值是y =_____.22.已知点A (1,y 1),B (2,y 2)在抛物线y =﹣(x +1)2+3的图象上,则y 1_____y 2(填“<”或“>”或“=”).23.若抛物线256y x x =--与x 轴分别交于A 、B 两点,则AB 的长为_______________.24.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B 的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)25.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.26.将抛物线223y x x =---向右平移三个单位,再绕原点O 旋转180°,则所得抛物线的解析式____.三、解答题27.已知二次函数21y x mx n =++的图象经过点()3,1P -,对称轴是直线1x =-.(1)求m ,n 的值;(2)如图,一次函数2y x b =+的图象经过点P ,与二次函数的图象相交于另一点B ,请求出点B 的坐标,并观察图象直接写出12y y ≥的x 的取值范围.28.愤怒的小鸟——为了打击偷走鸟蛋的捣蛋猪,鸟儿以自己的身体为武器,在空中画出完美的抛物线,像炮弹一样去攻击捣蛋猪的堡垒.而捣蛋猪为了躲避打击,将自己藏在各种障碍物后面,自此,双方展开了一番斗智斗勇的较量.(1)如图1,愤怒的小鸟调整好位置后,恰好可以越过2m 高的箱子(箱子宽度不计),射中6m 外的捣蛋猪,最高点距离地面3m ,问出发时小鸟与箱子的距离?(2)如图2,箱子的长宽不断发生变化,愤怒的小鸟按照原弹射轨迹(射中6m 外的捣蛋猪,最高点距离地面3m),当轨迹恰好经过B 、C 两点时,则AB+BC+CD 的最大值是多少? 29.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 30.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表: 第x 天 售价(元件) 日销售量(件) 130x ≤≤60x + 30010x - y (1)求y 与x 的函数关系式; (2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.。

深圳南山区学府中学初中数学九年级下期中经典测试卷(培优练)

深圳南山区学府中学初中数学九年级下期中经典测试卷(培优练)

