22.1 二次函数的图像与性质 同步练习1 含答案

合集下载

人教版 九年级数学 上册22.1 二次函数的图象性质 课后训练(含答案)

人教版 九年级数学 上册22.1 二次函数的图象性质 课后训练(含答案)

人教版九年级数学22.1 二次函数的图象性质课后训练一、选择题1. 下列对二次函数y=x2-x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2. 如图,在平面直角坐标系中,抛物线的函数解析式为y=-2(x-h)2+k,则下列结论正确的是()A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<03. 某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若商品的售价为x元/件,则可售出(350-10x)件,那么出售该商品所赚钱数y(元)与售价x(元/件)之间的函数解析式为()A.y=-10x2-560x+7350 B.y=-10x2+560x-7350C.y=-10x2+350x D.y=-10x2+350x-73504. 如图,抛物线的函数解析式是()A.y=x2-x+2B.y=x2+x+2C.y=-x2-x+2D.y=-x2+x+25. 抛物线y=x2-2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限6. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,07. 如果抛物线的顶点坐标是(3,-1),与y轴的交点坐标是(0,-4),那么这条抛物线的解析式是()A.y=-13x2-2x-4B.y=-13x2+2x-4C.y=-13(x+3)2-1D.y=-x2+6x-128. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()二、填空题9. 【2018·淮安】将二次函数y=x2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________.10. 已知二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是________.11. 已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.12. 函数y=-4x2-3的图象开口向________,对称轴是________,顶点坐标是________;当x________0时,y随x的增大而减小,当x________时,y有最________值,是________,这个函数的图象是由y=-4x2的图象向________平移________个单位长度得到的.13. 如图,在平面直角坐标系中,抛物线y=ax2(a>0)与y=a(x-2)2交于点B,抛物线y=a(x-2)2交y轴于点E,过点B作x轴的平行线与两条抛物线分别交于D,C两点.若A是x轴上两条抛物线顶点之间的一点,连接AD,AC,EC,ED,则四边形ACED的面积为________.(用含a的代数式表示)14. 已知点(x1,-7)和点(x2,-7)(x1≠x2)均在抛物线y=ax2上,则当x=x1+x2时,y的值是________.15. 在平面直角坐标系中,抛物线y=x2如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……依次进行下去,则点A2019的坐标为________.三、解答题16. 已知二次函数y=-2x2,y=-2(x-2)2,y=-2(x-2)2+2,请回答下列问题:(1)写出抛物线y=-2(x-2)2+2的顶点坐标、开口方向和对称轴;(2)将抛物线y=-2x2分别通过怎样的平移可以得到抛物线y=-2(x-2)2和y=-2(x-2)2+2?(3)如果要得到抛物线y=-2(x-2020)2-2021,应将y=-2(x-2)2怎样平移?17. 画出函数y=-x2的图象,并回答问题.解:(1)列表(请完成下面的填空):x …-2-1-0.500.512…y …-0.250-0.25-1-4…(2)描点、连线;(3)由函数图象可以看出,当x<0时,y随着x的增大而________.(填“增大”或“减小”)18. 如图,已知二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数的图象上:①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.人教版九年级数学22.1 二次函数的图象性质课后训练-答案一、选择题1. 【答案】C[解析] (1)∵二次函数y=x2-x的二次项系数为1>0,∴图象开口向上,可见A选项错误;(2)∵对称轴为直线x=-b2a=12,可见B选项错误;(3)∵原点(0,0)满足二次函数解析式y=x2-x,∴抛物线经过原点,可见C选项正确;(4)∵抛物线的开口向上,∴图象在对称轴右侧部分是上升的,可见D选项错误.综上所述,选C.2. 【答案】A[解析] ∵抛物线y=-2(x-h)2+k的顶点坐标为(h,k),由图象可知,抛物线的顶点在第一象限,∴h>0,k>0.3. 【答案】B4. 【答案】D[解析] 先设出函数解析式,然后把(0,2),(-1,0),(2,0)分别代入函数解析式,列出方程组,求出各系数即可.5. 【答案】A[解析] 二次函数y=ax2+bx+c的顶点坐标为(-b2a,4ac-b24a).∵-b2a=--22=1>0,4ac-b24a=4(m2+2)-44=m2+1>0,故此抛物线的顶点在第一象限.故选A.6. 【答案】D7. 【答案】B[解析] 设这条抛物线的解析式是y=a(x-3)2-1. ∵抛物线与y轴的交点坐标是(0,-4),∴-4=9a-1,解得a=-1 3,∴y=-13(x-3)2-1,即y=-13x2+2x-4.故选B.8. 【答案】D[解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.二、填空题9. 【答案】y =x 2+2 [解析] 二次函数y =x 2-1的图象向上平移3个单位长度,平移后的纵坐标增加3,即y =x 2-1+3=x 2+2.10. 【答案】m≥1[解析] 抛物线的对称轴为直线x =m.∵a =1>0, ∴抛物线开口向上,∴当x <m 时,y 的值随x 值的增大而减小, 而x <1时,y 的值随x 值的增大而减小, ∴m≥1.11. 【答案】[解析]∵抛物线y=ax 2+4ax +4a +1(a ≠0)过点A (m ,3),B (n ,3)两点,∴=-=-2.∵线段AB 的长不大于4,∴4a +1≥3,∴a ≥, ∴a 2+a +1的最小值为:2++1=.12. 【答案】下y 轴 (0,-3) > =0 大 -3 下 313. 【答案】8a[解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B ,∴BD =BC =2, ∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a , ∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.14. 【答案】0 [解析]依题意可知已知两点关于y 轴对称,∴x 1与x 2互为相反数,即x 1+x 2=0.当x =0时,y =a·02=0.15. 【答案】(-1010,10102)[解析] 由点A 的坐标可得直线OA 的解析式为y=x.由AA 1∥x 轴可得A 1(-1,1),又因为A 1A 2∥OA ,可得直线A 1A 2的解析式为y =x +2,进而得其与抛物线的交点A 2的坐标为(2,4),依次类推得A 3(-2,4),A 4(3,9),A 5(-3,9),…,A 2019(-2019+12,10102),即A 2019(-1010,10102). 三、解答题16. 【答案】解:(1)抛物线y =-2(x -2)2+2的顶点坐标为(2,2),开口向下,对称轴为直线x =2.(2)y =-2x 2的顶点坐标为(0,0),y =-2(x -2)2的顶点坐标为(2,0),y =-2(x -2)2+2的顶点坐标为(2,2),所以抛物线y =-2x 2向右平移2个单位长度得到抛物线y =-2(x -2)2,抛物线y =-2x 2向右平移2个单位长度,再向上平移2个单位长度得到抛物线y =-2(x -2)2+2(平移方法不唯一). (3)∵抛物线y =-2(x -2020)2-2021的顶点坐标为(2020,-2021),∴应将y =-2(x -2)2向右平移2018个单位长度,再向下平移2021个单位长度(平移方法不唯一).17. 【答案】解:(1)-4 -1 (2)如图:(3)增大18. 【答案】解:(1)把点P(-2,3)代入y =x 2+ax +3中, 得a =2,∴y =x 2+2x +3=(x +1)2+2, ∴图象的顶点坐标为(-1,2). (2)①当m =2时,n =11. ②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.。

人教版 九年级上册数学 22.1 二次函数的图象和性质(含答案)

人教版 九年级上册数学 22.1 二次函数的图象和性质(含答案)

人教版九年级数学22.1 二次函数的图象和性质一、选择题(本大题共10道小题)1. 已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A.2>y1>y2B.2>y2>y1C.y1>y2>2 D.y2>y1>22. 抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3 B.y=x2-2x-3C.y=x2-2x+3 D.y=x2+2x-33. 某人画二次函数y=ax2+bx+c的图象时,列出下表(计算没有错误):根据此表判断:一元二次方程ax2+bx+c=0的一个根x1满足下列关系式中的() A.3.2<x1<3.3 B.3.3<x1<3.4 C.3.4<x1<3.5 D.3.1<x1<3.24. 2019·丹东如图,二次函数y=ax2+bx+c的图象过点(-2,0),对称轴为直线x=1.有以下结论:①abc>0;②8a+c>0;③若A(x1,m),B(x2,m)是抛物线上的两点,当x=x1+x2时,y=c;④点M,N是抛物线与x轴的两个交点,若在x 轴下方的抛物线上存在一点P,使得PM⊥PN,则a的取值范围为a≥1;⑤若方程a(x+2)(4-x)=-2的两根为x1,x2,且x1<x2,则-2≤x1<x2<4.其中结论正确的有()A.2个B.3个C.4个D.5个5. 矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为()A.y=x2+8x+14 B.y=x2-8x+14C.y=x2+4x+3 D.y=x2-4x+36. 2019·资阳如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1 B.m≤0C.0≤m≤1 D.m≥1或m≤07. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()8. 二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.有下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中正确结论的个数为()A.1 B.2 C.3 D.49. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.c<14D.c<110. 如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是()二、填空题(本大题共8道小题)11. 若物体运动的路程s (m)与时间t (s)之间的关系式为s =5t 2+2t ,则当物体运动时间为4 s 时,该物体所经过的路程为________.12. 【2018·淮安】将二次函数y =x 2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________.13. (2019•武汉)抛物线2y ax bx c =++经过点(3,0)A -、(4,0)B 两点,则关于x 的一元二次方程2(1)a x c b bx -+=-的解是__________.14. 已知函数y =ax 2+c 的图象与函数y =-3x 2-2的图象关于x 轴对称,则a =________,c =________.15. 如图,在平面直角坐标系中,抛物线y =ax 2(a >0)与y =a (x -2)2交于点B ,抛物线y =a (x -2)2交y 轴于点E ,过点B 作x 轴的平行线与两条抛物线分别交于D ,C 两点.若A 是x 轴上两条抛物线顶点之间的一点,连接AD ,AC ,EC ,ED ,则四边形ACED 的面积为________.(用含a 的代数式表示)16. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42Ma b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)17. 如图,抛物线y =ax 2+bx +c(a ,b ,c 是常数,a≠0)与x 轴交于A ,B 两点,顶点为P(m ,n).给出下列结论:①2a +c <0;②若(-32,y 1),(-12,y 2),(12,y 3)在抛物线上,则y 1>y 2>y 3;③若关于x 的方程ax 2+bx +k =0有实数解,则k >c -n ;④当n =-1a 时,△ABP 为等腰直角三角形.其中正确的结论是________.(填序号)18. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DEAB =________.三、解答题(本大题共4道小题)19. 已知抛物线的顶点坐标是(2,3),并且经过点(0,-1),求它的解析式.20. 如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.21. 二次函数y=ax2+bx+c的图象如图所示,若关于x的方程|ax2+bx+c|=k(k≠0)有两个不相等的实数根,求k的取值范围.22. 如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).(1)求此抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(-b2a,4ac-b24a)人教版九年级数学22.1 二次函数的图象和性质-答案一、选择题(本大题共10道小题)1. 【答案】A[解析] 根据题意,可得抛物线开口向下,对称轴为直线x=-1,∴在对称轴的右侧,y随x的增大而减小.∵-1<1<2,∴2>y1>y2,故选A.2. 【答案】B[解析] 由抛物线与x轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a(x+1)(x-3).又因为抛物线与y轴交于点(0,-3),把x=0,y=-3代入y=a(x+1)(x-3),得-3=a(0+1)(0-3),即-3a=-3,解得a=1,故此抛物线的解析式为y=(x+1)(x-3)=x2-2x-3.故选B.3. 【答案】B[解析] 从表格中的数据看,当3.2≤x≤3.5时,y随x的增大而增大,且x=3.3时,y=-0.17<0,x=3.4时,y=0.08>0,故y=0一定在3.3<x<3.4这个范围内取得,∴方程的根也在此范围内.故选B.4. 【答案】A5. 【答案】A[解析] 因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点成中心对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.6. 【答案】C7. 【答案】D[解析] 由一次函数y=ax+a可知,其图象与x轴交于点(-1,0),排除A,B;当a>0时,二次函数y=ax2的图象开口向上,一次函数y=ax+a的图象经过第一、二、三象限;当a<0时,二次函数y=ax2的图象开口向下,一次函数y=ax+a的图象经过第二、三、四象限.排除C.8. 【答案】C[解析] ①∵抛物线开口向上,∴a>0. ∵抛物线的对称轴在y轴右侧,∴b<0.∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,所以①错误.②当x=-1时,y>0,∴a-b+c>0.∵-b2a=1,∴b=-2a.把b=-2a代入a-b+c>0中,得3a+c>0,所以②正确.③当x=1时,y<0,∴a+b+c<0.当x=-1时,y>0,∴a-b+c>0,∴(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,所以③正确.④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+bm+c(m为实数),即a+b≤m(am+b),所以④正确.故选C.9. 【答案】B【解析】由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2,所以x1、x2是方程x2+2x+c=x的两个不相等的实数根,整理,得:x2+x+c=0,所以∆=1–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,综上则140 110cc->⎧⎨++<⎩,解得c<-2,故选B.10. 【答案】B【解析】由题意知:在△A′B′C′移动的过程中,阴影部分总为等边三角形.当0<x≤1时,边长为x,此时y=12x×32x=34x2;当1<x≤2时,重合部分为边长为1的等边三角形,此时y=12×1×32=34;当2<x≤3时,边长为3-x,此时y=12(3-x)×32(3-x).综上,这个分段函数的图象左边为开口向上的抛物线的一部分,中间为直线的一部分,右边为开口向上抛物线的一部分,且最高点为34.故选B.二、填空题(本大题共8道小题)11. 【答案】88 m[解析] 把t=4代入函数解析式,得s=5×16+2×4=88.故填88 m.12. 【答案】y=x2+2[解析] 二次函数y=x2-1的图象向上平移3个单位长度,平移后的纵坐标增加3,即y=x2-1+3=x2+2.13. 【答案】12x =-,25x =【解析】依题意,得:9301640a b c a b c -+=⎧⎨++=⎩, 解得:12b a c a=-⎧⎨=-⎩, 所以,关于x 的一元二次方程a(x-1)2+c=b-bx 为:2(1)12a x a a ax --=-+, 即:2(1)121x x --=-+,化为:23100x x --=,解得:12x =-,25x =,故答案为:12x =-,25x =.14. 【答案】3 215. 【答案】8a [解析] ∵抛物线y =ax 2(a >0)与y =a(x -2)2交于点B , ∴BD =BC =2,∴DC =4.∵y =a(x -2)2=ax 2-4ax +4a ,∴E(0,4a),∴S 四边形ACED =S △ACD +S △CDE =12DC·OE =12×4×4a =8a.16. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <,故答案为:<.17. 【答案】②④ [解析] (1)当x =-1时,y =a -b +c >0.由x =-b 2a <12和a >0可得-b <a.∴0<a -b +c <a +a +c =2a +c ,即2a +c >0,①错误;(2)结合图象易知②正确;(3)方程ax 2+bx +k =0有实数解,即ax 2+bx +c =c -k 有实数解.∵y =ax 2+bx +c≥n ,∴c -k≥n ,即k≤c -n ,③错误;(4)设抛物线的解析式为y =-1n (x -m)2+n(n <0).令y =0,得-1n(x -m)2+n =0. ∴n 2-(x -m)2=0,∴(n -x +m)(n +x -m)=0.∴x 1=m +n ,x 2=m -n.AB =|x 1-x 2|=-2n.设对称轴交x 轴于点H ,则AH =BH =PH =-n ,∴△ABP 为等腰直角三角形,④正确.18. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)b b=3- 3. 三、解答题(本大题共4道小题)19. 【答案】解:根据题意,设抛物线的解析式为y =a(x -2)2+3.∵抛物线经过点(0,-1),∴-1=a(0-2)2+3,解得a =-1,∴y =-(x -2)2+3.20. 【答案】解:(1)∵抛物线y =ax 2+2ax +1与x 轴仅有一个交点,∴b 2-4ac =(2a)2-4a =0,解得a =1,a =0(舍去),∴抛物线的解析式:y =x 2+2x +1.(3分)(2)设直线AB 的解析式为y =kx +b ,∵抛物线解析式y =x 2+2x +1=(x +1)2,∴A(-1,0),(4分)过点B 作BD ⊥x 轴于点D ,如解图,∵OC ⊥x 轴,∴OC ∥BD ,∵C 是AB 中点,∴O 是AD 中点,∴AO =OD =1,(6分)∴点B 的横坐标为1,把x =1代入抛物线中,得y =(x +1)2=(1+1)2=4,∴B 的坐标为(1,4).(7分)把点A(-1,0) ,B(1,4)代入y =kx +b ,得⎩⎨⎧0=-k +b 4=k +b ,解得⎩⎨⎧k =2b =2, ∴直线AB 的解析式为: y =2x +2.(8分)21. 【答案】[解析] 先根据题意画出y =|ax 2+bx +c|的图象,即可得出|ax 2+bx +c|=k(k≠0)有两个不相等的实数根时k 的取值范围.解:根据题意,得y =|ax 2+bx +c|的图象如图所示.由图象易知,若|ax 2+bx +c|=k(k≠0)有两个不相等的实数根,则k >3. 22. 【答案】解:(1)由抛物线经过点A(-1,0),且对称轴为直线x =2,得⎩⎪⎨⎪⎧-b 2=21-b +c =0,(2分) 解得⎩⎨⎧b =-4c =-5,(3分)解图∴抛物线的解析式为y =x 2-4x -5.(4分)(利用抛物线对称性先求出点B 的坐标,再求出解析式也可)(2)B(5,0),C(0,-5).(6分)(3)如解图,连接BC ,易知△OBC 是直角三角形,∴过O ,B ,C 三点的圆的直径是线段BC 的长度,(8分) 由勾股定理得BC =52+52=52,∴所以所求圆的面积是π×(522)2=252π.(10分)。

人教版九年级数学上册22.1二次函数的图像和性质同步练习 附答案解析(一)

人教版九年级数学上册22.1二次函数的图像和性质同步练习 附答案解析(一)

