stm32:系统时钟
STM32时钟设置_SysTick_教程
/* Wait till PLL is used as system clock source */ while(RCC_GetSYSCLKSource() != 0x08) { } }
/* Enable GPIOA and AFIO clocks */ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA |
TimingDelay--; if(TimingDelay % 2) {
TestSig = 1;
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
} else {
(五) 仿真调试
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
STM32系列MCU硬件实时时钟(RTC)应用笔记说明书
2017年6月Doc ID 018624 Rev 1 [English Rev 5]1/45AN3371应用笔记在 STM32 F0、F2、F3、F4 和 L1 系列MCU 中使用硬件实时时钟(RTC )前言实时时钟 (RTC) 是记录当前时间的计算机时钟。
RTC 不仅应用于个人计算机、服务器和嵌入式系统,几乎所有需要准确计时的电子设备也都会使用。
支持 RTC 的微控制器可用于精密计时器、闹钟、手表、小型电子记事薄以及其它多种设备。
本应用笔记介绍超低功耗中等容量、超低功耗大容量、F0、F2和 F4 系列器件微控制器中嵌入式实时时钟 (RTC) 控制器的特性,以及将 RTC 用于日历、闹钟、定时唤醒单元、入侵检测、时间戳和校准应用时所需的配置步骤。
本应用笔记提供了含有配置信息的示例,有助于您快速准确地针对日历、闹钟、定时唤醒单元、入侵检测、时间戳和校准应用配置 RTC 。
注:所有示例和说明均基于 STM32L1xx 、STM32F0xx 、STM32F2xx 、STM32F4xx 和STM32F3xx 固件库,以及 STM32L1xx (RM0038)、STM32F0xx (RM0091)、STM32F2xx (RM0033)、STM32F4xx (RM0090)、STM32F37x (RM0313) 和 STM32F30x(RM0316) 的参考手册。
本文提到的STM32 指超低功耗中等容量、超低功耗大容量、F0、F2 和 F4 系列器件。
超低功耗中等 (ULPM) 容量器件包括 STM32L151xx 和 STM32L152xx 微控制器,Flash 容量在 64 KB 到 128 KB 之间。
超低功耗大 (ULPH) 容量器件包括 STM32L151xx 、STM32L152xx 和 STM32L162xx 微控制器,Flash 容量为 384 KB 。
F2 系列器件包括 STM32F205xx 、STM32F207xx 、STM32F215xx 和 STM32F217xx 微控制器。
stm32数字时钟课程设计
stm32 数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的基本结构和工作原理,掌握其编程方法。
2. 学生能掌握数字时钟的基本原理,包括时钟源、分频器、计数器等组成部分。
3. 学生能了解实时时钟(RTC)的功能及其在STM32中的应用。
技能目标:1. 学生能运用C语言编写程序,实现STM32控制数字时钟的功能。
2. 学生能通过调试工具,对程序进行调试和优化,确保数字时钟的准确性。
3. 学生能运用所学知识,设计具有实用价值的数字时钟产品。
情感态度价值观目标:1. 培养学生对电子技术和编程的兴趣,激发其探究精神。
2. 培养学生团队合作意识,使其在项目实施过程中学会相互沟通、协作。
3. 培养学生严谨、细致、负责的工作态度,提高其解决实际问题的能力。
课程性质:本课程为实践性较强的课程,结合STM32和数字时钟知识,培养学生的动手能力和实际操作技能。
学生特点:学生具备一定的电子技术基础和C语言编程能力,对实际操作感兴趣,但可能缺乏项目实践经验。
教学要求:注重理论与实践相结合,引导学生主动探索,提高其分析问题、解决问题的能力。
在教学过程中,关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。
将课程目标分解为具体的学习成果,便于后续教学设计和评估。
二、教学内容本课程教学内容主要包括以下几部分:1. STM32基本原理与编程基础:介绍STM32的内部结构、工作原理,C语言编程基础及其在STM32中的应用。
- 教材章节:第一章至第三章- 内容:微控制器基础、STM32硬件结构、C语言编程基础、STM32编程环境搭建。
2. 数字时钟原理与设计:讲解数字时钟的基本原理、组成部分以及设计方法。
- 教材章节:第四章至第五章- 内容:时钟源、分频器、计数器、实时时钟(RTC)、数字时钟设计方法。
3. STM32实现数字时钟功能:结合STM32和数字时钟知识,指导学生动手实践,实现数字时钟功能。
STM32系统时钟RCC(基于HAL库)
STM32系统时钟RCC(基于HAL库)基础认识为什么要有时钟:时钟就是单⽚机的⼼脏,其每跳动⼀次,整个单⽚机的电路就会同步动作⼀次。
时钟的速率决定了两次动作的间隔时间。
速率越快,单⽚机在单位时间内所执⾏的动作将越多。
时钟是单⽚机运⾏的基础,时钟信号推动单⽚机内各个部分执⾏相应的指令。
时钟系统就是CPU的脉搏,决定cpu速率。
为什么这么多个时钟源:STM32系统是复杂的,⾼精度、低精度、⾼速、低速等,且可以对每个时钟源进⾏开关操作,可以把不需要使⽤的关闭掉。
这可以让单⽚机适⽤更多的环境中,把选择权利交个了开发者,开发者可以从精度、功耗、资源等多⽅⾯考虑。
STM32时钟:从时钟源的⾓度可分为:l 外部时钟(E)l 内部时钟(I)从时钟速率的⾓度分为:l ⾼速时钟(HS)l 低速时钟(LS)STM32在芯⽚复位后默认选⽤的是内部的⾼速时钟(HSI)进⾏⼯作,如果需要使⽤外部⾼速时钟(HSE)的话需要经过软件操作相关的寄存器配置。
