控制轧制与控制冷却
控轧控冷工艺的发展及应用
![控轧控冷工艺的发展及应用](https://img.taocdn.com/s3/m/28764206ae45b307e87101f69e3143323968f514.png)
控轧控冷工艺的发展及应用摘要控轧控冷工艺是把钢坯加热到适宜的温度,轧制时控制变形量和变形温度及轧后按工艺要求来冷却钢材。
控轧主要用于轧制细晶粒结构钢,主要原理是在终轧后当钢板在轧机上运行至“再结晶”完成的温度时,选用合适水冷方式获得理想延展性和韧性。
关键词变形量变形温度再结晶1 前言1.1 控轧控冷就是控制轧制和控制冷却,也叫TMCP(热机械变形轧制)+ACC。
比较适合于低碳微合金钢,特别是Nb、V 、Ti复合的。
1.2 控制轧制:是在调整钢的化学成分的基础上,通过控制加热温度、开轧温度,轧制过程温度、变形制度等工艺参数,控制奥氏体状态和相变产物的组织状态,从而达到控制钢材组织性能的目的.1.3 控制冷却:是通过控制热轧钢材轧后的冷却条件来控制奥氏体组织状态、控制相变条件、控制碳化物析出行为、控制相变后钢的组织和性能。
1.4 TMCP:控制轧制和控制冷却技术结合起来,能够进一步提高钢材的强韧性和获得合理的综合性能,并能够降低合金元素含量和碳含量,降低生产成本。
通过控轧控冷生产工艺可以使钢板的抗拉强度和屈服强度平均提高约40~60MPa,在低温韧性、焊接性能、节能、降低碳当量、节省合金元素以及冷却均匀性、保持良好板形方面都有无可比拟的优越性。
2 发展历程2.1 控轧控冷工艺主要是用于生产板材的技术。
该技术的核心是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数,改善钢材的强度、韧性、焊接性能。
2.2 控制轧制工艺主要用于含有微量元素的低碳钢种,钢中常含有铌、钒、钛,其总量一般小于0.1%。
依据《塑性变形和轧制原理》控制轧制的内容是控制轧制参数,包括温度、变形量等,以控制再结晶过程,获得所要求的组织和性能。
根据塑性变形、再结晶和相变条件,控制轧制可分为三阶段,如下所述。
(1)在奥氏体再结晶区控制轧制:适用于轧制低碳优质钢普通碳素钢低合金高强度钢。
(2)在奥氏体未再结晶区控制轧制:适用于轧制含有微量合金元素的低碳钢,如含铌钛钒得低碳钢。
控轧控冷1
![控轧控冷1](https://img.taocdn.com/s3/m/22fa44d26aec0975f46527d3240c844768eaa051.png)
L0
拉伸性能
❖ 断面收缩率ψ: ❖ 断面收缩率ψ是评定材料塑性的主要指标。
AK A0 100%
A0
低碳钢的工程应力一工程应变曲线
true strain-stress line
2.0
Stress / MPa
1.5
Pm
Pb
1.0
0.5
0.0
0.0
0.5
1.0
1.5
2.0
载荷P压入被测材料表面,保持一定时间后卸除载荷,测出压 痕直径d,求出压痕面积F计算出平均应力值,以此为布氏硬度 值的计量指标,并用符号HB表示。
标注:D/P/T如120HB/10/3000/10,即表示此硬度值120 在D=10mm,P=3000kgf,T=10秒的条件下得到的。
简单标注:200~230HB
布氏硬度测定主要适用于各种未经淬火的钢、退火、
正火状态的钢;结构钢调质件;铸铁、有色金属、质地 轻软的轴承合金等原材料。
布氏硬度试验只可用来测定小于450HB的金属材料,
②洛氏硬度(HR)
基本原理—洛氏硬度属压入法洛氏硬度测定时需 要先后施加二次载荷(予载荷P1和主载荷P2)预 加载荷的目的是使压头与试样表面接触良好以保 证测量结果准确。洛氏硬度就是以主载荷引起的
对微量塑性变形的抗力
E /e
拉伸性能
❖ 抗拉强度b: ❖ 定义为试件断裂前所能承受的最大工程应力,
以前称为强度极限。取拉伸图上的最大载荷,即 对应于b点的载荷除以试件的原始截面积,即得抗 拉强度之值,记σ为b=b Pmax/A0
拉伸性能
延伸率: 材料的塑性常用延伸率表示。测定方法如下:拉伸
试验前测定试件的标距L0,拉伸断裂后测得标距为Lk, 然而按下式算出延伸率
控制轧制和控制冷却工艺讲义
![控制轧制和控制冷却工艺讲义](https://img.taocdn.com/s3/m/89b4f03030b765ce0508763231126edb6f1a76bf.png)
控制轧制和控制冷却工艺讲义控制轧制和冷却工艺讲义一、轧制工艺控制1. 轧制温度控制a. 在热轧过程中,轧机和钢坯之间的接触摩擦会产生高温,因此需要控制轧机温度,避免过热。
b. 实时监测轧机温度,根据温度变化调整轧制速度和冷却水量,确保温度适中。
c. 使用专用液体和冷却器进行在线冷却,防止轧机过热引起事故。
2. 轧制力控制a. 测量轧机产生的轧制力,确保轧机施加的压力适中。
b. 监控轧制力的变化,根据钢坯的变形情况调整轧制力,使钢坯的形状和尺寸满足要求。
c. 根据轧制力的大小调整轧制速度,保持稳定的轧制负荷。
3. 轧制速度控制a. 根据不同钢材的特性和规格,调整轧制速度,确保成品钢材的质量和尺寸满足要求。
b. 控制轧制速度的稳定性,避免过快或过慢的轧制速度导致钢材质量不达标。
4. 轧辊调整控制a. 定期检查和调整轧辊的位置和间距,确保钢坯能够顺利通过轧机,避免产生不均匀的轧制力和过度变形。
b. 根据车间实际情况和轧制工艺要求,调整轧辊的工作方式和参数,使轧制过程更加稳定和高效。
二、冷却工艺控制1. 冷却水量控制a. 根据钢材的材质和规格,调整冷却水的流量和压力,确保钢材迅速冷却到所需温度。