22.1二次函数的图像和性质同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、抛物线的顶点坐标是()A.B.C.D.2、某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线(单位:米)的一部分,则水喷出的最大高度是()A.B.C. 2mD. 1m3、已知是的二次函数,与的对应值如下表:其表达式为().A.B.C.D.4、抛物线与轴的交点坐标是().A.B.C.D.5、在抛物线上的一个点是().A.B.C.D.6、一个直角三角形的两条直角边长的和为,其中一直角边长为,面积为,则与的函数的关系式是()A.B.C.D.7、如图,在矩形中,,,,,则四边形的面积的最大值是()A.B.C.8、如图,正方形的边长为,以正方形的顶点、、、为圆心画四个全等的圆.若圆的半径为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()A.B.C.D.9、若不等式对恒成立,则的取值范围是()A.B.C.10、小颖用计算器探索方程的根,作出如图所示的图象,并求得一个近似根,则方程的另一个近似根(精确到)为()A.B.C.D.11、如图,以为顶点的二次函数的图象与轴负半轴交于点,则一元二次方程的正数解的范围是()A.B.C.D.12、二次函数的图象如图所示,对称轴是直线,则下列四个结论错误的是()A.B.C.D.13、二次函数的图象如图所示,则下列说法不正确的是()A.B.C.D.14、抛物线的顶点坐标是()A.B.C.D.15、某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、二次函数的最小值为.17、抛物线的对称轴是直线.18、若抛物线经过点,则.19、若抛物线的顶点在轴的下方,则的取值范围是____________20、抛物线经过点和两点,则.(分数写成a/b形式)三、解答题(本大题共有3小题,每小题10分,共30分)21、求抛物线的顶点和对称轴.22、已知二次函数,当,求函数?;当?时,函数的值为.23、已知二次函数的图象如图所示,请结合图象,判断下列各式的符号.①;②;③;④.22.1二次函数同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、抛物线的顶点坐标是()A.B.C.D.【答案】C【解析】解:,顶点坐标为,故正确答案为:.2、某广场有一喷水池,水从地面喷出,如图,以水平地面为轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线(单位:米)的一部分,则水喷出的最大高度是()A.B.C. 2mD. 1m【答案】A【解析】解:由题意可得水喷出的最大高度为故正确答案是3、已知是的二次函数,与的对应值如下表:其表达式为().A.B.C.D.【答案】C【解析】解:二次函数经过点,抛物线的对称轴为,顶点坐标为,故设解析式为,将点代入解析式,得:,,,故正确答案是.4、抛物线与轴的交点坐标是().A.B.C.D.【答案】D【解析】解:令,,即与轴的交点坐标为,故正确答案是:.5、在抛物线上的一个点是().A.B.C.D.【答案】C【解析】解:当时,,故点不在抛物线上,当时,,故点不在抛物线上,当时,,故点在抛物线上,当时,,故点不在抛物线上,故正确答案是:.6、一个直角三角形的两条直角边长的和为,其中一直角边长为,面积为,则与的函数的关系式是()A.B.C.D.【答案】C【解析】解:根据一直角边长为,则另一条直角边为,根据题意得出:.7、如图,在矩形中,,,,,则四边形的面积的最大值是()A.B.C.D.【答案】B【解析】解:设,则,,设四边形的面积为,依题意,得,即:,,抛物线开口向下,函数有最大值为.8、如图,正方形的边长为,以正方形的顶点、、、为圆心画四个全等的圆.若圆的半径为,且,阴影部分的面积为,则能反映与之间函数关系的大致图象是()A.B.C.D.【答案】D【解析】解:易得阴影部分的面积为个圆的面积,故由题意得,属于二次函数,根据自变量的取值为,有实际意义的函数在第一象限,故正确的选项应为9、若不等式对恒成立,则的取值范围是()A.B.C.D.【答案】D【解析】解:由得,,当时,不成立,,关于的一次函数,当时,,当时,,不等式对恒成立,,解得.10、小颖用计算器探索方程的根,作出如图所示的图象,并求得一个近似根,则方程的另一个近似根(精确到)为()A.B.C.D.【答案】D【解析】解:抛物线与轴的一个交点为,又抛物线的对称轴为:,另一个交点坐标为:,则方程的另一个近似根为.11、如图,以为顶点的二次函数的图象与轴负半轴交于点,则一元二次方程的正数解的范围是()A.B.C.D.【答案】C【解析】解:二次函数的顶点为,对称轴为,而对称轴左侧图象与轴交点横坐标的取值范围是,右侧交点横坐标的取值范围是.12、二次函数的图象如图所示,对称轴是直线,则下列四个结论错误的是()A.B.C.D.【答案】B【解析】解:因为二次函数的图象与轴的交点在轴的上方,所以;由已知抛物线对称轴是直线,得;由图知二次函数图象与轴有两个交点,故有;直线与抛物线交于轴的下方,即当时,,即.13、二次函数的图象如图所示,则下列说法不正确的是()A.B.C.D.【答案】D【解析】解:抛物线与轴有两个交点,;抛物线开口向上,;抛物线与轴的交点在轴的正半轴,;抛物线的对称轴在的正半轴上,.14、抛物线的顶点坐标是()A.B.C.D.【答案】D【解析】解:顶点式,顶点坐标是,抛物线的顶点坐标为.15、某工厂一种产品的年产量是件,如果每一年都比上一年的产品增加倍,两年后产品与的函数关系是()A.B.C.D.【答案】C【解析】解:某工厂一种产品的年产量是件,每一年都比上一年的产品增加倍,一年后产品是:,两年后产品y与x的函数关系是:.二、填空题(本大题共有5小题,每小题5分,共25分)16、二次函数的最小值为.【答案】-4【解析】解:二次函数的开口向上,顶点坐标为,所以最小值为.故答案为:.17、抛物线的对称轴是直线.【答案】【解析】解:,其对称轴为.故答案是:.18、若抛物线经过点,则.【答案】-1【解析】解:抛物线经过点,,解得:.故答案为:.19、若抛物线的顶点在轴的下方,则的取值范围是____________【答案】【解析】解:此抛物线的顶点坐标为由题意得即20、抛物线经过点和两点,则.(分数写成a/b形式)【答案】0【解析】解:把点和分别代入得由方程组得,则.三、解答题(本大题共有3小题,每小题10分,共30分)21、求抛物线的顶点和对称轴.【解析】解:,抛物线的顶点坐标为,对称轴是.故答案是:,.22、已知二次函数,当,求函数?;当?时,函数的值为.【解析】解:把代入函数解析式得:;令,则有:,,解得,;综上可知当时,;当,或时,函数的值为.正确答案是:;,.23、已知二次函数的图象如图所示,请结合图象,判断下列各式的符号.①;②;③;④.【解析】解:①抛物线开口向下,则,对称轴在轴的左侧,则,则,抛物线与轴的交点在轴的下方,则,;②抛物线与轴没有交点,所以;③当自变量为时,图象在轴下方,则时,;④当自变量为时,图象在轴下方,则时,.。

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

部编数学九年级上册专题22.1二次函数的图象和性质(基础)(解析版)含答案

专题22.1 二次函数的图象和性质目录二次函数的定义 (1)二次函数求参数 (3)二次函数一般式................................................................................................................................42y ax =性质.....................................................................................................................................42y ax =图像开口.............................................................................................................................62y ax =图像问题.............................................................................................................................7()2y a x h k =-+顶点坐标...........................................................................................................9()2y a x h k =-+性质.................................................................................................................10()2y a x h k =-+图像平移 (13)二次函数一般式配凑顶点式 (14)二次函数图像问题 (15)二次函数比较大小 (19)二次函数性质综合..........................................................................................................................21二次函数的定义【例1】下列函数中,属于二次函数的是( )A .23y x =-B .22(1)y x x =+-C .2(1)y x x =+D .22y x =-【解答】解:A .不含有x 的二次项,所以A 不符合题意;B .化简后21y x =+,不含有x 的二次项,所以B 不符合题意;C .符合题意;D .22y x -=-,不含有x 的二次项,所以D 选项不符合题意.一般的,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数叫做二次函数。

人教版九年级数学上册22.1.1二次函数同步测试及答案(2021新)

人教版九年级数学上册22.1.1二次函数同步测试及答案(2021新)

二次函数 22.1__二次函数的图象和性质__22.1.1 二次函数 [见B 本P12]1.下列函数是二次函数的是( C )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =x -22.二次函数y =3x 2-2x -4的二次项系数与常数项的和是( B )A .1B .-1C .7D .-63.自由落体公式h =12gt 2(g 为常量)中,h 与t 之间的关系是( C ) A .正比例函数 B .一次函数C .二次函数D .以上答案都不对4.已知二次函数y =3(x -2)2+1,当x =3时,y 的值为( A )A .4B .-4C .3D .-35.如图22-1-1所示,在直径为20 cm 的圆形铁片中,挖去了四个半径都为x cm 的圆,剩余部分的面积为y cm 2,则y 与x 间的函数关系式为( C )图22-1-1A .y =400π-4πx 2B .y =100π-2πx 2C .y =100π-4πx 2D .y =200π-2πx 2【解析】 S 剩余=S 大圆-4S 小圆=π·⎝⎛⎭⎫2022-4πx 2=100π-4πx 2,故选C.6.二次函数y =2x (x -3)的二次项系数与一次项系数的和为( D )A .2B .-2C .-1D .-4【解析】 y =2x (x -3)=2x 2-6x ,所以二次项系数与一次项系数的和=2+(-6)=-4,故选D.7.下列函数关系式,可以看作二次函数y =ax 2+bx +c (a ≠0)模型的是( D )A .圆的周长与圆的半径之间的关系B .我国人口年自然增长率为1%,我国人口总数随年份的变化关系C .在一定距离内,汽车行驶速度与行驶时间的关系D .正方体的表面积与棱长的关系【解析】 A 中,圆的周长C 与圆的半径r 是一次函数C =2πr ;B 中,若我国原有人口为a ,x 年后人口数为y =a (1+1%)x 也不属于二次函数;C 中距离一定,速度与时间为反比例函数;只有D 中表面积S 与棱长a 的关系为S =6a 2,符合二次函数关系式.8.二次函数y =ax 2中,当x =-1时,y =8,则a =__8__.【解析】 将x =-1,y =8代入y =ax 2中,解得a =8. 29.如图22-1-2所示,长方体的底面是边长为x cm 的正方形,高为6 cm ,请你用含x 的代数式表示这个长方体的侧面展开图的面积S =__24x __,长方体的体积为V =__6x 2__,各边长的和L =__8x +24__,在上面的三个函数中,__V =6x 2__是关于x 的二次函数.【解析】 长方体的侧面展开图的面积S =4x ×6=24x ;长方体的体积为V =x 2×6=6x 2;各边长的和L =4x ×2+6×4=8x +24,其中,V =6x 2是关于x 的二次函数. 10.若y =x m 是关于x 的二次函数,则(m +2 011)2=__2__013__.【解析】 由y =x m 是关于x 的二次函数,得m =2,所以(m +2 011)2=( 2 013)2=2 013.11.已知函数y =(a +2)x 2+x -3是关于x __a ≠-2__.【解析】 ∵二次函数中,二次项系数不能为0,∴a +2≠0,即a ≠-2.12.已知函数y =(k 2-4)x 2+(k +2)x +3,(1)当k __≠±2__时,它是二次函数;(2)当k __=2__时,它是一次函数.【解析】 根据一次函数、二次函数定义求解.(1)k 2-4≠0,即k ≠±2时,它是二次函数.(2)∵⎩⎪⎨⎪⎧k 2-4=0,k +2≠0, ∴⎩⎪⎨⎪⎧k =±2,k ≠-2. ∴k =2. 13.把8米长的钢筋,焊成一个如图22-1-3所示的框架,使其下部为矩形,上部为半圆形.请你写出钢筋所焊成框架的面积y (平方米)与半圆的半径x (米)之间的函数关系式.图22-1-3 解:半圆面积:12πx 2, 矩形面积:2x ×12×(8-2x -πx ) =8x -(2+π)x 2,∴y =12πx 2+8x -(2+π)x 2, 即y =-⎝⎛⎭⎫12π+2x 2+8x . 14.若y =(m -1)xm 2+1+mx +3是二次函数,则m 的值是( B )A .1B .-1C .±1D .2【解析】 根据题意得⎩⎪⎨⎪⎧m 2+1=2,m -1≠0,解得⎩⎪⎨⎪⎧m =±1,m ≠1,∴m =-1,故选B. 15.如果函数y =(m -3)xm 2-3m +2+mx +1是二次函数,求m .解:依题意得⎩⎪⎨⎪⎧m 2-3m +2=2,m -3≠0,解得m =0. 16.如图22-1-4,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为20 cm ,AC 与MN 在同一条直线上,开始时点A 与点N 重合,让△ABC 以2 cm/s 的速度向左运动,最终点A 与点M 重合,求(1)重叠部分的面积y (cm 2)与时间t (s)之间的函数关系式和自变量的取值范围.(2)当t =1,t =2时,重叠部分的面积.图22-1-4解:(1)∵△ABC 是等腰直角三角形,∴重叠部分也是等腰直角三角形,又∵AN =2t ,∴AM =MN -AN =20-2t ,∴MH =AM =20-2t ,∴重叠部分的面积为y =12(20-2t )2=2t 2-40t +200. 所以自变量的取值范围为0≤t ≤10.(2)当t =1时,y =162(cm 2)当t =2时,y =128(cm 2).17.如图22-1-5,小亮家去年建了一个周长为80 m 的矩形养鱼池. (1)如果设矩形的一边长为x m ,那么另一边的长为________m ;(2)如果设矩形的面积为y m 2,那么用x 表示y 的表达式为y =________,化简后为y =________;(3)根据上面得到的表达式填写下表:x 5 10 15 20 25 30 35y(4)请指出上表中边长x 为何值时,矩形的面积y 最大.图22-1-5 【解析】 S 矩形=长×宽,(1)另一边长为12(80-2x )=(40-x )m. 解:(1)40-x .(2)x (40-x ),-x 2+40x .(3)175,300,375,400,375,300,175.(4)当x =20时,y 最大为400 m 2.18.如图22-1-6,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,求y 与x 之间的函数关系式.解:如图,把△ABC 绕A 逆时针旋转90°到△ADE ,则BC =DE ,AC =AE .设BC =k ,则AC =AE =4k ,DE =k ,过D 作DF ⊥AC 于F ,则AF =DE =k ,CF =3k ,DF =4k ,由勾股定理得CF 2+DF 2=CD 2,∴(3k )2+(4k )2=x 2,∴x 2=25k 2,∴k 2=x 225. y =S 四边形ABCD =S 梯形ACDE=12(DE +AC )·AE =12(k +4k )·4k =10k 2=10×x 225=25x 2,故y 与x 之间的函数关系式为y =25x 2.。

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

人教版九年级上《22.1二次函数的图象和性质》练习题含答案

二次函数图象与性质(1)1. 二次函数的定义:一般地,形如()20y ax bx c a b c a =++≠,,为常数,且的函数叫做二次函数,其中a 为二次项系数,b 为一次项系数,c 为常数项。

2. 当b =0且c =0时:二次函数变为()20y ax a =≠, (1)当a >0时,其图象如下:xyy = 2∙x 2y = x 2y = 12∙x 2y =110∙x 2O(2)当a <0时,其图象如下:可以看到:对于抛物线2y ax =,a 越大,开口越小。

3. 二次函数()20y axa =≠的图象与性质()20y ax a =>()20y ax a =<开口方向上下顶点坐标 (0,0) 对称轴y 轴性质在y 轴的左侧,y 随x 的增大而减小,在y 轴的右侧,y 随x 的增大而增大在y 轴的左侧,y 随x 的增大而增大,在y 轴的右侧,y 随x 的增大而减小最值函数有最小值,最小值为0函数有最大值,最大值为0例题1 已知函数42)2(-++=k kx k y 是二次函数,且当0>x 时,y 随x 的增大而增大。

(1)求k 的值;(2)写出抛物线的顶点坐标和对称轴。

思路分析:由二次函数的定义,求出k 的值,然后写出顶点坐标和对称轴。

答案:(1)由二次函数的定义,得242k k +-=,解得13k =-,22k =;当3k =-时,原函数为2y x =-,当0>x 时,y 随x 的增大而减小,故3k =-不合题意,舍去;当2k =时,原函数为24=y x ,当0>x 时,y 随x 的增大而增大,符合题意; 故2k =。

(2)抛物线24=y x 的顶点坐标为(0,0),对称轴为y 轴。

点评:注意对k 的值进行合理的取舍。

例题2 (1)已知A (1,y 1)、B (-2,y 2)、C (-2,y 3)在函数y =241x 的图象上,则y 1、y 2、y 3的大小关系是 。

人教版数学九年级上册_22.1《二次函数的图像和性质》测试题(含答案及解析)

人教版数学九年级上册_22.1《二次函数的图像和性质》测试题(含答案及解析)