外部时钟模式外部的⾼速和低速时钟均有这三个可选项⽬,图中是CubeMX提供的外部时钟选择:可选类型为l Disable(关闭,不使⽤外部时钟)l BYPASS Clock Source(旁路时钟源)l Crystal/Ceramic Resonator(外部晶体/陶瓷谐振器)外部晶体/陶瓷谐振器模式该模式较为常见,这可以为系统时钟提供较为精确的时钟源。
该时钟源是由外部⽆源晶体与MCU内部时钟驱动电路共同配合形成,有⼀定的启动时间,精度较⾼。
为了减少时钟输出的失真和缩短启动稳定时间,晶体/陶瓷谐振器和负载电容必须尽可能地靠近振荡器引脚。
负载电容值必须根据所选择的晶体来具体调整。
整体上讲,陶瓷晶体和⽯英晶体的主要区别就在于精度和温度稳定性上。
⽯英晶体⽐陶瓷晶体精度要⾼,温度稳定性要好。
旁路时钟源模式该模式下必须提供外部时钟。
外部时钟信号(50%占空⽐的⽅波、正弦波或三⾓波)必须连到SOC_IN引脚,此时OSC_OUT引脚对外呈⾼阻态。
stm32 rtc实时时钟
stm32 rtc实时时钟STM32 RTC实时时钟一、介绍STM32是意法半导体公司(STMicroelectronics)推出的一系列32位ARM Cortex-M微控制器。
其中,RTC(Real-Time Clock)是STM32微控制器中的一个重要组件,用于实时时钟和日历功能。
本文将详细介绍STM32 RTC的实时时钟功能及其应用。
二、RTC概述RTC模块是一种独立的硬件模块,可以在微控制器断电时继续运行。
它提供了一个与时间和日期相关的计数器,通过时钟信号源来驱动计数器,从而实现实时时钟的功能。
RTC模块通常由一个独立的低功耗振荡器来提供时钟源。
STM32微控制器中的RTC模块支持多种工作模式,如年历模式、单位数字模式和二进制模式等。
三、RTC的主要功能1. 实时时钟:RTC模块可以提供精确的实时时钟,可以记录时间、日期和星期等信息。
2. 闹钟功能:RTC可以设置多个闹钟时间,并在闹钟时间到达时触发中断或其他操作。
3. 倒计时功能:RTC模块可以进行倒计时操作,并在倒计时结束时触发中断。
4. 调度功能:RTC可以设置预定的时间点,并在该时间点触发中断。
5. 报警功能:RTC可以设置报警功能,当发生特定事件时触发中断或其他操作。
四、配置RTC模块在使用STM32微控制器的RTC功能之前,需要进行一些配置。
首先,需要选择合适的时钟源。
通常,RTC模块使用低功耗振荡器作为时钟源。
其次,需要配置RTC的预分频器和计数器,以实现所需的时间精度。
还需配置中断和/或事件触发条件,以便在特定事件发生时触发中断或其他操作。
五、RTC的中断与事件RTC模块可以生成多个中断和事件,以满足应用的需求。
常见的中断和事件有:1. 秒中断:每当计数器的秒字段更新时触发中断。
2. 分钟中断:每当计数器的分钟字段更新时触发中断。
3. 小时中断:每当计数器的小时字段更新时触发中断。
4. 日期中断:每当计数器的日期字段更新时触发中断。
STM32单片机RTC时钟的使用方法及步骤
STM32单片机RTC时钟的使用方法及步骤以下是使用STM32单片机的RTC时钟的步骤:1.初始化RTC模块:首先,需要在RCC寄存器中使能RTC和LSE(Low-Speed External)晶振模块。
然后,配置RTC的时钟源和预分频器,选择合适的时钟频率。
2.配置RTC时间和日期:通过设置RTC的寄存器来配置当前时间和日期。
需要设置秒、分钟、小时、星期、日期、月份和年份,确保其具有正确的值。
3.启动RTC时钟:设置RTC的控制寄存器,使其开始工作。
可以选择启用或禁用闹钟功能,设置闹钟的时间和日期。
4.读取RTC数据:可以随时读取RTC的时间和日期数据。
读取数据后,可以进行各种计算和处理,如计算两个时间之间的差异、比较时间等。
5.处理RTC中断:可以设置RTC中断来触发一些操作,如闹钟触发时执行一些任务。
需要配置NVIC(Nested Vector Interrupt Controller)中断向量表,使能相应的中断。
6.备份和恢复RTC数据:RTC模块提供了备份寄存器,可以用来存储额外的信息。
可以使用一些特殊的寄存器,如BKP (Backup)寄存器或CPU的系统寄存器来备份和恢复数据。
7.断电维持能力:RTC模块的一个关键特性是其断电维持能力。
即使在断电情况下,RTC模块中的数据仍然能够保持。
可以通过电池供电电路来提供必要的电力。
8.节能模式:可以利用RTC模块的节能模式来降低功耗。
可以选择性地关闭RTC模块的不需要的功能,以减少功耗。
需要注意的是,具体的步骤可能会因芯片型号和开发工具的不同而有所差异。
因此,在使用STM32单片机的RTC时钟之前,需查阅相关的技术文档和参考手册,以了解具体操作步骤和寄存器配置。
以上是使用STM32单片机的RTC时钟的基本步骤。
在实际应用中,可以根据具体需求对RTC进行更多的配置和使用。
stm32芯片时钟(晶振)连接到芯片的 引脚
STM32芯片时钟(晶振)连接到芯片引脚一、引言STM32芯片是一款由STMicroelectronics公司生产的32位微控制器,具有高性能、低功耗、丰富的外设和可扩展性等特点。
在STM32芯片中,时钟(晶振)连接到芯片引脚是一个非常重要的部分,直接关系到芯片的工作频率和稳定性。
二、 STM32芯片时钟STM32芯片的时钟系统包括内部RC振荡器、内部RC振荡器、外部晶体振荡器等,其中晶振作为一种最常用的外部时钟源,具有稳定性高、精度好等优点,因此在实际应用中得到了广泛的应用。
三、连接方式STM32芯片中,晶振可以连接到芯片的多个引脚上,通常采用的是双向连接方式,即一个晶振同时连接到芯片的两个引脚上,以提高时钟信号的稳定性和可靠性。
四、连接引脚STM32芯片的不同系列和不同型号,在连接晶振时会有所不同,但基本的连接原理是相通的。
一般来说,连接引脚包括晶振输入引脚(XTAL1)和晶振输出引脚(XTAL2),分别用来输入晶振的信号和输出晶振的信号,并通过外部电路提供稳定的时钟信号给芯片内部的时钟系统。
五、连接建议在实际应用中,连接晶振时需要注意以下几点:1. 选择合适的晶振型号和频率,根据实际需求选择合适的晶振型号和频率,以保证芯片的工作稳定。