b. 监测冷却水流量和温度,根据实时数据调整冷却水量,确保冷却效果和成品钢材的质量。
2. 冷却速度控制a. 根据不同的冷却工艺要求,调整冷却速度,使钢材的组织和性能满足要求。
b. 监控冷却速度的变化,根据实时数据调整冷却速度,确保成品钢材的质量和性能稳定。
3. 冷却方法控制a. 根据钢材的特性和要求,选择合适的冷却方法,如水冷、风冷等。
b. 根据不同冷却方法的特点和效果,调整冷却工艺参数,使冷却效果和成品钢材的质量最优化。
4. 冷却设备维护a. 定期检查和维护冷却设备,确保设备的正常运行和效果良好。
b. 清洗和更换冷却设备中的阻塞、损坏部件,保证冷却水的流量和质量。
以上是对控制轧制和控制冷却工艺的讲义,通过合理的工艺控制和设备维护,能够提高轧制和冷却过程的效率和质量,满足钢材的要求。
控轧控冷1
![控轧控冷1](https://img.taocdn.com/s3/m/5fe981d249649b6648d7476b.png)
• 变形带也是提供相变时的形核地点,因而相变后的铁素体晶粒更 加细小均匀。
• 5 .4在(y+a)两相区的控轧 • Y相由于变形而继续伸长并在晶内形成变形带,在a晶粒内形成 大量的位错,在高温下形戎亚晶,因而强度有所提高,脆性转变 温度降低。(r+a)相轧后形成较强的织构,故在断口上平行于轧制 面出现层状撕裂裂口。
5控轧和控冷工艺在中厚板和带钢生 产中的应用
• 5. 1板钢控轧类型 • 根据轧制过程中再结晶状态和相变机制不同可分为:奥氏体再结 晶型控轧、奥氏体未再结晶型控轧、(r+a)两相区控轧。 • 5. 2再结晶型控轧 • 轧件变形温度较高,一般在功1000℃以上,道次变形量必须大于 奥氏体再结晶变形量。普碳钢的临界变形量比较小,而含铌钢的 临界变形量较大。轧后停留时间长则晶粒长大,形成粗大的奥氏 体晶粒。再结晶控轧主要是利用静态再结晶过程去细化晶粒。 • 5. 3未再结晶型控轧 • 主要是在轧制中不发生奥氏体再结晶过程。一般是在950 C ~Ar3范围内变化,变形使奥氏体晶粒长大、压扁并在晶粒中形成 变形带。奥氏体晶粒被拉长将阻碍铁素体晶粒长大。随着变形量 的加大,变形带的数量增加,分布更加均匀。
•
4控轧和控冷技术的理论基础
• 4.1钢的奥氏体化过程 • 所谓奥氏体化是指在加工前将钢加热到奥氏体区,是形核、长大 均匀化过程。对亚共析钢来说,加热到Ac,以上,进行保温、形 核、长大、剩余渗碳体(Fe3C)溶解和奥氏体均匀化。对于共析钢 和过共析钢来说,加热到Ac,以上,使珠光体变为奥氏体。进一 步加热到Acm以上,保温足够时间,使铁素体或渗碳体溶解,获 得单相奥氏体。 • 4.2钢的变形再结晶 • 变形后的金属加热发生再结晶,根据温度不同有回复、再结晶和 晶粒长大。回复仍为拉长的晶粒,但储存能降低,为前阶段。而 再结晶是新晶粒的形核及长大过程,不是相变,无畸变能。核心 的产生一是原晶界的某部位变为核心。
线材生产中的控制轧制和控制冷却技术
![线材生产中的控制轧制和控制冷却技术](https://img.taocdn.com/s3/m/30c88af22dc58bd63186bceb19e8b8f67c1cef88.png)
线材生产中的控制轧制和控制冷却技术线材是现代工业生产中使用频繁的一种材料,它广泛应用于电线电缆、机械制造、建筑材料等行业。
在线材生产过程中,控制轧制和控制冷却技术是关键的环节,它们直接影响着线材的质量、机械性能和用途范围。
一、控制轧制控制轧制是指通过改变轧制变形量、轧制温度、轧制速度、轧制力等因素,控制金属材料的形变和微观组织,达到调整线材力学性能、改善表面质量和优化产品用途的目的。
1、轧制变形量控制轧制变形量是指轧制前后的减压变化,它对线材的力学性能和表面质量有着直接影响。
为了保证线材的质量稳定和合格率,轧制变形量控制必须精准可靠,并考虑到批量变化和轧制型号的特定要求。
目前,国内外的轧制变形量控制采用电液伺服技术,通过实时监测轧制变形量变化,及时控制系统参数的变化,保证线材轧制变形量的稳定。
2、轧制温度控制轧制温度是指线材在轧制时的温度,它对线材的力学性能和表面质量有着重大影响。
过高或过低的温度会导致线材的晶粒过大或过小,从而影响线材的硬度、韧性和塑性等力学性能。
为了提高线材的机械性能和用途范围,轧制温度控制必须准确可靠,并考虑到金属材料的温度敏感性和轧制工艺的特定要求。
目前,国内外的轧制温度控制采用激光测温技术或红外线测温技术,通过实时监测线材温度变化,及时调整轧制温度,保证线材轧制温度的稳定。
3、轧制速度控制轧制速度是指线材在轧制过程中的速度,它对线材的表面质量和机械性能有着直接影响。
过高或过低的轧制速度会导致线材表面的纹路不均匀和线材的硬度、韧性等力学性能下降。
为了提高线材的表面质量和机械性能,轧制速度控制必须准确可靠,并考虑到轧制型号的特定要求。
目前,国内外的轧制速度控制采用伺服电机技术或电磁流体技术,通过实时监测线材的速度变化,及时调整轧制速度,保证线材轧制速度的稳定。
二、控制冷却控制冷却是指针对金属材料在热加工过程中产生的内应力、变形、晶粒长大等现象,通过采用不同的冷却方式和工艺参数,调整金属材料的组织和性能。
钢材控制轧制和控制冷却
![钢材控制轧制和控制冷却](https://img.taocdn.com/s3/m/2689a695bdeb19e8b8f67c1cfad6195f312be822.png)
钢材控制轧制和控制冷却(一)姓名:蔡翔班级:材控12学号:钢材控制轧制和控制冷却:控轧控冷是对热轧钢材进行组织性能控制的技术手段,目前已经广泛应用于热轧带钢、中厚板、型钢、棒线材和钢管等钢材生产的各个领域。