二次函数的图像和性质测试题时间:90分钟总分:100题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3+√3,y3)三点.则关于y1,y2,y3大小关系正确的是()A. y1>y2>y3B. y1>y3>y2C. y2>y1>y3D. y3>y1>y22.如图是二次函数y=ax2+bx+c的图象,有下面四个结论:①abc>0;②a−b+c>0;③2a+3b>0;④c−4b>0其中,正确的结论是()A. ①②B. ①②③C. ①②④D. ①③④3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a−b+c<0,其中正确的个数是()A. 4个B. 3个C. 2个D. 1个4.在同一平面直角坐标系中,函数y=ax+b与y=ax2−bx的图象可能是()A. B.C. D.5.将抛物线y=−3x2平移,得到抛物线y=−3(x−1)2−2,下列平移方式中,正确的是()A. 先向左平移1个单位,再向上平移2个单位C. 先向右平移1个单位,再向上平移2个单位D. 先向右平移1个单位,再向下平移2个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,下列结论:①b2−4ac<0;②abc>0;③a−b+c<0;④m>−2,其中,正确的个数有()A. 1B. 2C. 3D. 47.若抛物线y=x2−2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A. y=(x−2)2+3B. y=(x−2)2+5C. y=x2−1D. y=x2+48.二次函数y=2x2−3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点9.在二次函数y=−x2+2x+1的图象中,若y随x的增大而减少,则x的取值范围是()A. x<1B. x>1C. x<−1D. x>−110.直线y=52x−2与抛物线y=x2−12x的交点个数是()A. 0个B. 1个C. 2个D. 互相重合的两个二、填空题(本大题共10小题,共30.0分)11.已知抛物线y=x2−(k+2)x+9的顶点在坐标轴上,则k的值为______.12.二次函数y=−x2+2x+2图象的顶点坐标是______.13.函数y=x2+mx−4,当x<2时,y随x的增大而减小,则m的取值范围是______ .14.抛物线y=ax2+bx+c经过点A(−5,4),且对称轴是直线x=−2,则a+b+c=______ .15.二次函数y=−2(x−1)2+5的图象的对称轴为______ ,顶点坐标为______ .16.如图,若抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为______ .17.如图,抛物线C1:y=12x2经过平移得到抛物线C2:y=12x2+2x,抛物线C2的对称轴与两段抛物线所围成的阴影部分的面积是______ .18.已知(−3,y1),(4,y2),(−1,y3)是二次函数y=x2−4x上的点,则y1,y2,y3从小到大用“<”排列是______.19.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,对称轴是直线x=−1,点B的坐标为(1,0).下面的四个结论:①AB=4;②b2−4ac>0;③ab<0;④a−b+c<0,其中正确的结论是______ (填写序号).20.如图,抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(−3,y2),则y1>y2;④无论a,b,c取,0);⑤am2+bm+何值,抛物线都经过同一个点(−caa≥0,其中所有正确的结论是______ .三、计算题(本大题共4小题,共24.0分)21.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.22.已知二次函数y=(m−2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标和对称轴.23.已知函数y=−x2+(m−1)x+m(m为常数).(1)该函数的图象与x轴公共点的个数是______.A.0B.1C.2D.1或2(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当−2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.24.如图,已知二次函数y=ax2+bx+c的图象过点A(−1,0)和点C(0,3),对称轴为直线x=1.(1)求该二次函数的关系式和顶点坐标;(2)结合图象,解答下列问题:①当−1<x<2时,求函数y的取值范围.②当y<3时,求x的取值范围.四、解答题(本大题共2小题,共16.0分)25.如图,已知抛物线y=−x2+bx+c与x轴交于点A(−1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−b2a ,4ac−b24a)(m2+1)=0有实数根.26.已知关于x的一元二次方程x2−(m+1)x+12(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图(2)先作y=x2−(m+1)x+12形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2−4n的最大值和最小值.答案和解析【答案】 1. A 2. C 3. B 4. C 5. D6. B7. C8. D 9. B 10. C11. 4,−8,−2 12. (1,3) 13. m ≤−4 14. 415. x =1;(1,5) 16. (−2,0) 17. 418. y 2<y 3<y 1 19. ①②④ 20. ②④⑤21. 解:(1)设抛物线的解析式为y =a(x −3)2+5, 将A(1,3)代入上式得3=a(1−3)2+5,解得a =−12, ∴抛物线的解析式为y =−12(x −3)2+5, (2)∵A(1,3)抛物线对称轴为:直线x =3 ∴B(5,3),令x =0,y =−12(x −3)2+5=12,则C(0,12), △ABC 的面积=12×(5−1)×(3−12)=5.22. 解:(1)把(0,5)代入y =(m −2)x 2+(m +3)x +m +2得m +2=5, 解得m =3所以二次函数解析式为y =x 2+6x +5; (2)因为y =x 2+6x +5=(x +3)2−4,所以此二次函数图象的顶点坐标为(−3,−4),对称轴为直线x =−3. 23. D24. 解:(1)根据题意得{a −b +c =0c =3−b2a =1,解得{a =−1b =2c =3, 所以二次函数关系式为y =−x 2+2x +3,因为y =−(x −1)2+4,所以抛物线的顶点坐标为(1,4);(2)①当x =−1时,y =0;x =2时,y =3; 而抛物线的顶点坐标为(1,4),且开口向下, 所以当−1<x <2时,0<y ≤4;②当y =3时,−x 2+2x +3=3,解得x =0或2, 所以当y <3时,x <0或x >2.25. 解:(1)由点A(−1,0)和点B(3,0)得{−9+3b +c =0−1−b+c=0,解得:{b=2,(2)令x =0,则y =3, ∴C(0,3),∵y =−x 2+2x +3=−(x −1)2+4, ∴D(1,4);(3)设P(x,y)(x >0,y >0),S △COE =12×1×3=32,S △ABP =12×4y =2y ,∵S △ABP =4S △COE ,∴2y =4×32, ∴y =3,∴−x 2+2x +3=3,解得:x 1=0(不合题意,舍去),x 2=2, ∴P(2,3).26. 解:(1)对于一元二次方程x 2−(m +1)x +12(m 2+1)=0,△=(m +1)2−2(m 2+1)=−m 2+2m −1=−(m −1)2, ∵方程有实数根, ∴−(m −1)2≥0, ∴m =1.(2)由(1)可知y =x 2−2x +1=(x −1)2, 图象如图所示:平移后的解析式为y =−(x +2)2+2=−x 2−4x −2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x +n +2=0, 由题意∆≥0,∴36−4n −8≥0, ∴n ≤7,∵n ≥m ,m =1, ∴1≤n ≤7, 令,∴n =2时,y′的值最小,最小值为−4, n =7时,y′的值最大,最大值为21, ∴n 2−4n 的最大值为21,最小值为−4.1. 解:二次函数对称轴为直线x=−−62×1=3,3−(−1)=4,3−1=2,3+√3−3=√3,∵4>2>√3,∴y1>y2>y3.故选A.先求出二次函数的对称轴,再求出点A、B、C到对称轴的距离,然后根据二次函数增减性判断即可.本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性以及增减性,确定出各点到对称轴的距离的大小是解题的关键.2. 解:∵抛物线开口向上,∴a>0;∵抛物线的对称轴在y轴的右侧,∴x=−b2a>0,∴b<0;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵x=−1时,y>0,∴a−b+c>0,所以②正确;∵x=−b2a =13,∴2a+3b=0,所以③错误;∵x=2时,y>0,∴4a+2b+c>0,把2a=−3b代入得−6b+2b+c>0,∴c−4b>0,所以④正确.故选:C.根据抛物线开口方向得到a>0;根据对称轴得到x=−b2a>0,则b<0;根据抛物线与y轴的交点在x轴下方得到c<0,则abc>0,可判断①正确;当自变量为−1时对应的函数图象在x轴上方,则a−b+c>0,可判断②正确;根据抛物线对称轴方程得到x=−b2a =13,则2a+3b=0,可判断③错误;当自变量为2时对应的函数图象在x轴上方,则4a+2b+c>0,把2a=−3b代入可对④进行判断.本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=--b2a;抛物线与y轴的交点坐标为(0,c).3. 解:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;>0,即x1+x2>0,故③正确;由对称轴x>0,可知x1+x22由可知抛物线与x轴的左侧交点的横坐标的取值范围为:−1<x<0,∴当x=−1时,y=a−b+c<0,故④正确.故选:B.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查二次函数图象与系数的关系,熟练掌握二次函数y=ax2+bx+c系数符号与抛物线开口方向、对称轴、与x轴、y轴的交点是关键.4. 解:A、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线>0,应在y轴的右侧,故不合题意,图形错误;y=ax2−bx来说,对称轴x=b2aB、对于直线y=ax+b来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2−bx<0,应在y轴的左侧,故不合题意,图形错误;来说,对称轴x=b2aC、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx>0,应在y轴的右侧,故符合题意;来说,图象开口向上,对称轴x=b2aD、对于直线y=ax+b来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2−bx 来说,图象开口向下,a<0,故不合题意,图形错误;故选:C.首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.5. 解:∵y=−3x2的顶点坐标为(0,0),y=−3(x−1)2−2的顶点坐标为(1,−2),∴将抛物线y=−3x2向右平移1个单位,再向下平移2个单位,可得到抛物线y=−3(x−1)2−2.故选:D.找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.6. 解:如图所示:图象与x轴有两个交点,则b2−4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=−1时,a−b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:−2,故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c−m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c−m=0有两个不相等的实数根,故④正确.故选:B.直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.此题主要考查了二次函数图象与系数的关系,正确把握二次函数与方程之间的关系是解题关键.7. 解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x−1)2+2,∴原抛物线图象的解析式应变为y=(x−1+1)2+2−3=x2−1,故答案为C.思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.8. 解:A、a=2,则抛物线y=2x2−3的开口向上,所以A选项错误;B、当x=2时,y=2×4−3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2−3=0,此方程有两个不相等的实数解,所以D选项正确.故选D.根据二次函数的性质对A、C进行判断;根据二次函数图象上点的坐标特征对B进行判断;利用方程2x2−3=0解的情况对D进行判断.本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(−b2a ,4ac−b24a),对称轴为直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a时,y随x的增大而增大;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小.9. 解:y=−x2+2x+1=−(x−1)2+2,抛物线的对称轴为直线x=1,∵a=−1<0,∴当x>1时,y随x的增大而减少.故选B.先配方得到抛物线的对称轴为直线x=1,然后根据二次函数的性质求解.本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(−b2a ,4ac−b24a),对称轴直线x=−b2a,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<−b2a时,y随x的增大而减小;x>−b2a 时,y随x的增大而增大;x=−b2a时,y取得最小值4ac−b24a,对称即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<−b2a 时,y随x的增大而增大;x>−b2a时,y随x的增大而减小;x=−b2a时,y取得最大值4ac−b24a,即顶点是抛物线的最高点.10. 解:直线y=52x−2与抛物线y=x2−12x的交点求法是:令52x−2=x2−12x,∴x2−3x+2=0,∴x1=1,x2=2,∴直线y=52x−2与抛物线y=x2−12x的个数是2个.故选C.根据直线与二次函数交点的求法得出一元二次方程的解,即可得出交点个数.此题主要考查了一元二次方程的性质,根据题意得出一元二次方程的解的个数是解决问题的关键.11. 解:当抛物线y=x2−(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2−4×9=0,解得k=4或k=−8;当抛物线y=x2−(k+2)x+9的顶点在y轴上时,x=−b2a =k+22=0,解得k=−2.故答案为:4,−8,−2.由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.12. 解:∵y=−x2+2x+2=−(x2−2x+1)+3=−(x−1)2+3,故顶点的坐标是(1,3).故填空答案:(1,3).此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.求抛物线的顶点坐标、对称轴的方法.13. 解:∵x<2时,y随x的增大而减小,∴−m2×1≥2,∴m≤−4.故答案为:m≤−4.根据二次函数的性质,二次函数的顶点的横坐标不小于2列式计算即可得解.本题考查了二次函数的性质,熟记性质,根据顶点的横坐标列出不等式是解题的关键.14. 解:∵对称轴方程为x=−2,∴−b2a=−2,整理可得b=4a,∵抛物线y=ax2+bx+c经过点A(−5,4),∴4=25a−5b+c,把b=4a代入可得,4=25a−20a+c,解得c=4−5a,∴抛物线解析式为y=ax2+4ax+4−5a,当x=1时,则有a+b+c=a+4a+4−5a=4,故答案为:4.把A点坐标代入抛物线解析式结合对称轴方程可用a分别表示出b和c,则可用a表示出抛物线解析式,再令x=1代入可求得y的值,即a+b+c的值.本题主要考查二次函数的解析式,分别用a表示出b和c,得出抛物线解析式是解题的关键.15. 解:∵y=−2(x−1)2+5,∴抛物线顶点坐标为(1,5),对称轴为x=1,故答案为:x=1,(1,5).由抛物线解析式可求得其顶点坐标及对称轴.本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).16. 解:∵抛物线y=ax2+bx+c上的P(4,0),Q两点关于它的对称轴x=1对称,∴P,Q两点到对称轴x=1的距离相等,∴Q点的坐标为:(−2,0).故答案为:(−2,0).直接利用二次函数的对称性得出Q点坐标即可.此题主要考查了二次函数的性质,正确利用函数对称性得出答案是解题关键.17. 解:抛物线C1:y=12x2的顶点坐标为(0,0),∵y=12x2+2x=12(x+2)2−2,∴平移后抛物线的顶点坐标为(−2,2),对称轴为直线x=−2,当x=−2时,y=12×(−2)2=2,∴平移后阴影部分的面积等于如图三角形的面积为:12×(2+2)×2=4,故答案为:4.确定出抛物线y=12x2+2x的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.18. 解:y1=(−3)2+4×3=21,y2=42−4×4=0,y3=(−1)2+4×1=5,∴y2<y3<y1,故答案为:y2<y3<y1,可分别求出y1、y2、y3的值后,再进行比较大小.本题考查二次函数图象上的点的特征,解题的关键是求出各点的函数值,本题属于基础题型.19. 解:∵抛物线对称轴是直线x=−1,点B的坐标为(1,0),∴A(−3,0),∴AB=4,故选项①正确;∵抛物线与x轴有两个交点,∴b2−4ac>0,故选项②正确;∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴a,b同号,∴ab>0,故选项③错误;当x=−1时,y=a−b+c此时最小,为负数,故选项④正确;故答案为:①②④.利用二次函数对称性以及结合b2−4ac的符号与x轴交点个数关系,再利用数形结合分别分析得出答案.此题主要考查了二次函数图象与系数的关系,正确判断a−b+c的符号是解题关键.20. 解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(−1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c2−bc+aca=c(a−b+c)a,∵当x=−1时,y=a−b+c=0,∴当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(−ca,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=−2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=−ca 时,y=a⋅(−ca)2+b⋅(−ca)+c=c(a−b+c)a且a−b+c=0可判断④;由x=1时函数y取得最小值及b=−2a可判断⑤.本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.21. (1)设顶点式y=a(x−3)2+5,然后把A点坐标代入求出a即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出C点坐标,然后根据三角形面积公式求解.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.22. (1)把已知点的坐标代入y =(m −2)x 2+(m +3)x +m +2可求出m 的值,从而得到抛物线解析式;(2)把(1)中的解析式配成顶点式,从而得到二次函数图象的顶点坐标和对称轴.本题考查了在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.23. 解:(1)∵函数y =−x 2+(m −1)x +m(m 为常数),∴△=(m −1)2+4m =(m +1)2≥0,则该函数图象与x 轴的公共点的个数是1或2,故选D ;(2)y =−x 2+(m −1)x +m =−(x −m−12)2+(m+1)24, 把x =m−12代入y =(x +1)2得:y =(m−12+1)2=(m+1)24, 则不论m 为何值,该函数的图象的顶点都在函数y =(x +1)2的图象上;(3)设函数z =(m+1)24,当m =−1时,z 有最小值为0;当m <−1时,z 随m 的增大而减小;当m >−1时,z 随m 的增大而增大,当m =−2时,z =14;当m =3时,z =4,则当−2≤m ≤3时,该函数图象的顶点坐标的取值范围是0≤z ≤4.(1)表示出根的判别式,判断其正负即可得到结果;(2)将二次函数解析式配方变形后,判断其顶点坐标是否在已知函数图象即可;(3)根据m 的范围确定出顶点纵坐标范围即可.此题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的图象与性质是解本题的关键.24. (1)把A 点和C 点坐标代入y =ax 2+bx +c 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出a 、b 、c 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x 为−1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y <3时,x 的取值范围.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.25. (1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数b 、c 的值,进而可得到抛物线的对称轴方程;(2)令x =0,可得C 点坐标,将函数解析式配方即得抛物线的顶点C 的坐标;(3)设P(x,y)(x >0,y >0),根据题意列出方程即可求得y ,即得D 点坐标.此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形面积的求法等知识,根据S△ABP=4S△COE列出方程是解决问题的关键.26. (1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;本题考查抛物线与x轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.。

22.1 《二次函数的图象和性质》测试题练习题常考题试卷及答案

22.1 《二次函数的图象和性质》测试题练习题常考题试卷及答案

22.1 二次函数的图象和性质一、单选题(共20题;共40分)1..抛物线y=(x-1)2+3的对称轴是()A.直线x=1B.直线x=-1C.直线x=3D.直线x=-32.若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式()A. y=(x+6)2B. y=x2+62C. y=x2+6xD. y=x2+12x3.将二次函数y=2x2的图象向左平移1个单位,则平移后的函数解析式( )A. y=2x2﹣1B. y=2x2+1C. y=2(x﹣1)2D. y=2(x+1)24.抛物线y=2(x+3)2+4的对称轴的方程是( )A. x=3B. x=-3C. x=32D. x=-25.已知二次函数y=3(x﹣1)2+k的图象上有三点A(√2,y1),B(2,y2),C(﹣√5,y3),则y1、y2、y3的大小关系为()A. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y3>y2>y16.在平直角坐标系中,如果抛物线y=4x2不动,而把x轴、y轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是()A. y=4(x﹣2)2+2B. y=4(x+2)2﹣2C. y=4(x﹣2)2﹣2D. y=4(x+2)2+27.将抛物线y=x2向上平移3个单位长度,再向右平移5个单位长度,所得的抛物线为()A. y=(x+3)2+5B. y=(x−3)2+5C. y=(x+5)2+3D. y=(x−5)2+38.下列函数中,属于二次函数的是()A. y=2xB. y=﹣2x﹣1C. y=x2+2D. y=√x2−19.抛物线y=(x﹣1)2+3的顶点坐标是()A. (1,3)B. (﹣1,3)C. (1,﹣3)D. (3,﹣1)10.已知抛物线 y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该二次函数有( )A. 最小值-3B. 最大值-3C. 最小值2D. 最大值2 11.将二次函数y=x 2的图象向右平移1个单位,那么得到的图象对应的函数表达式为( )A. y=x 2-1B. y=x 2+1C. y=(x-1)2D. y=(x+1)2 12.若抛物线y=a 1x 2 , y=a 2x 2的形状相同,那么( )A.a 1=a 2B.a 1=-a 2C.|a 1|=|a 2|D.a 1与a 2的关系无法确定 13.若二次函数y=x 2+bx+c 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,且过点(5,5),则关于x 的方程x 2+bx+c=5的解为( ) A. x 1=0或x 2=4 B. x 1=1或x 2=5 C. x 1=﹣1或 x 2=5 D. x 1=1或x 2=﹣514.将二次函数y=x 2﹣2x ﹣3化成y=(x ﹣h )2+k 形式,则h+k 结果为( ) A. ﹣5 B. 5 C. 3 D. ﹣3 15.二次函数y =x 2−5x +6 与 x 轴的交点坐标是( )A. (2,0)(3,0)B. (-2,0)(-3,0)C. (0,2)(0,3)D. (0,-2)(0,-3) 16.与抛物线y =- 45 x 2-1顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是( )A. y =- 45 x 2-1 B. y = 45 x 2-1 C. y =- 45 x 2+1 D. y = 45 x 2+117.二次函数y=3x 2﹣4的图象是一条抛物线,下列关于该抛物线的说法正确的() A. 抛物线开口向下 B. 抛物线经过点(3,4) C. 抛物线的对称轴是直线x=1 D. 抛物线与x 轴有两个交点 18.在同一平面直角坐标系中,先将抛物线A :y =x 2﹣2通过左右平移得到抛物线B ,再将抛物线B 通过上下平移得到抛物线C :y =x 2﹣2x+2,则抛物线B 的顶点坐标为( )A. (﹣1,2)B. (1,﹣2)C. (1,2)D. (﹣1,﹣2)19.已知点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为( )A. (-3,7)B. (-1,7)C. (-4,10)D. (0,10)20.中国贵州省内的射电望远镜( FAST )是目前世界上口径最大,精度最高的望远镜,根据有关资料显示,该望远镜的轴截面呈现抛物线状,口径AB为500米,最低点O到口径面AB的距离是100米,若按如图(2)建立平面直角坐标系,则抛物线的解析式是( )A. y=1625x2−100 B. y=−1625x2−100 C. y=1625x2 D. y=−1625x2二、填空题(共20题;共20分)21.将抛物线y=x2向左平移1个单位后的抛物线表达式为________.22.抛物线y=﹣x2+2x的开口方向向________(填“上”或“下”)23.写出一个开口向上,顶点是坐标原点的二次函数的解析式:________.24.二次函数y=3(x﹣3)2+2顶点坐标坐标________.25.函数y=(x+1)2﹣9与x轴交点坐标为________.26.二次函数y=﹣(x+1)2+8的开口方向是________.27.把抛物线y=2x2先向左平移3个单位,再向下平移4个单位,所得的抛物线的解析式是________.28.如果抛物线y=(m﹣1)x2的开口向上,那么m的取值范围是________.29.抛物线y=x2﹣(b﹣2)x+3b的顶点在y轴上,则b的值为________.30.抛物线y=2x2﹣4x+1的对称轴为________31.如图,一次函数y=x+1的图象交x轴于点E、交反比例函数y=2x的图象于点F(点F在第一象限),过线段EF上异于E,F的动点A作x轴的平行线交y=2x 的图象于点B,过点A,B作x轴的垂线段,垂足分别是点D,C,则矩形ABCD的面积最大值为________.32.用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式________33.二次函数y=x2+bx+c的图象如图所示,则函数值y<0时,对应x的取值范围是________.34.已知二次函数y=x2+bx+c中,其函数y与自变量x之间的部分对应值如下表:则m的值为________.35.二次函数y=2x2﹣4x向有平移2个单位长度,再向上平移1个单位长度后的解析式为________.36.邓老师设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是7时,输出的数据是________.37.抛物线y=﹣x2﹣2x+3与x轴交点为________.38.抛物线y=2x2+3x﹣1向右平移2个单位,再向上平移3个单位,得到新的抛物线解析式是________.39.将二次函数y=2x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是________.40.如图,将抛物线y=−12x2平移得到抛物线m.抛物线m经过点A(6,0)和原点O,它的顶点为P,它的对称轴与抛物线y=−12x2交于点Q,则图中阴影部分的面积为________.三、解答题(共10题;共55分)41.现有铝合金窗框材料8米,准备用它做一个如图所示的长方形窗架(窗架宽度AB必须小于窗架的高度BC).已知窗台距离房屋天花板2.2米.设AB为x 米,窗架的总面积为S平方米.试写出S与x的函数关系式,并求自变量x的取值范围.42.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.43.某公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润y A (万元)与投资金额x (万元)之间满足正比例函数关系:y A =kx ;如果单独投资B 种产品,则所获利润y B (万元)与投资金额x (万元)之间满足二次函数关系:y B =ax 2+bx .根据公司信息部的报告,y A 、y B (万元)与投资金额x (万元)的部分对应值(如下表)(1)求正比例函数和二次函数的解析式;(2)如果公司准备投资20万元同时开发A 、B两种新产品,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?44.如图A (﹣4,0),C (0,3),将线段CA 以点C 为旋转中心旋转,所得的对应线段记为CA',当点A'落在y 轴上时,写出A'的坐标,并求出以A'为顶点,经过A (﹣4,0)的抛物线的解析式.45.定义{a,b,c }为函数y=ax +bx+c 的“特征数”.如:函数 y =x 2−2x +3 的“特征数”是{1,-2,3}.将“特征数”为{1,-4,1}的函数图像先向左平移3个单位,再向下平移2个单位得到一个新函数图像,求这个新函数图像的解析式.46.函数y=(kx ﹣1)(x ﹣3),当k 为何值时,y 是x 的一次函数?当k 为何值时,y 是x 的二次函数?47.己知二次函数y=-x 2-2x ,用配方法把该函数化为y=a(x-h)2+c 的形式,并指出函数图象的对称轴和顶点坐标.48.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.49.已知抛物线y=x2+(m+4)x-2(m+6)(m是常数,m≠-8)与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,抛物线的顶点为C.(1)此抛物线的解析式;(2)求点A、B、C的坐标.50.二次函数y=ax2+bx+c的图象与x轴交于点A(-1, 0),与y轴交于点C (0,-5),且经过点D(3,-8).(1)求此二次函数的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.答案解析部分一、单选题1. A2. D3. D4. B5. D6. B7. D8. C9. A10. B11. C12. C 13. C 14. D 15. A 16. B 17. D 18. B 19. D 20. A 二、填空题 21. y=(x+1)2 22. 下 23. y=2x 2 24. (3,2)25. (﹣4,0),(2,0) 26. 向下27. y =2(x +3)2−4 28. m >1 29. 2 30. 直线x=1 31. 9432.y=2(x+34)2﹣18 33. −3<x <1 34.﹣135.y=2(x ﹣3)2﹣1 36. 76237.(﹣3,0),(1,0) 38.y=(x ﹣ 54 )2+ 7839.y=2(x−1)2+240. 324三、解答题41.解:设窗架的宽AB为x米,长为米,则窗户的总面积S=x•=﹣x2+4x,∵窗架宽度AB必须小于窗架的高度BC,∴x<,解得:x<,∵窗台距离房屋天花板2.2米,∴<2.2,解得:x>1.2,∴自变量x的取值范围1.2<x<.答:S与x的函数关系式为S=﹣x2+4x.(1.2<x<)42. 解:(1)∵二次函数图象的顶点为A(1,﹣4),∴设二次函数解析式为y=a(x﹣1)2﹣4,把点B(3,0)代入二次函数解析式,得:0=4a﹣4,解得:a=1,∴二次函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(2)令y=0,得x2﹣2x﹣3=0,解方程,得x1=3,x2=﹣1.∴二次函数图象与x轴的两个交点坐标分别为(3,0)和(﹣1,0),∴二次函数图象上的点(﹣1,0)向右平移1个单位后经过坐标原点.故平移后所得图象与x轴的另一个交点坐标为(4,0).43. (1)解:把点(1,0.6)代入yA=kx中,得:k=0.6,则该正比例函数的解析式为:yA=0.6x,把点(1,2.8)和点(5,10)代入yB =ax2+bx.得:{a+b=2.825a+5b=10,解得:{a=−0.2b=3,则该二次函数的解析式为:yB=﹣0.2x2+3x;(2)解:设投资开发B产品的金额为x万元,总利润为y万元,则y=0.6x(20﹣x)+(﹣0.2x2+3x)=﹣0.2x2+2.4x+12=﹣0.2(x﹣6)2+19.2∴当x=6时,y最大=19.2.答:投资6万元生产B产品,14万元生产A产品可获得最大利润19.2万元.44.解:∵A(﹣4,0),C(0,3),∴AC= =5.①当将线段CA以点C为旋转中心,顺时针旋转时,A′(0,8).设该函数解析式为y=ax2+8.把A(﹣4,0)代入得到:0=16a+8,解得a=﹣.故该函数解析式为:y=﹣x2+8.②当将线段CA以点C为旋转中心,逆时针旋转时,A′(0,2).设该函数解析式为y=ax2﹣2.把A(﹣4,0)代入得到:0=16a﹣2,解得a= .故该函数解析式为:y= x2+2.综上所述,该二次函数解析式为:y=﹣x2+8或y= x2+245. 解:由题意得:“特征数”为{1,-4,1}的函数是y=x2-4x+1,配方得:y=(x-2)2-3 ,则图象先向左平移3个单位, 再向下平移2个单位得到一个新函数为,y=(x-2+3)2-3-2=x2+2x-4.46.解:∵y=(kx﹣1)(x﹣3)=kx2﹣3kx﹣x+3=kx2﹣(3k+1)x+3,∴k=0时,y是x的一次函数,k≠0时,y是x的二次函数.47. 解:y=﹣x2﹣2x =﹣(x2+2x) =﹣(x2+2x+1﹣1) =﹣(x+1)2+1 ∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,1).48.解:设这个函数的关系式为y=a(x+2)2+2,把点(1,1)代入y=a(x+2)2+2得9a+2=1,解得a=﹣,所以这个函数的关系式为y=﹣(x+2)2+249. 解:(1)∵抛物线y=x2+(m+4)x-2(m+6)(m为常数,m≠-8))的对称轴为x=−m+42,而抛物线与x轴有两个不同的交点A、B,点A、点B关于直线x=1对称,∴x=−m+42=1,解得m=-6.∴所求抛物经的解析式为y=x2-2x.(2)当y=0时,x2-2x=0,解得x1=0,x2=2.又y=x2-2x=(x-1)2-1,∴点A、B、C的坐标.分别为(0,0),(2,0),(1,-1).50.解:(1)由题意,有{a−b+c=0c=−59a+3b+c=−8解得{a=1b=−4c=−5∴此二次函数的解析式为y=x2−4x−5.∴y=(x−2)2−9,顶点坐标为(2,-9).(2)先向左平移2个单位,再向上平移9个单位,得到的抛物线的解析式为y = x2.11。