2. 连接线路布局合理,尽量减小晶振到芯片引脚的连接长度,减小外界干扰。
3. 使用合适的外围电路,包括对晶振输入引脚和晶振输出引脚的连接电路、滤波电路等。
六、结语正确连接STM32芯片时钟(晶振)到芯片引脚对于芯片的正常工作和稳定性有着重要的意义,希望本文能为您在实际应用中提供一些帮助。
感谢您的阅读。
七、晶振类型和频率选择在选择晶振类型和频率时,需要根据具体的应用需求进行选择。
一般来说,晶振的频率可以选择从几十kHz到几十MHz不等。
对于低功耗应用,可以选择较低频率的晶振,而对于需要高性能的应用,则需要选择较高频率的晶振。
还需要考虑晶振的负载电容和稳定性等因素,以保证晶振在工作时能够提供稳定可靠的时钟信号。
STM32时钟详细配置
STM32时钟配置STM32时钟配置步骤// 开启HSI时钟寄存器操作1).开启高速时钟HSE // 设置时钟控制寄存器RCC_CR 位16 置1使能RCC->CR|= 0x00010000;位16 :HSEON:外部高速时钟使能当进入待机和停止模式时,该位由硬件清零,关闭4-16MHz外部振荡器。
当外部4-16MHz 振荡器被用作或被选择将要作为系统时钟时,该位不能被清零。
2).等待高速时钟就绪// 读取时钟控制寄存器RCC_CR位17为1就位while(!(RCC-> CR>>17));位17:HSERDY:外部高速时钟就绪标志由硬件置’1’来指示外部4-16MHz振荡器已经稳定。
在HSEON位清零后,该位需要6个外部4-25MHz振荡器周期清零。
3).设置APB1,APB2,AHB分频系数// 设置时钟配置寄存器RCC_CFGRRCC_CFGR=0x00000400;(AHB :位4-7, (低速)APB1 :位8-10, (高速)APB2 :位11-13)位7:4:HPRE[3:0]:AHB预分频(AHB Prescaler)0xxx:SYSCLK不分频位10:8:PPRE1[2:0]:低速APB预分频(APB1) 100:HCLK 2分频位13:11:PPRE2[2:0]:高速APB预分频(APB2) 0xx:HCLK不分频4).设置PLL倍频// 配置时钟配置寄存器RCC_CFGR 位18-21RCC_CFGR|=7<<18;位21:18:PLLMUL:PLL倍频系数0111:PLL 9倍频输出5).PLL输入时钟源选择// 配置时钟配置寄存器RCC_CFGR 位16RCC_CFGR|=1<<16;位16:PLLSRC:PLL输入时钟源(PLL entry clock source) 1:HSE时钟作为PLL输入时钟。
由软件置’1’或清’0’来选择PLL输入时钟源。
STM32时钟配置方法详解
一、在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①HSI是高速内部时钟,RC振荡器,频率为8MHz。
②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③LSI是低速内部时钟,RC振荡器,频率为40kHz。
④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。
倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
二、在STM32上如果不使用外部晶振,OSC_IN和OSC_OUT的接法:如果使用内部RC振荡器而不使用外部晶振,请按照下面方法处理:①对于100脚或144脚的产品,OSC_IN应接地,OSC_OUT应悬空。
②对于少于100脚的产品,有2种接法:第1种:OSC_IN和OSC_OUT分别通过10K电阻接地。
此方法可提高EMC性能;第2种:分别重映射OSC_IN 和OSC_OUT至PD0和PD1,再配置PD0和PD1为推挽输出并输出'0'。
此方法可以减小功耗并(相对上面)节省2个外部电阻。
三、用HSE时钟,程序设置时钟参数流程:01、将RCC寄存器重新设置为默认值RCC_DeInit;02、打开外部高速时钟晶振HSE RCC_HSEConfig(RCC_HSE_ON);03、等待外部高速时钟晶振工作HSEStartUpStatus = RCC_WaitForHSEStartUp();04、设置AHB时钟RCC_HCLKConfig;05、设置高速AHB时钟RCC_PCLK2Config;06、设置低速速AHB时钟RCC_PCLK1Config;07、设置PLL RCC_PLLConfig;08、打开PLL RCC_PLLCmd(ENABLE);09、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)10、设置系统时钟RCC_SYSCLKConfig;11、判断是否PLL是系统时钟while(RCC_GetSYSCLKSource() != 0x08)12、打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()四、下面是STM32软件固件库的程序中对RCC的配置函数(使用外部8MHz晶振)/******************************************************************************** Function Name : RCC_Configuration* Description : RCC配置(使用外部8MHz晶振)* Input : 无* Output : 无* Return : 无*******************************************************************************/void RCC_Configuration(void){/*将外设RCC寄存器重设为缺省值*/RCC_DeInit();/*设置外部高速晶振(HSE)*/RCC_HSEConfig(RCC_HSE_ON); //RCC_HSE_ON——HSE晶振打开(ON)/*等待HSE起振*/HSEStartUpStatus = RCC_WaitForHSEStartUp();if(HSEStartUpStatus == SUCCESS) //SUCCESS:HSE晶振稳定且就绪 {/*设置AHB时钟(HCLK)*/RCC_HCLKConfig(RCC_SYSCLK_Div1); //RCC_SYSCLK_Div1——AHB 时钟= 系统时钟/* 设置高速AHB时钟(PCLK2)*/RCC_PCLK2Config(RCC_HCLK_Div1); //RCC_HCLK_Div1——APB2时钟= HCLK/*设置低速AHB时钟(PCLK1)*/RCC_PCLK1Config(RCC_HCLK_Div2); //RCC_HCLK_Div2——APB1时钟= HCLK / 2/*设置FLASH存储器延时时钟周期数*/FLASH_SetLatency(FLASH_Latency_2); //FLASH_Latency_2 2延时周期/*选择FLASH预取指缓存的模式*/FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // 预取指缓存使能/*设置PLL时钟源及倍频系数*/RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);// PLL的输入时钟= HSE时钟频率;RCC_PLLMul_9——PLL输入时钟x 9/*使能PLL */RCC_PLLCmd(ENABLE);/*检查指定的RCC标志位(PLL准备好标志)设置与否*/while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}/*设置系统时钟(SYSCLK)*/RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//RCC_SYSCLKSource_PLLCLK——选择PLL作为系统时钟/* PLL返回用作系统时钟的时钟源*/while(RCC_GetSYSCLKSource() != 0x08) //0x08:PLL作为系统时钟 {}}/*使能或者失能APB2外设时钟*/RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph _GPIOB |RCC_APB2Periph_GPIOC , ENABLE);//RCC_APB2Periph_GPIOA GPIOA时钟//RCC_APB2Periph_GPIOB GPIOB时钟//RCC_APB2Periph_GPIOC GPIOC时钟//RCC_APB2Periph_GPIOD GPIOD时钟}五、时钟频率STM32F103内部8M的内部震荡,经过倍频后最高可以达到72M。
STM32单片机RTC时钟的使用方法及步骤
STM32单片机RTC时钟的使用方法及步骤一、配置RTC模块时钟源RTC模块的时钟源可以选择外部低速晶振(LSE)或者低速内部时钟(LSI)。
通过以下步骤配置RTC时钟源:1.使能外部低速晶振(LSE)或者低速内部时钟(LSI)。
例如,如果使用外部低速晶振,则需要使能相应的GPIO端口,并配置为晶振模式。
2.配置RCC时钟控制寄存器(RCC_CR)和时钟配置寄存器(RCC_CSR)。
二、使能RTC模块时钟1.使能PWR模块时钟和备份寄存器访问。
RCC_APB1ENR,=(1<<28);RCC_APB1ENR,=(1<<27);2.校验并关闭RTC模块。
RCC->BDCR,=RCC_BDCR_RTCEN;PWR->CR,=PWR_CR_DBP;if ((RCC->BDCR & RCC_BDCR_RTCEN) == 0)RCC->BDCR,=RCC_BDCR_RTCEN;3.配置RTC时钟预分频器和提供给RTC的时钟源。
RTC->PRER ,= rtc_prescaler_value << RTC_PRER_PREDIV_S_Pos;RTC->PRER ,= 127 << RTC_PRER_PREDIV_A_Pos;RTC->CR&=~RTC_CR_FMT;三、配置RTC模块时间和日期1.关闭RTC时钟写保护功能。
RTC->WPR=0xCA;RTC->WPR=0x53;RTC->ISR,=RTC_ISR_INIT;while((RTC->ISR & RTC_ISR_INITF) == 0);2.配置RTC的时间和日期寄存器。
RTC->TR ,= (uint32_t)((hours / 10) << RTC_TR_Hours10_Pos);RTC->TR ,= (uint32_t)((hours % 10) << RTC_TR_Hours1_Pos);RTC->TR ,= (uint32_t)((minutes / 10) <<RTC_TR_Minutes10_Pos);RTC->TR ,= (uint32_t)((minutes % 10) <<RTC_TR_Minutes1_Pos);RTC->TR ,= (uint32_t)((seconds / 10) <<RTC_TR_Seconds10_Pos);RTC->TR ,= (uint32_t)((seconds % 10) <<RTC_TR_Seconds1_Pos);RTC->DR ,= (uint32_t)((year / 10) << RTC_DR_YT_Pos);RTC->DR ,= (uint32_t)((year % 10) << RTC_DR_YU_Pos);RTC->DR ,= (uint32_t)((month / 10) << RTC_DR_MT_Pos);RTC->DR ,= (uint32_t)((month % 10) << RTC_DR_MU_Pos);RTC->DR ,= (uint32_t)((day / 10) << RTC_DR_DT_Pos);RTC->DR ,= (uint32_t)((day % 10) << RTC_DR_DU_Pos);3.开启RTC时钟写保护功能。
STM32学习笔记系统时钟和SysTick定时器