控轧控冷技术能够通过袭警抢话、相变强化等方式,使钢材的强度韧度得以提高。
Abstract: controlled rolling is controlled cooling of hot rolled steel organization performance control technology, has been widely used in the hot rolled strip steel, plate, steel, wire rod and steel pipe and other steel products production fields.Controlled rolling technology of controlled cooling can pass over assaulting a police officer, phase transformation strengthening and so on, to improve the strength of the steel toughness.关键词:宽厚板厂,控制轧制,控制冷却1.引言:控轧控冷技术的发展历史:20世纪之前,人们对金属显微组织已经有了一些早期研究和正确认识,已经观察到钢中的铁素体、渗碳体、珠光体、马氏体等组织。
20世纪代起开始有学者研究轧制温度和变形对材料组织性能的影响,这是人们对钢材组织性能控制的最初尝试,当时人们不仅已经能够使用金相显微镜来观察钢的组织形貌,而且还通过X射线衍射技术的使用加深了对金属微观组织结构的认识。
1980年OLAC层流层装置投产,控轧控冷在板带、棒线材等大面积应用,技术已成熟,理论进展发展迅速。
钢铁的控轧控冷工艺(TMCP)介绍
![钢铁的控轧控冷工艺(TMCP)介绍](https://img.taocdn.com/s3/m/4ffaa50aae45b307e87101f69e3143323968f5ef.png)
4.控制轧制的效应
(1)使钢材的强度和低温韧性有较大幅度的改善
控制轧制对细化晶粒有明显的作用,按常规轧制工艺, 铁素体晶粒最好的情况为7~8级,晶粒直径>20m,而 按控制轧制工艺,铁素体晶粒可达12级,其直径可为 5m。仅从这方面就可使钢材的强韧性能得到明显的改 善。
(2)可以充分发挥微量合金元素的作用
5.控制冷却的介绍
➢ 控制冷却存在的主要问题是高冷却速率下材料冷 却不均而发生较大残余应力、甚至翘曲的问题。 例如,作为控制冷却的极限结果,直接淬火的作 用早已为人们所认识。但是,其潜在的能力一直 未得到发挥,原因在于直接淬火条件下冷却均匀 性的问题一直没有得到解决,板形控制一直因扰 着人们。
5.控制冷却的介绍
对于控制冷却,有两个通俗说法:
(1)水是最廉价的合金元素 (可以用水替代合金元素来改变钢材的性能)
控制冷却的理念可以归纳为“水是最廉价的合金元素” 这样一句话。
(2)中国的多数(中板)轧机是世界上最干旱的轧机 (目前我们还没有充分利用好水的作用) -川崎水岛:12000 m3/h,迪林根:14000 m3/h -宝钢2050:14000 m3/h,1580: 13000 m3/h
钢铁的控轧控冷 工艺介绍
知识求索人
目录
1. 何为控轧控冷工艺? 2. 控轧控冷工艺的优势和应用 3. 控制轧制的类型 4. 控制轧制的效应 5. 控制冷却介绍
1.何为控轧控冷工艺?
➢ 控轧控冷工艺,又称TMCP(Thermo Mechanical Control Process:热机械控制工艺),是将控制轧制和控制冷却 技术结合起来的工艺,该工艺能够进一步提高钢材的强 韧性和获得合理的综合性能,并能够降低合金元素含量 和碳含量,节约贵重的合金元素,降低生产成本。TMCP 是20世纪钢铁业最伟大的成就之一!
控制轧制与控制冷却要点
![控制轧制与控制冷却要点](https://img.taocdn.com/s3/m/e43275b176eeaeaad0f33034.png)
我国控轧控冷技术概况
❖ 我国控制控冷起步于60年代初,并取得了 初步成果,例如对含有Cr、Ni、V的超高 强度钢德形变热处理工艺研究,轴承钢轧 后快冷工艺研究等;
❖ 1978年开始对控制控冷进行系统研究; ❖ 武钢、鞍钢、重钢、太钢等钢铁企业采用
控制控冷技术生产高强度、高韧性的造船、 锅炉及压力容器用各种钢材,开发了新钢 种,填补了国内钢材的部分空白。
控制轧制和控制冷却要点
控制轧制和控制冷却概念
❖ 控制冷却(Controlled Cooling):控 制轧制后钢材的冷却速度达到改善钢材组 织和性能的目的。 控制轧制和控制冷却相结合能将热轧钢 材的两种强化效果相加,进一步提高钢材 的强韧性和获得合理的综合力学性能。 目前,控制轧制和控制冷却工艺已应用 到中、高碳钢和合金钢的轧制生产中,取 得了明显的经济效果。
❖ 钢铁冶金学报
控制轧制和控制冷却要点
控制轧制和控制冷却概念
❖ 控制轧制(Controlled Rolling):在热 轧过程中通过对金属加热制度、变形制度和 温度制度的合理控制,使塑性变形与固态相 变结合,以获得细小晶粒组织,使钢材具有 优异的综合力学性能的轧制新工艺。
对低碳钢和低合金钢来说,采用控制轧制 工艺主要通过控制工艺参数,细化变形γ晶 粒,经过γ向α和P的相变,形成细化的α和 较为细小的P球团,从而达到提高钢的强度、 韧性和焊接性能的目的。
❖ 第二篇:控制轧制及控制冷却技术的应用