人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练(含答案)

人教版 九年级数学上册 22.1 二次函数的图象和性质 同步训练(含答案)

人教版九年级数学上册22.1 二次函数的图象和性质同步训练一、选择题1. 二次函数y=2x2,y=-2x2,y=12x2的共同性质是()A.其图象开口都向上B.其图象的对称轴都是y轴C.其图象都有最高点D.y随x的增大而增大2. 若y=ax2+bx+c,则由表格中的信息可知y与x之间的函数解析式是()A.y=x2-4x+3 B.y=x2-3x+4C.y=x2-3x+3 D.y=x2-4x+83. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=74. 已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是()A.b≥-1 B.b≤-1C.b≥1 D.b≤15. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x=1D. 抛物线与x轴有两个交点6. 将函数y=x2的图象用下列方法平移后,所得的图象不经过点A(1,4)的是() A.向左平移1个单位长度B.向右平移3个单位长度C.向上平移3个单位长度D.向下平移1个单位长度7. 已知抛物线y=2x2+bx+c的顶点坐标是(-1,-2),则b与c的值分别为() A.-1,-2 B.4,-2C.-4,0 D.4,08. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n2二、填空题9. 某抛物线的形状、开口方向与抛物线y=12x2-4x+3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.10. 已知抛物线y=2(x-1)2上有两点(x1,y1),(x2,y2),且1<x1<x2,则y1与y2的大小关系是________.11. 抛物线y=-8x2的开口向________,对称轴是________,顶点坐标是________;当x>0时,y随x的增大而________,当x<0时,y随x的增大而________.12. 已知二次函数的图象经过原点及点(-12,-14),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________________.13. 如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a-2b+c的值为________.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.15. 如图,抛物线y=ax2+bx+c与x轴相交于点A,B(m+2,0),与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是________.16. 如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是________.三、解答题17. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.18. 在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=-12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.19. 如图,等腰直角三角形ABC的直角边与正方形MNPQ的边长均为10 cm,边CA与边MN在同一直线上,开始时点A与点M重合,△ABC沿MN方向以1 cm/s 的速度匀速运动,当点A与点N重合时,停止运动.设运动的时间为t s,运动过程中△ABC与正方形MNPQ重叠部分的面积为S cm2.(1)试写出S关于t的函数关系式,并指出自变量t的取值范围;(2)当MA=2 cm时,重叠部分的面积是多少?20. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版九年级数学上册22.1 二次函数的图象和性质同步训练-答案一、选择题1. 【答案】B2. 【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.3. 【答案】D【解析】∵二次函数y =x 2+mx 的对称轴为x =-m2=3,解得m =-6,则关于x 的方程为x 2-6x =7,解得,x 1=-1,x 2=7.4. 【答案】D [解析] 先根据抛物线的性质得到其对称轴为直线x =b ,且当x >b 时,y 的值随x 值的增大而减小.因为当x >1时,y 的值随x 值的增大而减小,所以b≤1.5. 【答案】D【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.6. 【答案】D [解析] A .将函数y =x 2的图象向左平移1个单位长度得到函数y =(x +1)2的图象,它经过点(1,4);B.将函数y =x 2的图象向右平移3个单位长度得到函数y =(x -3)2的图象,它经过点(1,4);C.将函数y =x 2的图象向上平移3个单位长度得到函数y =x 2+3的图象,它经过点(1,4);D.将函数y =x 2的图象向下平移1个单位长度得到函数y =x 2-1的图象,它不经过点(1,4).故选D.7. 【答案】D8. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)· x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .二、填空题9. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x -h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.10. 【答案】y 1<y 2[解析] ∵抛物线的解析式是y =2(x -1)2,∴其对称轴是直线x =1,抛物线的开口向上, ∴在对称轴右侧,y 随x 的增大而增大.又∵抛物线y =2(x -1)2上有两点(x 1,y 1),(x 2,y 2),且1<x 1<x 2,∴y 1<y 2.11. 【答案】下y 轴 (0,0) 减小 增大12. 【答案】y =x 2+x 或y =-13x 2+13x 【解析】依题意,所求函数有可能经过(-1,0),(-12,-14) 或(1,0),(-12,-14) .设所求函数解析式为y =ax 2+bx +c ,图象经过原点,则c =0,当图象经过(-1,0),(-12,-14)时,代入可求得a =b =1,即所求解析式为y =x 2+x ; 当图象经过(1,0),(-12,-14)时,代入可求得a =-13,b =13,即所求解析式为y =-13x 2+13x .综上所述,所求函数的解析式为y=x 2+x 或y =-13x 2+13x .13. 【答案】0 【解析】设抛物线与x 轴的另一个交点是Q ,∵抛物线的对称轴是过点(1,0)的直线,与x 轴的一个交点是P(4,0),∴与x 轴的另一个交点Q(-2,0),把(-2,0)代入解析式得:0=4a -2b +c ,∴4a -2b +c =0.14. 【答案】y =-3(x -2)215. 【答案】(-2,0)【解析】如解图,过D 作DM ⊥x 轴于点M ,∴M(m ,0),又B(m +2,0),∴MB =2,由C(0,c),D(m ,c)知:OC =DM ,即点C 、D 关于对称轴对称,故点O 、M 也关于对称轴对称,∴OA =MB =2,∴A(-2,0).16. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题17. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2.(2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).18. 【答案】解:(1)把B(-2,6),C(2,2)代入抛物线的解析式得: ⎩⎨⎧6=a·(-2)2+b·(-2)+22=a·22+b·2+2,(1分)解得⎩⎪⎨⎪⎧a =12b =-1,(2分)∴抛物线的解析式为y =12x 2-x +2.(3分)(2)抛物线解析式化为顶点式:y =12(x -1)2+32,则抛物线顶点D(1,32),(4分) 如解图①所示,过点B 、D 、C 分别向x 轴作垂线,垂足分别为点M 、N 、H ,则有:S △BCD =S 梯形BMHC -S 梯形BMND -S 梯形DNHC =12(6+2) ×4-12(6+32)×3-12(32+2) ×1 =3.(6分)解图①解图② (3)如解图②所示,连接BC ,∵直线BC 斜率k BC =2-62-(-2)=-1<-12,∴过点C 作直线MN 与直线y =-12x 平行,设直线MN 的解析式为y =-12x +b 1,代入C(2,2), ∴b 1=3.(7分)作直线EF 与抛物线相切,且与直线y =-12x 平行, 设直线EF 的解析式为y =-12x +b 2,联立抛物线解析式得, ⎩⎪⎨⎪⎧y =12x 2-x +2y =-12x +b 2, ∴x 2-x +4-2b 2= 0, ∵直线EF 与抛物线相切,∴b 2-4ac =0,即(-1)2-4(4-2b 2)=0,(9分)∴b 2=158,(11分) ∴158<b ≤3.(12分)注:斜率知识为高中知识,但常渗透于中考压轴题,与二次函数相结合考查,做题时注意其性质的应用.19. 【答案】解:(1)设AB 与MQ 交于点R.∵△ABC 是等腰直角三角形,四边形MNPQ 是正方形, ∴△AMR 是等腰直角三角形. 由题意知,AM =MR =t ,∴S =S △AMR =12t·t =12t 2(0≤t≤10).(2)当MA =2 cm ,即t =2时,重叠部分的面积是12×2×2=2(cm 2).20. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2, 所以当x =-3时,函数y 3的最小值是-2.(8分)。

人教版 九年级数学 22.1 二次函数的图象和性质 针对训练 (含答案)

人教版 九年级数学 22.1 二次函数的图象和性质 针对训练 (含答案)

人教版九年级数学22.1 二次函数的图象和性质针对训练一、选择题1. 关于二次函数y=3x2的图象,下列说法错误的是()A.它的形状是一条抛物线B.它的开口向上,且关于y轴对称C.它的顶点是抛物线的最高点D.它的顶点在原点处,坐标为(0,0)2. 用一根长为50 cm的铁丝围成一个长方形,设这个长方形的一边长为x cm,面积为y cm2,则y与x之间的函数解析式为()A.y=-x2+50x B.y=x2-50xC.y=-x2+25x D.y=-2x2+253. 如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A. y=(x-1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34. 下列函数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.半圆的面积S与半径R之间的关系5. 将抛物线y=-3x2平移,得到抛物线y=-3(x-1)2-2,下列平移方式中,正确的是()A.先向左平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向下平移2个单位长度C.先向右平移1个单位长度,再向上平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度6. 将抛物线y=x2-6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线的解析式是( ) A .y =(x -4)2-6B .y =(x -1)2-3C .y =(x -2)2-2D .y =(x -4)2-27. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y =x 2+5x +6,则原抛物线的解析式是( )A. y =-(x -52)2-114B. y =-(x +52)2-114C. y =-(x -52)2-14D. y =-(x +52)2+148. 如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动.过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )9. (2019•随州)如图所示,已知二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴交于点C ,OA OC =,对称轴为直线1x =,则下列结论:①0abc <;②11024a b c ++=;③10ac b -+=;④2c +是关于x 的一元二次方程20ax bx c ++=的一个根.其中正确的有A .1个B .2个C .3个D .4个10. 2018·潍坊 已知二次函数y =-(x -h )2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6二、填空题11. 将抛物线y =-(x +2)2向________平移________个单位长度,得到抛物线y =-(x -1)2.12. 若物体运动的路程s (m)与时间t (s)之间的关系式为s =5t 2+2t ,则当物体运动时间为4 s 时,该物体所经过的路程为________.13. (2019•荆州)二次函数2245y x x =--+的最大值是__________.14. 某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数解析式为y =__________.15. (2019•徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__________.三、解答题16. 为了美化校园,学校准备利用一面墙(墙足够长)和20米的篱笆围成一个如图所示的等腰梯形的花圃,设腰长AB =CD =x 米,∠B =120°,花圃的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写x 的取值范围);(2)若梯形ABCD 的面积为1254 3平方米,且AB <BC ,求此时AB 的长.17. 已知二次函数y 1=ax 2+bx +c (ab ≠0)的图象经过点(0,-1),顶点为A (-2,-5).(1)求该二次函数的解析式;(2)把二次函数在第三象限内的部分图象记为图象G ,若直线y 2=n 与图象G 有且仅有1个交点,求n的取值范围.18. 在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b 满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上.若m<n,求x0的取值范围.19. 如图,已知抛物线经过A(-3,0),B(0,3)两点,且其对称轴为直线x=-1.(1)求此抛物线的解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB的面积的最大值,并求出此时点P的坐标.20. 如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.人教版 九年级数学 22.1 二次函数的图象和性质 针对训练 -答案一、选择题1. 【答案】C [解析] ∵二次函数y =3x 2中二次项系数为3,∴函数的图象为抛物线,开口向上,顶点坐标为(0,0),顶点是抛物线的最低点.2. 【答案】C3. 【答案】C 【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y =x 2+2向下平移1个单位得y =x 2+2-1=x 2+1.4. 【答案】D5. 【答案】D [解析] ∵抛物线y =-3x 2的顶点坐标为(0,0),抛物线y =-3(x -1)2-2的顶点坐标为(1,-2),∴将抛物线y =-3x 2向右平移1个单位长度,再向下平移2个单位长度,可得到抛物线y =-3(x -1)2-2.6. 【答案】D [解析] y =x 2-6x +5=(x -3)2-4,将其向上平移2个单位长度,再向右平移1个单位长度后,得y =(x -3-1)2-4+2,即y =(x -4)2-2.7. 【答案】A【解析】∵抛物线的解析式为:y =x 2+5x +6,∴绕原点旋转180°变为y =-x 2+5x -6,即y =-(x -52)2+14,∴再向下平移3个单位长度得到的抛物线解析式为y =-(x -52)2+14-3=-(x -52)2-114.8. 【答案】B 【解析】∵△ABC 是等腰直角三角形,∴∠A =90°,∠B =∠C =45°.(1)当0≤x ≤2时,点P 在AB 边上,△BDP 是等腰直角三角形,∴PD =BD =x ,y =12x 2 (0≤x ≤2),其图象是抛物线的一部分; (2)当2<x ≤4时,点P 在AC 边上,△CDP 是等腰直角三角形,∴PD =CD =4-x ,∴y =12BD ·PD =12x (4-x ) (2<x ≤4),其图象也是抛物线的一部分.综上所述,两段图象均是抛物线的一部分,因此选项B 的图象能大致反映y 与x 之间的函数关系.9. 【答案】B 【解析】∵抛物线开口向下,∴0a ,∵抛物线的对称轴为直线12b x a=-=,∴20b a =->, ∵抛物线与y 轴的交点在x 轴上方,∴0c >,∴0abc <,所以①正确;∵2b a =-,∴102a b a a +=-=, ∵0c >,∴11024a b c ++>,所以②错误; ∵(0,)C c ,OA OC =,∴(,0)A c -,把(,0)A c -代入2y ax bx c =++得20ac bc c -+=,∴10ac b -+=,所以③错误; ∵(,0)A c -,对称轴为直线1x =,∴(2,0)B c +,∴2c +是关于x 的一元二次方程20ax bx c ++=的一个根,所以④正确, 综上正确的有2个,故选B .10. 【答案】B[解析] 当h <2时,有-(2-h )2=-1,解得h 1=1,h 2=3(舍去);当2≤h ≤5时,y =-(x -h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得h 3=4(舍去),h 4=6.综上所述,h 的值为1或6.二、填空题11. 【答案】右 312. 【答案】88 m [解析] 把t =4代入函数解析式,得s =5×16+2×4=88.故填88 m.13. 【答案】7【解析】222452(1)7y x x x =--+=-++,即二次函数245y x x =--+的最大值是7,故答案为:7.14. 【答案】a(1+x)215. 【答案】21(4)2y x =- 【解析】设原来的抛物线解析式为:2y ax =(0)a ≠,把(2,2)P 代入,得24a =, 解得12a =, 故原来的抛物线解析式是:212y x =, 设平移后的抛物线解析式为:21()2y x b =-, 把(2,2)P 代入,得212(2)2b =-, 解得0b =(舍去)或4b =, 所以平移后抛物线的解析式是:21(4)2y x =-, 故答案为:21(4)2y x =-.三、解答题16. 【答案】解:(1)过点B 作BE ⊥AD 于点E.∵AD ∥BC ,∠ABC =120°,∴∠BAE =60°,∴∠ABE =30°.在Rt △ABE 中,AE =12AB =12x ,BE =AB 2-AE 2=x 2-(12x )2=32x.易知BC =20-2x ,AD =BC +2AE =20-2x +x ,∴S =12(BC +AD)·BE =12[(20-2x)+(20-2x +x)]×32x =-34 3x 2+10 3x.(2)依题意,得-34 3x 2+10 3x =1254 3,解得x 1=5,x 2=253.当x =5时,BC =20-2x =20-2×5=10>AB ,符合题意;当x =253时,BC =20-2x =20-253×2=103<AB ,不合题意,舍去.∴AB 的长为5米.17. 【答案】解:(1)∵二次函数y 1=ax 2+bx +c(ab≠0)的图象的顶点为A(-2,-5), ∴y 1=a(x +2)2-5.又∵图象经过点(0,-1),∴-1=a(0+2)2-5,解得a =1,∴y 1=(x +2)2-5=x 2+4x -1.(2)结合图象,知直线y =n 与图象G 有且仅有1个交点时,n =-5或-1≤n <0.18. 【答案】【思维教练】由图象过点(1,-2),将其带入y 1的函数表达式中,解方程即可;(2)由y 1=(x +a )(x -a -1)可得出y 1过x 轴上的两点的坐标,然后分两种情况讨论即可;(3)先求出y 1=(x +a )(x -a -1)的对称轴,根据开口向上的二次函数,离对称轴越近,函数值越小即可得解.解:(1)∵函数y 1=(x +a )(x -a -1)图象经过点(1,-2),∴把x =1,y =-2代入y 1=(x +a )(x -a -1)得,-2=(1+a )(-a ),(2分) 化简得,a 2+a -2=0,解得,a 1=-2,a 2=1,∴y 1=x 2+x -2;(4分)(2)函数y 1=(x +a )(x -a -1)图象在x 轴的交点为(-a ,0),(a +1,0),①当函数y 2=ax +b 的图象经过点(-a ,0)时,把x =-a ,y =0代入y 2=ax +b 中,得a 2=b ;(6分)②当函数y 2=ax +b 的图象经过点(a +1,0)时,把x =a +1,y =0代入y 2=ax +b 中,得a 2+a =-b ;(8分)(3)∵抛物线y 1=(x +a )(x -a -1)的对称轴是直线x =-a +a +12=12,m <n , ∵二次项系数为1,∴抛物线的开口向上,∴抛物线上的点离对称轴的距离越大,它的纵坐标也越大,∵m <n ,∴点Q 离对称轴x =12的距离比P 离对称轴x =12的距离大,(10分)∴|x 0-12|<1-12,∴0<x 0<1.(12分)19. 【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c.根据题意,得⎩⎪⎨⎪⎧9a -3b +c =0,c =3,-b 2a =-1,解得⎩⎨⎧a =-1,b =-2,c =3. 所以抛物线的解析式为y =-x 2-2x +3.(2)易知直线AB 的表达式为y =x +3,设P(m ,-m 2-2m +3),过点P 作PC ∥y 轴交AB 于点C ,则C(m ,m +3),PC =(-m 2-2m +3)-(m +3)=-m 2-3m ,所以S △PAB =12×(-m 2-3m)×3=-32(m 2+3m)=-32(m +32)2+278,所以当m =-32时,S △PAB 有最大值278,此时点P 的坐标为(-32,154).20. 【答案】(1)解:∵抛物线顶点为A(3,1),设抛物线解析式为y =a(x -3)2+1,(1分)∵原点(0,0)在抛物线上,∴0=a(3)2+1,∴a =-13,∴抛物线的表达式为y =-13x 2+233x.(3分)(2)证明:令y =0,得0=-13x 2+233x ,∴x 1=0,x 2=23,∴B 点坐标为(23,0),设直线OA 的表达式为y =kx ,∵A(3,1)在直线OA 上,∴3k =1,∴k =33,∴直线OA 对应的一次函数的表达式为y =33x.(5分)∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b , ∵B(23,0)在直线BD 上,∴0=33×23+b ,∴b =-2,∴直线BD 的表达式为y =33x -2.(7分)联立得⎩⎪⎨⎪⎧y =33x -2,y =-13x 2+233x,解得x 1=-3,x 2=23, ∵点D 在第三象限, ∴交点D 的坐标为(-3,-3),在y =33x 2中,令x =0得,y =33x -2=-2,∴C 点的坐标为(0,-2),根据A(3,1)可得OA =3+1=2,根据二次函数对称性知AB =AO =2,∵CD =[-3-(-2)]2+(-3)2]=2,∴CD =AB ,OC =OA ,又∵OD =(-3)2+(-3)2=23,∴OD =OB ,∴△OAB ≌△OCD(SSS ).(8分)(3)解:如解图,作点C 关于x 轴的对称点C′(0,2),连接C′D , ∴C ′D 与x 轴的交点即为点P ,此时△PCD 的周长最小, 过点D 作DQ ⊥y ,垂足为Q ,∴PO ∥DQ ,∴△C ′PO ∽△C′DQ ,(10分)∴PO DQ =C′O C′Q ,∴PO 3=25. ∴PO =235,解图∴点P 的坐标为(-235,0).(12分)。

