三角形的证明知识点训练

合集下载

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学[《三角形的证明》全章复习与巩固--知识点整理及重点题型梳理](基础)

北师大版八年级下册数学重难点突破知识点梳理及重点题型巩固练习《三角形的证明》全章复习与巩固(基础)【学习目标】1.经历回顾与思考的过程,深刻理解和掌握定理的探索和证明.2.结合具体实例感悟证明的思路和方法,能运用综合、分析的方法解决有关问题.3.能正确运用尺规作图的基本方法作已知线段的垂直平分线和角的平分线,以及绘制特殊三角形.【知识网络】【要点梳理】要点一、等腰三角形1.三角形全等的性质及判定全等三角形的对应边相等,对应角也相等.判定:SSS、SAS、ASA、AAS、HL.2.等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)3.等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴.判定定理:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形.4.含30°的直角三角形的边的性质定理:在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半. 要点诠释:等边三角形是中考中常考的知识点,并且有关它的计算也很常见,因此对于等边三角形的特殊数据要熟记于心,比如边长为a的等边三角形它的高是32a,面积是234a;含有30°的直角三角形揭示了三角形中边与角的关系,打破了以往那种只有角或边的关系,同时也为我们学习三角函数奠定了基础.要点二、直角三角形1.勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方.逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.2.命题与逆命题命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的;3.直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL).要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”.②直角三角形的全等判定方法,还有SSS,SAS,ASA,AAS,HL一共有5种判定方法.要点三、线段的垂直平分线1.线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等.判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.2.三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.3.如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于12AB的长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线.要点诠释:①注意区分线段的垂直平分线性质定理和判定定理,注意二者的应用范围;②利用线段的垂直平分线定理可解决两条线段的和距离最短问题.要点四、角平分线1.角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上.2.三角形三条角平分线的性质定理性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.3.如何用尺规作图法作出角平分线要点诠释:①注意区分角平分线性质定理和判定定理,注意二者的应用范围;②几何语言的表述,这也是证明线段相等的一种重要的方法.遇到角平分线时,要构造全等三角形. 【典型例题】类型一、三角形的证明1. 已知:点D 是△ABC 的边BC 的中点,DE ⊥AC ,DF ⊥AB ,垂足分别为E ,F ,且BF=CE .求证:△ABC 是等腰三角形.【思路点拨】欲证△ABC 是等腰三角形,又已知DE ⊥AC ,DF ⊥AB ,BF=CE ,可利用三角形中两内角相等来证明.【答案与解析】证明:∵D是BC 的中点,∴BD=CD ,∵DE ⊥AC ,DF ⊥AB ,∴△BDF 与△CDE 为直角三角形,在Rt △BDF 和Rt △CDE 中,,BF CE BDCD∴Rt △BFD ≌Rt △CED (HL ),∴∠B=∠C ,∴AB=AC ,∴△ABC 是等腰三角形.【总结升华】考查等腰三角形的判定方法及全等三角形的判定及性质;充分利用条件证明三角形全等是正确解答本题的关键.举一反三:【变式1】(2015秋?江阴市校级期中)已知:如图,△AMN 的周长为18,∠B ,∠C的平分线相交于点O ,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N .求AB+AC 的值.【答案】解:∵MN ∥BC ,∴∠BOM=∠OBC ,∠CON=∠OCB ,∵∠B,∠C的平分线相交于点O,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠BOM,∠NCO=∠CON,∴BM=OM,CN=ON,∵△AMN的周长为18,AN=AB+AC=18.∴AM+MN+AN=AM+OM+ON+AN=AM+BM+CN+【变式2】如图,在△ABC中,AB=AC,D、E在BC上,且AD=AE,求证:BD=CE.【答案】证明:∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠ADE=∠B+∠BAD,∠AED=∠C+∠EAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∴ BD=CE.类型二、直角三角形2. 如图,已知,在Rt△ABC中,∠C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合.(1)当∠A满足什么条件时,点D恰为AB的中点写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积.【思路点拨】(1)根据折叠的性质:△BCE≌△BDE,BC=BD,当点D恰为AB的重点时,AB=2BD=2BC,又∠C=90°,故∠A=30°;当添加条件∠A=30°时,由折叠性质知:∠EBD=∠EBC=30°,又∠A=30°且ED⊥AB,可证D为AB的中点;(2)在Rt△ADE中,根据∠A及ED的值,可将AE、AD的值求出,又D为AB的中点,可得AB的长度,在Rt△ABC中,根据AB、∠A的值,可将AC和BC的值求出,代入S△ABC=AC×BC 进行求解即可.【答案与解析】解:(1)添加条件是∠A=30°.证明:∵∠A=30°,∠C=90°,所以∠CBA=60°,∵C点折叠后与AB边上的一点D重合,∴BE平分∠CBD,∠BDE=90°,∴∠EBD=30°,∴∠EBD=∠EAB,所以EB=EA;∵ED为△EAB的高线,所以ED也是等腰△EBA的中线,∴D为AB中点.(2)∵DE=1,ED⊥AB,∠A=30°,∴AE=2.在Rt△ADE中,根据勾股定理,得AD=22213,∴AB=23,∵∠A=30°,∠C=90°,∴BC=12AB=3.在Rt△ABC中,AC=22AB BC=3,∴S△ABC=12×AC×BC=332.【总结升华】考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,根据轴对称的性质,折叠前后图形的形状和大小不变.3. 小林在上探索出只用三角尺作角平分线的一种方法:如图,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M作OB的垂线,过点N作OA的垂线,垂足分别为C、D,两垂线交于点P,那么射线OP就是∠AOB的平分线.老师当场肯定他的作法,并且表扬他的创新.但是小林不知道这是为什么.①你能说明这样做的理由吗?也就是说,你能证明OP就是∠AOB的平分线吗?②请你只用三角板设法作出图∠AOB的平分线,并说明你的作图方法或设计思路.【思路点拨】①在Rt△OCM与Rt△ODN中,依据ASA得出OC=OD;在Rt△OCP与Rt△ODP中,因为OP=OP,OC=OD得出Rt△OC P≌Rt△ODP(HL),所以∠C OP=∠DOP,即OP平分∠AOB.②可作出两个直角三角形,利用HL定理证明两角所在的三角形全等.【答案与解析】①证明:在Rt△OCM和Rt△ODN中,COM DONOCM ODNOM ON∴△OCM≌△ODN(AAS),∴OC=OD,在△OCP与△ODP中,∵,OC OD OPOP∴Rt △OCP ≌Rt △ODP (HL ),∴∠COP=∠DOP ,即OP 平分∠AOB ;②解:①利用刻度尺在∠AOB 的两边上分别取OC=OD ;②过C ,D 分别作OA ,OB 的垂线,两垂线交于点E ;③作射线OE ,OE 就是所求的角平分线.∵CE ⊥OA ,ED ⊥OB ,∴∠OCE=∠ODE=90°,在Rt △OCE 与Rt △OD E 中,∵OC OD OEOE,∴Rt △OCE ≌Rt △ODE (HL ),∴∠EOC=∠EOD ,∴OE 为∠AOB 的角平分线.【总结升华】主要考查了直角三角形的判定,利用全等三角形的性质得出∠EOC=∠EOD 是解题关键.类型三、线段垂直平分线4.(2015秋?麻城市校级期中)如图所示:在△ABC 中,AB >BC ,AB=AC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E .(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,边长为15cm ,△BCE 的周长.【思路点拨】(1)由DE 是AB 的垂直平分线,根据线段垂直平分线的性质,可得AE=BE ,继而求得∠A的度数,又由AB=AC ,即可求得∠ABC 的度数,则可求得答案;(2)由△BCE 的周长=AC+BC ,然后分别从腰等于15cm 与底边等于15cm 去分析求解即可求得答案.【答案与解析】解:(1)∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠EBC=∠ABC﹣∠ABE=15°;(2)∵AE=BE,;∴△BCE的周长=BE+CE+BC=AE+CE+BC=AC+BC∵△ABC的周长为41cm,∴AB+AC+BC=41cm,若AB=AC=15cm,则BC=11cm,则△BCE的周长为:15+11=26cm;若BC=15cm,则AC=AB=13cm,∵AB>BC,∴不符合题意,舍去.∴△BCE的周长为26cm.【总结升华】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.举一反三:【变式】如图所示,AD是△ABC中∠BAC的平分线,AD的垂直平分线EF交BC的延长线于F,试说明∠BAF=∠ACF的理由.【答案】解:∵EF垂直平分AD,∴AF=DF,∴∠FAD=∠FDA.又∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠BAF=∠BAD+∠FAD,∠ACF=∠DAC+∠FDA,∴∠BAF=∠ACF.类型四、角平分线5.(2016秋?兴化市期中)已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.【思路点拨】过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,根据角平分线上的点到角的两边距离相等可得PD=PM,同理可得PM=PN,从而得到PD=PN,再根据到角的两边距离相等的点在角的平分线上证明即可.【答案与解析】证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,∵BE平分∠ABC,点P在BE上,∴PD=PM,同理,PM=PN,∴PD=PN,∴点P在∠A的平分线上.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上,熟记性质并作出辅助线是解题的关键.举一反三:【变式】如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处 C.3处 D.4处【答案】D.解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.。