STM32学习笔记(3):系统时钟和SysTick定时器1.STM32的时钟系统在STM32中,一共有5个时钟源,分别是HSI、HSE、LSI、LSE、PLL(1)HSI是高速内部时钟,RC振荡器,频率为8MHz;(2)HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围是4MHz – 16MHz;(3)LSI是低速内部时钟,RC振荡器,频率为40KHz;(4)LSE是低速外部时钟,接频率为32.768KHz的石英晶体;(5)PLL为锁相环倍频输出,严格的来说并不算一个独立的时钟源,PLL 的输入可以接HSI/2、HSE或者HSE/2。
倍频可选择为2 – 16倍,但是其输出频率最大不得超过72MHz。
其中,40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。
另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。
该时钟源只能从PLL端获取,可以选择为1.5分频或者1分频,也就是,当需使用到USB模块时,PLL必须使能,并且时钟配置为48MHz 或72MHz。
另外STM32还可以选择一个时钟信号输出到MCO脚(PA.8)上,可以选择为PLL输出的2分频、HSI、HSE或者系统时钟。
系统时钟SYSCLK,它是提供STM32中绝大部分部件工作的时钟源。
系统时钟可以选择为PLL输出、HSI、HSE。
系系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各个模块使用,AHB分频器可以选择1、2、4、8、16、64、128、256、512分频,其分频器输出的时钟送给5大模块使用:(1)送给AHB总线、内核、内存和DMA使用的HCLK时钟;(2)通过8分频后送给Cortex的系统定时器时钟;(3)直接送给Cortex的空闲运行时钟FCLK;(4)送给APB1分频器。
STM32F0系列寄存器操作02RCC时钟配置
STM32F0系列寄存器操作02RCC时钟配置RCC(Reset and Clock Control)模块是STM32F0系列微控制器中的一个重要模块,用于配置系统时钟。
在这里,我们将详细介绍如何通过寄存器操作来配置RCC模块。
RCC模块的寄存器位于设备的的地址空间中,通过写入特定的值来配置和控制系统时钟。
以下是与RCC模块相关的一些重要寄存器:1. RCC_CR(RCC Control Register):用于配置内部和外部时钟、使能外部时钟和使能内部时钟等。
2. RCC_CFGR(RCC Configuration Register):用于配置系统时钟源、时钟分频等。
3. RCC_AHBENR(RCC AHB Peripheral Clock Enable Register):用于使能或禁用AHB总线上的外设时钟。
4. RCC_APBENR(RCC APB Peripheral Clock Enable Register):用于使能或禁用APB总线上的外设时钟。
根据需求,我们可以按照以下步骤配置RCC模块:1.确定系统时钟源:使用RCC_CFGR寄存器来选择主时钟源,可以从内部时钟(HSI或HSI48)、外部时钟(HSE或HSE32)或PLL时钟中选择。
2.配置时钟分频:使用RCC_CFGR寄存器来设置HCLK、PCLK1和PCLK2的分频系数,以确定这些时钟频率。
3.使能外设时钟:使用RCC_AHBENR和RCC_APBENR寄存器来使能或禁用需要使用的外设时钟。
下面是一个示例代码,用于配置STM32F0系列微控制器的RCC模块:```c#include "stm32f0xx.h"void RCC_Config(void)//使能外部时钟RCC->CR,=RCC_CR_HSEON;//等待外部时钟稳定while(!(RCC->CR & RCC_CR_HSERDY));//配置PLL时钟RCC->CFGR,=RCC_CFGR_PLLSRC_HSE_PREDIV;RCC->CFGR,=RCC_CFGR_PLLMUL6;//使能PLL时钟RCC->CR,=RCC_CR_PLLON;//等待PLL时钟稳定while(!(RCC->CR & RCC_CR_PLLRDY));//配置系统时钟源为PLL时钟RCC->CFGR,=RCC_CFGR_SW_PLL;//等待系统时钟源切换完成while((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL);//配置时钟分频RCC->CFGR,=RCC_CFGR_HPRE_DIV1;//AHB时钟不分频RCC->CFGR,=RCC_CFGR_PPRE_DIV2;//APB1时钟分频为2//使能外设时钟RCC->AHBENR,=RCC_AHBENR_GPIOAEN;RCC->APBENR,=RCC_APBENR_TIM2EN;```在这个示例中,首先使能外部时钟(HSE)并等待其稳定,然后配置PLL时钟和分频系数。
STM32全部时钟概述
STM32时钟概述:
HSE:high speed external clock signal,高速外部时钟,最常用8M无源晶振,可以2分频或不分频,一般不分频,为8M。
HS I:high speed internal clock signal,高速内部时钟,8M,有温漂。
PLL时钟源:来源于HSE或者HSI/2,一般选HSE为时钟源。
PLLCLK时钟:通过设置PLL的倍频因子,对PLL时钟源进行倍频,倍频因子为:2-16。
一般设为9,则PLLCLK为72M。
(72M为官方推荐的稳定时钟源)。
SYSCLK:系统时钟,可来源于HSE、HSI、PLLCLK,一般设置SYSCLK=PLLCLK=72Mhz。
HCLK:AHB总线时钟(也有的说APB总线时钟),可分频,一般不分频,即HCLK=SYSCLK=72M。
PCLK2:APB2总线时钟,由HCLK经过APB2预分频器得到,一般1分频,PCLK2=HCLK=72M。
PCLK1:APB1总线时钟,由HCLK经过APB1预分频器得到,一般2分频,PCLK1=HCLK/2=36M。
RTC时钟:来源于HSE/128、LSE、LSI(一般40KHZ),独立的看门狗时钟由LSI提供。