➢ 控制轧制及控制冷却技术在钢板生产中的应用 ➢ 控制轧制及控制冷却技术在型钢生产中的应用 ➢ 控制轧制及控制冷却技术在钢管生产中的应用
控制轧制和控制冷却要点
教学安排
❖ 教学:本课程2学分,总课时为32学时,每 周2学时,1-16周上课。
控轧与控冷
![控轧与控冷](https://img.taocdn.com/s3/m/a22a4f3f580216fc700afdb4.png)
控轧与控冷一:名词解释控制轧制:是指在热轧过程中通加热制度,变形制度,温度制度的合理控制,使钢材具有优异综合理学性能的轧制新工艺。
控制冷却:是指控制轧后钢材的冷却速度达到改善组织和性能的目的。
金属强化:通过合金化,塑性变形,和热处理等手段提高金属材料的强度。
韧性:材料在断裂前在塑性变形和裂纹扩展时吸收能量的能力。
铁素体:铁或其内固溶体有一种或数种其他元素形成的体心立方固溶体。
奥氏体:γ铁内固溶有碳和其他元素的面立方固溶体。
贝氏体:钢在奥氏体化后被过冷到珠光体转变温度一下,马氏体转变温度以上这一中间温度区间,转变而成的有铁素体及其内分布着弥散的碳化物形成的亚稳定结构。
IF钢:又称无间隙,由于C,N含量低,在加入一定量TI,Nb使钢背固定成碳化物,氮化物或者碳氮化物,从而使钢无间隙存在。
不锈钢:在腐蚀介质中有良好的耐腐蚀性的钢。
双相钢:由马氏体或奥氏体基本两相组织构成的钢。
再结晶:经冷塑性变形的金属超过一定加热温度时,通过形核长大形成等轴晶粒无畸变新晶粒过程。
在线常化:在热轧无缝钢生产中,在轧管延伸工序后,将钢管按常化处理要求冷却到某一温度后,再进行加热炉生产,然后进行减轻轧制,按照一定冷却速度冷却至常温。
1·控制轧制与普通轧制的区别答:可以充分发挥微量元素的作用起沉淀强化,细化晶粒的作用;提高钢的强度的同时题干钢的韧性;降低了终轧温度,采用较低的卷曲温度,课消除或减少板卷头部,中部和尾部的强度差;采用低温大压下细化低碳钢的铁素体晶粒,提高强韧性。
2·控制冷却的目的答:节约冷床面积;防止或减轻转型材的翘曲和弯曲;降低残余应力;提高型材的力学性能及改善组织状态,简化生产工艺。
3·影响材料强韧性的因素答:化学成分;气体夹杂物;晶粒尺寸;沉淀析出;形变;相变组织等的影响。
其中气体夹杂物对韧性有害,晶粒越小,材料韧性越好。
4·提高材料强韧性的措施答:晶粒细化;冶炼:采用真空搅拌,减少有害成分;控扎:使形变强化,提高材料强韧性;热处理:阻止晶粒长大,使晶粒细化,提高强韧性。
控轧控冷
![控轧控冷](https://img.taocdn.com/s3/m/d56c42c85fbfc77da269b197.png)
第一篇 控制轧制及 控制冷却理论
§1 钢的强化和韧化
— 钢的强化机制
金属材料的机械性能是指金属材料在外力(载荷)作用 时表现出来的性能。 包括强度、塑性、硬度、韧性及疲劳强度等。
§1.1钢的强化机制
对于钢材来说,在大多数情况下其力学性能是最重要的, 其中强度性能又居首位。
强度:金属材料抵抗塑性变形或断裂的能力,用给定 条件下所能承受的应力来表示。
S:形成硫化物,对韧性有害,解决办法:降低S含量或 者加入Zr和稀土元素以固定S,改善横行韧性。
3、压力加工工艺的控制 通过加工工艺控制晶粒度 材料理论韧性断裂强度 σc=(2Gγ/K)d-1/2 通过控制压力加工工艺可以控制晶粒的大小,改变 材料的韧性。 通过加工工艺控制晶体取向 钢在A+F或F区轧制后,F不发生再结晶,形成 {111}<110>织构,引起各向异性。 冷却工艺和材料的成分一起影响相变产物的种类、形貌、 数量等组织结构特征,从而影响材料的韧性。
3、影响因素 溶质与溶剂的原子半径差别 越大,强化效果越好; 有限固溶体中溶质元素溶解 量越大,强化效果越好; 溶质元素在溶剂中的饱和溶 解度越小,强化效果越好;
形成间隙固溶体的溶质元素 (C、N、B等)的强化效果 好于形成置换固溶体溶质元 素(如Mn、Si、P等)。
4、特点
提高合金的屈服强度、抗拉强度和硬度的同时,对其 它影响如下:
提高钢材韧性的途径
1、成分控制
合金元素加入基体(铁)中形成固溶体可强化合金,甚 至可析出第二相而强化合金,但同时合金元素含量的增 加也造成基体内缺陷的增加,降低材料的塑韧性。
V、Nb、Ti、Al、Zr等元素:能够细化晶粒,故既能提高 强度又能提高韧性; S、P:对韧性有害,尽量降低含量; C含量:C含量升高会增加钢中P的量,会降低钢的韧性, 故在钢种成分允许的范围内降低C含量; 钢中一般都含有二元以上的合金元素,合金组元之间有 交互作用,合金元素也可以通过不同途径影响断裂韧性, 故一般要具体分析,以使合金元素具有适当含量。
控轧控冷
![控轧控冷](https://img.taocdn.com/s3/m/a6630777a417866fb84a8e55.png)
绪论控轧、控冷的含义:控轧—控制钢的加热温度、速度,开、终轧温度,轧制变形率和变形速率,使塑性变形和动态相变相结合,又称形变热处理。
控冷—控制轧后冷却速度,使其通过相变得到所需的组织和晶粒度,以及第二相粒子的析出。
控轧、空冷相结合可提高钢的强度和韧性。
1. 控轧、控冷是挖掘钢的潜力,开发新产品的有利武器2. 控轧、控冷又叫形变热处理,不同于常规热处理,是形变和相变的有机结合,利用轧制余热在线热处理可节约能源,缩短工期,提高经济效益。
3. 是连铸连轧柔性生产系统的组成部分。
控轧控冷是一个系统工程,涉及钢的成份控制,纯净度控制,铸造组织控制,温度控制,变形控制,相变控制,必须系列优化综合考虑。
控轧、控冷的理论基础是传热学、塑性加工力学、塑性加工金属学、流体力学。