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

最新人教中考总复习知识点专题三线合一三角形证明的应用专题

专题训练(一)
类型二 证明两线垂直
3.如图1-ZT-3,在五边形ABCDE中,AB=AE,BC=ED, ∠ABC=∠AED,F是CD的中点.求证:AF⊥CD.
图1-ZT-3
专题训练(一)
证明:如图,连接AC,AD. 在△ABC和△AED中, ∵AB=AE,∠ABC=∠AED,BC=ED, ∴△ABC≌△AED(SAS), ∴AC=AD. 又∵AF是CD边上的中线, ∴AF⊥CD.
第一章 三角形的证明
专题训练(一) “三线合一”的灵活应用
第一章 三角形的证明
专题训练(一)
“三线合一”的灵活应用
专题训练(一)
等腰三角形“顶角的平分线、底边上的高线、底边上的中线”只 要知道其中“一线”,就可以说明是其他“两线”.运用等腰三 角形“三线合一”的性质证明角相等、线段相等或垂直关系,可 减少证全等的次数,简化解题过程.
类型一 证明线段相等或求线段的长
1.如图1-ZT-1,已知AD=AE,BD=CE,试探究AB和AC的 大小关系,并说明理由.
图1-ZT-1
专题训练(一)
解: AB=AC. 理由:∵AD=AE, ∴△ADE是等腰三角形.取线段DE的中点F,连接AF,则AF既是 △ADE的中线,又是△ADE底边上的高,即AF⊥DE,DF=EF. 又∵BD=CE, ∴BD+DF=CE+EF,即BF=CF, ∴AF是线段BC的垂直平分线,根据线段垂直平分线的性质可得 AB=AC.
谢 谢 观 看!
专题训练(一)
类型三 证明角度之间的关系
4.已知:如图 1-ZT-4,AB=AC,BD⊥AC 于点 D.求证:∠DBC =12∠B过点 A 作 AF⊥BC 于点 F. ∵AB=AC,AF⊥BC, ∴∠CAF=∠BAF=12∠BAC. ∵AF⊥BC,BD⊥AC, ∴∠CAF+∠C=∠DBC+∠C=90°, ∴∠DBC=∠CAF, ∴∠DBC=12∠BAC.

三角形的证明详细知识点、例题、习题)

三角形的证明详细知识点、例题、习题)

三角形的证明详细知识点、例题、习题)1.定义:全等三角形指的是能够完全相等的三角形。

2.性质:全等三角形的对应边和对应角都相等。

3.判定方法:XXX、SSS、ASA、AAS、HL。

需要注意的是,SSA和AAA不能作为判定三角形全等的方法,必须有边的参与。

若有两边一角相等时,角必须是两边的夹角。

4.证题思路:找夹角(SAS)已知两边,找直角(HL)找第三边(SSS)若边为角的对边,则找任意角(AAS)已知一边一角,边为角的邻边找已知边的对角(AAS)找已知角的另一边(SAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角,找任意一边(AAS)1.等腰三角形的性质:两个底角相等(等边对等角)。

2.判定方法:有两个角相等的三角形是等腰三角形(等角对等边)。

推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)。

3.等边三角形的性质:三个角都相等,并且每个角都等于60°;等边三角形是轴对称图形,有3条对称轴。

判定方法:有一个角是60°的等腰三角形是等边三角形;三个角都相等的三角形是等边三角形。

4.含30°的直角三角形的边的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

1.勾股定理及其逆定理:直角三角形的两条直角边的平方和等于斜边的平方。

逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

2.命题与逆命题:命题包括题设和结论两部分;逆命题是将原命题的题设和结论交换位置得到的。

3.直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等。

需要注意的是,勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。

1.线段垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离相等。

2.判定方法:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

经典初中数学三角形专题训练及例题解析

经典初中数学三角形专题训练及例题解析

经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。

推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有2)3(-n n 条对角线。

9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。

②多边形的外角和等于360°。

三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。

②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。

三角形的证明知识点

三角形的证明知识点

三角形的证明知识点一、三角形的概念三角形是由三条线段首尾顺次相接组成的图形,通常用符号“△”表示。

在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

二、三角形的性质1、三角形的两边之和大于第三边。

2、三角形的内角和等于180°。

3、三角形的面积公式为:面积=底×高÷2。

4、三角形的稳定性:在几何学中,三角形是一种非常稳定的图形,因为它的三条边之间存在一个固定的角度。

这种稳定性在现实生活中也有很多应用,如桥梁、建筑和机械等。

三、三角形的证明1、定义法:根据三角形的定义,通过证明三条线段首尾顺次相接组成的图形是三角形。

2、平行线法:通过证明两条平行线之间的距离相等来证明它们之间的线段组成的图形是三角形。

3、反证法:通过假设反面命题成立,然后推导出矛盾的结论,从而证明原命题成立。

4、角平分线法:通过证明两个角平分线的交点是三角形的一个顶点,然后证明这个交点到另外两个顶点的距离相等,从而证明这是一个等腰三角形。

5、中位线法:通过证明两条中位线的长度相等来证明三角形是等腰三角形。

6、勾股定理法:通过证明三角形的三条边满足勾股定理来证明这是一个直角三角形。

7、相似三角形法:通过证明两个三角形相似来证明它们对应边之间的比例相等,从而证明这是一个等腰三角形或等边三角形。

8、圆内接四边形法:通过证明一个四边形的四个顶点都在同一个圆上,从而证明这是一个圆内接四边形,也就是一个等腰梯形。

三角形的证明知识点汇总一、三角形三条边的关系定理:三角形两边之和大于第三边推论:三角形两边之差小于第三边二、三角形内角和定理定理:三角形三个内角和等于180°推论1:直角三角形的两个锐角互余推论2:三角形的一个外角等于和它不相邻的两个内角的和推论3:三角形的一个外角大于任何一个和它不相邻的内角三、三角形中线的性质性质:三角形中线平分三角形三条边;三条中线能将三角形分成面积相等的六个部分;三条中线连成的三条线段都大于第三条边的一半。

三角形的证明

三角形的证明

第一章三角形的证明第一讲:1.等腰三角形(1)——等腰三角形的性质(知识回顾)知识点一三角形全等的证明方法:1、 2、 3、 4、例1如图所示,分别过点C,B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E,F.求证:BF=CE1.如图,AC与BD交于点O,AB∥CD,若用“ASA”或“AAS”判定△AOB≌△COD,还需要添加的一个条件是.2、两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点.求证:OF=OC.知识点二等腰三角形的性质定理定理:等腰三角形的两底角相等.这个定理简称为等边对等角.例2如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数3、若等腰三角形底边上的高与底边的比为1∶2,则它的顶角等于()A.90°B.60°C.120°D.150°4.已知等腰三角形的一个内角为50°,则这个等腰三角形顶角的度数是( )A.50°B.80C.50°或80°D.40°或65°知识点三等腰三角形性质定理的推论等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.这条性质通常称为等腰三角形的“三线合一”.是证明那三条线证明: 等腰三角形两底角的平分线相等,高线相等已知:如图,在△ABC中, AB=AC, BD、CE是△ABC的角平分线.求证:BD=CE.拓展点一等腰三角形特殊性质的证明例1求证:等腰三角形两腰上的高的交点到底边两端的距离相等.已知:如图,在△ABC中,AB=AC,CE⊥AB于点E,BD⊥AC于点D,CE,BD交于点O,求证:OB=OC.知识点四等边三角形的性质定理定理:等边三角形的三个内角都相等,并且每个角都等于60°.例4 如图,点P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.拓展点二等边三角形与三角形全等的综合题5、如图,已知△ABC和△ADE都是等边三角形,连接CD,BE.求证:CD=BE习题1、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.2、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.3、如果等腰三角形的一个内角等于50°,则其余两角的度数为。

初中数学三角形知识点训练附答案

初中数学三角形知识点训练附答案
14.满足下列条件的是直角三角形的是()
A. , , B. , ,
C. D.
【答案】C
【解析】
【分析】
要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】
A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
12.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()
A.1B. C. D.
【答案】D
【解析】
【分析】
由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.
B. ,故不能组成直角三角形;
C. ,故可以组成直角三角形;
D. ,故不能组成直角三角形;
故选C.
【点睛】
本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.
16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()