MCO时钟输出:由PA8复用所得,可以对外提供时钟,可以检查所配置好的时钟(结合示波器使用),可来源于PLLCLK/2 SYSCLK HSE HSI。
STM32时钟配置方法详解
STM32时钟配置方法详解STM32是意法半导体(STMicroelectronics)公司推出的一系列32位Flash微控制器,被广泛应用于各种嵌入式系统中。
时钟是STM32微控制器的核心部分,正确配置时钟可以确保系统正常工作并达到预期的性能。
本文将详细介绍STM32时钟配置的方法。
1.时钟源:STM32微控制器提供了多个时钟源,包括内部时钟(HSI、LSI)和外部时钟(HSE、LSE)。
其中,HSI(高速内部时钟)是一个高频率(通常为8MHz)的内部RC振荡器,适用于低功耗应用;LSI(低速内部时钟)是一个低频率(通常为40kHz)的内部RC振荡器,用于RTC(实时时钟)模块;HSE(高速外部时钟)是一个外接的高频晶振,用于提供更精确的时钟信号;LSE(低速外部时钟)是一个外接的低频晶振,适用于RTC模块。
2.主频和系统时钟:主频是指CPU的时钟频率,系统时钟是指STM32微控制器的总线时钟,包括AHB(高性能总线)、APB1(低速外设总线)和APB2(高速外设总线)。
在进行STM32时钟配置之前,需要按照以下几个步骤来完成。
1.启用对应的时钟源:根据具体需求,选择合适的时钟源并启用相应的时钟。
可以通过设置RCC_CR寄存器和RCC_APB1ENR/RCC_APB2ENR寄存器来实现。
例如,要使用HSE作为时钟源,需要首先启用HSE时钟。
2.配置时钟分频器:为了使系统时钟不超过芯片规格要求的最大频率,需要对时钟进行分频。
分频器有两个,即AHB分频器和APB分频器。
可以通过设置RCC_CFGR寄存器来实现。
例如,将AHB分频器设置为8,将APB1和APB2分频器分别设置为4,可以将主频分别分频为8MHz、32MHz和64MHz。
3.等待时钟稳定:当启用外部时钟源时,需要等待时钟稳定。
可以通过读取RCC_CR寄存器的特定标志位来判断时钟是否稳定。
4. 配置Flash存储器的延时:根据主频的不同,需要设置Flash存储器的访问延时,以确保正常读写数据。
stm32几种时钟控制介绍,含原理图
stm32几种时钟控制介绍,含原理图本文提到的有以下内容:• 时钟系统与总线矩阵• SysTick系统定时器• RTC实时时钟• 看门狗定时器• 通用定时器一、时钟系统与总线矩阵stm32F4的时钟树如下图所示:在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
HSI是高速内部时钟,RC振荡器,频率为8MHz。
HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
LSI是低速内部时钟,RC振荡器,频率为40kHz。
LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。
倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
我们在学习51单片机的时候,其内部是没有晶振的,而stm32是有的。
stm32可以通过RCC(时钟控制寄存器)对时钟进行参数配置以及使能。
我们还可以通过修改system_stm32f4xx.c文件,来配置上述时钟树上的一些分频、倍频参数,得到理想的频率。
在单片机系统中,CPU和总线以及外设的时钟设置是非常重要的,因为没有时钟就没有时序,组合电路需要好好理解清楚。
我们先来看一下总线矩阵。
片上总线标准种类繁多,而由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。
AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。
二者分别适用于高速与相对低速设备的连接。
一般性的时钟设置需要先考虑系统时钟的来源,是内部RC还是外部晶振还是外部的振荡器,是否需要PLL。
然后考虑内部总线和外部总线,最后考虑外设的时钟信号。
遵从先倍频作为CPU时钟,然后在由内向外分频,下级迁就上级的原则。
stm32 时钟频率函数
STM32 的时钟频率可以通过不同的函数进行配置和控制。
以下是一些常用的函数和宏定义,用于配置和获取STM32 的时钟频率:1. `void SystemClock_Config(void);`这个函数用于配置系统时钟频率。
它可以根据不同的参数设置HSI、HSE、PLL 等,以获得所需的系统时钟频率。
2. `void SystemCoreClockUpdate(void);`这个函数用于更新系统核心时钟频率。
它通过调用`SystemClock_Config()` 函数重新配置系统时钟,以确保系统核心时钟频率的正确性。
3. `uint32_t SystemCoreClock;`这个全局变量存储当前的系统核心时钟频率。
通过调用`SystemCoreClockUpdate()` 函数可以更新该变量的值。
4. `#define HSI_V ALUE (8000000UL)`这个宏定义用于设置HSI(High Speed Internal)的频率值。
可以根据需要进行调整。
5. `#define HSE_V ALUE (8000000UL)`这个宏定义用于设置HSE(High Speed External)的频率值。
可以根据需要进行调整。
6. `#define PLL_M (8)`这个宏定义用于设置PLL(Phase-Locked Loop)的分频因子。
可以根据需要进行调整。
7. `#define PLL_N (336)`这个宏定义用于设置PLL 的倍频因子。
可以根据需要进行调整。
8. `#define PLL_P (2)`这个宏定义用于设置PLL 的分频因子。
可以根据需要进行调整。
9. `#define PLL_Q (7)`这个宏定义用于设置PLL 的分频因子。
可以根据需要进行调整。
使用这些函数和宏定义,您可以方便地配置和控制STM32 的时钟频率,以满足您的应用需求。
STM32时钟配置方法详解