人教版九年上册数学22.1:二次函数的图形和性质+同步练习(包含答案解析)

人教版九年上册数学22.1:二次函数的图形和性质+同步练习(包含答案解析)

人教版九年上册数学22.1:二次函数的图形和性质+同步练习一.选择题(共15小题)1.下列函数中,是二次函数的是()A.y=3x﹣1B.y=3x3﹣x2C.y=1﹣x﹣x2D.y=x2+ 2.开口向上,顶点坐标为(﹣9,3)的抛物线为()A.y=2(x﹣9)2﹣3B.y=2(x+9)2+3C.y=﹣2(x﹣9)2﹣3D.y=﹣2(x+9)2+33.由二次函数y=2(x﹣3)2+1,可知正确的结论是()A.其图象的开口向下B.其图象的对称轴为过点(﹣3,0)且与y轴平行的直线C.其最小值为1D.当x<3时,y随x的增大而增大4.已知抛物线y=x2,则以下错误的是()A.开口向上B.顶点是(0,0)C.对称轴是直线x=0D.当x=0时有y最大值为05.若函数y=x m﹣1+mx+3是二次函数,则m=()A.﹣3B.3C.3或﹣3D.26.函数y=ax2与y=ax﹣a的图象大致是()A.B.C.D.7.在二次函数y=x2﹣3x﹣2的图象上的点是()A.(1,1)B.(0,2)C.(2,﹣4)D.(﹣1,3)8.抛物线y=4x2﹣4的顶点坐标是()A.(0,﹣4)B.(﹣4,0)C.(0,4)D.(4,0)9.二次函数y=ax2+bx+c的图象如图所示,则点P(a,)所在的象限是()A.一B.二C.三D.四10.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4B.y=﹣2x2+2x﹣4C.y=x2+x﹣2D.y=2x2+2x﹣411.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的表达式为()A.y=4(x+2)2+3B.y=4(x+2)2﹣3C.y=4(x﹣2)2+3D.y=4(x﹣2)2﹣312.在函数①y=3x2;②y=x2+1;③y=﹣x2﹣3中,图象开口大小按题号顺序表示为()A.①>②>③B.①>③>②C.②>③>①D.②>①>③13.如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是()A.B.C.D.14.已知函数y=ax和y=a(x+m)2+n,且a>0,m<0,n<0,则这两个函数图象在同一坐标系内的大致图象是()A.B.C.D.15.已知函数y=x2﹣2x+k的图象经过点(,y1),(,y2),则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定二.填空题(共8小题)16.抛物线上有三点(﹣2,3)、(2,﹣8)、(1,3),此抛物线的解析式为.17.将二次函数y=5(x+2)2﹣4的图象向左平移3个单位,再向上平移8个单位,所得二次函数图象的表达式为.18.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.19.抛物线y=﹣2x2的开口向,对称轴是,顶点是.20.函数y=﹣x2+2x的图象是一条,开口向,对称轴是,顶点坐标为.21.二次函数y=ax2+bx+c的图象如图所示,则a0,b0,c0,b2﹣4ac0,a+b+c0,a﹣b+c0.22.已知(﹣1,y1),(﹣3,y2),(,y3)在函数y=3x2+6x+12的图象上,则y1,y2和y3的大小关系为.23.二次函数y=ax2+bx+c的图象如图所示,则点A(a,b)在第象限.三.解答题(共7小题)24.已知二次函数当x=3时,函数有最大值﹣1,且函数图象与y轴交于(0,﹣4),求该二次函数的关系式.25.已知二次函数的图象如图所示,求它的解析式.26.已知二次函数y=﹣x2+x+2.(1)求函数图象的开口方向,顶点坐标及对称轴;(2)画出函数的图象;(3)由图象回答:当x为何值时,y<0;当x为何值时,y>0.27.已知抛物线经过三个点A(2,6),B(﹣1,0),C(3,0),那么二次函数的解析式是?它的顶点坐标是?28.已知抛物线y=ax2经过(﹣1,4),且与直线y=ax+8交于点A,B.(1)求直线和抛物线的解析式;(2)求△AOB的面积.29.填表并解答下列问题:(1)填表后发现:当x从﹣1开始增大时,预测哪一个函数的值先到达16.(2)请你编拟一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编拟的函数表达式是什么?30.已知函数y=(k﹣2)是关于x的二次函数,求:(1)满足条件的k的值;(2)当K为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?(3)当k为何值时,函数有最小值?最小值是多少?这时,当x为何值时,y与x的增加而减小?人教版九年上册数学22.1:二次函数的图形和性质+同步练习参考答案一.选择题(共15小题)1.下列函数中,是二次函数的是()A.y=3x﹣1B.y=3x3﹣x2C.y=1﹣x﹣x2D.y=x2+【解答】解:A、是一次函数,错误;B、最高次是3次,故错误;C、符合二次函数的一般形式y=ax2+bx+c,正确;D、不是有关自变量的整式,故错误.故选:C.2.开口向上,顶点坐标为(﹣9,3)的抛物线为()A.y=2(x﹣9)2﹣3B.y=2(x+9)2+3C.y=﹣2(x﹣9)2﹣3D.y=﹣2(x+9)2+3【解答】解:∵抛物线顶点坐标为(﹣9,3),∴可设抛物线解析式为y=a(x+9)2+3,∵抛物线开口向上,∴a>0,故选:B.3.由二次函数y=2(x﹣3)2+1,可知正确的结论是()A.其图象的开口向下B.其图象的对称轴为过点(﹣3,0)且与y轴平行的直线C.其最小值为1D.当x<3时,y随x的增大而增大【解答】解:A、∵二次函数y=2(x﹣3)2+1中,a=2>0,∴其图象的开口向上,故本选项错误;B、∵二次函数的解析式是y=2(x﹣3)2+1,∴其图象的对称轴是直线x=3,故本选项错误;C、∵由函数解析式可知其顶点坐标为(3,1),∴其最小值为1,故本选项正确;D、∵二次函数的图象开口向上,对称轴是直线x=3,∴当x<3时,y随x的增大而减小,故本选项错误.故选:C.4.已知抛物线y=x2,则以下错误的是()A.开口向上B.顶点是(0,0)C.对称轴是直线x=0D.当x=0时有y最大值为0【解答】解:由抛物线y=x2可知,抛物线开口向上,顶点坐标为(0,0),故对称轴为直线x=0,当x=0时,y有最小值0,选项D错误,故选D.5.若函数y=x m﹣1+mx+3是二次函数,则m=()A.﹣3B.3C.3或﹣3D.2【解答】解:∵函数y=x m﹣1+mx+3是二次函数,∴m﹣1=2,∴m=3.故选:B.6.函数y=ax2与y=ax﹣a的图象大致是()A.B.C.D.【解答】解:观察抛物线的图象可知a>0,∴在直线y=ax﹣a中,a>0,﹣a<0,直线经过一、三、四象限,故选B.7.在二次函数y=x2﹣3x﹣2的图象上的点是()A.(1,1)B.(0,2)C.(2,﹣4)D.(﹣1,3)【解答】解:A、x=1时,y=1﹣3﹣2=﹣4,不符合;B、x=0时,y=﹣2,不符合;C、x=2时,y=4﹣6﹣2=﹣4,满足;D、x=﹣1时,y=1+3﹣2=2,不符合;故选:C.8.抛物线y=4x2﹣4的顶点坐标是()A.(0,﹣4)B.(﹣4,0)C.(0,4)D.(4,0)【解答】解:因为y=4x2﹣4为抛物线解析式的顶点式,所以根据顶点式的坐标特点可知,抛物线的顶点坐标为(0,﹣4).故选:A.9.二次函数y=ax2+bx+c的图象如图所示,则点P(a,)所在的象限是()A.一B.二C.三D.四【解答】解:由函数图象可得各系数的关系:a>0,b<0,c>0,则a>0,<0,因此P(a,)位于第四象限.故选:D.10.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4B.y=﹣2x2+2x﹣4C.y=x2+x﹣2D.y=2x2+2x﹣4【解答】解:由题意,设抛物线解析式为y=a(x﹣1)(x+2),将(2,8)代入,可得8=a(2﹣1)(2+2),解得a=2,∴抛物线的解析式为:y=2(x﹣1)(x+2),化简得,y=2x2+2x﹣4.故选:D.11.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的表达式为()A.y=4(x+2)2+3B.y=4(x+2)2﹣3C.y=4(x﹣2)2+3D.y=4(x﹣2)2﹣3【解答】解:原抛物线的顶点为(0,0),向上平移3个单位,再向左平移2个单位,那么新抛物线的顶点为(﹣2,3).)可设新抛物线的解析式为:y=4(x﹣h)2+k,代入得:y=4(x+2)2+3.故选:A.12.在函数①y=3x2;②y=x2+1;③y=﹣x2﹣3中,图象开口大小按题号顺序表示为()A.①>②>③B.①>③>②C.②>③>①D.②>①>③【解答】解:∵抛物线的开口大小是由二次项系数a的绝对值的大小确定,|a|越大则开口越小.∴开口大小按题号顺序表示为②>③>①.故选:C.13.如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是()A.B.C.D.【解答】解:A、由一次函数y=kx+b的图象可得:a>0,b>0,此时二次函数y=ax2+bx+c 的图象应该开口向上,对称轴x=﹣<0,错误;B、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+bx+c的图象应该开口向上,错误;C、由一次函数y=ax+b的图象可得:a>0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向上,对称轴x=﹣>0,正确.D、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+bx+c的图象应该开口向下,错误;故选:C.14.已知函数y=ax和y=a(x+m)2+n,且a>0,m<0,n<0,则这两个函数图象在同一坐标系内的大致图象是()A.B.C.D.【解答】解:由解析式y=a(x+m)2+n可知,a>0,图象开口向上,其顶点坐标为(﹣m,n),又因为m<0,n<0;所以顶点坐标在第四象限,排除A、D;C中,由二次函数图象可知a<0,而由一次函数的图象可知a>0,两者相矛盾,排除C;选项B正确.故选:B.15.已知函数y=x2﹣2x+k的图象经过点(,y1),(,y2),则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定【解答】解:∵对称轴为x=﹣=1,∴点(,y1)的对称点的横坐标为,即称点坐标为(,y2),∴y1=y2.故选:B.二.填空题(共8小题)16.抛物线上有三点(﹣2,3)、(2,﹣8)、(1,3),此抛物线的解析式为y=﹣x2﹣x+.【解答】解:设此抛物线的解析式为y=ax2+bx+c,把点(﹣2,3)、(2,﹣8)、(1,3)代入得,解得.所以此抛物线的解析式为y=﹣x2﹣x+,故答案为:y=﹣x2﹣x+.17.将二次函数y=5(x+2)2﹣4的图象向左平移3个单位,再向上平移8个单位,所得二次函数图象的表达式为y=5(x+5)2+3.【解答】解:按照“左加右减,上加下减”的规律,y=5(x+2)2﹣4的图象向左平移3个单位,再向上平移8个单位得到y=5(x+5)2+3.故答案为:y=5(x+5)2+3.18.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是0.【解答】解:∵函数y=(k﹣3)+kx+1是二次函数,∴k2﹣ak+2=2,则k2﹣ak=0,故k的值一定是0.故答案为:0.19.抛物线y=﹣2x2的开口向向下,对称轴是y轴,顶点是(0,0).【解答】解:∵抛物线y=﹣2x2中,a=﹣2<0,b=c=0,∴抛物线开口向下,对称轴为y轴,顶点为(0,0).故答案为:向下,y轴,(0,0).20.函数y=﹣x2+2x的图象是一条抛物线,开口向下,对称轴是x=1,顶点坐标为(1,1).【解答】解:∵a=﹣1<0,∴开口向下,对称轴x==1,顶点坐标为(=1,=1),即(1,1).∴函数y=﹣x2+2x的图象是一条抛物线,开口向下,对称轴是x=1,顶点坐标为(1,1).21.二次函数y=ax2+bx+c的图象如图所示,则a>0,b>0,c<0,b2﹣4ac >0,a+b+c>0,a﹣b+c<0.【解答】解:(1)∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣<0,∴b>0;∵抛物线与y轴的交点在x轴下方,∴c<0;(2)∵抛物线与x轴有两个交点∴b2﹣4ac>0,(3)∵x=1时,y>0,∴a+b+c>0;(4)∵x=﹣1时,y<0,∴a﹣b+c<0;故答案为>、>、<;>;>;<.22.已知(﹣1,y1),(﹣3,y2),(,y3)在函数y=3x2+6x+12的图象上,则y1,y2和y3的大小关系为y1<y3<y2.【解答】解:x=﹣1时,y1=3×(﹣1)2+6×(﹣1)+12=3﹣6+12=9,x=﹣3时,y2=3×(﹣3)2+6×(﹣3)+12=27﹣18+12=21,x=时,y3=3×()2+6×+12=0.75+3+12=15.75,所以,y1<y3<y2.故答案为:y1<y3<y2.23.二次函数y=ax2+bx+c的图象如图所示,则点A(a,b)在第二象限.【解答】解:由图象开口向下,∴a<0,根据对称轴x=﹣>0,∴b>0,∴点A(a,b)在第二象限,故答案为:二.三.解答题(共7小题)24.已知二次函数当x=3时,函数有最大值﹣1,且函数图象与y轴交于(0,﹣4),求该二次函数的关系式.【解答】解:根据题意可知顶点坐标为(3,﹣1),设顶点式y=a(x﹣3)2﹣1,把点(0,﹣4)代入,得﹣4=a(﹣3)2﹣1,解得a=﹣,∴y=﹣(x﹣3)2﹣1.25.已知二次函数的图象如图所示,求它的解析式.【解答】解:∵抛物线顶点坐标为(1,4),代入抛物线顶点式y=a(x﹣h)2+k(a≠0),得:y=a(x﹣1)2+4,∵该抛物线又过点(﹣1,0),∴4a+4=0,解得a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3.26.已知二次函数y=﹣x2+x+2.(1)求函数图象的开口方向,顶点坐标及对称轴;(2)画出函数的图象;(3)由图象回答:当x为何值时,y<0;当x为何值时,y>0.【解答】解:(1)y=﹣x2+x+2=﹣(x2﹣x)+2=﹣(x﹣)2+,∴开口向下,顶点坐标为(,),对称轴为直线x=;(2)图象如图:(3)根据图象可知:x<﹣1或x>2时,y<0;﹣1<x<2时,y>0.27.已知抛物线经过三个点A(2,6),B(﹣1,0),C(3,0),那么二次函数的解析式是?它的顶点坐标是?【解答】解:设二次函数解析式为y=ax2+bx+c,根据题意得,解得.所以二次函数的解析式为y=﹣2x2+4x+6,∵y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的顶点坐标为(1,8).28.已知抛物线y=ax2经过(﹣1,4),且与直线y=ax+8交于点A,B.(1)求直线和抛物线的解析式;(2)求△AOB的面积.【解答】解:(1)把(﹣1,4)代入y=ax2得:a=4,∴直线的解析式为y=4x+8,抛物线的解析式为y=4x2;(2)由题意知,联立y=4x+8及y=4x2,解得:x1=2,x2=﹣1,y1=16,y2=4,∴A(2,16),B(﹣1,4),如图所示,作BD垂直于x轴于点D,作AE垂直于x轴于点E,∴S△AOB=S梯形ABDE﹣S△ODB﹣S△AOE=×(4+16)×3﹣×1×4﹣×2×16=12.29.填表并解答下列问题:(1)填表后发现:当x从﹣1开始增大时,预测哪一个函数的值先到达16.(2)请你编拟一个二次项系数是1的二次函数,使得当x=4时,函数值为16.编拟的函数表达式是什么?【解答】解:填表.故答案为:1,3,5,7;1,0,1,4;(1)由于在第一象限内,两个函数都是y随x的增大而增大,当y=16时,函数y1=2x+3中的x=6.5,函数y2=x2中的x=4,故函数y2=x2值先到达16;(2)如:y3=(x﹣4)2+16.30.已知函数y=(k﹣2)是关于x的二次函数,求:(1)满足条件的k的值;(2)当K为何值时,抛物线有最高点?求出这个最高点,这时,x为何值时,y随x的增大而增大?(3)当k为何值时,函数有最小值?最小值是多少?这时,当x为何值时,y与x的增加而减小?【解答】解:(1)∵函数y=(k﹣2)是关于x的二次函数,∴k满足k2﹣4k+5=2,且k﹣2≠0,∴解得:k1=1,k2=3;(2)∵抛物线有最高点,∴图象开口向下,即k﹣2<0,∴k=1,∴最高点为(0,0),当x<0时,y随x的增大而增大.(3)∵函数有最小值,∴图象开口向上,即k﹣2>0,∴k=3,∴最小值为0,当x<0时,y随x的增大而减小.。