第一章钢的强化和韧性第一节钢的强化机制固溶强化、位错强化、沉淀强化、(晶界强化、亚晶强化)、细晶强化、相变强化钢的强化反映其内能的提高金属塑性变形机理是位错运动,位错运动阻力越大σs越高。
金属断裂是由于裂纹源的扩展,金属内部越致密,原子结合强度越高σb越高。
1、固溶强化铁和碳的相互作用表现为两方面:1、形成固溶体;2、形成化合物(1)固溶体:就是固体溶液,是溶质原子溶入溶剂中所形成的晶体,保持溶剂元素的晶体结构。
(2)固溶体的分类:置换固溶体和间隙固溶体晶格扭曲,内能增加,强度增加。
运动的位错和异质原子相互作用使强度提高。
(给位错移动增加点状障碍物)固溶强化的规律(1)溶质元素溶解量增加,固溶体的强度也增加例如:对于无限固溶体,当溶质原子浓度为50%时强度最大;而对于有限固溶体,其强度随溶质元素溶解量增加而增大(2)溶质元素在溶剂中的饱和溶解度愈小,其固溶强化效果愈好。
(3)形成间隙固溶体的溶质元素(如C、N、B等元素在Fe中)其强化作用大于形成置换固溶体(如Mn、Si、P等元素在Fe中)的溶质元素。
但对韧性、塑性的削弱也很显著,而置换式固溶强化却基本不削弱基体的韧性和塑性。
控制轧制、控制冷却工艺
![控制轧制、控制冷却工艺](https://img.taocdn.com/s3/m/0a17c90b2379168884868762caaedd3383c4b5b0.png)
控制轧制、控制冷却⼯艺控制轧制、控制冷却⼯艺技术1.1 控制轧制⼯艺控制轧制⼯艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按⼯艺要求来冷却钢材。
通常将控制轧制⼯艺分为三个阶段,如图 1.1所⽰[2]:(1>变形和奥⽒体再结晶同时进⾏阶段,即钢坯加热后粗⼤化了的γ呈现加⼯硬化状态,这种加⼯硬化了得奥⽒体具有促使铁素体相变形变形核作⽤,使相变后的α晶粒细⼩;(2> (γ+α>两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从⽽在α晶粒内形成亚晶,促使α晶粒的进⼀步细化。
图1.1控制轧制的三个阶段(1>—变形和奥⽒体再结晶同时进⾏阶段;(2>—低温奥⽒体变形不发⽣再结晶阶段;(3>—<γ+α)两相区变形阶段。
1.2 控制轧制⼯艺的优点和缺点控制轧制的优点如下:1.可以在提⾼钢材强度的同时提⾼钢材的低温韧性。
采⽤普通热轧⽣产⼯艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,-40℃的冲击韧性A k≤431J,断⼝为95%纤维状断⼝。
当钢中加⼊微量铌后,仍然采⽤普通热轧⼯艺⽣产时,当采⽤控制轧制⼯艺⽣产时,-40℃的A k值会降低到78J以下,然⽽采⽤控制轧制⼯艺⽣产时。
然⽽采⽤控制轧制⼯艺⽣产时-40℃的A k值可以达到728J以上。
在通常热轧⼯艺下⽣产的低碳钢α晶粒只达到7~8级,经过控制轧制⼯艺⽣产的低碳钢α晶粒可以达到12级以上<按ASTM标准),通过细化晶粒同时达到提⾼强度和低温韧性是控轧⼯艺的最⼤优点。
2.可以充分发挥铌、钒、钛等微量元素的作⽤。
在普通热轧⽣产中,钢中加⼊铌或钒后主要起沉淀强化作⽤,其结果使热轧钢材强度提⾼、韧性变差,因此不少钢材不得不进⾏正⽕处理后交货。
当采⽤控制轧制⼯艺⽣产时,铌将产⽣显著的晶粒细化和⼀定程度的沉淀强化,使轧后的钢材的强度和韧性都得到了很⼤提⾼,铌含量⾄万分之⼏就很有效,钢中加⼊的钒,因为具有⼀定程度的沉淀强化的同时还具有较弱的晶粒细化作⽤,因此在提⾼钢材强度的同时没有降低韧性的现象。
控制轧制与控制冷却
![控制轧制与控制冷却](https://img.taocdn.com/s3/m/6d31a7c789eb172ded63b719.png)
奥氏体晶粒的大小对钢材的力学性能有显著的 影响。一般用晶粒度表示晶粒的大小。因此, 影响。一般用晶粒度表示晶粒的大小。因此,测定奥 氏体的晶粒度通常作为鉴定钢材质量的指标之一。 氏体的晶粒度通常作为鉴定钢材质量的指标之一。
铁 碳 平 衡 相 图
二、钢的控制轧制
控制轧制是以钢的化学成分调整或添加微合 金元素Nb Nb、 Ti为基础 为基础, 金元素Nb、V、Ti为基础,在热轧过程中对钢 坯加热温度、 开轧温度、 变形量、 坯加热温度 、 开轧温度 、 变形量 、 终轧温度 等工艺参数实行合理控制, 等工艺参数实行合理控制 , 以细化奥氏体和 铁素体晶粒, 并通过沉淀强化、 铁素体晶粒 , 并通过沉淀强化 、 位错亚结构 强化充分发掘钢材内部潜力, 强化充分发掘钢材内部潜力 , 提高钢材力学 性能和使用性能。 性能和使用性能。
控轧控冷的物理冶金基础
轧后冷却速率对γ 轧后冷却速率对γ→α相变及其细化晶粒的 影响: 影响: 研究表明,提高轧后冷却速度能明显降低Ar 研究表明,提高轧后冷却速度能明显降低Ar3, 可抵消奥氏体晶粒细化及相变前形变给晶 粒细化带来的不利影响, 粒细化带来的不利影响,有力地增加了相 变细化晶粒作用。 变细化晶粒作用。这要求在控轧实践中对 冷却制度进行控制。 冷却制度进行控制。
控轧控冷的物理冶金基础
钢中溶质原子及第二相粒子: 钢中溶质原子及第二相粒子:在钢中适当添加 Nb、Ti等微合金元素 细化奥氏体晶粒. 等微合金元素, Nb、Ti等微合金元素,细化奥氏体晶粒. 这种利用高温形变再结晶与微合金元素溶解这种利用高温形变再结晶与微合金元素溶解析出的相互作用使晶粒充分细化的机制便是 控轧中控制奥氏体晶粒尺寸的主要的物理冶 金基础. 金基础.