一、选择题1.(0分)[ID:11132]有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要把它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为()A.67B.3037C.127D.60372.(0分)[ID:11117]如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)3.(0分)[ID:11114]P是△ABC一边上的一点(P不与A、B、C重合),过点P的一条直线截△ABC,如果截得的三角形与△ABC相似,我们称这条直线为过点P的△ABC的“相似线”.Rt△ABC中,∠C=90°,∠A=30°,当点P为AC的中点时,过点P的△ABC的“相似线”最多有几条?()A.1条B.2条C.3条D.4条4.(0分)[ID:11091]已知两个相似三角形的面积比为 4:9,则周长的比为 ( ) A.2:3B.4:9C.3:2D.2:35.(0分)[ID:11090]如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:46.(0分)[ID:11080]如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C 的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)7.(0分)[ID:11074]在同一直角坐标系中,函数kyx=和y=kx﹣3的图象大致是()A.B.C.D.8.(0分)[ID:11069]如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.(0分)[ID:11056]如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.1210.(0分)[ID:11054]如图,在平行四边形ABCD中,点E在边CD上, AC与BE相交于点F,且DE:CE=1:2,则△CEF与△ABF的周长之比为()A.1 : 2B.1 : 3C.2 : 3D.4 : 911.(0分)[ID:11050]如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8cm(如箭头所示),则木桩上升了()A.8tan20°B.C.8sin20°D.8cos20°12.(0分)[ID:11043]如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m13.(0分)[ID:11042]如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4314.(0分)[ID:11039]在反比例函数4yx的图象中,阴影部分的面积不等于4的是()A.B. C.D.15.(0分)[ID:11071]如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A .△PAB ∽△PCA B .△ABC ∽△DBA C .△PAB ∽△PDAD .△ABC ∽△DCA二、填空题16.(0分)[ID :11174]一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .17.(0分)[ID :11173]如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.18.(0分)[ID :11164]已知A (﹣4,y 1),B (﹣1,y 2)是反比例函数y =﹣4x图象上的两个点,则y 1与y 2的大小关系为__________. 19.(0分)[ID :11161]将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.20.(0分)[ID :11139]如图,在平行四边形ABCD 中,AB =12,AD =8,∠ABC 的平分线交CD 于点F ,交AD 的延长线于点E ,CG ⊥BE ,垂足为G ,若EF =2,则线段CG 的长为_____.21.(0分)[ID :11136]如图,四边形ABCD 、CDEF 、EFGH 都是正方形,则∠1+∠2= .22.(0分)[ID:11220]如图,在平面直角坐标系中,点A是函数kyx(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为______.23.(0分)[ID:11198]把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.24.(0分)[ID:11195]如图所示的网格是正方形网格,点P到射线OA的距离为m,点P 到射线OB的距离为n,则m __________ n.(填“>”,“=”或“<”)25.(0分)[ID:11188]小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶的高度为________m.三、解答题26.(0分)[ID:11329]小明想利用影长测量学校旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长是1.4米;此时,他发现旗杆AB的一部分影子BD落在地面上,另一部分影子CD落在楼房的墙壁上,分别测得BD=11.2米,CD=3米,求旗杆AB的高度.27.(0分)[ID :11328]如图,等边ABC ∆中,D 、E 、F 分别是AB 、AC 、BC 上的点,连接CD 、EF 交于点G ,且60CGF ∠=︒.(1)请直接写出图中所有与BDC ∆相似的三角形(任选一对证明);(2)若45EF DC =,试求AE EC 的值.28.(0分)[ID :11309]如图1,为放置在水平桌面l 上的台灯,底座的高AB 为5cm .长度均为20cm 的连杆BC ,CD 与AB 始终在同一水平面上.(1)旋转连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=︒,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 绕点C 逆时针旋转,使165BCD ∠=︒,如图3,问此时连杆端点D 离桌面l 的高度是增加了还是减少?增加或减少了多少?(精确到0.1cm ,参考数2 1.41≈3 1.73≈)29.(0分)[ID :11285]如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).(1)以原点O 为位似中心,位似比为1∶2,在y 轴的左侧,画出△ABC 放大后的图形△A 1B 1C 1,并直接写出C 1点的坐标;(2)如果点D(a ,b)在线段AB 上,请直接写出经过(1)的变化后点D 的对应点D 1的坐标.30.(0分)[ID :11277]已知如图,ADBE CF ,它们依次交直线a ,b 于点A 、B 、C和点D 、E 、F.(1)如果6AB =,8BC =,21DF =,求DE 的长.(2)如果:2:5DE DF =,9AD =,14CF =,求BE 的长.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.B3.C4.A5.A6.A7.A8.D9.C10.C11.A12.A13.B14.B15.B二、填空题16.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题17.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF =BF设BF=BF=x故20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB=CD=12AE∥BCAB∥CD∴∠C FB=∠FBA∵B21.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△22.-2【解析】【分析】根据已知条件得到三角形ABC的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关23.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影24.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本25.