第一章三角形的证明知识点

第一章三角形的证明知识点

第一章三角形的证明知识点在几何学中,三角形是最基本的图形之一,其性质和证明方法在数学中有着重要的地位。

本章将介绍一些与三角形相关的证明知识点,帮助我们更好地理解三角形的性质和特点。

一、三角形的性质:1. 三角形的定义:三角形是由三条线段组成的图形,这三条线段称为三角形的边,而由这三条边所确定的三个内角则称为三角形的内角。

2. 三角形的分类:根据三角形的边长和角度大小,三角形可以分为三种不同类型:等边三角形、等腰三角形和普通三角形。

- 等边三角形的三条边的长度相等。

- 等腰三角形的两条边的长度相等。

- 普通三角形的三条边的长度各不相等。

3. 三角形的角度和边长关系:- 三角形的内角和等于180度(即∠A + ∠B + ∠C = 180°)。

- 三角形的任意两边之和大于第三边(即 AB + BC > AC,AC+ BC > AB,AB + AC > BC)。

二、三角形的证明知识点:1. 等腰三角形的性质:- 等腰三角形的底角相等,顶角相等。

- 等腰三角形的腰上的高线相等。

证明:设ΔABC 是一个等腰三角形,其中 AB = AC。

连接 A 到三角形的底边 BC,构造垂直于 BC 的高线 AD。

由于 AB = AC,所以∠ABC = ∠ACB。

同时,AD 为高线,所以 AD ⊥ BC,故∠BAC = ∠CAD。

因此,我们可以得出等腰三角形的底角相等并且顶角相等的结论。

同样,由于 AB = AC,所以 AD = AD,即等腰三角形的腰上的高线相等。

2. 直角三角形的性质:- 直角三角形的两条边之间满足勾股定理:c^2 = a^2 + b^2。

- 直角三角形的两条直角边之间满足勾股定理。

证明:设ΔABC 是一个直角三角形,其中∠ABC = 90°。

根据勾股定理,我们可以得出 c^2 = a^2 + b^2。

同时,直角三角形的两条直角边是相互垂直的,即∠ABC = 90°。

三角形的证明知识点

三角形的证明知识点

三角形的证明知识点三角形是几何学中的基础概念之一,它具有重要的性质和特点。

在数学中,我们经常需要证明关于三角形的各种定理和命题,这些证明过程中的关键知识点将在本文中被详细介绍。

以下是有关三角形的证明知识点。

1. 三角形的内角和定理:在任意三角形中,三个内角的和等于180度。

这个定理可以通过角度的基本性质来证明。

假设三角形的三个内角分别为A、B和C,那么根据角度的定义,有A + B + C = 180度。

2. 三角形的外角和定理:在任意三角形中,三个外角的和等于360度。

证明这一定理可以使用与相关角的性质以及内角和定理。

根据内角和定理,三个内角的和等于180度。

由于内角和外角的关系是180度,所以三个外角的和应该是360度。

3. 等边三角形的性质:等边三角形是指三个边的长度都相等的三角形。

等边三角形的内角都是60度。

证明这一定理可以通过分析每个角的大小和等边三角形的对称性质。

4. 等腰三角形的性质:等腰三角形是指两边的长度相等的三角形。

等腰三角形的两个底角(底边的两个对角)是相等的。

证明这一定理可以使用等边三角形的性质,或者通过对称性质和三角形内角和的知识点。

5. 直角三角形的性质:直角三角形是指其中一个角是直角的三角形。

直角三角形的两个锐角(小于90度的角)是互补角,即两个角的和等于90度。

这一性质可以通过直角三角形的定义以及角度的基本性质进行证明。

6. 同位角定理和同旁内角定理:同位角定理指的是在平行线被一条截断时,同位角是相等的。

同旁内角定理指的是在两条平行线被一条截断时,同旁内角是补角。

这些定理可以用于证明平行线和三角形之间的各种性质。

7. 正弦定理和余弦定理:正弦定理用于计算任意三角形的边长与角度之间的关系。

余弦定理则用于计算三角形的边长与角度之间的关系。

这些定理的证明涉及到三角函数和向量的概念,并且在解决实际问题时非常有用。

以上是关于三角形的证明知识点的简要介绍。

通过理解和应用这些知识点,我们可以更好地理解和分析三角形的性质和关系。

全等三角形讲义知识点+典型例题(完美打印版)

全等三角形讲义知识点+典型例题(完美打印版)

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

人教版八年级上册第十一章 三角形知识点复习及习题练习

人教版八年级上册第十一章 三角形知识点复习及习题练习

第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一条直线上;③首尾顺次相连。

2、基本概念:三角形有三条边,三个内角,三个顶点。

边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。

夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。

练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。

(2)写出△ABD的三个内角。

(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。

11.00三角形知识点 常考题型 练习

11.00三角形知识点 常考题型 练习

81.11三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:①三条线段;②不在同一直线上;③首尾顺次相接2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段.注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心.②画三角形中线时只需连结顶点及对边的中点即可.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,顶点和交点之间的线段.注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°推论:直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.三角形的一个外角和与之相邻的内角互补. 过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角. ⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.例题精选1.(2015郴州中考)以下列各组线段为边,能组成三角形的是( )A.1cm ,2cm ,4cmB.4cm ,6cm ,8cmC.5cm ,6cm ,12cmD.2cm ,3cm ,5cm2.(2015恩施中考)如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于 ( )A.50°B.60°C.65°D.90°3.(2015来宾中考)如图,在△ABC 中,已知∠A=80°,∠B=60°,DE ∥BC ,那么∠CED 大小是( )A.40°B.60°C.120°D.140°4.(2015南平中考)正多边形的一个外角等于30°,则这个多边形的内角和为 ( )A.720B.1260C.1800D.23405.(2015来宾中考)如果一个多边形的内角和是其外角和的一半,那么这个多边形是 ( )A.六边形B.五边形C.四边形D.三角形7.下列说法错误的是( ).A .锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B .钝角三角形有两条高线在三角形外部C .直角三角形只有一条高线D .任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( ).A .kB .21k +C .22k +D .22k -4.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和5.如图ABC ,D ,E 分别为BC 上两点,且BD DE EC ==,则图中面积相等的三角形有( )对.A .4B .5C .6D .76.在下列条件中:①∠A +∠B =∠C ,②∠A ∶∠B ∶∠C =1∶2∶3,③∠A =90°-∠B ,④∠A =∠B -∠C 中,能确定△ABC 是直角三角形的条件有( ).A .1个B .2个C .3个D .4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A .钝角三角形B .锐角三角形C .直角三角形D .以上都不对8.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,∠A 与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ).A.12A ∠=∠+∠B.212A ∠=∠+∠C.3212A ∠=∠+∠D.()3212A ∠=∠+∠9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A .相等B .互补C .相等或互补D .互余7.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A .16B .14C .12D .109.如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为( )A .115°B .105°C .95°D .85°10.如图,∠1,∠2,∠3,∠4恒满足的关系是( )A .∠1+∠2=∠3+∠4B .∠1+∠2=∠4-∠3C .∠1+∠4=∠2+∠3D .∠1+∠4=∠2-∠36.(2015遂宁中考)若一个多边形内角和等于1260°,则该多边形有 条对角线.10.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有_____________.11.已知a ,b ,c 是三角形的三边长,化简:a b c a b c -+---=__________.12.等腰三角形的周长为20 cm ,一边长为6 cm ,则底边长为__________.13.如图,ABD ∠与ACE ∠是ABC 的两个外角,若70o A ∠=,则ABD ACE ∠+∠=______.14.四边形ABCD 的外角之比为1∶2∶3∶4,那么:::A B C D ∠∠∠∠=15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.14.若一个三角形的两边长是4和9,且周长是偶数,则第三边长为________.16.如图,A B C D E F ∠+∠+∠+∠+∠+∠=_______.17.如图,点D ,B ,C 在同一直线上,60o A ∠=,50o C ∠=,25oD ∠=,则1∠=_______.18.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了__________米.19.一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.如图,直线AD 和BC 相交于点O ,//AB CD ,95o AOC ∠=,50o B ∠=,求A ∠和D ∠.21.如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求∠C 的度数.22.如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).⑴图①中草坪的面积为__________;⑵图②中草坪的面积为__________;⑶图③中草坪的面积为__________;⑷如果多边形的边数为n ,其余条件不变,那么,你认为草坪的面积为__________.24.⑴如图,一个直角三角板XYZ 放置在ABC 上,恰好三角板XYZ 的两条直角边XY ,XZ 分别经过点B ,C ,ABC 中,若∠A =30°,则ABC ACB ∠+∠=______,XBC XCB ∠+∠=_____;⑵若改变直角三角板XYZ 的位置,但三角板XYZ 的两条直角边XY ,XZ 仍然分别经过B ,C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请说明理由;若不变化,请求出ABX ACX ∠+∠的大小.25.平面内的两条直线有相交和平行两种位置关系.⑴如图①,若AB ∥CD ,点P 在AB ,CD 外部,则有∠B =∠BOD ,又因为∠BOD 是△POD 的外角,故∠BOD =∠BPD +∠D.得∠BPD =∠B -∠D.将点P 移到AB ,CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD ,∠B ,∠D 之间有何数量关系?请证明你的结论;⑵在如图②中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图③,则∠BPD ,∠B ,∠D ,∠BQD 之间有何数量关系?(不需证明);(3)根据(2)的结论求如图④中∠A +∠B +∠C +∠D +∠E 的度数.第11章《三角形》测试题(时间150分满分120分)一、填空题:(每题1.5分,共21分)1、如图ABC 的面积等于252cm ,AE ED =,2BD DC =.则AEF BDE S S += 10 2cm ,四边形CDEF S =2032cm .2225102AEFDEFBAE BDE S S x x y AE DE x y x y S S y ==⎧+=⇒⇒++=⇒+=⎨==⎩ ()2105222225BDFCDFCDF ABD ACD S S x y S BD CD S S y x ==+=⇒=⎧⎪=⇒⎨=⇒=+⎪⎩()51032225253x x y y x y ⎧=⎪+=⎧⎪⎪⇒⇒⎨⎨=+⎪⎩⎪=⎪⎩2053CDEF S x ⇒=+= 2、一个多边形的所有内角和与一个外角的和为1350°,这个多边形的边数为 9 ,这个外角的度数为90o。

浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

浙教版八年级上册数学第一章《三角形的初步知识》知识点及典型例题

浙教版⼋年级上册数学第⼀章《三⾓形的初步知识》知识点及典型例题浙教版⼋年级上册数学第⼀章《三⾓形的初步知识》知识点及典型例题考点⼀、判断三条线段能否组成三⾓形考点⼆、求三⾓形的某⼀边长或周长的取值范围考点三、判断⼀句话是否为命题,以及改成“如果……那么……”的形式考点四、利⽤⾓平分线、垂线(90°⾓)、三⾓形的外⾓、内⾓和、全等三⾓形来计算⾓度考点五、利⽤垂直平分线的性质、⾓平分线的性质、全等三⾓形来计算线段长度考点六、证明三⾓形全等,以及在三⾓形全等的基础之上进⼀步证明线段、⾓度之间的数量关系考点七、画三⾓形的⾼线、中线、⾓平分线,以及基本图形的尺规作图法考点⼋、⽅案设计题,求河宽等问题例1、已知两条线段的长分别是3cm 、8cm ,要想拼成⼀个三⾓形,且第三条线段a 的长为奇数,问第三条线段应取多少厘⽶?1、某⼀三⾓形的两边长分别是3和5,则该三⾓形的周长的取值范围为() A 、10≤a <16 B 、10<a ≤16 C 、10<a <16 D 、2<a <82、能把⼀个三⾓形分成⾯积相等的两部分是三⾓形的()A 、中线B 、⾼线C 、⾓平分线D 、过⼀边的中点且和这条边垂直的直线 3、已知⼀个三⾓形的三条⾼的交点不在这个三⾓形的内部,则这个三⾓形()A. 必定是钝⾓三⾓形B. 必定是直⾓三⾓形C. 必定是锐⾓三⾓形D. 不可能是锐⾓三⾓4、△ABC 的三个不相邻外⾓的⽐为2:3:4,则△ABC 的三个内⾓的度数分别为。

例2、如图,已知△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=C E ,∠1=∠2。

说明BE=CD 的理由。

【设计意图】本例主要考察了⾓平分线和三⾓形全等的条件和性质,要说明两条线段相等的⽅法可以通过说明三⾓形全等来解决。

例3、已知AE ,AD 分别为△ABC 中BC 边上的中线和⾼线,且AB=7cm ,AC=5cm ,则△ACE 和△ABE 的周长之差为多少厘⽶?△ACE 和△ABE 的⾯积之⽐为多少?【设计意图】本例主要考察了三⾓形中线、⾼线的性质,重在格式的书写上。

初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)