控轧控冷的物理冶金基础
控制轧制与控制冷却概述
![控制轧制与控制冷却概述](https://img.taocdn.com/s3/m/12575a5987c24028905fc333.png)
在950℃以下的低温区轧制时,不仅整体力学性能比高温区轧制时高,而且道次变 形量对力学性能的影响比较显著,随变形量增加,屈服强度和冲击值都呈上升趋势, 轧制温度越低,上升的趋势越显著。
控制轧制和控制冷却概述
2.2 钢材热变形后的静态再结晶过程
静态再结晶的临界变形量
为了使再结晶能够充分进行, 则所给予的压下率必须大于对 应条件下静态再结晶的临界变 形量。该值随钢种和变形条件 的不同彼此相差很大。
度的差别,再结晶完成的时间略有差别。另外,还可以看
出,随待温冷却速度的变化,奥氏体平均晶粒尺寸无明显
变化,因为在再结晶过程中过冷度不是影响奥氏体晶粒大
小的主要因素,所以不能采用增加过冷度的方法细化再结
晶晶粒。
控制轧制和控制冷却概述
再结晶行为对组织性能的影响
屈 服 强 度 ,Mpa 横 向 冲 击 功 ,J
在板带轧制过程中,如能有效控制这些碳、氮化合物的析出行 为(数量、大小、形状和分布状态等),则可以充分发挥微合金 化元素对钢材施行细晶强化和析出强化的双重作用。铌、钒、钛 三种微合金元素对铁素体/珠光体钢晶粒细化、沉淀强化的影响 规律如下图所示。
控制轧制和控制冷却概述
铌、钒、钛对铁素体/珠光体钢脆性转变温度的影响
奥 氏 体 未 再 结 晶 区 变 形 温 度 对 CCT 曲 线 的影响 --900℃;-・-850℃;——
800℃
随奥氏体未再结晶区变形温度的降低, 整个曲线向上、向左方向移动
Q345钢低冷却速率范围内的动态CCT曲 线
由图可见,Q345钢的贝氏体形成温度 范围比较宽,应注意终了冷却温度的控 制
合理控制钢坯的在炉时间, 减少钢坯表面与芯部的温差。 加热温度对几种钢材奥氏体晶粒尺寸的影响
控制轧制和控制冷却
![控制轧制和控制冷却](https://img.taocdn.com/s3/m/adfbefb28bd63186bcebbcb3.png)
3. 轧制工艺参数的控制
(1)坯料的加热制度
坯料的最高加热温度的选择应考虑对原始奥氏体 晶粒大小、晶粒均匀程度、碳化物的溶解程度以及开轧 温度和终轧温度的要求。
对一般轧制,加热的最高温度不能超过奥氏体晶粒 急剧长大的温度,如轧制低碳中厚板一般不超过1250℃。 但对控轧Ⅰ型或Ⅱ型都应降低加热温度(Ⅰ型控轧比一般 轧制低100~300℃),尤其要避免高温保温时间过长,不 使变形前晶粒过份长大,为轧制前提供尽可能小的原始晶 粒,以便最终得到细小晶粒和防止出现魏氏组织。
中厚板生产过程的控制
三个阶段
• 第一阶段在20 世纪40-50 年代,为单机 自动化阶段;
• 第二阶段在20 世纪60 年代,为计算机和 单机自动控制系统共存阶段;
• 第三阶段为20 世纪70 年代至现在,为全 部采用计算机直接数字控制阶段。
中厚钢板组织性能控制
一、组织与性能的关系
结论:材料的性能是由材料的组织决定的。 金属材料的性能有哪些?
对于任何钢材 最基本的性能要求是强度。
二、控制轧制
1.概念:通过控制加热温度、轧制 温度、变形制度等工艺参数,控制奥氏体 的状态和相变产物的组织状态,从而达到 控制钢材组织性能的目的。
2.控制轧制工艺的类型
(1)奥氏体再结晶区的控制轧制(又称Ⅰ型 控制轧制)
特点:轧制全部在奥氏体再结晶区内进 行(950℃以上)。
方法:一般采用快速冷却。 一次冷却的目的:控制变形奥氏体的组 织状态,阻止晶粒长大或碳化物过早析出形成 网状碳化物,固定由于变形引起的位错,增加 变形奥氏体相变时的过冷度,为变形奥氏体向 铁素体或渗碳体和珠光体的转变做组织上的准
备。
(2)二次冷却
由奥氏体向铁素体或渗碳体析出的相变阶段 的控制。
钢材的控制轧制和控制冷却
![钢材的控制轧制和控制冷却](https://img.taocdn.com/s3/m/4ec6e013700abb68a882fbb1.png)
钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。
在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。
同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出.5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。
另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的.3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能.7、钢的强化机制主要包括(固溶强化)、(位错强化)、(沉淀强化)、(细晶强化)、(亚晶强化)、(相变强化)等,其中(绕过)机制既能使钢强化又使钢的韧性得到提高。
钢材控制轧制和控制冷却技术
![钢材控制轧制和控制冷却技术](https://img.taocdn.com/s3/m/1bacb4727ed5360cba1aa8114431b90d6c858941.png)
§2控轧控冷理论
(2)控轧时微量元素碳氮化物的析出
①、各阶段Nb(C,N)析出状态
1)出炉前Nb(C,N)质点状态。
2)出炉后冷却到轧制前Nb(C,N)析出状态,未变形A 体中Nb(C,N)析出很慢。
3)变形 A体中Nb(C,N)析出状态,变形使Nb的析出 加快(形变诱导析出),Nb(C,N)在900℃析出最快,孕 育期最短,低温轧制(未再结晶区)加速C和Nb扩散速度。Nb (C,N)析出在晶界处以及晶内和亚晶界上,颗粒细小,控 轧就是利用细小质点固定亚晶界而阻止A体晶粒再结晶达到细 化目的。
② 、 Nb、Ti 含 量 < 0 . 1 % , 提 高 钢 粗 化 温 度 到 1 0 5 0 ~ 1100℃。
V<0.1%时,A体在950℃开始粗化。 ③、钢中含Al,使A体粗化温度在900~950℃
§2控轧控冷理论
(2)抑制A体再结晶 ①、对动态再结晶临界变形量的 影响,显著阻滞形变A体动态 再结晶。 ②、对再结晶数量的影响 ③、对再结晶速度影响。 1)含Nb钢再结晶开始和完 成时间都比不含Nb钢推迟。 2)当Nb达到0.06%时,阻止 再结晶作用达到饱和。
变形条件对ar3的影响1加热温度原始a体晶粒度2轧制温度t2控轧控冷理论3变形量4冷却速度3ar3的变化对组织的影响单纯从相变后f体晶粒长大观点ar3低对获得细晶f体有利变形引起相变温度的变化较复杂1在再结晶区变形2在未再结晶区变形型控轧2控轧控冷理论3变形条件对ap转变的影响1变形使p体转变加速从而使钢的淬透性变坏
§2控轧控冷理论
③、第三阶段,在两相区内轧制(A r3—A r1间) 1)该区对未再结晶A体加工,还对F体加工。 2)产生织构 3)形变诱导析出物可使脆性转变温度降低 4)工艺对性能影响大
控制轧制于控制冷却
![控制轧制于控制冷却](https://img.taocdn.com/s3/m/0d1f77c4eefdc8d377ee322e.png)