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:085=x:11解得x=22则小刚举起的手臂超出头顶的高度为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】试题解析:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB•BC=12AC•BP,∴BP=·341255 AB BCAC⨯==.∵DE∥AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DE BQ AC BP=.设DE=x,则有:1251255xx-=,解得x=60 37,故选D.2.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C(1,2),∴点A的坐标为:(2.5,5)故选B.考点:位似变换;坐标与图形性质.3.C解析:C【解析】试题分析:根据相似线的定义,可知截得的三角形与△ABC有一个公共角.①公共角为∠A 时,根据相似三角形的判定:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时,根据相似三角形的判定:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,根据∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.解:①公共角为∠A时:当过点P的角等于∠C时,即图中PD∥BC时,△APD∽△ACB;当过点P的角等于∠B时,即图中当PF⊥AB时,△APF∽△ABC;②公共角为∠C时:当过点P的角等于∠A时,即图中P E∥AB时,△CPE∽△CAB;当过点P的角等于∠B时,∵∠CPB=∠A+∠ABP,∴PB>PC,PC=PA,∴PB>PA,∴∠PBA<∠A,∴∠CPB<60°,可知此时不成立;③公共角为∠B,不成立.综上最多有3条.故选C.4.A解析:A【解析】【分析】由于相似三角形的面积比等于相似比的平方,已知了两个相似三角形的面积比,即可求出它们的相似比;再根据相似三角形的周长比等于相似比即可得解.【详解】∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴这两个相似三角形的周长之比为2:3.故选:A【点睛】本题考查的是相似三角形的性质:相似三角形的周长比等于相似比,面积比等于相似比的平方.5.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴∽,∽:4:9DOE BOC DOE COB S S ∽,,=:2:3.ED BC ∴=AED ACB ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.6.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.7.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k ≠0,所以分k >0和k <0两种情况讨论.当两函数系数k 取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k >0时,y =kx ﹣3与y 轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k <0时,y =kx ﹣3与y 轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A 符合要求.故选A .【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k 的取值确定函数所在的象限.8.D解析:D【解析】解:在平行四边形ABCD 中,AB ∥DC ,则△DFE ∽△BAE ,∴DF :AB =DE :EB .∵O 为对角线的交点,∴DO =BO .又∵E 为OD 的中点,∴DE =14DB ,则DE :EB =1:3,∴DF :AB =1:3.∵DC =AB ,∴DF :DC =1:3,∴DF :FC =1:2.故选D . 9.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a )=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.10.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD=AB .∴△DFE ∽△BFA ,∵DE :EC=1:2,∴EC :DC=CE :AB=2:3,∴C △CEF :C △ABF =2:3.故选C .11.A解析:A【解析】【分析】根据已知,运用直角三角形和三角函数得到上升的高度为:8tan20°.【详解】设木桩上升了h 米,∴由已知图形可得:tan20°=8h , ∴木桩上升的高度h =8tan20° 故选B. 12.A解析:A【解析】∵BE ∥AD ,∴△BCE ∽△ACD ,∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 13.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A型”与“X型”图)(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、“蝶型”,如下图:14.B解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=4;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=4.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.15.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=√2P A,AC=√5P A,AD=√10P A,BD=2P A,∴ABDB =√2PA2PA=√2BC2BA=√2PA=√2AC2DA=√5PA√10PA=√22,∴ABDB=BCBA=ACDC,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题16.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.17.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 18.y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小从而可以解答本题详解:∵反比例函数y=--4<0∴在每个象限内y随x的增大而增大∵A(-4y1)B(-1y2)解析:y1<y2【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y2的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y2)是反比例函数y=-4x图象上的两个点,-4<-1,∴y1<y2,故答案为:y1<y2.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.19.或2【解析】【分析】由折叠性质可知BF=BF△BFC与△ABC相似有两种情况分别对两种情况进行讨论设出BF=BF=x列出比例式方程解方程即可得到结果【详解】由折叠性质可知BF=BF设BF=BF=x故解析:127或2【解析】【分析】由折叠性质可知B’F=BF,△B’FC与△ABC相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知B’F=BF,设B’F=BF=x,故CF=4-x当△B’FC∽△ABC,有'B F CFAB BC=,得到方程434x x-=,解得x=127,故BF=127;当△FB’C∽△ABC,有'B F FCAB AC=,得到方程433x x-=,解得x=2,故BF=2;综上BF的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论. 20.2【解析】【分析】首先证明CF=BC=12利用相似三角形的性质求出BF再利用勾股定理即可解决问题【详解】解:∵四边形ABCD是平行四边形∴AB =CD=12AE∥BCAB∥CD∴∠CFB=∠FBA∵B解析:【解析】【分析】首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12﹣8=4,∵DE∥CB,∴△DEF∽△CBF,∴EFBF=DFCF,∴2BF=48,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG=故答案为【点睛】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.21.