人教版初中数学九年级上册《22.1二次函数图像和性质》同步练习含答案解析

人教版初中数学九年级上册《22.1二次函数图像和性质》同步练习含答案解析

九年级上册第二十二章《 22.1 二次函数的图像和性质》同步练习题一、单项选择题(每题只有一个正确答案)1.以下函数中是二次函数的是( )A. y= 3x- 1B. y=3x2- 1C. y= (x+ 1)2-x2D. y= ax2+ 2x-32 2.若 y=(a +a)A. a=﹣ 1 或 a=3 3.抛物线y=- x是二次函数,那么()B. a≠﹣ 1 且 a≠0C. a=﹣ 1D. a=3 2不拥有的性质是()A.张口向下B.对称轴是y 轴C.与 y 轴不订交D.最高点是原点4.如图,四个二次函数的图象中,分别对应的是:① y ax2;② y bx2;③ y cx2;④ y dx2,则a,b, c, d的大小关系为()A.a b c d B.a b d c C.b a c d D.b a d c 5.关于的图象以下表达错误的选项是A.极点坐标为(﹣3, 2)B.对称轴为x=﹣ 3C.当 x<﹣ 3 时 y 随 x 增大而减小D.函数有最大值为26.已知二次函数的图象以下列图,则以下说法正确的选项是()A.<0B.< 0C.< 0D.< 07.抛物线 y= ( x﹣ 2)2﹣ 1 可以由抛物线y=x 2平移而获取,以下平移正确的选项是()A.先向左平移 2 个单位长度,尔后向上平移 1 个单位长度B.先向左平移 2 个单位长度,尔后向下平移 1 个单位长度C.先向右平移 2 个单位长度,尔后向上平移 1 个单位长度D.先向右平移 2 个单位长度,尔后向下平移 1 个单位长度8.如图,二次函数的图象张口向下,且经过第三象限的点若点P 的横坐标为,则一次函数的图象大体是A .B .C .D.二、填空题9.二次函数y= kx2- x- 2 经过点 (1, 5),则 k=_________.10.函数 y= –的图象是抛物线,则 m= __________.11.张口向下的抛物线y=(m 2- 2)x2+2mx +1 的对称轴经过点 (-1, 3),则 m= _____.12.如图,这是小明在阅读一本关于函数的课外读物时看到的一段文字,则被墨迹污染的二次项系数是__________.13.抛物线 y=ax 2+bx+c(a≠0)的对称轴为直线x=1,与 x 轴的一个交点坐标为(﹣1,0),其部分图象以下列图,以下结论:①4ac< b2;②方程ax2+bx+c=0 的两个根是x1=﹣ 1,x2=3;③3a+c=0;④当 y> 0 时,x 的取值范围是﹣ 1≤x< 3;⑤当 x< 0 时,y 随 x 增大而增大,其中结论正确的选项是 _____(只需填序号)三、解答题14.已知函数y=- (m+2)- (m为常数),求当m为何值时:(1)y 是 x 的一次函数 ?(2)y 是 x 的二次函数 ?并求出此时纵坐标为 -8 的点的坐标 .15.某广告公司设计一幅周长为12m 的矩形广告牌,广告设计花销为1000 元 /m2.设矩形的一边长为xm,面积为ym2.(1) 求出 y 与 x 之间的函数关系式,说明y 可否是 x 的二次函数,并确定x 的取值范围;(2)若 x= 3 时,广告牌的面积最大,求此时的广告费应为多少?16.如图,已知二次函数 y=ax2+bx+3 的图象交 x 轴于点 A ( 1, 0), B( 3, 0),交 y 轴于点 C.( 1)求这个二次函数的表达式;( 2)点 P 是直线 BC 下方抛物线上的一动点,求△BCP面积的最大值;(3)直线 x=m 分别交直线 BC 和抛物线于点 M , N,当△BMN 是等腰三角形时,直接写出 m 的值.参照答案1. B【解析】【解析】依照二次函数的定义:形如,则 y 是 x 的二次函数进行判断即可.【详解】A选项 ,y= 3x- 1 是一次函数 ,不吻合题意 ,B选项 ,y=3x2- 1 是二次函数 ,吻合题意 ,C选项 , y= (x+1)2-x2整理后 y=2x+1 是一次函数 ,不吻合题意 ,D选项 , y= ax2+ 2x- 3,二次项系数不确定可否等于0,不用然是二次函数 ,不吻合题意 ,应选 B.【点睛】此题主要观察二次函数的定义,解决此题的要点是要熟练掌握二次函数的定义.2. D【解析】【解析】依照二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【详解】2依照题意,得: a ﹣2a﹣ 1=22又由于 a +a≠0即 a≠0或 a≠﹣ 1应选 D.【点睛】解题要点是掌握二次函数的定义.3. C【解析】【解析】抛物线y=-x 2的二次项系数为-1,故抛物线张口向下,极点坐标(0, 0),最高点为原点,对称轴为y 轴,与 y 轴交于( 0,0).∵抛物线y=-x 2的二次项系数为-1,∴抛物线张口向下,极点坐标(0, 0), A 正确;∴最高点为原点,对称轴为y 轴, B 、D 正确;与y 轴交于( 0, 0), C 错误,应选 C.【点睛】此题观察了基本二次函数 y=ax 2的性质:极点坐标( 0, 0),对称轴为 y 轴,当 a> 0 时,张口向上,当 a< 0 时,张口向下.4. A【解析】由二次函数中,“当二次项系数为正时,图象张口向上,当二次项系数为负时,图象张口向下”结合“二次项系数的绝对值越大,图象的张口越大”解析可得:a b c d .应选 A.点睛:( 1)二次函数y ax2a0的图象的张口方向由“a 的符号”确定,当a0 时,图象的张口向上,当 a 0 时,图象的张口向下;(2)二次函数y ax2a0的图象的开口大小由a的大小确定,当a越大时,图象的张口越小.5. D【解析】解析:依照二次函数的性质比较四个选项利用消除法即可得出结论.详解:依照二次函数的性质可知的极点坐标为(﹣3, 2),故 A 正确;对称轴为x=﹣ 3,故 B 正确;张口向上,在对称轴右侧y 随x 增大而减小且函数有最小值 2 ,故 C 正确 D 错误 .点睛:此题观察了二次函数的性质,在解题时可结合函数大体图象来判断. 正确理解二次函数的基本性质是解题的要点 .6. B【解析】【解析】依照抛物线的张口方向确定a,依照抛物线与y 轴的交点确定 c,依照对称轴确定b,依照抛物线与 x 轴的交点确定b2-4ac,依照 x=1 时, y> 0,确定 a+b+c 的符号.∵抛物线张口向上,∴a> 0,∵抛物线交于y 轴的正半轴,∴c> 0,∴ac> 0,A 错误;∵ - > 0, a> 0,∴b< 0,∴ B 正确;∵抛物线与x 轴有两个交点,∴b2-4ac>0,C 错误;当 x=1 时, y> 0,∴a+b+c> 0, D 错误;应选B.【点睛】此题观察的是二次函数图象与系数的关系,二次函数y=ax 2+bx+c 系数符号由抛物线张口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7. D【解析】解析:抛物线平移问题可以以平移前后两个解析式的极点坐标为基准研究.详解:抛物线y=x 2极点为(0,0),抛物线y= (x﹣ 2)2﹣ 1 的极点为(2,﹣ 1),则抛物线y=x 2向右平移 2 个单位,向下平移 1 个单位获取抛物线y= ( x﹣ 2)2﹣ 1 的图象.应选:D.点睛:此题观察二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线极点,从而确定平移方向.8. D【解析】【解析】依照二次函数的图象可以判断a、 b、的正负情况,从而可以获取一次函数经过哪几个象限,观察各选项即可得答案.【详解】由二次函数的图象可知,,,当时,,的图象经过二、三、四象限,观察可得 D 选项的图象吻合,应选 D.【点睛】此题观察二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是要点.9. 8【解析】解析:把(1, 5)代入 y=kx 2-x-2 中,即可获取关于k 的一元一次方程,解这个方程即可求得k 的值.详解:∵二次函数y=kx 2-x-2 经过点( 1,5),∴5=k-1-2 ,解得 k=8 ;故答案为 8.点睛:此题观察了二次函数图象上点的坐标特色,抛物线上的点的坐标适合解析式.10.–1【解析】依照抛物线的定义,得=,解得: m=– 1.11.- 1【解析】由于抛物线y= ( m2-2) x2+2mx+1 的对称轴经过点(-1, 3),b2m=-1,∴对称轴为直线 x=-1 ,x=2 m22a2解得 m1=-1 , m2=2.由于抛物线的张口向下,所以当m=2 时, m2-2=2 > 0,不合题意,应舍去,∴m=-1 .故答案为: -1.12.- 2【解析】由题意得,所以 a=-2.13.①②③⑤【解析】【解析】利用抛物线与x 轴的交点个数可对①进行判断;利用抛物线的对称性获取抛物线与x 轴的一个交点坐标为(3,0), 则可对②进行判断;由对称轴方程获取b=-2a,尔后依照x=-1时函数值为0可获取 3a+c=0,则可对③进行判断;依照二次函数的性质对④进行判断.【详解】①∵抛物线与x 轴有两个交点,∴△ =b2﹣ 4ac>0,∴ 4ac< b2,结论①正确;②∵抛物线 y=ax2+bx+c (a≠0)的对称轴为直线x=1 ,与 x 轴的一个交点坐标为(﹣ 1, 0),∴抛物线与 x 轴的另一交点坐标为( 3,0),∴方程 ax2+bx+c=0 的两个根是 x1=﹣ 1, x2=3 ,结论②正确;③∵抛物线 y=ax2+bx+c (a≠0)的对称轴为直线x=1,∴﹣=1,∴b= ﹣ 2a.∵当 x= ﹣1 时, y=0 ,∴a﹣ b+c=0,即 3a+c=0,结论③正确;④∵抛物线与x 轴的交点坐标为(﹣1,0)、( 3, 0),∴当 y> 0 时, x 的取值范围是﹣1< x< 3,结论④错误;⑤∵抛物线张口向下,对称轴为直线x=1,∴当 x< 0 时, y 随 x 增大而增大,结论⑤正确.综上所述:正确的结论有①②③⑤.故答案为:①②③⑤.【点睛】二次函数图象与系数的关系:关于二次函数y=ax 2+bx+c ( a≠0),二次项系数 a 决定抛物线的张口方向和大小:当a> 0 时,抛物线向上张口;当a< 0 时,抛物线向下张口;一次项系数b 和二次项系数 a 共同决定对称轴的地址:当 a 与 b 同号时(即 ab> 0),对称轴在 y 轴左;当 a 与 b 异号时(即 ab< 0),对称轴在 y 轴右;常数项c 决定抛物线与 y 轴交点地址:抛物线与 y 轴交于( 0, c);抛物线与 x 轴交点个数由△决定:△=b2-4ac> 0 时,抛物线与 x 轴有 2 个交点;△=b2-4ac=0 时,抛物线与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.14. (1) m= ±;(2) m=2, 纵坐标为 -8 的点的坐标是 (±,-8).【解析】【解析】( 1)依照一次函数的定义求m 的值即可;(2)依照二次函数的定义求得m 的值,从而求得二次函数的解析式,把y=-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1) 由 y=- (m+ 2)(m为常数 ),y 是 x 的一次函数,得解得m=±,当 m=±时 ,y 是 x 的一次函数.(2) 由y=- (m+ 2)(m 为常数),y是x 的二次函数,得解得m=2,m=- 2(不吻合题意的要舍去 ),当 m= 2 时 ,y 是 x 的二次函数 ,当 y=- 8 时 ,-8=- 4x2,解得 x= ±,故纵坐标为 - 8 的点的坐标是 (±,-8) .【点睛】此题观察了一次函数的定义、二次函数的定义,解题要点是掌握一次函数与二次函数的定义.15. (1)y =- x2+ 6x,是, 0< x< 6;(2) 9000 元【解析】试题解析:( 1)矩形的一边长为 xm,依照矩形的周长是 12m,可得矩形的另一边长为(6-x) m,根据矩形的面积公式即可得出y 与 x 之间的函数表达式;( 2)把 x= 3 代入函数的解析式得出y 的值即为广告牌的最大面积,再乘以1000 即为此时的广告费.试题解析:解:( 1)由题意得出:y = x(6- x)=- x2+ 6x,是二次函数,0< x< 6;(2)当 x= 3 时, y=- 32+ 3×6= 9,1000×9= 9000 元,即此时的广告费应为9000 元.点睛:此题主要观察了依照实责问题抽象出二次函数解析式以及求二次函数值,正确得出二次函数解析式是解题要点.16.( 1)这个二次函数的表达式是 y=x 2﹣ 4x+3 ;( 2) S△最大 =;( 3)当△BMN 是等腰BCP三角形时, m 的值为,﹣,1, 2.【解析】解析:(1)依照待定系数法,可得函数解析式;( 2)依照平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE 的长,依照面积的和差,可得二次函数,依照二次函数的性质,可得答案;( 3)依照等腰三角形的定义,可得关于m 的方程,依照解方程,可得答案.详解:( 1)将 A ( 1, 0), B( 3, 0)代入函数解析式,得=,=解得=,=这个二次函数的表达式是y=x 2-4x+3 ;( 2)当 x=0 时, y=3,即点 C( 0,3),设 BC 的表达式为y=kx+b ,将点 B( 3,0)点 C( 0, 3)代入函数解析式,得=,=解这个方程组,得==直线 BC 的解析是为y=-x+3 ,过点 P 作 PE∥ y 轴,交直线 BC 于点 E( t, -t+3 ),22PE=-t+3-( t -4t+3 ) =-t +3t,22,∴ S△BCP=S△BPE+S CPE= ( -t +3t)×3=- ( t- ) +∵- < 0,∴当 t= 时, S△BCP最大 = .(3) M ( m, -m+3 ), N (m, m2-4m+3 )2MN=m -3m, BM=|m-3|,当 MN=BM时,① m2-3m=(m-3),解得m=,②m2 -3m=- ( m-3),解得 m=-当BN=MN 时,∠ NBM= ∠ BMN=45°,m2 -4m+3=0 ,解得 m=1 或 m=3(舍)当BM=BN 时,∠ BMN= ∠ BNM=45°,-( m2-4m+3 ) =-m+3 ,解得 m=2 或 m=3(舍),当△BMN 是等腰三角形时,m 的值为,-,1,2.点睛:此题观察了二次函数综合题,解(1)的要点是待定系数法;解(2)的要点是利用面积的和差得出二次函数,又利用了二次函数的性质,解(3)的要点是利用等腰三角形的定义得出关于m 的方程,要分类谈论,以防遗漏.。