STM32时钟配置方法详解时钟树是STM32微控制器中一系列时钟源和时钟分频器的组成部分。
时钟树包括系统时钟、外设时钟和内核时钟。
系统时钟用于驱动整个微控制器系统的核心,外设时钟用于驱动各种外设,内核时钟用于驱动CPU的运算。
在进行时钟配置之前,首先需要了解系统所需的时钟频率。
在STM32中,系统时钟可以通过多种方式进行配置,例如使用外部晶体、外部时钟、内部RC振荡器或者PLL(锁相环)等方式。
外部晶体是一种常用的时钟源,可以提供高精度的时钟频率。
在使用外部晶体时,首先需要设置PLL的时钟源为外部晶体,并设置PLL输入除频器的分频系数。
然后,再根据系统所需的时钟频率,设置PLL的倍频系数,以得到最终的系统时钟频率。
外部时钟是从外部提供的时钟信号,一般用于测试和调试。
使用外部时钟时,需要设置PLL的时钟源为外部时钟,并设置PLL的倍频系数,以得到所需的系统时钟频率。
内部RC振荡器是一种低成本的时钟源,但是其频率不如外部晶体稳定和精确。
在使用内部RC振荡器时,需要设置PLL的时钟源为内部RC振荡器,并设置PLL的倍频系数,以得到所需的系统时钟频率。
PLL是一种用于产生稳定高频时钟的电路,可以从一个低频时钟源产生一个高频时钟源。
使用PLL时,需要设置其输入时钟源和倍频系数。
系统时钟的分频系数可以通过RCC_CFGR寄存器进行设置。
RCC_CFGR寄存器的各个位域用于配置系统时钟的分频系数,包括分频因子、APB1的分频系数、APB2的分频系数等。
外设时钟是用于驱动外设的时钟,可以由系统时钟分频得到。
外设时钟的分频系数可以通过RCC_CFGR寄存器及各个外设的控制寄存器进行设置。
内核时钟是用于驱动CPU的运算的时钟。
在STM32微控制器中,CPU 时钟可以由系统时钟分频得到,分频系数可以通过RCC_CFGR寄存器和FLASH_ACR寄存器进行设置。
除了上述方法之外,STM32还可以使用时钟配置工具进行时钟配置。
stm32的时钟电路的工作原理
STM32的时钟电路工作原理
一、时钟源
STM32的时钟源主要来自于内部振荡器(HSI)和外部晶振(HSE)。
HSI是高速内部振荡器,可以提供一个高精度的时钟信号,但是它的频率受到MCU内部结构的影响,通常不太稳定。
而HSE是高速外部振荡器,由一个外部晶振提供时钟信号,其频率稳定且精度高。
二、时钟分频
STM32的时钟分频器可以将时钟源的频率降低到MCU可以接受的频率。
分频器可以配置为不同的分频值,从而得到不同的时钟频率。
例如,如果HSE的频率为8MHz,经过8分频后,可以得到1MHz 的时钟频率。
三、时钟监控系统
STM32的时钟监控系统可以监控MCU的时钟系统状态。
如果系统检测到内部振荡器或外部晶振停止工作,监控系统会立即重启或切换到其他可用源。
这可以保证MCU在时钟源出现故障时仍然能够正
常工作。
四、RTC(实时时钟)
RTC是STM32中一个重要的功能模块,它使用一个独立的低速内部振荡器(LSI)作为时钟源,以确保时间的准确性和稳定性。
RTC 可以提供秒、分、时、日、周、月、年的时间信息,并且具有闰年补偿功能。
此外,RTC还可以提供一个可编程的闹钟功能,用于定时唤醒MCU。
总结起来,STM32的时钟电路由多个部分组成,包括时钟源、时钟分频、时钟监控系统和RTC。
这些部分协同工作,确保MCU具有准确和稳定的时钟信号,并能够正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4 系统时钟实验
上一章,我们介绍了STM32 内部系统滴答定时器,该滴答定时器产生的延时非常精确。
在本章中,我们将自定义RCC系统时钟,通过改变其倍频与分频实现延时时间变化,实现LED灯闪烁效果。
通过本章的学习,你将了解 RCC系统时钟的使用。
本章分为以下学习目标:
1、了解 STM32 的系统构架。
2、了解 STM32 的时钟构架。
3、了解 RCC 时钟的操作步骤。
1.1 STM32 的系统构架
STM32 的时钟比较复杂,它可以选择多种时钟源,也可以选择不一样的时钟频率,而且在系统总线上面,每条系统的时钟选择都是有差异的。
所以想要清楚的了解 STM32 的时钟分配,我们先来了解一下 STM32 的系统构架是什么样的。
从上图我们知道,RCC 时钟输出时钟出来,然后经过 AHB 系统总线,分别
分配给其他外设时钟,而不一样的外设,是先挂在不一样的桥上的。
比如: ADC1、ADC2、 SPI1、GPIO 等都是挂在 APB2 上面,而有些是挂在 APB1上面,所以,虽然它们都是从 RCC 获取的时钟,但是它们的频率有时候是不一样的。
1.2 STM32 的时钟树
STM32 单片机上电之后,系统默认是用的时钟是单片机内部的高速晶振时钟,而这个晶振容易受到温度的影响,所以晶振跳动的时候不是有一定的影响,所以一般开发使用的时候都是使用外部晶振,而且单片机刚启动的时候,它的时钟频率是 8MHZ,而 STM32 时钟的最高频率是 72MHZ,所以单片机一般开机之后运行的程序是切换时钟来源,并设置时钟频率。
大家可能有点疑惑,在第一章到第三章之中,我们并没有看到单片机开机之后设置时钟来源和时钟频率的。
其实在使用库函数的时候,其实在库函数启动文件里面,是帮助我们把时钟频率设置到 72MHZ 了。
大家可以打开一个库函数工程,在 system_stm32f10x.c 的第 106行,它定义了一个 SYSCLK_FREQ_72MHz:
#if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)
/* #define SYSCLK_FREQ_HSE HSE_VALUE */
#define SYSCLK_FREQ_24MHz 24000000
#else
#define SYSCLK_FREQ_72MHz 72000000
然后在下面的程序中,根据这个 SYSCLK_FREQ_72MHz 定义,它默认设置成
72MHZ。
接下来我们来看一下具体的 RCC 时钟树:
从上图我们可以知道,STM32 的时钟一共有可以有 4 个晶振源:
1) 内部自带的高速时钟:HIS。
单片机启动之后默认使用的时钟来源。
2) 外部高速时钟:HSE。