1、控制轧制:在热轧过程中,通过对金属加热制度、变形制度和温度制度的合理控制,使热塑性形变与固态相变相结合,以获得细小的晶粒组织,使钢材具有优异的综合力学性能的轧制技术2、控制冷却:通过对控制轧后的钢材的冷却速度来改善钢材的组织性能.3、金属的强化:通过合金化,塑性变形和热处理等手段来提高金属的强度。
4、固溶强化:添加溶质元素使固溶体强度提高的方法.5、韧性:材料在塑性变形和断裂所吸收能量的能力。
6、微合金钢:钢种的合金含量小于0.1%。
7、IF钢:无间隙原子钢8、不锈钢:具有良好的抗腐蚀性能和抗氧化性的钢.9、变形抗力:在一定条件下材料变形单位面积的抵抗变形的力.10、在线常化工艺:在热轧无缝钢管中在轧管延伸工序后将钢管按常化热处理要求冷却到某一温度后在进加热炉然后就行减径轧制按照一定的速度冷却到常温。
11、变形温度贝氏体处理化工艺:在钢管轧制过程中不直接加热到马氏体温度一下,而是快速冷却带中温以后再置于静止的空气中冷却、以变形奥氏体转变为贝氏体省去回火工序。
12、高温变形淬火:钢管在稳定的奥氏体区域变形,而且一般温度在再结晶温度以上然后进行淬火,已获得马氏体组织。
13、低温相变淬火:将钢管加热到奥氏体状态,经一段保温冷却到Ac1高于M的某一中间温度进行变形后淬火的工艺。
14、非调质钢:将调质钢的化学成分进行调解并对轧制过程进行控制不进行调制其性能达到调制的水平。
1、控制轧制是指在热轧过程中通过对金属加热制度,温度制度,保险制度的控制而获得细小的晶粒2、控制冷却是控制轧后钢材的冷却速度来改善组织性能。
3、钢材的强化方法有固溶强化,变形强化,沉淀强化,弥散强化,亚晶强化,细晶强化,相变强化。
4、影响材料韧性有,化学成分,气体和夹杂物,晶粒细化,形变的影响,形变细化5、动态结晶是晶粒细化提高扩孔性的手段6、控制轧制的目标是为了获得较小的铁素体组织7、加快冷却速度可以获得细小的铁素体晶粒所以不产生奥氏体组织为界限8、贝氏体是结构性能钢有校坏的塑形焊接性能强韧性微合金钢是指钢中的合金元素总量小于0。
1.3.2控制轧制和控制冷却
![1.3.2控制轧制和控制冷却](https://img.taocdn.com/s3/m/5814d9c7ccbff121dc368390.png)
1. 控轧控冷的必要性
• 用户要求:产品性能(强度、韧性、焊接性、冲击性能…)
• 决定性能的因素:组织结构(晶粒、析出、组织分数…)
• 决定组织的因素:成分和工艺(压下率、轧制温度、冷却 速度。
•
柔性制造技术
加工工艺1
组织特征1
用户需求1
钢种 成分
加工工艺2
组织特征2
6
6
2.3 控轧工艺特点 • 控制加热温度 • 控制轧制温度 • 控制变形程度 • 控制轧后冷却速度
钢的成分
常规轧制
% 0.14C+1.3Mn
σs N/mm2 FATT℃
313.9
+10
0.14C+0.034Nb 392.4
+50
0.14C+0.08V
421.8
+40
0.14C+0.004Nb
3. 1 控冷的意义
3. 2控冷的原理
3.2 控制冷却原理-晶粒细化和相变强化
温度 加热 控制冷却 时间
再结晶区控轧
未再结晶区控轧 两相区控轧
3~5μm
5 ~10 μm
10~20μm
1. 控轧工艺分哪几类?控轧实践中最常用的 是哪种工艺?分别画出示意图。
2.Ⅰ型控轧与Ⅱ型控轧相比,哪种工艺轧材 的性能更好些?为什么?
控制轧制: - 轧制温度制度(加热、粗轧、精轧,待温) - 轧制压下制度(粗轧、精轧压下量,方向) - 液压弯辊等板凸度控制制度
控制冷却(Controlled Cooling)是控制轧后钢材的 冷却速度达到改善钢材组织和性能的目的。
CR----控制轧制 AcC----控制冷却
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制轧制与控制冷却穆安水(材料成型及控制工程12级)[摘要]:控轧与控冷工艺是一项节约合金,简化工序,节约能源的先进轧钢技术,通过对控轧与控冷工艺的具体分析提出,控轧与控冷工艺能充分挖掘钢材的潜力,大幅度提高钢材的综合性能,通过对控轧控冷工艺在中厚板及带钢生产中应用的分析,说明控轧控冷工艺能给冶金工业及社会带来的巨大的经济效益针对传统控制轧制控制冷却(TMCP)技术存在的问题,提出了以超快冷为核心的新一代的TMCP技术,并详述了作为实现新一代TMCP技术核心手段的超快冷技术的科学内涵和工业装备开发情况。
指出新一代TMCP技术综合采用细晶强化、析出强化、相变强化等多种强化机制,可以充分挖掘钢铁材料的潜力,节省资源和能源,优化现有的轧制过程,有利于钢铁工业的可持续发展。
最后给出了以新一代TMCP为特征的创新轧制过程的案例。
展示了该技术的广阔的应用前景。
[关键词]:控制轧制;控制冷却;超快冷技术Abstract:controlled rolling and controlled cooling technology is a saving alloy, simplify the process, energy saving advanced rolling technology, based on the analysis of controlled rolling and controlled cooling technology, controlled rolling and controlled cooling technology can fully tap the potential of steel, greatly improve the comprehensive performance of steel, by means of controlled rolling process of controlled cooling in the applications of plate and strip production analysis, shows that controlled rolling process of controlled cooling can give huge economic benefits of metallurgical industry and the society in view of the traditional control rolling control problems of cooling (TMCP) technology, proposed the ultra fast cooling as the core of the new generation of TMCP technology, and described as a new generation of TMCP technology core means of scientific connotation of ultra fast cooling technology and industrial equipment development.Pointed out that a new generation of TMCP technology