22.1.3二次函数的图象和性质(一)同步测试含答案

22.1.3二次函数的图象和性质(一)同步测试含答案

《22.1.3 函数的图象与性质(一)》一.选择题1.抛物线y=2x2﹣1的顶点坐标是()A.(0,1) B.(0,﹣1)C.(1,0) D.(﹣1,0)2.抛物线y=ax2+b(a≠0)与x轴有两个交点,且开口向上,则a、b的取值范围是()A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>03.小敏在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是()A.3.5m B.4m C.4.5m D.4.6m4.抛物线y=2x2﹣3可以看作由抛物线y=2x2如何变换得到的()A.向上平移3个单位长度 B.向下平移3个单位长度C.向左平移3个单位长度 D.向右平移3个单位长度5.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=26.抛物线y=x2﹣4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.4 B.4+4 C.12 D.2+47.在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致所示中的()A.B.C.D.二.填空题 8.函数y=ax 2+c (a ≠0)的图象是一条______,对称轴是______,顶点是______,当a >0,抛物线开口______,顶点是抛物线的______,当a <0,抛物线开口______,顶点是抛物线的______.9.抛物线y=﹣2x 2﹣3的开口______,对称轴是______,顶点坐标是______,当x______时,y 随x 的增大而增大,当x______时,y 随x 的增大而减小.10.若二次函数y=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为______. 11.任给一些不同的实数k ,得到不同的抛物线y=x 2+k ,当k 取0,±1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是______.12.点A (3,m )在抛物线y=x 2﹣1上,则点A 关于x 轴的对称点的坐标为______.13.若抛物线y=x 2+(m ﹣2)x+3的对称轴是y 轴,则m=______.14.若一条抛物线与y=的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为______.15.与抛物线y=﹣+3关于x 轴对称的抛物线的解析式为______.16.已知A (﹣1,y 1),B (,y 2),C (2,y 3)三点都在二次函数y=ax 2﹣1(a >0)的图象上,那么y 1,y 2,y 3的大小关系是______.(用“<”连接)三.解答题17.已知抛物线y=ax 2+b 过点(﹣2,﹣3)和点(1,6)(1)求这个函数的关系式;(2)当为何值时,函数y 随x 的增大而增大.18.已知直线y=2x 和抛物线y=ax 2+3相交于点A (2,b ),求a ,b 的值.19.如图,已知抛物线的顶点为A (0,1),矩形CDEF 的顶点C 、F 在抛物线上,点D 、E 在x 轴上,CF 交y 轴于点B (0,2),且矩形其面积为8,此抛物线的解析式.《22.1.3 函数的图象与性质(一)》参考答案一.选择题1.抛物线y=2x2﹣1的顶点坐标是()A.(0,1) B.(0,﹣1)C.(1,0) D.(﹣1,0)【解答】解:抛物线y=2x2﹣1的顶点坐标为(0,﹣1).故选:B.2.抛物线y=ax2+b(a≠0)与x轴有两个交点,且开口向上,则a、b的取值范围是()A.a>0,b<0 B.a>0,b>0 C.a<0,b<0 D.a<0,b>0【解答】解:∵开口向上,∴a>0;∵抛物线y=ax2+b(a≠0)与x轴有两个交点,∴0﹣4ab>0,∴b<0.故选A.3.小敏在某次投篮中,球的运动路线是抛物线y=x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离L是()A.3.5m B.4m C.4.5m D.4.6m【解答】解:如图,把C点纵坐标y=3.05代入y=x2+3.5中得:x=±1.5(舍去负值),即OB=1.5,所以l=AB=2.5+1.5=4.令解:把y=3.05代入y=﹣x2+3.5中得:x 1=1.5,x2=﹣1.5(舍去),∴L=2.5+1.5=4米.故选:B.4.抛物线y=2x2﹣3可以看作由抛物线y=2x2如何变换得到的()A.向上平移3个单位长度 B.向下平移3个单位长度C.向左平移3个单位长度 D.向右平移3个单位长度【解答】解:∵抛物线y=2x2﹣3顶点坐标为(0,﹣3),抛物线y=2x2顶点坐标为(0,0),∴抛物线y=2x2﹣3可以看作由抛物线y=2x2向下平移3个单位长度得到的,故选B.5.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.6.抛物线y=x2﹣4与x轴交于B,C两点,顶点为A,则△ABC的周长为()A.4 B.4+4 C.12 D.2+4【解答】解:∵抛物线y=x2﹣4与x轴交于B、C两点,顶点为A,∴B(﹣2,0),C(2,0),A(0,﹣4).∴AB=4,BC=AC==2,∴△ABC周长为:AB+BC+AC=4+4.故应选B . 7.在同一平面直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致所示中的( )A .B .C .D .【解答】解:A 、由一次函数的图象可知a >0 c >0,由二次函数的图象可知a <0,两者相矛盾;B 、由一次函数的图象可知a <0 c >0,由二次函数的图象可知a <0,两者相吻合;C 、由一次函数的图象可知a <0 c >0,由二次函数的图象可知a >0,两者相矛盾;D 、由一次函数的图象可知a <0 c <0,由二次函数的图象可知a >0,两者相矛盾.故选B .二.填空题8.函数y=ax 2+c (a ≠0)的图象是一条 抛物线 ,对称轴是 y 轴 ,顶点是 (0,c ) ,当a >0,抛物线开口 向上 ,顶点是抛物线的 最低点 ,当a <0,抛物线开口 向下 ,顶点是抛物线的 最高点 .【解答】解:函数y=ax 2+c (a ≠0)的图象是一条抛物线,对称轴是y 轴,顶点是(0,c ),当a >0,抛物线开口向上,顶点是抛物线的最低点,当a <0,抛物线开口向下,顶点是抛物线的最高点. 故答案为:抛物线,y 轴,(0,c ),向上,最低点,向下,最高点.9.抛物线y=﹣2x 2﹣3的开口 向下 ,对称轴是 y 轴 ,顶点坐标是 (0,﹣3) ,当x <0 时,y 随x 的增大而增大,当x >0 时,y 随x 的增大而减小.【解答】解:抛物线y=﹣2x 2﹣3的开口向下,对称轴是y 轴,顶点坐标是(0,﹣3),当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小.故答案为:向下,y 轴,(0,﹣3),<0,>0.10.若二次函数y=ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为 c .【解答】解:∵在y=ax 2+c 中,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,∴抛物线的对称轴是y 轴,∴x1,x2互为相反数,∴x1+x2=0,当x=0时,y=c.故填空答案:c.11.任给一些不同的实数k,得到不同的抛物线y=x2+k,当k取0,±1时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是①②③④.【解答】解:抛物线y=x2+k,当k取0,±1时,关于这些抛物线有以下判断:①开口方向都向上,故相同,正确;②对称轴都是y轴,故相同;正确,③形状相同;正确,④都有最底点.正确.其中判断正确的是①②③④.故答案为:①②③④12.点A(3,m)在抛物线y=x2﹣1上,则点A关于x轴的对称点的坐标为(3,﹣8).【解答】解:∵A(3,m)在抛物线y=x2﹣1上,∴m=9﹣1=8,∴A点坐标为(3,8),∴点A关于x轴的对称点的坐标为(3,﹣8).故答案为(3,﹣8).13.若抛物线y=x2+(m﹣2)x+3的对称轴是y轴,则m= 2 .【解答】解:∵y=x2+(m﹣2)x+3,∴其对称轴方程为x=﹣,∵其对称轴为y轴,∴﹣=0,解得m=2,故答案为:2. 14.若一条抛物线与y=的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为 y=x 2+2 .【解答】解:根据题意设抛物线解析式为y=x 2+b ,把x=0,y=2代入得:2=b ,则抛物线解析式为y=x 2+2,故答案为:y=x 2+215.与抛物线y=﹣+3关于x 轴对称的抛物线的解析式为 y=x 2﹣3 . 【解答】解:y=﹣+3的顶点坐标为(0,3),而点(0,3)关于x 轴对称的点的坐标为(0,﹣3),所以抛物线y=﹣+3关于x 轴对称后抛物线的解析式为y=x 2﹣3. 故答案为y=x 2﹣3.16.已知A (﹣1,y 1),B (,y 2),C (2,y 3)三点都在二次函数y=ax 2﹣1(a >0)的图象上,那么y 1,y 2,y 3的大小关系是 y 1<y 2<y 3 .(用“<”连接)【解答】解:∵二次函数的解析式为y=ax 2﹣1(a >0),∴抛物线的对称轴为直线x=0,∵A (﹣1,y 1)、B (,y 2)、C (2,y 3),∴点C 离直线x=0最远,点A 离直线x=0最近,而抛物线开口向上,∴y 1<y 2<y 3.故答案为y 1<y 2<y 3.三.解答题17.已知抛物线y=ax 2+b 过点(﹣2,﹣3)和点(1,6)(1)求这个函数的关系式;(2)当为何值时,函数y随x的增大而增大.【解答】解:(1)把点(﹣2,﹣3)和点(1,6)代入y=ax2+b得,解得所以这个函数的关系式为y=﹣3x2+9;(2)∵这个函数的关系式为y=﹣3x2+9;∴对称轴x=0,∵a=﹣3<0,∴抛物线开口向下,∴当x<0时,函数y随x的增大而增大.18.已知直线y=2x和抛物线y=ax2+3相交于点A(2,b),求a,b的值.【解答】解:把A(2,b)代入y=2x得b=2×2=4,则A点坐标为(2,4),把A(2,4)代入y=ax2+3得4a+3=4,解得a=.19.如图,已知抛物线的顶点为A(0,1),矩形CDEF的顶点C、F在抛物线上,点D、E在x轴上,CF交y轴于点B(0,2),且矩形其面积为8,此抛物线的解析式.【解答】解:∵抛物线的顶点为A(0,1),∴抛物线的对称轴为y轴,∵四边形CDEF为矩形,∴C、F点为抛物线上的对称点,∵矩形其面积为8,OB=2∴CF=4,∴F点的坐标为(2,2),设抛物线解析式为y=ax2+1,把F(2,2)代入得4a+1=2,解得a=,∴抛物线解析式为y=x2+1.。

人教版 九年级上册数学 22.1 二次函数的图象和性质 课时训练(含答案)

人教版 九年级上册数学 22.1 二次函数的图象和性质 课时训练(含答案)

人教版九年级数学22.1 二次函数的图象和性质课时训练一、选择题1. 二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误..的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小2. (2020·宿迁)将二次函数y=(x-1)2+2的图像向上平移3个单位,得到的图像对应的函数表达式是()A.y=(x+2)2+2 B.y=(x-1)2+2 C.y=(x-1)2-1 D.y=(x-1)2+53. 如图所示,根据图象提供的信息,下列结论正确的是()A.a1>a2>a3>a4B.a1<a2<a3<a4C.a4>a1>a2>a3D.a2>a3>a1>a44. 若抛物线y=x2-2x+3不动,将平面直角坐标系........xOy先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为() A. y=(x-2)2+3 B. y=(x-2)2+5C. y=x2-1D. y=x2+45. (2020·荆门)若抛物线y=ax2+bx+c(a>0)经过第四象限的点(1,-1),则关于x的方程ax2+bx+c=0的根的情况是( )A.有两个大于1的不相等实数根B.有两个小于1的不相等实数根C.有一个大于1另一个小于1的实数根D.没有实数根6. 二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( )A. 抛物线开口向下B. 抛物线经过点(2,3)C. 抛物线的对称轴是直线x =1D. 抛物线与x 轴有两个交点7. 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或38. 二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( ) 二、填空题 9. 抛物线y =-8x 2的开口向________,对称轴是________,顶点坐标是________;当x >0时,y 随x 的增大而________,当x <0时,y 随x 的增大而________.10. 若二次函数y =2x 2+bx +3的图象的对称轴是直线x =1,则常数b 的值为________.11. 二次函数y =-2x 2-4x +5的最大值是________.12. 顶点坐标是(2,0),且与抛物线y =-3x 2的形状、开口方向都相同的抛物线的解析式为________.13. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)14. 抛物线y =ax 2+bx +c(a ,b ,c 为常数)的顶点为P ,且抛物线经过点A(-1,0),B(m ,0),C(-2,n)(1<m <3,n <0),有下列结论:①abc >0;②3a +c <0;③a(m -1)+2b >0;④a =-1时,存在点P 使△PAB 为直角三角形.其中正确结论的序号为________.15. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.16. 如图,平行于x 轴的直线AC 与函数y 1=x 2(x ≥0),y 2=13x 2(x ≥0)的图象分别交于B ,C 两点,过点C 作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC 交y 2的图象于点E ,则DE AB=________.三、解答题17. 已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A(2,m)和点B(3,n),试比较m 与n 的大小,并说明理由.18. 设函数y=(x-1)[(k-1)x+(k-3)](k是常数).(1)当k取1和2时的函数y1和y2的图象如图所示,请你在同一直角坐标系中画出当k取0时函数的图象;(2)根据图象,写出你发现的一条结论;(3)将函数y2的图象向左平移4个单位,再向下平移2个单位,得到函数y3的图象,求函数y3的最小值.人教版九年级数学22.1 二次函数的图象和性质课时训练-答案一、选择题1. 【答案】D[解析] 由解析式y=-x2+1可知,图象是以y轴为对称轴的抛物线,它与横轴的交点坐标为(-1,0),(1,0),顶点坐标为C(0,1)(选项A,B 正确);AB=2(选项C正确).在对称轴的两侧,函数y随x的增减性不同(选项D错误).故选D.2. 【答案】D【解析】将二次函数y=(x-1)2+2的图像向上平移3个单位,得到的图像对应的函数表达式是y=(x-1)2+2+3,即y=(x-1)2+5,故选D.3. 【答案】A[解析] 开口越大,|a|越小,故a1>a2>a3>a4.故选A.4. 【答案】C【解析】由抛物线y=x2-2x+3得y=(x-1)2+2.保持抛物线不动,将平面直角坐标系先沿水平方向向右平移1个单位,其实质相当于抛物线向左平移1个单位,再将平面直角坐标系向上平移3个单位,则相当于抛物线向下平移3个单位,根据抛物线平移规律:左加右减,上加下减,可得新的抛物线解析式为y=(x-1+1)2+2-3=x2-1.5. 【答案】C【解析】依题意得a+b+c=-1.∴c=-(1+a+b).∵原方程的判别式△=b2-4ac=b2+4a(1+a+b)=b2+4a+4a2+4ab=(2a+b)2+4a>0,∴原方程有两个不相等的实数根.设两根分别为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a,∴(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=c a +b a +1=1a (a +b +c )=-1a<0.∴x 1-1与x 2-1异号,这说明x 1,x 2中一个大于1,另一个小于1.故选C .6. 【答案】D 【解析】本题考查了二次函数的性质,由于2>0,所以抛物线的开口向上,所以A 选项错误;由于当x =2时,y =8-3=5,所以B 选项错误;由于y =2x 2-3的对称轴是y 轴,所以C 选项错误;由2x 2-3=0得b 2-4ac =24>0,则该抛物线与x 轴有两个交点,所以D 选项正确.7. 【答案】B 【解析】∵二次函数y =(x -h )2+ 1,∴二次函数图象的对称轴为直线x =h ,∴二次函数值在x <h 时,y 随x 的增大而减小,在x >h 时,y 随x 的增大而增大,∴①当h <1时,在1≤x ≤3中,x =1时二次函数有最小值,此时(1-h )2+ 1=5,解得h =-1或h =3(舍去);②当1≤h ≤3时,x =h 时,二次函数的最小值为1;③当h >3时,在1≤x ≤3中,x =3时二次函数有最小值,此时,(3-h )2+ 1=5,解得h =5或h =1(舍去),综上所述,h 的值为-1或5.8. 【答案】D [解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.二、填空题9. 【答案】下 y 轴 (0,0) 减小 增大10. 【答案】-4 [解析] ∵二次函数y =2x 2+bx +3的图象的对称轴是直线x =1,∴x =-b 2×2=1,∴b =-4.则b 的值为-4.11. 【答案】712. 【答案】y =-3(x -2)213. 【答案】<【解析】当1x =-时,0y a b c =-+>,当2x =时,420y a b c =++<,()42M N a b a b -=+--()420a b c a b c =++--+<,即M N <,故答案为:<.14. 【答案】②③ [解析] 由抛物线经过A(-1,0),B(m ,0),可知对称轴为x =m -12=-b 2a, ∴-b a=m -1. ∵1<m <3,∴ab <0.画出二次函数y =ax 2+bc +c 的大致图象可知a <0,∴b >0.把(-1,0)代入y =ax 2+bx +c ,可得a -b +c =0,∴c =b -a >0.∴abc <0,故①错误.当x =3时,y <0,∴9a +3b +c =9a +3(a +c)+c =12a +4c =4(3a +c)<0,∴3a +c<0,故②正确.∴-b a=m -1,∴a(m -1)+2b =-b +2b =b >0,故③正确. 当a =-1时,y =-x 2+bx +c ,∴P(b 2,b +1+b 24). 若△PAB 为直角三角形,则△PAB 为等腰直角三角形,∴b +1+b 24=b 2+1,∴b =-2或b =0. ∵b >0,∴不存在点P 使△PAB 为直角三角形,故④错误.故答案为②③.15. 【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b 24a ).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-b a ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-b a ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).16. 【答案】3-3 [解析] 设点A 的坐标为(0,b),则B(b ,b),C(3b ,b),D(3b ,3b),E(3 b ,3b).所以AB =b ,DE =3 b -3b =(3-3) b.所以DE AB =(3-3)b b=3- 3. 三、解答题17. 【答案】解:(1)∵抛物线y =2x 2-4x +c 与x 轴有两个不同的交点,∴Δ=b 2-4ac =16-8c >0,∴c <2.(2)m<n.理由:∵抛物线y =2x 2-4x +c 的对称轴为直线x =1,∴点A(2,m)和点B(3,n)都在对称轴的右侧.又∵当x≥1时,y 随x 的增大而增大,∴m <n.18. 【答案】解:(1)当k =0时,y =-(x -1)(x +3),所画图象如解图所示.(2分)(2)①k 取0和2时的函数图象关于点(0,2)中心对称,②函数y =(x -1)[(k -1)x +(k -3)](k 是常数)的图象都经过(1,0)和(-1,4).(5分)(3)由题意可得y 2=(x -1)[(2-1)x +(2-3)]=(x -1)2,平移后的函数y 3的表达式为y 3=(x -1+4)2-2=(x +3)2-2,所以当x =-3时,函数y 3的最小值是-2.(8分)。

22.1 二次函数的图象和性质 (同步练习题)( 含答案)

22.1 二次函数的图象和性质 (同步练习题)( 含答案)