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.22.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====三角形 ,∴2k=,∵0k<,∴2k=-,故答案为:-2.【点睛】本题考查了反比例函数系数k的几何意义,明确1•=12ABCS AB OB=是解题的关键.23.【解析】【分析】由正方形的性质易证△ABC∽△FEC可设BC=x只需求出BC即可求出图中阴影部分的面积【详解】如图所示:设BC=x则CE=1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x=∴阴影解析:1 6【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x-解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.24.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP ∠==1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.25.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x 由题可得:17:085=x :11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.三、解答题26.旗杆AB 的高度是11米.【解析】【分析】作CE ⊥AB 于E ,可得矩形BDCE ,利用同一时刻物高与影长的比一定得到AE 的长度,加上CD 的长度即为旗杆的高度.【详解】解:作CE ⊥AB 于E ,∵DC ⊥BD 于D ,AB ⊥BD 于B ,∴四边形BDCE 为矩形,∴CE =BD =11.2米,BE =DC =2米,∵同一时刻物高与影长所组成的三角形相似, ∴AE EC =11.4,即11.2AE =11.4, 解得AE =8,∴AB =AE+EB =8+3=11(米).答:旗杆AB 的高度是11米.【点睛】 考查相似三角形的应用;作出相应辅助线得到矩形是解决本题的难点;用到的知识点为:同一时刻物高与影长的比一定.27.(1)GFC CFE ∆∆、;(2)14【解析】【分析】(1)根据等边三角形的性质及∠CGF=60°,可以得出∠B=∠ACB=∠CGF=60°,可以得出△BDC ∽△GFC ∽△CFE ;(2)由(1)△BDC ∽△CFE 可以得出EF CE DC BC = ,再根据条件45EF DC =和三角形ABC 是等边三角形和线段的转化,就可以得出AE EC 的值. 【详解】解:(1)GFC CFE ∆∆、∵等边ABC ∆,∴∠B=∠ACB =60°∵60CGF ∠=︒∴∠B=∠ACB=∠CGF又∵∠DCB=∠FCG∴GFC BDC ∆∆∽∵∠EFC=∠GFC∴GFC CFE ∆∆∽∴GFC CFE BDC ∆∆∽∽△(2)∵△BDC ∽△CFE 454541,54EF CE DC BCEF DC CE BC CE AE AC EC ∴==∴=∆∴∴==等边ABC AC=BC即【点睛】 本题考查了相似三角形的判定与性质,等边三角形的性质.28.(1)39.6DE cm ≈;(2)下降了,约3.2cm .【解析】【分析】(1)如图2中,作BO ⊥DE 于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP ⊥DF 于P ,BG ⊥DF 于G ,CH ⊥BG 于H .则四边形PCHG 是矩形,求出DF ,再求出DF-DE 即可解决问题.【详解】(1)过点B 作BO DE ⊥,垂足为O ,如图2,则四边形ABOE 是矩形,1509060OBD =-=∠, ∴sin 6040sin 60203DO BO =⋅=⨯=,∴203539.6DE DO OE DO AB cm =+=+=+≈.(2)下降了.如图3,过点D 作DF l ⊥于点F ,过点C 作CP DF ⊥于点P ,过点B 作BG DF ⊥于点G ,过点C 作CH BG ⊥于点H ,则四边形PCHG 为矩形,∵60CBH ︒∠=,∴30BCH ︒∠=,又∵165BCD ︒∠=,∴45DCP ︒∠=, ∴sin 60103CH BC ︒==*sin 45102DP CD ==,∴DF DP PG GF DP CH AB =++=++1021035=.∴下降高度:20351021035DE DF -=-103102=3.2cm ≈.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.29.(1)图见解析,C 1(-6,4);(2)D 1(2a ,2b).【解析】【分析】(1)连接OB 并延长,使BB 1=OB ,连接OA 并延长,使AA 1=OA ,连接OC 并延长,使CC 1=OC ,确定出△A 1B 1C 1,并求出C 1点坐标即可;(2)根据A 与A 1坐标,B 与B 1坐标,以及C 与C 1坐标的关系,确定出变化后点D 的对应点D 1坐标即可.【详解】(1)根据题意画出图形,如图所示:则点C 1的坐标为(-6,4);(2)变化后D 的对应点D 1的坐标为:(2a ,2b ).【点睛】运用了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.30.(1)DE 的长为9;(2)BE 的长为11;【解析】【分析】(1)由果6AB =,8BC =,可得AC=14,然后根据平行线等分线段定理得到6=14DE AB DF AC =,然后将已知条件代入即可求解; (2)过D 作DH∥AC,分别交BE,CF 于H ,说明四边形ABGD 和四边形BCHG 是平行四边形,然后根据平行四边形的性质得CH=BG=AD=9;进一步说明FH=CF-DH=5,然后再按照平行线等分线段定理得到:2:5DE DF =,最后代入已知条件求解即可.【详解】(1)∵6AB =,8BC =,∴AC=AB+BC=14∵ADBE CF ∴6=14DE AB DF AC =∴66219 1414DE DF==⨯=(2)过D作DH∥AC,分别交BE,CF于H.∵AD BE CF∴四边形ABGD和四边形BCHG是平行四边形,∴CH=BG=AD=9∴FH=CF-DH=5∵:2:5DE DF=∴:2:5GE HF=∴225255GE HF==⨯=∴BE=BG+GE=9+2=11.【点睛】本题主要考查平行线分线段成比例的知识,关键是掌握三条平行线截两条直线,所得的对应线段成比例.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三年级数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1、图中几何体的主视图是
2、抛物线3)1(22+-=x y 的顶点坐标是
A 、( 1,3)
B 、(-1,3)
C 、(1,-3)
D 、(-1,-3) 3、已知关于x 的一元二次方程04
1
)1(2
=+
--x k x k 有实数根,则k 的取值范围是 A 、K 为任意实数 B 、K ≠1 C 、K ≥0 D 、K ≥0且K ≠1 4、抛物线c x x y ++-=22的对称轴是直线
A 、 x=2
B 、x=-2
C 、x=1
D 、x=-1 5、下列各图中每个正方形网格都是由四个边长为1的小正方形组成,其中阴影部分面积是小
正方形面积的
2
5
的是 6、如图,□ABCD 的周长为16cm ,AC 与BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 A 、4 cm B 、6 cm C 、8 cm D 、10 cm
7、已知三角形两边的长分别是2和3,第三边的长是方程01282
=+-x x 的根,则这个三角形的周长为
A 、 7
B 、 11
C 、7或11
D 、8或9
8、已知二次函数5422
-+=x x y ,设自变量的值分别为1x 、2x 、3x ,且-1<1x <2x <3x ,则对应的函数值1y 、2y 、3y 的大小关系为
A 、321y y y >>
B 、321y y y <<
C 、132y y y <<
D 、132y y y >>
9、在同一直角坐标系中,函数y =kx -k 与k
y
=
(k ≠0)的图象大致是
10、如图,在梯形ABCD 中,DC ∥AB ,AB=AC ,E 为BC 的中点,BD 交AC 于F ,交AE
于G ,连结CG 。