integrated with fine grain strengthening, precipitation strengthening, phase transformation strengthening and so on the many kinds of strengthening mechanism, can fully exert the potential of steel materials, save resources and energy, to optimize the existing rolling process, is conducive to the sustainable development of iron and steel industry.Characterized by a new generation of TMCP shows the case of the innovation of the rolling process.Shows a broad prospect of application of the technology.Keyword:Controlled rolling;Controlled cooling;Super fast cooling technology1引言近三十年以来,控制轧制和控制冷却技术在国外得到了迅速的发展,国外大多数宽厚板厂均采用控制轧制和控制冷却工艺,生产具有高强度、高韧性、良好焊接性的优质钢板。
概要介绍了控制轧制和控制冷却技术的发展历史及冶金学原理,着重论述了国外宽厚板厂控制轧制和控制冷却技术的进展及现状2基本概念控制轧制是指在热轧过程中通过对金属加热制度、变形制度和温度制度进行合理控制,使热塑性变形与固态相变相结合,以获得细小的晶粒组织,使钢材具有优异的综合力学性能的轧制新工艺。
控制冷却是通过控制轧后钢材的冷却速度以达到改善钢材组织和性能的目的。
由于热轧变形的作用,促使变形奥氏体向铁素体转变的温度(Ar3)提高,相变后的铁素体晶粒容易长大,造成力学性能降低。
为了细化铁素体晶粒,缩小珠光体片层间距,阻止碳化物在高温下析出,提高析出强化效果,多采用控制冷却工艺。
控制轧制和控制冷却相结合能将热轧钢材的两种强化效果相加,进一步提高钢材的强韧性,获得合理的综合力学性能。
在欧洲,这种技术称为热机械处理。
3 控制轧制工艺的机理和特点控制轧制工艺是指钢坯在稳定的奥氏体区域(Ar3)或在亚稳定区域(Ar3~Ar1)内进行轧制,然后空冷或控制冷却速度,以获得铁素体与珠光体组织,某些情况下可获得贝氏体组织。
现代控制 轧制工艺应用了奥氏体的再结晶和未再结晶两方面的理论,通过降低板坯的加热温度、控制变形量和终轧温度,充分利用固溶强化、沉淀强化、位错强化和晶粒细化机理,使钢板内部晶粒达到最大细化从而改变低温韧性,增加强度,进步焊接性能和成型性能。
所以说,控制轧制工艺实际上是将形变与相变结合起来的一种综合强化工艺。
控制轧制一般有控温轧制和热机轧制两种。
在控温轧制中,为了获得所要求的目标值,必须在规定的温度范围内进行总变形。
第一个负荷道次的开轧温度是事先通过出炉温度规定的。
轧制的温度范围由规定的终轧温度决定。
一般情况下,只有轧制过程在规定的时间内中断,并将轧件送到停歇场上进行冷却,这个终轧温度才能得到保证。
在这种轧制方式中,轧制中断时的钢板厚度没有规定,轧制钢板可以取消常规的正火处理。
热机轧制是在规定的温度范围内按照所规定的压下量进行轧制,又分为两阶段轧制和三阶段轧制。
在两阶段轧制中,轧制过程中断一次,并使轧件冷却到下一阶段所要求的轧制温度。
在三阶段轧制中,轧制过程中断两次。
轧制阶段是由该阶段中预先给定的厚度压下量和完成该厚度压下量时的温度范围决定的。
由此产生了中间厚度和各阶段之间的轧制时间。
控轧的目的是在热轧条件下,通过细化铁素体晶粒,生产出韧性好、强度高的钢材。
例如,正常轧制工艺铁素体晶粒最好的情况是7~8级,直径大于20μm,而控制轧制工艺得到的铁素体晶粒为12级,其直径为5μm,这样细的晶粒是控制轧制最突出的优点。
控制轧制工艺还可以充分发挥微量元素的作用,含有微量Nb、V、Ti等元素的普通低碳钢采用控制轧制工艺,能获得更好的综合性能。
4 板带材控轧工艺过程的新方法板带材的质量很大程度上取决于对轧制工艺过程的控制。
常规方法有很多不足之处,原始凸度的设定无法对不同规格、不同材质的轧件进行跟踪控制;不均匀冷却方法具有响应太慢的缺点。
戴维.麦基公司对板形自动控制系统及冷却液的喷射装置进行了独特的设计,其中彼此分隔开的冷却和润滑系统(SLC)和动态轧制工艺系统(DSS)收到了很好的效果。
4.1 分隔开的冷却和润滑系统(SLC)板带材轧制大多数采用乳液来实现冷却润滑。
在采用乳液冷却润滑的过程中,普遍存在乳液稳定性差、使用寿命短,尤其是轧后板带材表面质量达不到最佳程度等题目。
利用分隔开的冷却和润滑系统可避免常规乳液冷却润滑给制品带来的缺陷。
该系统有两个连在一起的钢质冷却箱。
每个冷却箱分别封住上工作辊和支承辊的辊面及下工作辊和支承辊的辊面,从而使每一个对轧辊和冷却箱构成一个隔离系统。
上下两个冷却箱之间有一道缝,需轧制的带材由此通向辊缝,实现轧制。
在轧制过程中把冷却系统和润滑系统分隔开,这就意味着在具备冷却润滑综合功能的基础上,还可以分别按各自独特的功能往进行配制。
SLC系统可最大限度地发挥冷却和润滑的功能,从而使轧机的功率密度大大进步。
4.2 动态轧制工艺系统(DSS)戴维.麦基公司利用计算机猜测了全带材轧制的主要过程。
充分利用计算机来建立轧制过程中的数学模型,本质上就是在线的模型参数估计。
其中最为典型的例子是动态轧制工艺系统。
该系统主要安装在热轧机组上,用于板形和断面外形的控制。
由建立的数学模型和程序,根据猜测的结果,连续地由轧机自适应功能进行控制。
与通常的反馈式AGC系统不同之处,在于这个系统采用两个基本自适应等级。
第一级为轧机控制的自适应,即包括轧辊的弯辊力、压下量的方式、运行速度和轧辊冷却液的分布等,使产品质量达到始终稳定一致。
第二级是猜测模型所用系数的自适应,即利用在轧制过程中测得的参数经过趋势回回分析来实现。
接着按实测值与模型猜测值的误差值作为一个函数来调整模型的系数。
应用DSS的主要目的是要生产出横向厚度均匀一致的产品。
5 GCr15控轧新工艺的模拟研究近年来,一些工作者研究了轴承钢的热加工性能以及形变球化和再结晶,定量地确定了流变应力和破断应变与变形过程中的变量(应变、应变率、温度和相变)之间的关系;研究奥氏体加渗碳体的双相区形变球化,确定了变形温度和变形量是控制球化的主要因素,奥氏体化后变形有利于双相区形变球化;借助于热扭转实验机用停顿变形方法,研究了轴承钢热轧过程中的再结晶行为,确定了静态和动态再结晶,与变形温度、道次应变和道次间隔时间等之间的关系,以及在双相区发生的动态软化现象。
这一系列的工作为正确制定轴承钢控制轧制工艺提供了科学的依据。
轴承钢的各种生产工艺中,在900℃以上奥氏体单相区轧制后快冷至850~800℃的双相区内再次轧制是最有前途的新工艺。
该工艺对控制轧制的推广应用、改善轴承钢的质量及进步其疲惫寿命、节省能源等方面均有重要意义。