初二全等三角形所有知识点总结和常考题知识点:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.常考题:一.选择题(共14小题)1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA4.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°6.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.58.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D9.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC=5,DE=2,则△BCE 的面积等于( )A .10B .7C .5D .410.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD=BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角11.如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:512.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A .SASB .ASAC .AASD .SSS13.下列判断正确的是( )A .有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个二.填空题(共11小题)15.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是.17.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.18.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.19.如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.20.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=cm.21.在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.22.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.23.如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是.24.如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为.25.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG ⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG=cm.三.解答题(共15小题)26.已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.27.已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.28.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.29.如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.30.已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.31.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.32.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE 上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.33.已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点.求证:BD=AE.34.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.35.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.36.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.37.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.38.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G.求证:(1)DF∥BC;(2)FG=FE.39.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.40.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•西宁)使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等 D.两条边对应相等【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.2.(2013•安顺)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.(2014秋•江津区期末)如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.(2007•中山)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点 B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项5.(2011•呼伦贝尔)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【分析】本题根据全等三角形的性质并找清全等三角形的对应角即可.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.【点评】本题考查了全等三角形的判定及全等三角形性质的应用,利用全等三角形的性质求解.6.(2000•安徽)如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处【分析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【解答】解:满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.故选:D.【点评】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.7.(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.5【分析】过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可.【解答】解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,∴DE=DF,由图可知,S=S△ABD+S△ACD,△ABC∴×4×2+×AC×2=7,解得AC=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.8.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.10.(1998•南京)要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角【分析】由已知可以得到∠ABC=∠BDE ,又CD=BC ,∠ACB=∠DCE ,由此根据角边角即可判定△EDC ≌△ABC .【解答】解:∵BF ⊥AB ,DE ⊥BD∴∠ABC=∠BDE又∵CD=BC ,∠ACB=∠DCE∴△EDC ≌△ABC (ASA )故选B .【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.11.(2017•石家庄模拟)如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【分析】利用角平分线上的一点到角两边的距离相等的性质,可知三个三角形高相等,底分别是20,30,40,所以面积之比就是2:3:4.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C .故选C .【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质及三角形的面积公式.做题时应用了三个三角形的高时相等的,这点式非常重要的.12.(2009•鸡西)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA ,OB 于C ,D ,再分别以点C ,D 为圆心,以大于CD 长为半径画弧,两弧交于点P ,作射线OP 由作法得△OCP ≌△ODP 的根据是( )A.SAS B.ASA C.AAS D.SSS【分析】认真阅读作法,从角平分线的作法得出△OCP与△ODP的两边分别相等,加上公共边相等,于是两个三角形符合SSS判定方法要求的条件,答案可得.【解答】解:以O为圆心,任意长为半径画弧交OA,OB于C,D,即OC=OD;以点C,D为圆心,以大于CD长为半径画弧,两弧交于点P,即CP=DP;∴在△OCP和△ODP中,∴△OCP≌△ODP(SSS).故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2002•河南)下列判断正确的是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等【分析】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,对比选项进行分析.【解答】解:A、只有两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才能成立;B、30°角没有对应关系,不能成立;C、如果这个角是直角,此时就不成立了;D、符合全等三角形的判断方法:AAS或者ASA.故选D.【点评】本题要求对全等三角形的几种判断方法熟练运用,会对特殊三角形全等进行分析判断.14.(2006•十堰)如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有()A.4个 B.3个 C.2个 D.1个【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④故选:B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.做题时要根据已知条件在图形上的位置,结合判定方法,进行添加.二.填空题(共11小题)15.(2006•芜湖)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.16.(2013•邵东县模拟)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是5.【分析】要求△ABD的面积,有AB=5,可为三角形的底,只求出底边上的高即可,利用角的平分线上的点到角的两边的距离相等可知△ABD的高就是CD的长度,所以高是2,则可求得面积.【解答】解:∵∠C=90°,AD平分∠BAC,∴点D到AB的距离=CD=2,∴△ABD的面积是5×2÷2=5.故答案为:5.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.注意分析思路,培养自己的分析能力.17.(2016秋•宁城县期末)如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.18.(2013•柳州)如图,△ABC≌△DEF,请根据图中提供的信息,写出x=20.【分析】先利用三角形的内角和定理求出∠A=70°,然后根据全等三角形对应边相等解答.【解答】解:如图,∠A=180°﹣50°﹣60°=70°,∵△ABC≌△DEF,∴EF=BC=20,即x=20.故答案为:20.【点评】本题考查了全等三角形的性质,根据角度确定出全等三角形的对应边是解题的关键.19.(2009•杨浦区二模)如图所示,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带③去玻璃店.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故答案为:③.【点评】这是一道考查全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.20.(2015秋•西区期末)如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD=4cm.【分析】先根据平行线的性质求出∠ADE=∠EFC,再由ASA可求出△ADE≌△CFE,根据全等三角形的性质即可求出AD的长,再由AB=9cm即可求出BD的长.【解答】解:∵AB∥CF,∴∠ADE=∠EFC,∵∠AED=∠FEC,E为DF的中点,∴△ADE≌△CFE,∴AD=CF=5cm,∵AB=9cm,∴BD=9﹣5=4cm.故填4.【点评】本题考查的是平行线的性质、全等三角形的判定定理及性质,比较简单.21.(2009秋•南通期末)在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E是BC的中点,DE平分∠ADC,∠CED=35°,如图,则∠EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是35度.【分析】过点E作EF⊥AD,证明△ABE≌△AFE,再求得∠CDE=90°﹣35°=55°,即可求得∠EAB的度数.【解答】解:过点E作EF⊥AD,∵DE平分∠ADC,且E是BC的中点,∴CE=EB=EF,又∠B=90°,且AE=AE,∴△ABE≌△AFE,∴∠EAB=∠EAF.又∵∠CED=35°,∠C=90°,∴∠CDE=90°﹣35°=55°,即∠CDA=110°,∠DAB=70°,∴∠EAB=35°.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(2012秋•合肥期末)如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.23.(2015秋•蒙城县期末)如图所示,将两根钢条AA′,BB′的中点O连在一起,使A A′,BB′可以绕着点O自由转动,就做成了一个测量工具,则A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是SAS.【分析】已知二边和夹角相等,利用SAS可证两个三角形全等.【解答】解:∵OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△OAB≌△OA′B′(SAS)所以理由是SAS.【点评】本题考查了三角形全等的应用;根据题目给出的条件,要观察图中有哪些相等的边和角,然后判断所选方法,题目不难.24.(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为4.【分析】根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.【解答】解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.【点评】本题主要考查了直线外一点到直线的距离垂线段最短、角平分线的性质,解题的关键在于确定好DP垂直于BC.25.(2015•鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= 4cm.【分析】如图,作MD⊥BC于D,延长DE交BG的延长线于E,构建等腰△BDM、全等三角形△BED和△MHD,利用等腰三角形的性质和全等三角形的对应边相等得到:BE=MH,所以BG=MH=4.【解答】解:如图,作MD⊥BC于D,延长MD交BG的延长线于E,∵△ABC中,∠C=90°,CA=CB,∴∠ABC=∠A=45°,∵∠GMB=∠A,∴∠GMB=∠A=22.5°,∵BG⊥MG,∴∠BGM=90°,∴∠GBM=90°﹣22.5°=67.5°,∴∠GBH=∠EBM﹣∠ABC=22.5°.∵MD∥AC,∴∠BMD=∠A=45°,∴△BDM为等腰直角三角形∴BD=DM,而∠GBH=22.5°,∴GM平分∠BMD,而BG⊥MG,∴BG=EG,即BG=BE,∵∠MHD+∠HMD=∠E+∠HMD=90°,∴∠MHD=∠E,∵∠GBD=90°﹣∠E,∠HMD=90°﹣∠E,∴∠GBD=∠HMD,∴在△BED和△MHD中,,∴△BED≌△MHD(AAS),∴BE=MH,∴BG=MH=4.故答案是:4.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了等腰直角三角形的性质.三.解答题(共15小题)26.(2008•北京)已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.【分析】根据AB∥ED推出∠B=∠E,再利用SAS判定△ABC≌△CED从而得出AC=CD.【解答】证明:∵AB∥ED,∴∠B=∠E.在△ABC和△CED中,,∴△ABC≌△CED.∴AC=CD.【点评】本题是一道很简单的全等证明,纵观近几年北京市中考数学试卷,每一年都有一道比较简单的几何证明题:只需证一次全等,无需添加辅助线,且全等的条件都很明显.27.(2007•北京)已知:如图,OP是∠AOC和∠BOD的平分线,OA=OC,OB=OD.求证:AB=CD.【分析】根据角平分线的性质得出∠AOP=∠COP,∠BOP=∠DOP,从而推出∠AOB=∠COD,再利用SAS判定其全等从而得到AB=CD.【解答】证明:∵OP是∠AOC和∠BOD的平分线,∴∠AOP=∠COP,∠BOP=∠DOP.∴∠AOB=∠COD.在△AOB和△COD中,.∴△AOB≌△COD.∴AB=CD.【点评】本题考查三角形全等的判定方法,以及全等三角形的性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.本题比较简单,读已知时就能想到要用全等来证明线段相等.28.(2014•黄冈)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC 于点F,求证:DE=DF.【分析】连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.【解答】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【点评】此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.29.(2013•常州)如图,C是AB的中点,AD=BE,CD=CE.求证:∠A=∠B.【分析】根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.【解答】证明:∵C是AB的中点,∴AC=BC,在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B.【点评】本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.30.(2008•重庆)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.【分析】(1)由CF平分∠BCD可知∠BCF=∠DCF,然后通过SAS就能证出△BFC ≌△DFC.(2)要证明AD=DE,连接BD,证明△BAD≌△BED则可.AB∥DF⇒∠ABD=∠BDF,又BF=DF⇒∠DBF=∠BDF,∴∠ABD=∠EBD,BD=BD,再证明∠BDA=∠BDC则可,容易推理∠BDA=∠DBC=∠BDC.。

第一章三角形的证明知识点

第一章三角形的证明知识点

第一章三角形的证明一.全等三角形相关1.性质:全等三角形的对应边,对应角。

2.判定定理及推论(1);(2);(3);(4);(5)。

二.等腰三角形1.定义:。

2.性质(1)定理:等腰三角形的两个底角相等。

简称(“”)几何语言:(2)推论:三线合一几何语言:——————————————————————————————————————————————————————————3.判定:(1)定义(2)定理:有两个角相等的三角形是等腰三角开。

简称(“”)三.等边三角形1.定义:三条边都相等的三角形是等边三角形。

2.性质:(1)边:;(2)角:;(3)三线合一:。

3.判定(1)定义:(2)三个角都相等的三角形是等边三角形;(3)有一个角是 60 度的等腰三角形是等边三角形。

四,直角三角形1.定义:有一个角是 90 度的三角形叫做直角三角形。

2.表示:3.性质:(1)角:;(2)边:勾股定理(3)定理:在直角三角形中,如果有一个锐角等于30 度,那么它所对的直角边等于斜边的一半。

(4)在直角三角形中,斜边上的中线等于斜边的一半。

4.判定(1)定义:(2)定理:有两个角互余的三角形是直角三角形。

(3)勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

五.线段的垂直平分线1.性质定理:线段垂直平分线上的点到这条线段两端点的距离相等。

几何语言:2.判定定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。

几何语言:3.尺规作图(1)已知底边和底边上的高作等腰三角形;(2)过直线上一点作直线的垂线;(3)过直线外一点作直线的垂线;六.角平分线1.性质定理:角平分线上的点到这个角两边的距离相等。