下列结论中:
① AE 平分∠BAC ② BG=CD ③ CD=CG ④
若BG=6,FG=4 则DF=5 ⑤
DC ∶AB=1∶3,正确的有 A
、2个 B 、3个 C 、4个 D 、5个
二、填空题(本大题共5小题,每题4分,共20分) A B B A C
D A B C D
正面
A B
D
C
13、某口袋中有红色、黄色和蓝色的玻璃球共有72个.小明通过多次摸球试验后,发现摸到红球和蓝球的频率分别是35%和40%,那么估计口袋中黄色玻璃球的数目是 个.
14、如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E , 若∠EAO=15°,则∠BOE 的度数为 。

15、如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数1
(0)y x x
=>的图象上,则点E 的
坐标是 .
三、解答题
16、解答下列各题:(每小题6分共18分)
(1).解方程: 0222
=--x x (2) )32(2)32(2-=
-x x
(3).已知,如图,AB 和DE 是直立在地面上的两根立柱,.AB =5m ,某一时刻AB 在阳光下的投影BC =3m.
(1)请你在图中画出此时DE 在阳光下的投影;
(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.
(4).如图,□ABCD 中,O 是对角线AC 的中点,过O 点作直线EF 交BC 、AD 于E 、F 。

(1)求证:BE=DF
(2)若AC 、EF 将□ABCD 分成的四部分的面积相等,指出点E 的位置,并说明理由。

17. 解答下列各题:(每小题8分共16分)
某商场销售一批名牌服装,平均每天可销售20件,每件获利40元。

为了扩大销售,增加盈利,尽快减少库存。

商场决定采取
E B C
E
A D
(2).四张扑克牌的牌面如图①所示,将扑克牌洗均匀后,如图②背面朝上放置在桌面上。

(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是_____________;
(2)规定游戏规则如下:若同时随机抽取两张扑克牌,抽到两张牌的牌面数字之和是偶数为胜;反之,则为负。

你认为这个游戏是否公平?请说明理由。

18.解答下列各题:(每小题8分共16分)
.如图,已知点A是一次函数y=x的图象与反比例函数的图象在第一象限内的交点,点B在x轴的负半轴上且OA=OB,△AOB的面积为2.求反比例函数的解析式.
19.k取何值时,方程0
-k
x
x有两个相等的实数根?并求出此时方程的根。

+
k
)
2
1
(
42=
-
+
20、(6分)如图,在直角ΔABC 中,∠C=90o ,BC= 6m , AB=10m . 点M 从B 点以1m /s 的速度向点C 匀速移
动,同时点N 从C 点以2m /s 的速度向点A 匀速移动,问几秒钟后,ΔMNC 的面积是ΔABC 面积的3
1

21、如图(1)所示,BD, CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD, AG ⊥CE,垂足分别为;F ,G ,连结FG ,延长AF, AG ,与直线BC 相交,易证FG =
1
2
(AB +BC+AC ) 若(1)BD ,CE 分别是△ABC 的内角平分线(如图(2));(2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图(3)),则在图(2)、图(3)两种情况下,线段FG 与ΔABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.
22、在平面直角坐标系中,已知A(0,3),B(4,0),设P、Q分别是线段AB、OB上的动点,它们同时出发,点P以每秒3个单位的速度从点A向点B运动,点Q以每秒1个单位的速度从点B向点O运动.设运动时间为t(秒).
(1)用含t的代数式表示点P的坐标;
(2)当t为何值时,△OPQ为直角三角形?
(3)在什么条件下,以Rt△OPQ的三个顶点能确定一条对称轴平行于y轴的抛物线?选择一种情况,求出所确定的抛物线的解析式.。

相关文档
最新文档