大多数时钟时钟的是 8MHZ 的晶振。
3) 外部低速时钟:LSE。
主要用来给单片机内部的 RTC 提供时钟。
4) 内部的低速时钟:LSI。
主要用来给单片机内部的 RTC 和看门狗提供时钟。
而 STM32 的系统时钟源,有 3 个时钟来源:
1) 直接来自内部的高速时钟 HIS。
2) 直接来自外部的高速时钟 HSE。
3) 将 HIS 或者 HSE 进行处理,倍频之后的 PLL 时钟。
注意:从图上,大家可以看到很多外设时钟都有一个外设时钟使能,以当我们使用相应的外设的时候,注意要将时钟使能打开。
因为在单片机启动之后,为了降低单片机的功耗,这些外设时钟使能是默认关闭的。
1.3 STM32 设置 RCC 时钟的步骤
以设置外部高速时钟作为 PLL 输入,然后用 PLL 作为时钟源为例子,具体操作步骤如下:
1) 复位 RCC 时钟。
2) 打开 HSE 外部高速时钟。
3) 检测 HSE 外部高速时钟是否开启成功。
4) 设置 FLASH 的读写。
(这个是用来支持程序对 FLASH 的读写的,必须设置。
)
5) 设置 AHB 总线的分频,还有 APB1 和 APB2 的分频。
注意,AHB 和 APB2 最大频率是 72MHZ,APB1 的最大频率是才 36MHZ。
6) 设置 HSE 外部高速时钟作为 PLL 时钟的时钟输入(注意 HSE 外部高速时钟作为 PLL 时钟输入时,可以直接输入,也可以作二分频之后再输入,要选择输入的方式。
)
7) 设置 PLL 时钟的倍频的倍数。
8) 打开 PLL 时钟的使能。
9) 等待 PLL 时钟开启成功。
10) 将系统时钟源设置为 PLL 时钟。
11) 等待时钟源切换成功。
1.4 V3.5 库函数介绍
1、RCC_DeInit()函数
复位函数是将RCC 时钟复位为内部高速时钟作为输入,让我们能够进行时钟设置操作。
2、RCC_HSEConfig()函数
这个函数是设置HSE 外部高速时钟的函数,可以开启、关闭、和旁路。
3、RCC_WaitForHSEStartUp()函数
4、RCC_HCLKConfig()函数
5、RCC_PCLK2Config()函数
6、RCC_PCLK1Config()函数
7、RCC_PLLConfig()函数
8、RCC_PLLCmd()函数
9、RCC_GetFlagStatus()函数
这个函数可以用来获取各种状态标志,以检测设置是否成功。
10、RCC_SYSCLKConfig()函数
11、RCC_GetSYSCLKSource()函数
1.5 RCC 时钟例程程序
1)主函数
/**************************************************************************** * Function Name : main
* Description : Main program.
* Input : None
* Output : None
* Return : None
****************************************************************************/ int main()
{
LED_Init(); //LED端口初始化
RCC_HSE_Configuration();// 自定义系统时间,通过修改里面的倍频及分频即可
while(1)
{
GPIO_SetBits(GPIOC,LED);
delay_ms(500);//精确延时为0.5s
GPIO_ResetBits(GPIOC,LED);
delay_ms(500);//精确延时为0.5s
}
}
程序下载到板子上面之后的程序效果是: LED闪烁时间本来延时是500ms,由于RCC系统时钟频率改变,使得LED闪烁时间变为1秒。
2)RCC 时钟设置函数
/****************************************************************************** *
* 函数名: RCC_HSE_Configuration
* 函数功能: 自定义系统时钟,可以通过修改PLL时钟源和倍频系数实现时钟调整
* 输入: 无
* 输出: 无
******************************************************************************* /
void RCC_HSE_Configuration() //自定义系统时间(可以修改时钟)
{
RCC_DeInit(); //将外设RCC寄存器重设为缺省值
RCC_HSEConfig(RCC_HSE_ON);//设置外部高速晶振(HSE)
if(RCC_WaitForHSEStartUp()==SUCCESS) //等待HSE起振
{
RCC_HCLKConfig(RCC_SYSCLK_Div1);//设置AHB时钟(HCLK)
RCC_PCLK1Config(RCC_HCLK_Div2);//设置低速AHB时钟(PCLK1)
RCC_PCLK2Config(RCC_HCLK_Div1);//设置高速AHB时钟(PCLK2)
RCC_PLLConfig(RCC_PLLSource_HSE_Div2,RCC_PLLMul_9);//设置PLL时钟源及倍频系数
RCC_PLLCmd(ENABLE); //使能或者失能PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)==RESET);//检查指定的RCC标志位设置与否,PLL就绪
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);//设置系统时钟(SYSCLK)
while(RCC_GetSYSCLKSource()!=0x08);//返回用作系统时钟的时钟源,0x08:PLL作为系统时钟
}
这个函数的作用是:设置单片机的时钟来源为 HSE 外部高速时钟,并根据输入频率参数设置相应的频率。
要注意的是设置的输入频率参数一定要是 8 的倍数,并且是从 4 倍到 9 倍的频率数值。