几何语言:2.判定定理:在一个角的内部,到角两边距离相等的点在这个角的角平分线上。

几何语言:。

直角三角形全等的判定(1个知识点+5大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

直角三角形全等的判定(1个知识点+5大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

第09讲 直角三角形全等的判定(1个知识点+5大题型+18道强化训练)知识点01:HL 证明三角形全等定理:在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“HL”).要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【即学即练1】1.如图,在ABC V 中,90C Ð=°,D 是AC 上一点,DE AB ^于点E ,BE BC =,连接BD ,若8cm AC =,则AD DE +等于( )A .6cmB .7cmC .8cmD .10cm【即学即练2】2.如图所示,已知在△ABC 中,∠C =90°,AD =AC ,DE ⊥AB 交BC 于点E ,若∠B =28°,则∠AEC =( )A .28°B .59°C .60°D .62°题型01 用HL 证明三角形全等1.如图,O 是BAC Ð内一点,且点O 到AB ,AC 的距离OE OF =,则AEO AFO ≌△△的依据是( )A .HLB .AASC .SSSD .ASA2.如图,AB BC ^,AD DC ^,要根据“HL ”证明Rt Rt ABC ADC ≌△△,还应添加一个条件是( )A .12Ð=ÐB .24ÐÐ=C .AB AD =D .AB AC=3.如图,点B 、F 、C 、E 在一条直线上,90A D Ð=Ð=°,AB DE =,若用“HL ”判定ABC DEF ≌△△,则添加的一个条件是 .4.如图,AC AB ^,AC CD ^,要使得ABC CDA △△≌,若以“HL ”为依据,需添加条件 .5.已知:如图,45ABC Ð=°,AD 为ABC V 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =.求证:Rt Rt BFD ACD △≌△.题型02 利用直角三角形全等的判定求角度1.如图,已知DB AN ^于点B ,交AE 于点O ,OC AM ^于点C ,且OB OC =.若54ADB Ð=°,则OAB Ð的大小为( )A .15°B .18°C .22°D .30°2.如图,ABC V 中,ABC Ð的平分线与AC 边的垂直平分线交于点D ,过D 作DE BC ^于点E ,连接CD ,若35BAC Ð=°,30ACD Ð=°,则DCE Ð的度数为( )A .45°B .60°C .65°D .70°3.如图,已知PA ON ^于点A ,PB OM ^于点B ,且PA PB =,50MON Ð=°,20OPC Ð=°,则PCA Ð= .4.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.5.如图,AC 平分BAD Ð,CE AB ^,CF AD ^交AD 的延长线于点F ,在AB 上有一点M ,且CM CD =,(1)若12AF =,4DF =,求AM 的长.(2)试说明CDA Ð与CMA Ð的关系.题型03 利用直角三角形全等的判定求长度1.如图,在Rt ABC △中,90,C BAC Ð=°Ð的平分线AE 交BC 于点,E ED AB ^于点D ,若ABC V 的周长为12,BDE V 的周长为6,则AC =( )A .4B .3C .6D .82.如图,在Rt ABC △中,90C Ð=°,6AC =,8BC =,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,射线AP 与BC 交于点D ,DE AB ^,垂足为E ,则BE 为( )A .3B .4C .4.5D .53.如图,ABC V 的外角DAC Ð的平分线交BC 边的垂直平分线于P 点,PD AB ^于D ,PE AC ^于E .若6cm AB =,10cm AC =,则AD 的长是 .4.如图,在ABC V 中,DE AC ^于点D ,且AD CD =,180ABE CBE Ð+Ð=°,EF BC ^于点F ,若7AB =,1BF =,则BC = .5.已知:如图,BAC Ð角平分线与BC 的垂直平分线DG 交于点D ,DE AB ^,DF AC ^,垂足分别为E 、F .(1)求证:BE CF =;(2)若8AB =,6AC =,求BE 的长.题型04 直角三角形全等证明的常见辅助线添加1.如图,AD 是ABC V 的角平分线,DF AB ^于点F ,且DE DG =,26ADG S =△,18AED S =△,则DEF V 的面积为( )A .2B .3C .4D .62.如图,在四边形ABCD 中,DE BC ^,BD 平分ABC Ð,AD CD =,4BE =,3DE =,1CE =,则ABD △的面积是( )A .4.5B .6C .9D .123.如图,AE 是CAM Ð的角平分线,点B 在射线AM 上,DE 是线段BC 的中垂线交AE 于E ,EF AM ^.若23,21ACB CBE Ð=°Ð=°,则BEF Ð= .4.如图,四边形ABCD 中,AC 平分BAD Ð,BC DC CE AD =^,于点E ,127AD AB ==,,则DE 的长为 .5.如图,CB CD =,180D ABC Ð+Ð=°,CE AD ^于E .(1)求证:AC 平分DAB Ð;(2)若10AE =,4DE =,求AB 的长.题型05 全等的性质和HL 综合1.如图,在ABC V 中,P 为BC 上一点,PR AB ^,垂足为R PS AC ^,,垂足为S AQ PQ PR PS ==,,,下面结论:①AS AR =;②QP AR ∥;③△≌△ARP ASP ,其中正确的是( )A .①②B .②③C .①③D .①②③2.如图,在等边ABC V 中,AD BC ^于D ,延长BC 到E ,使12CE BC =,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG AD ,于点M ,点N ,连接GN CN ,,下列结论:①ACN BCN Ð=Ð;②12GF EF =;③120GNC Ð=°;④GM CN =;⑤EG AB ^,其中正确的个数是( )A .2个B .3个C .4个D .5个3.如图所示,在ABC V 中,P Q ,分别是BC AC ,上的点,作PR AB ^,PS AC ^,垂足分别为点R S ,,若AQ PQ =,PR PS =,QD AP ^.现有下列结论:①AS AR =;②AP 平分BAC Ð;③BRP CSP △≌△;④PQ AR ∥.其中正确的是 (把所有正确结论的序号都选上)4.如图,ABC V 的两条外角平分线AP CP ,相交于点P ,PH AC ^于点H .若60ABC Ð=°,则下面的结论:①30ABP Ð=°;②60APC Ð=°;③2PB PH =;④APH BPC Ð=Ð.其中正确的结论是 .(填序号)5.如图,已知在Rt ABC △中,90ACB Ð=°,4AC =,8BC =,D 是AC 上的一点,32CD =.点P 从B 点出发沿射线BC 方向以每秒1个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当点P 在线段AB 的垂直平分线上时,求t 的值;(3)过点D 作DE AP ^于点E .在点P 的运动过程中,当t 为何值时,能使DE CD =?请直接写出t 的值.1.如图,在ABC V 中,AC BC =,90C Ð=°,AD 是ABC V 的角平分线,DE AB ^于点E .若1CD =,则AB 的长为( )A B .1C .2D .22.如图,在ABC V 中,90C Ð=°,AC BC =,AD 平分CAB Ð,交BC 于点D ,DE AB ^于点E ,且6cm AB =,则DEB V 的周长为( )A .4cmB .6cmC .8cmD .10cm 3.如图, 在Rt ABC V 中,90C Ð=°,BAC Ð的平分线AE 交BC 于点E ,ED AB ^于点 D , 若 ABC V 的周长为12,则 BDE V 的周长为 4 ,则AC 为 ( )A .3B .4C .6D .84.如图,ABC V 中,ABC Ð的平分线与AC 边的垂直平分线交于点D ,过D 作DE BC ^于点E ,连接CD ,若35BAC Ð=°,30ACD Ð=°,则DCE Ð的度数为( )A .45°B .60°C .65°D .70°5.如图,在ABC V 中,延长BA 到点E ,延长BC 到点F .,ABC EAC ÐÐ的角平分线,BP AP 交于点P ,过点P 分别作,PM BE PN BF ^^,垂足为,M N ,则下列结论正确的有( )①CP 平分ACF Ð;②2180ABC APC Ð+Ð=°;③2ACB APB =∠∠;④PAC MAP NCP S S S +=△△△.A .1个B .2个C .3个D .4个6.如图,CA AB ^,垂足为点A ,8AB =,4AC =,射线BM AB ^,垂足为点B ,一动点E 从A 点出发以2/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 运动t 秒时,DEB V 与BCA V 全等.则符合条件的t 值有( )个A .2B .3C .4D .57.如图,在ABC V 中,90ACB Ð=°,1,AC BC AD ==是BAC Ð的平分线且交BC 于点D ,DE AB ^于点E ,则BDE V 的周长为 .8.如图,在四边形ABCD 中,BD 平分ABC Ð,AD CD =,DE BC ^,垂足为点E ,ABD △的面积为38,BCD △的面积为50,则CDE V 的面积为 .9.如图,ABC V 中,90ACB Ð=°,222AC BC AB +=,点D ,E 分别在边BC ,AC 上,DE DB =,DEC B Ð=Ð,若3CE =,15AB =,则四边形ABDE 的面积是 .10.如图,在ABC V 中,D 为AB 中点,DE AB ^,180ACE BCE Ð+Ð=°,EF BC ^交BC 于F ,8AC =,12BC =,那么BF = .11.如图,在ABC V 中,AB AC =,过点A 作AD BC ∥,连接DC ,点E 是AB 边上一点,DE DC =,过点D 作DF AC ^于F ,若6BE =,则AF = .12.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.13.如图,CB CD =,180D ABC Ð+Ð=°,CE AD ^于E .(1)求证:AC 平分DAB Ð;(2)若10AE =,4DE =,求AB 的长.14.如图,180CB CD D ABC CE AD =Ð+Ð=°^,,于E ,CF AB ^交AB 的延长线于点F .(1)求证:AC 平分DAB Ð;(2)若82AE DE ==,,求AB 的长.15.如图,四边形ABDC 中,90D ABD Ð=Ð=°,点O 为BD 的中点,且OA 平分BAC Ð.(1)求证:OC 平分ACD Ð;(2)求证:OA OC ^;(3)猜想AB 、CD 与AC 的关系,并说明理由.16.如图,四边形ABCD 中,90B Ð=°,连接对角线AC ,且AC AD =,点E 在边BC 上,连接DE ,过点A作AF D E ^,垂足为F ,若AB AF =.(1)求证:①DAC FAB ÐÐ=;②DF CE EF =+;(2)若AB BC =,20CDE Ð=°,求CAF Ð的度数.17.图,已知CD BE =,DG BC ^于点G ,EF BC ^于点F ,且DG EF =.(1)求证:DGC EFB ≌△△;(2)OB OC =吗?请说明理由;(3)若30B Ð=°,ADO △是什么三角形?18.已知:点P 为EAF Ð平分线上一点,PB AE ^于B ,PC AF ^于C ,点M 、N 分别是射线AE 、AF 上的点,且PM PN =.(1)当点M 在线段AB 上,点N 在线段AC 的延长线上时(如图1).求证:BM CN =;(2)在(1)的条件下,求证:2AM AN AC +=;(3)当点M 在线段AB 的延长线上时(如图2),若:2:1AC PC =,4PC =,则四边形ANPM 的面积为_______.。

三角形的证明知识点超详细

三角形的证明知识点超详细

三角形的证明知识点超详细一、全等三角形的证明。

1. 全等三角形的性质。

- 全等三角形的对应边相等。

例如,若ABC≅ DEF,则AB = DE,BC=EF,AC = DF。

- 全等三角形的对应角相等。

即∠ A=∠ D,∠ B=∠ E,∠ C=∠ F。

2. 全等三角形的判定方法。

- SSS(边边边)- 内容:三边对应相等的两个三角形全等。

- 示例:在ABC和DEF中,若AB = DE,BC = EF,AC=DF,则ABC≅DEF。

- SAS(边角边)- 内容:两边和它们的夹角对应相等的两个三角形全等。

- 示例:在ABC和DEF中,若AB = DE,∠ B=∠ E,BC = EF,则ABC≅DEF。

- ASA(角边角)- 内容:两角和它们的夹边对应相等的两个三角形全等。

- 示例:在ABC和DEF中,若∠ A=∠ D,AB = DE,∠ B=∠ E,则ABC≅ DEF。

- AAS(角角边)- 内容:两角和其中一角的对边对应相等的两个三角形全等。

- 示例:在ABC和DEF中,若∠ A=∠ D,∠ B=∠ E,BC = EF,则ABC≅ DEF。

- HL(斜边、直角边)(适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。

- 示例:在Rt ABC和Rt DEF中,若AB = DE(斜边),AC = DF(直角边),则Rt ABC≅ Rt DEF。

二、等腰三角形的证明与性质。

1. 等腰三角形的性质。

- 等腰三角形的两腰相等。

例如,在ABC中,若AB = AC,则ABC是等腰三角形。

- 等腰三角形的两底角相等(等边对等角)。

即若AB = AC,则∠ B=∠ C。

- 等腰三角形三线合一:等腰三角形底边上的高、底边上的中线、顶角平分线互相重合。

例如,在等腰ABC(AB = AC)中,AD是底边BC上的高,则AD也是BC边上的中线和∠ BAC的平分线。

2. 等腰三角形的判定。

- 定义法:有两边相等的三角形是等腰三角形。

三角形的证明主要知识点(一)

三角形的证明主要知识点(一)

三角形的证明主要知识点(一)引言概述:三角形的证明是几何学中的重要内容,在数学学科中具有广泛的应用。

通过证明三角形的性质和定理,可以深入理解和推广三角形的各种特性。

本文将介绍三角形证明的主要知识点,帮助读者掌握三角形证明的方法和技巧。

正文内容:一、角度与边的关系1. 三角形内角和定理:三角形内所有角的和等于180度。

2. 三角形外角定理:三角形的外角等于其余两个内角的和。

3. 直角三角形的性质:直角三角形的两个锐角之和等于90度。

4. 等腰三角形的性质:等腰三角形的底角相等,等腰线段相等。

5. 等边三角形的性质:等边三角形的三个内角均为60度。

二、边的关系与比例1. 直角三角形的勾股定理:直角三角形的斜边平方等于两条直角边的平方和。

2. 正弦定理:在任意三角形中,边长与对应角度的正弦值成比例。

3. 余弦定理:在任意三角形中,边长与对应角度的余弦值成反比例。

4. 正切定理:在任意三角形中,边长与对应角度的正切值成比例。

5. 边分配定理:已知一个三角形中两边的比例和一个角的大小,可以确定另一个角的大小。

三、相似三角形的证明1. AAA相似定理:如果两个三角形的三个内角分别相等,那么这两个三角形相似。

2. AA相似定理:如果两个三角形的两个角分别相等,那么这两个三角形相似。

3. SAS相似定理:如果两个三角形的一边成比例,两边夹角相等,那么这两个三角形相似。

4. SSS相似定理:如果两个三角形的三边成比例,那么这两个三角形相似。

5. 已知三角形相似,可以证明其它三角形之间的相似关系。

四、三角形的中线和高线1. 中线的性质:在任意三角形中,三条中线交于一点,且该点到三个顶点的距离相等。

2. 高线的性质:在任意三角形中,三条高线交于一点,且该点到三个顶点的距离都相等。

3. 中线长度关系:在任意三角形中,任意两条中线的长度之和等于第三条中线的两倍。

4. 重心与形心的关系:三角形的重心是三条中线的交点,形心是三条高线的交点。

三角形全等证明题重难点

三角形全等证明题重难点

三角形全等证明题重难点嘿,今天咱们聊聊三角形全等的事儿。

你可能会想,三角形全等有什么了不起的?这不就是证明三角形两个一样大、一样形状的事吗?但是要说清楚这个题目,还真不是件简单的事儿。

三角形全等的题目,是数学里头一个非常重要的知识点。

就像人生路上的必修课,碰到了,绕也绕不开!不过,别担心,今天咱们就轻松聊,看看怎么把这些晦涩的理论搞得更简单、易懂一些。

你得明白什么叫“三角形全等”。

如果说你家的猫跟邻居家的猫差不多,那你大概就能理解全等的意思。

全等嘛,就是两个三角形,形状完全相同,大小也一样,位置可以不同,翻来倒去都一样,反正就是两个三角形,放在一起完全吻合。

这就好比两只眼睛,虽然它们是左右分开的,但眼睛的形状、大小完全一样,没差。

你看,不难吧?不过,想证明两个三角形全等,咱可不是随便说说而已。

你得通过一些具体的条件,像“SSS”啊,“SAS”啊,“ASA”啊,听上去是不是特别神秘?别急,慢慢来。

SSS这个条件,意味着三边分别相等;SAS呢,是两边和夹角相等;而ASA则是两角和夹边相等。

你听了这些条件,是不是觉得一下子云里雾里?放心,这里头没有那么复杂。

就像你去超市买菜,听见老板喊“今天白菜半价”,你就知道买了白菜就是划算的,其他啥都不管,只看这一个条件。

全等三角形也是一样,只要能满足这些条件,你就能很自信地告诉别人:这两个三角形,一模一样!“SSS”这个条件,简单来说,就是三个边对应相等。

举个例子吧,如果你和你的小伙伴两个人手里都拿着相同的尺子,量了一下自己的三角形,每个边都一样长,那你们两个三角形肯定全等。

这不就像你和你朋友都穿着同样的T恤、裤子,差不多的发型,走到哪里都像双胞胎似的,谁能分得出来谁是你,谁是他呢?这就是“SSS”的神奇之处!你只要对比三条边,差不多的,百分之百全等。

不过,要是你碰到的题目是“有边和夹角”,那就得用“SAS”了。

啥意思?就是有两边是一样长的,夹着的角也一样大。

比如你和朋友站着玩儿比划,两个人的两条腿差不多长,而两个人的腰部角度也差不多。

(2021年整理)八年级下_第一章_三角形的证明_(知识点总结和习题练习)

(2021年整理)八年级下_第一章_三角形的证明_(知识点总结和习题练习)

八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整) 编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整)的全部内容。

八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整) 编辑整理:张嬗雒老师
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整)这篇文档能够给您的工作和学习带来便利。

同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <八年级下_第一章_三角形的证明_(知识点总结和习题练习)(推荐完整)> 这篇文档的全部内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点一 等腰三角形的性质1、已知等腰三角形一个内角为50°,则其余两个内角为 。

2、如果等腰三角形的一个底角为40°,则其余各角为 。

3、等腰三角形的一个角是另一个角的2倍,那么这个等腰三角形各个内角分别为 。

4、如图所示,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF 的度数为 ( )A 、90°B 、25°C 、70°D 、605、等腰三角形一腰上的高与底边所成的角等于 ( )A 、顶角B 、顶角的一半C 、顶角的2倍D 、底角的一半6、如图所示,在△ABC 中,AB=AC ,∠A=50°,AB 垂直平分线DE交AC 于D ,交AB 于E , 则∠DBC 的度数为 ( )A 、50°B 、15°C 、30°D 、65°7、如图所示,在△ABC 中,AB=AC ,AD=DB=BC ,求∠A 的度数。

8、如图所示,点D 在AC 上,点E 在AB 上,且AB=AC ,BC=BD ,AD=DE=BE 。

求:∠A 的度数。

9、如图所示,在△ABC 中,AB=AC, ∠BAD=30°,且AD=AE ,求∠EDCA F (第4题)B (第6题) BC B E10、如图所示,在△ABC 中,AB=AC ,BF=CD ,BD=CE ,∠FDE=α,求证:2α+∠A=180°.11、在△ABC 中,AC=AB ,AB 的垂直平分线交AB 于N,交BC 的延长线于M ,∠A=50°.求:(1)∠NMB 的度数;如图(1)所示、(2)如图(2)所示,以上条件不变,试猜想∠NMB 与∠A 的关系?考点二 等腰三角形的判定1、等腰三角形一腰上的高与另一腰所夹角为45°,则顶角的度数为 。

2、在Rt △ABC 中,∠C=90°,BC=6cm ,CA=8cm ,动点P 从C 点出发,以每秒2cm 的速度沿CA 、AB 运动到B 点,则从C 点出发 s 时,可使14BCP ABC S S ∆∆=. 3、如图所示,两个全等的直角三角形都有一个锐角为30°,且较长的直角边在同一直线上,则图中的等腰三角形有 ( )A 、4个B 、3个C 、2个D 、1个B CDC (1)C (2)4、在△ABC 中,A D ⊥BC 于D 点,且D 是BC 的中点,则下列结论中正确的个数是 ( )①△ABD ≌△ACD ;②∠B=∠C ;③AD 是△ABC 的高;④AD 是△ABC 的中线;⑤AD 是△ABC 的角平分线;⑥AB=ACA 、3个B 、4个C 、5个D 、6个5、如图所示,在△ABC 中,AB=AC ,∠ABD=∠ACD ,求证:AD ⊥BC6、如图所示,D 是BC 边的中点,D E ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,且DE=DF ,求证:AB=AC8、如图所示,∠ABC 和∠ACB 的平分线相交于F ,过F 作D E ∥BC ,交AB 于D ,交AC 于E 。

求证:BD+EC=DE9、如图(1)(2)所示,思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形。

试一试,在图中画出剪的痕迹。

B CB C D A BC D EF 20o 40o 120o (1) 20o60o 100o(2)10、如图所示,等腰△ABC 中,底边BC 上有任意一点P ,则P 点到两腰上距离之和等于定长,即PD+PE=CF ,若P 点在BC 的延长线上,那么PD 、PE 和CF 存在什么关系?写出你的猜想并证明。

考点三 等边三角形 1、在△ABC 中,∠A=60°,要使△ABC 是等边三角形,则需要添加的一个条件是 。

2、如图所示,在等边三角形∠ABC 中,A D ⊥BC 于D ,OB 、OC 分别平分∠ABC 和∠ACB ,OD=5,则图中等腰三角形有 ,AD= 。

3、如图所示,若AB=AC ,AD ⊥BC ,且∠BAC=120°,则AC= AD.4、三角形三内角度数之比为1:2:3,最大边长8cm ,则最小边的长为 .5、等腰三角形的顶角为30°,腰长是4cm ,则三角形的面积是 .6、如图所示,在等边△ABC 中,BD 平分∠ABC ,过D 点作DE ⊥BC 于E , EC=1cm ,则BC= .7、下列说法中,正确的有 ( )①有一个角为60°的等腰三角形是等边三角形 ②有一个角为60°的三角形是等边三角形③两边相等的等腰三角形是等边三角形④等边三角形有3条对称轴 A 、1个 B 、2个 C 、3个 D 、4个8、如图所示,△ABC 是等边三角形,AD 是角平分线,△ADE 是等边三角形,下列结论:①AD ⊥BC ; ②EF=FD ;③BE=BD ;其中正确的个数为( )A 、3个B 、2个C 、1个D 、0个B CBB C (第2题) AB C (第3题)B9、如图所示,点C 为线段AB 上的一点,△ACM 、△CBN 是等边三角形,直线AN 、MC 交于点E ,直线BM 、CN 交于点F 。

求证:(1)AN=BM(2)△CEF 是等边三角形10、如图所示,在△ABC 中,∠ACB=90°,CD 、CE 三等分∠ACB ,分别交AB 于D 、E ,CD ⊥AB 于D 。

求证:AB=2BC11、如图所示,在等边三角形ABC 中,D 、E 分别为AB 、BC 上的点,且AD=BE ,AE 、CD 相交于点F ,AG ⊥CD ,垂足为G 。

求证:AF=2FG12、如图所示,在△MNP 中,∠P=60°,MN=NP ,M Q ⊥PN ,垂足为Q ,延长MN 至G ,取NG=NQ ,若△MNP 的周长为12,MQ=a ,求△MGQ 的周长。

BA BA BM G13、如图所示,AD 是△ABC 的中线,∠ADC=60°,BC=4,把△ADC 沿直线AD 折叠后,点C 落在C ’的位置上,求BC ’的长。

考点四 线段的垂直平分线1、已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBC 之间的关系是 。

2、如图所示,A 、B 、C 表示三个工厂,现要修建一个供水站,使它到三个工厂的距离相等,求供水站的位置P 。

3、如图所示,在△ABC 中,AB=AC=16cm ,DE 垂直平分AB ,EC=3cm 时,求BE 的长。

4、如图所示,△ABC 中,BC<AC ,AB 边上的垂直平分线DE 交AB 于D 点,交AC 于E 点,AC=9cm ,△BCE的周长为15cm ,求BC 的长。

C AC A B CD E5、如图所示,已知DE 为△ABC 的边的AB 的垂直平分线,D 为垂足,DE 交BC 于E ,且AC=5cm ,BC=8cm ,求△AEC 的周长。

6、如图所示,已知:AD 是△ABC 的∠BAC 的平分线,DE 、DF 分别是△ABD 和△ACD 的高,求证:AD 垂直平分EF 。

7、如图所示,在△ABC 中,若PM 、QN 分别垂直平分AB 、AC ,BC=10cm ,试求△APQ 的周长。

8、如图所示,107国道OA 和320国道OB 在我市相交于O 点,在∠AOB 的内部有工厂C 和D ,现要建一个货站P ,使P 到OA 、OB 的距离相等,且使PC=PD ,用尺规做出货站P 的位置(不写作法,保留作图痕迹,写出结论)。

A B C D E A B C D EF A B C M P N Q考点五 角平分线的性质1BC 于点D ,再添加一个条 ,就可以确定△ABD ≌△ACD 。

2、(小制作)如图所示,四边形ABCD 是一个平分角的仪器,其中AB=AD ,BC=DC ,将A 点放在作角平分线角的顶点处,使AD 和AB 沿着角的两边放下对准,沿AC 画一条射线AE ,AE 是角平分线。

其原理:在△ABC 和△ADC 中,AB=AD ,BC=DC ,AC 是公共边,则△ABC ≌△ ,即∠BAC=,AE 是角平分线。

3、如图所示,已知点C 是∠AOB 平分线上的一点,点P 、P ’分别在边OA 、OB 上。

如果要得到OP =OP ’,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号 。

①∠OCP=∠OCP ’;②∠OPC=∠OP ’C ;③PC=PC ’;④PP’ ⊥OC4.如图所示,BD 是∠ABC 的平分线,DE ⊥AB 于E ,ABC S =36cm 2,AB=18cm ,BC=12cm ,则DE= cm 。

5、如图所示,在△ABC 中,∠C=90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,且DE=5.8cm ,BC=11.2cm ,则BD=6、如图所示,已知在△ABC 中,∠A=90°,AB=AC ,CD 平分∠ABC ,DE ⊥BC 于E ,若BC=15cm , 则△DEB 的周长为 。

B DC A BC D E (第2题)(第1题) P ’ (第3题) ABC D E (第4题) A B E (第5题) AB C D E (第6题)7、如图所示,D 是△ABC 的一个外角平分线上的一点,求证:AB+AC<DB+DC.8、如图所示,在△ABC 中,D 为BC 的中点,DE ⊥BC 交∠BAC 的平分线AE 于E ,EF ⊥AB 于F ,EG ⊥AC 交延长线于G ,求证:BF=CG 。

9、(探究题)如图所示,∠1=∠2,CF ⊥AD ,CE ⊥AB ,CD=CB ,BE 与DF 的大小关系怎样?考点六 角平分线的判定1、如图所示,∠AOB 内一点P ,PM ⊥OA ,PN ⊥OB ,且PM=PN ,则点P 在 平分线上。

A B C D (第7题) ABC D E F G(第8题) 1 2 A B C D E F(第9题) A O B C P M N (第1题) A CD E F (第2题)2、如图所示,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则①△ABE ≌△ACF ,②△BDF ≌△CDE ,③点D 在∠BAC 的平分线上,以上结论正确的是( )。

A 、只有①B 、只有②C 、只有①和②D 、①、②、③3、如图所示,直线l 1、l 2、l 3表示三条相互交叉的公路,现在要建造一个货物中转站,要求它到三条公路的距离相等。

(1)则可以选择的地址有 处。

(2)在如图中用尺规做出这些地址(不写作法,保留痕迹)。

4、如图所示,在△ABC 中,∠B=90°,AB=7,BC=24,AC=25,△ABC 中存在一点P 到三边的距离相等,这个距离为 。

相关文档
最新文档