22.1 二次函数的图象和性质22.1.1 二次函数1.设一个正方形的边长为x ,则该正方形的面积y =__x 2___,其中变量是__x ,y___,__y___是__x___的函数.2.一般地,形如y =ax 2+bx +c(__a ,b ,c 为常数且a ≠0___)的函数,叫做二次函数,其中x 是自变量,a ,b ,c 分别为二次项系数、一次项系数、常数项.知识点1:二次函数的定义1.下列函数是二次函数的是( C )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =0.5x -2 2.下列说法中,正确的是( B )A .二次函数中,自变量的取值范围是非零实数B .在圆的面积公式S =πr 2中,S 是r 的二次函数C .y =12(x -1)(x +4)不是二次函数D .在y =1-2x 2中,一次项系数为13.若y =(a +3)x 2-3x +2是二次函数,则a 的取值范围是__a ≠-3___.4.已知二次函数y =1-3x +2x 2,则二次项系数a =__2___,一次项系数b =__-3___,常数项c =__1___.5.已知两个变量x ,y 之间的关系式为y =(a -2)x 2+(b +2)x -3. (1)当__a ≠2___时,x ,y 之间是二次函数关系;(2)当__a =2且b ≠-2___时,x ,y 之间是一次函数关系.6.已知两个变量x ,y 之间的关系为y =(m -2)xm 2-2+x -1,若x ,y 之间是二次函数关系,求m 的值.解:根据题意,得m 2-2=2,且m -2≠0,解得m =-2 知识点2:实际问题中的二次函数的解析式7.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价.若每件商品售价为x 元,则可卖出(350-10x)件商品,那么商品所赚钱数y 元与售价x 元的函数关系式为( B )A .y =-10x 2-560x +7350B .y =-10x 2+560x -7350C .y =-10x 2+350x +7350D .y =-10x 2+350x -73508.某车的刹车距离y(m )与开始刹车时的速度x(m /s )之间满足二次函数y =120x 2(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( C )A .40 m /sB .20 m /sC .10 m /sD .5 m /s 9.(2014·安徽)某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y(元)关于x 的函数关系式为y =__a(1+x)2___.10.多边形的对角线条数d 与边数n 之间的关系式为__d =12n 2-32n___,自变量n 的取值范围是__n ≥3且为整数___;当d =35时,多边形的边数n =__10___.11.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长为多少米?解:(1)S=x(24-3x),即S=-3x2+24x(2)当S=45时,-3x2+24x=45,解得x1=3,x2=5,当x=3时,24-3x=15>10,不合题意,舍去;当x=5时,24-3x=9<10,符合题意,故AB的长为5米12.已知二次函数y = x 2-2x -2,当x =2时,y =__-2___;当x =__3或-1___时,函数值为1.13.边长为4 m 的正方形中间挖去一个边长为x(m )(x <4)的小正方形,剩余的四方框的面积为y(m 2),则y 与x 之间的函数关系式为__y =16-x 2(0<x <4)___,它是__二次___函数.14.设y =y 1-y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( C ) A .正比例函数 B .一次函数 C .二次函数 D .以上都不正确 15.(2014·河北)某种正方形合金板材的成本y(元)与它的面积成正比,设边长为x 厘米,当x =3时,y =18,那么当成本为72元时,边长为( A )A .6厘米B .12厘米C .24厘米D .36厘米 16.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm ,高为20 cm .设底面的宽为x ,抽屉的体积为y 时,求y 与x 之间的函数关系式.(材质及其厚度等暂忽略不计)解:根据题意得y =20x(90-x), 整理得y =-20x 2+1800x17.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时,平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.假定每件商品降价x 元,商店每天销售这种小商品的利润是y 元,请写出y 与x 之间的函数关系式,并注明x 的取值范围.解:降低x 元后,所销售的件数是(500+100x), 则y =(13.5-2.5-x)(500+100x),即y =-100x 2+600x +5500(0<x ≤11)18.一块矩形的草坪,长为8 m ,宽为6 m ,若将长和宽都增加x m ,设增加的面积为y m 2.(1)求y 与x 的函数关系式;(2)若使草坪的面积增加32 m 2,求长和宽都增加多少米? 解:(1)y =x 2+14x(x ≥0)(2)当y =32时,x 2+14x =32,x 1=2,x 2=-16(舍去),即长和宽都增加2 m19.如图,在△ABC 中,∠B =90°,AB =12 mm ,BC =24 mm ,动点P 从点A 开始沿边AB 向B 以2 mm /s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4 mm /s 的速度移动(不与点C 重合).如果P ,Q 分别从A ,B 同时出发,设运动的时间为x s ,四边形APQC 的面积为y mm 2.(1)求y 与x 之间函数关系式; (2)求自变量x 的取值范围;(3)四边形APQC 的面积能否等于172 mm 2?若能,求出运动的时间;若不能,说明理由.解:(1)由运动可知,AP =2x ,BQ =4x ,则y =12BC·AB -12BQ·BP =12×24×12-12×4x(12-2x),即y =4x 2-24x +144(2)0<x <6 (3)当x =172时,4x 2-24x +144=172,解得x 1=7,x 2=-1.又∵0<x <6,∴四边形APQC 的面积不能等于172 mm 222.1.2 二次函数y =ax 2的图象和性质1.由解析式画函数图象的步骤是__列表___、__描点___、__连线___. 2.一次函数y =kx +b(k ≠0)的图象是__一条直线___.3.二次函数y =ax 2(a ≠0)的图象是一条__抛物线___,其对称轴为__y___轴,顶点坐标为__(0,0)___.4.抛物线y =ax 2与y =-ax 2关于__x___轴对称.抛物线y =ax 2,当a >0时,开口向__上___,顶点是它的最__低___点;当a <0时,开口向__下___,顶点是它的最__高___点,随着|a|的增大,开口越来越__小___.知识点1:二次函数y =ax 2的图象及表达式的确定1.已知二次函数y =x 2,则其图象经过下列点中的( A ) A .(-2,4) B .(-2,-4) C .(2,-4) D .(4,2)2.某同学在画某二次函数y =ax 2的图象时,列出了如下的表格: x -3 -2.5 -1 0 1 2.5 3 y 36 25 4 0 4 25 36(1)根据表格可知这个二次函数的关系式是__y =4x 2___; (2)将表格中的空格补全.3.已知二次函数y =ax 2的图象经过点A(-1,-13).(1)求这个二次函数的解析式并画出其图象; (2)请说出这个二次函数的顶点坐标、对称轴.解:(1)y =-13x 2,图象略(2)顶点坐标为(0,0),对称轴是y 轴 知识点2:二次函数y =ax 2的图象和性质4.对于函数y =4x 2,下列说法正确的是( B ) A .当x >0时,y 随x 的增大而减小 B .当x <0时,y 随x 的增大而减小 C .y 随x 的增大而减小 D .y 随x 的增大而增大5.已知点(-1,y 1),(2,y 2),(-3,y 3)都在函数y =x 2的图象上,则( A ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 36.已知二次函数y =(m -2)x 2的图象开口向下,则m 的取值范围是__m <2___.7.二次函数y =-12x 2的图象是一条开口向__下___的抛物线,对称轴是__y 轴___,顶点坐标是__(0,0)___;当x__>0___时,y 随x 的增大而减小;当x =0时,函数y 有__最大___(填“最大”或“最小”)值是__0___.8.如图是一个二次函数的图象,则它的解析式为__y =12x 2___,当x =__0___时,函数图象的最低点为__(0,0)___.9.已知二次函数y=mxm2-2.(1)求m的值;(2)当m为何值时,二次函数有最小值?求出这个最小值,并指出x取何值时,y随x 的增大而减小;(3)当m为何值时,二次函数的图象有最高点?求出这个最高点,并指出x取何值时,y 随x的增大而增大.解:(1)m=±2(2)m=2,y最小=0;x<0(3)m=-2,最高点(0,0),x<010.二次函数y =15x 2和y =5x 2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当x >0时,它们的函数值y 都是随着x 的增大而增大;④它们开口的大小是一样的.其中正确的说法有( C )A .1个B .2个C .3个D .4个11.已知a ≠0,同一坐标系中,函数y =ax 与y =ax 2的图象有可能是( C )12.如图是下列二次函数的图象:①y =ax 2;②y =bx 2;③y =cx 2;④y =dx 2.比较a ,b ,c ,d 的大小,用“>”连接为__a >b >d >c___.,第12题图) ,第14题图)13.当a =__4___时,抛物线y =ax 2与抛物线y =-4x 2关于x 轴对称;抛物线y =-7x 2关于x 轴对称所得抛物线的解析式为__y =7x 2___;当a =__±2___时,抛物线y =ax 2与抛物线y =-2x 2的形状相同.14.已知二次函数y =2x 2的图象如图所示,将x 轴沿y 轴向上平移2个单位长度后与抛物线交于A ,B 两点,则△AOB 的面积为__2___.15.已知正方形的周长为C(cm ),面积为S(cm 2). (1)求S 与C 之间的函数关系式; (2)画出所示函数的图象;(3)根据函数图象,求出S =1 cm 2时正方形的周长; (4)根据列表或图象的性质,求出C 取何值时S ≥4 cm 2?解:(1)S =116C 2(C >0) (2)图象略 (3)由图象可知,当S =1 cm 2时,正方形周长C 是4cm(4)当C ≥8 cm 时,S ≥4 cm 216.二次函数y =ax 2与直线y =2x -1的图象交于点P(1,m). (1)求a ,m 的值;(2)写出二次函数的表达式,并指出x 取何值时,y 随x 的增大而增大; (3)指出抛物线的顶点坐标和对称轴.解:(1)将(1,m)代入y =2x -1得m =2×1-1=1,所以P 点坐标为(1,1).将P 点坐标(1,1)代入y =ax 2得1=a ×12,∴a =1 (2)y =x 2,当x >0时,y 随x 的增大而增大 (3)顶点坐标为(0,0),对称轴为y 轴17.如图,抛物线y =x 2与直线y =2x 在第一象限内有一个交点A. (1)你能求出A 点坐标吗?(2)在x 轴上是否存在一点P ,使△AOP 为等腰三角形?若存在,请你求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得⎩⎨⎧y =x 2,y =2x ,解得⎩⎨⎧x 1=0,y 1=0,⎩⎨⎧x 2=2,y 2=4,∴A(2,4) (2)存在满足条件的点P.当OA =OP 时,∵OA =22+42=25,∴P 1(-25,0),P 2(25,0);当OA =AP 时,过A 作AQ ⊥x 轴于Q ,∴PQ =OQ =2,∴P 3(4,0);当PA =PO 时,设P 点坐标为(x ,0),则x 2=(x -2)2+42,解得x =5,∴P 4(5,0).综上可知,所求P 点的坐标为P 1(-25,0),P 2(25,0),P 3(4,0),P 4(5,0)22.1.3 二次函数y =a(x -h)2+k 的图象和性质 第1课时 二次函数y =ax 2+k 的图象和性质1.二次函数y =ax 2+k 的图象是一条__抛物线___.它与抛物线y =ax 2的__形状___相同,只是__顶点位置___不同,它的对称轴为__y___轴,顶点坐标为__(0,k)___.2.二次函数y =ax 2+k 的图象可由抛物线y =ax 2__平移___得到,当k >0时,抛物线y =ax 2向上平移__k___个单位得y =ax 2+k ;当k <0时,抛物线y =ax 2向__下___平移|k|个单位得y =ax 2+k.知识点1:二次函数y =ax 2+k 的图象和性质1.抛物线y =2x 2+2的对称轴是__y 轴___,顶点坐标是__(0,2)___,它与抛物线y =2x 2的形状__相同___.2.抛物线y =-3x 2-2的开口向__下___,对称轴是__y 轴___,顶点坐标是__(0,-2)___.3.若点(x 1,y 1)和(x 2,y 2)在二次函数y =-12x 2+1的图象上,且x 1<x 2<0,则y 1与y 2的大小关系为__y 1<y 2___.4.对于二次函数y =x 2+1,当x =__0___时,y 最__小___=__1___;当x__>0___时,y 随x 的增大而减小;当x__<0___时,y 随x 的增大而增大.5.已知二次函数y =-x 2+4.(1)当x 为何值时,y 随x 的增大而减小? (2)当x 为何值时,y 随x 的增大而增大?(3)当x 为何值时,y 有最大值?最大值是多少? (4)求图象与x 轴、y 轴的交点坐标.解:(1)x >0 (2)x <0 (3)x =0时,y 最大=4(4)与x 轴交于(-2,0),(2,0),与y 轴交于(0,4) 知识点2:二次函数y =ax 2+k 与y =ax 2之间的平移6.将二次函数y =x 2的图象向上平移1个单位,则平移后的抛物线的解析式是__y =x 2+1___.7.抛物线y =ax 2+c 向下平移2个单位得到抛物线y =-3x 2+2,则a =__-3___,c =__4___.8.在同一个直角坐标系中作出y =12x 2,y =12x 2-1的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y =12x 2-1与抛物线y =12x 2有什么关系?解:(1)图象略,y =12x 2开口向上,对称轴为y 轴,顶点坐标(0,0);y =12x 2-1开口向上,对轴轴为y 轴,顶点坐标(0,-1) (2)抛物线y =12x 2-1可由抛物线y =12x 2向下平移1个单位得到知识点3:抛物线y =ax 2+k 的应用9.如图,小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分.若命中篮圈中心,则她与篮底的距离l 是( B )A .3.5 mB .4 mC .4.5 mD .4.6 m10.如果抛物线y=x2+2向下平移1个单位,那么所得新抛物线的解析式是( C) A.y=(x-1)2+2 B.y=(x+1)2+2C.y=x2+1 D.y=x2+311.已知y=ax2+k的图象上有三点A(-3,y1),B(1,y2),C(2,y3),且y2<y3<y1,则a的取值范围是( A)A.a>0B.a<0C.a≥0D.a≤012.已知抛物线y=-x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为__22___.13.若抛物线y=ax2+c与抛物线y=-4x2+3关于x轴对称,则a=__4___,c=__-3___.14.如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于A,过点A作与x轴平行的直线交抛物线y=13x2于点B,C,则BC的长度为__6___.15.直接写出符合下列条件的抛物线y=ax2-1的函数关系式:(1)经过点(-3,2);(2)与y=12x2的开口大小相同,方向相反;(3)当x的值由0增加到2时,函数值减少4.解:(1)y=13x2-1(2)y=-12x2-1(3)-x2-116.把y=-12x2的图象向上平移2个单位.(1)求新图象的解析式、顶点坐标和对称轴;(2)画出平移后的函数图象;(3)求平移后的函数的最大值或最小值,并求对应的x的值.解:(1)y=-12x2+2,顶点坐标是(0,2),对称轴是y轴(2)图象略(3)x=0时,y有最大值,为217.已知抛物线的对称轴是y轴,顶点坐标是(0,2),且经过(1,3),求此抛物线的解析式.解:设抛物线解析式为y=ax2+k,将(0,2),(1,3)代入y=ax2+k,得k=2,a=1,∴y=x2+218.若二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为( D)A.a+c B.a-c C.-c D.c19.廊桥是我国古老的文化遗产,如图所示是一座抛物线形廊桥的示意图.已知抛物线对应的函数关系式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E ,F 处要安装两盏警示灯,求这两盏灯的水平距离.(5≈2.24,结果精确到1米)解:由题意得点E ,F 的纵坐标为8,把y =8代入y =-140x 2+10,解得x =45或x =-45,EF =|45-(-45)|=85≈18(米),即这两盏灯的水平距离约为18米第2课时 二次函数y =a(x -h)2的图象和性质1.二次函数y =a(x -h)2的图象是__抛物线___,它与抛物线y =ax 2的__形状___相同,只是__位置___不同;它的对称轴为直线__x =h___,顶点坐标为__(h ,0)___.2.二次函数y =a(x -h)2的图象可由抛物线y =ax 2__平移___得到,当h >0时,抛物线y =ax 2向__右___平移h 个单位得y =a(x -h)2; 当h <0时,抛物线y =ax 2向__左___平移|h|个单位得y =a(x -h)2.知识点1:二次函数y =a (x -h )2的图象1.将抛物线y =-x 2向左平移2个单位后,得到的抛物线的解析式是( A ) A .y =-(x +2)2 B .y =-x 2+2 C .y =-(x -2)2 D .y =-x 2-22.抛物线y =-3(x +1)2不经过的象限是( A ) A .第一、二象限 B .第二、四象限 C .第三、四象限 D .第二、三象限3.已知二次函数y =a(x -h)2的图象是由抛物线y =-2x 2向左平移3个单位长度得到的,则a =__-2___,h =__-3___.4.在同一平面直角坐标系中,画出函数y =x 2,y =(x +2)2,y =(x -2)2的图象,并写出对称轴及顶点坐标.解:图象略,抛物线y =x 2的对称轴是直线x =0,顶点坐标为(0,0);抛物线y =(x +2)2的对称轴是直线x =-2,顶点坐标为(-2,0);抛物线y =(x -2)2的对称轴是直线x =2,顶点坐标为(2,0)知识点2:二次函数y =a (x -h )2的性质 5.二次函数y =15(x -1)2的最小值是( C ) A .-1 B .1C .0D .没有最小值6.如果二次函数y =a(x +3)2有最大值,那么a__<___0,当x =__-3___时,函数的最大值是__0___.7.对于抛物线y =-13(x -5)2,开口方向__向下___,顶点坐标为__(5,0)___,对称轴为__x =5___.8.二次函数y =-5(x +m)2中,当x <-5时,y 随x 的增大而增大,当x >-5时,y 随x 的增大而减小,则m =__5___,此时,二次函数的图象的顶点坐标为__(-5,0)___,当x =__-5___时,y 取最__大___值,为__0___.9.已知A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在二次函数y =-2(x +2)2的图象上,则y 1,y 2,y 3的大小关系为__y 3<y 1<y 2___.10.已知抛物线y =a(x -h)2,当x =2时,有最大值,此抛物线过点(1,-3),求抛物线的解析式,并指出当x 为何值时,y 随x 的增大而减小.解:当x=2时,有最大值,∴h=2.又∵此抛物线过(1,-3),∴-3=a(1-2)2,解得a=-3,∴此抛物线的解析式为y=-3(x-2)2.当x>2时,y随x的增大而减小11.顶点为(-6,0),开口向下,形状与函数y =12x 2的图象相同的抛物线的解析式是( D ) A .y =12(x -6)2 B .y =12(x +6)2 C .y =-12(x -6)2 D .y =-12(x +6)2 12.平行于x 轴的直线与抛物线y =a(x -2)2的一个交点坐标为(-1,2),则另一个交点坐标为( C )A .(1,2)B .(1,-2)C .(5,2)D .(-1,4)13.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为( B )14.已知二次函数y =3(x -a)2的图象上,当x >2时,y 随x 的增大而增大,则a 的取值范围是__a ≤2___.15.已知一条抛物线与抛物线y =-12x 2+3形状相同,开口方向相反,顶点坐标是(-5,0),则该抛物线的解析式是__y =12(x +5)2___. 16.已知抛物线y =a(x -h)2的对称轴为x =-2,且过点(1,-3).(1)求抛物线的解析式;(2)画出函数的图象;(3)从图象上观察,当x 取何值时,y 随x 的增大而增大?当x 取何值时,函数有最大值(或最小值)? 解:(1)y =-13(x +2)2 (2)图象略 (3)x <-2时,y 随x 的增大而增大;x =-2时,函数有最大值17.已知一条抛物线的开口方向和形状大小与抛物线y =-8x 2都相同,并且它的顶点在抛物线y =2(x +32)2的顶点上. (1)求这条抛物线的解析式;(2)求将(1)中的抛物线向左平移5个单位后得到的抛物线的解析式;(3)将(2)中所求抛物线关于x 轴对称,求所得抛物线的解析式.解:(1)y =-8(x +32)2 (2)y =-8(x +132)2 (3)y =8(x +132)218.如图,在Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴上,OA =AB =1个单位长度,把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AA 1B 1.(1)求以A 为顶点,且经过点B 1的抛物线的解析式;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D ,C 的坐标.解:(1)由题意得A(1,0),A 1(2,0),B 1(2,1).设抛物线的解析式为y =a(x -1)2,∵抛物线经过点B 1(2,1),∴1=a(2-1)2,解得a =1,∴抛物线解析式为y =(x -1)2(2)令x =0,y =(0-1)2=1,∴D 点坐标为(0,1).∵直线OB 在第一、三象限的角平分线上,∴直线OB 的解析式为y =x ,根据题意联立方程组,得⎩⎨⎧y =x ,y =(x -1)2,解得⎩⎪⎨⎪⎧x 1=3+52,y 1=3+52,⎩⎪⎨⎪⎧x 2=3-52,y 2=3-52. ∵x 1=3+52>1(舍去),∴点C 的坐标为(3-52,3-52) 第3课时 二次函数y =a(x -h)2+k 的图象和性质 1.抛物线y =a(x -h)2+k 与y =ax 2形状__相同___,位置__不同___,把抛物线y =ax 2向上(下)和向左(右)平移,可以得到抛物线y =a(x -h)2+k ,平移的方向、距离要根据__h___,__k___的值来决定.2.抛物线y =a(x -h)2+k 有如下特点:①当a >0时,开口向__上___;当a <0时,开口向__下___;②对称轴是直线__x =h___;③顶点坐标是__(h ,k)___.知识点1:二次函数y =a (x -h )2+k 的图象1.(2014·兰州)抛物线y =(x -1)2-3的对称轴是( C )A .y 轴B .直线x =-1C .直线x =1D .直线x =-32.抛物线y =(x +2)2+1的顶点坐标是( A )A .(-2,1)B .(-2,-1)C .(2,1)D .(2,-1)3.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为( C )A .y =-2(x +1)2+2B .y =-2(x +1)2-2C .y =-2(x -1)2+2D .y =-2(x -1)2-24.写出下列抛物线的开口方向、对称轴及顶点坐标:(1)y =3(x -1)2+2;解:开口向上,对称轴x =1, 顶点(1,2)(2)y =-13(x +1)2-5. 解:开口向下,对称轴x =-1,顶点(-1,-5)知识点2:二次函数y =a (x -h )2+k 的性质5.在函数y =(x +1)2+3中,y 随x 的增大而减小,则x 的取值范围为( A )A .x >-1B .x >3C .x <-1D .x <36.如图,在平面直角坐标系中,抛物线的解析式为y =-2(x -h)2+k ,则下列结论正确的是( A)A.h>0,k>0 B.h<0,k>0C.h<0,k<0 D.h>0,k<0,第6题图),第9题图) 7.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足函数关系式h=-5(t -1)2+6,则小球距离地面的最大高度是( C)A.1米B.5米C.6米D.7米8.用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系式y=-(x-12)2+144(0<x<24),则该矩形面积的最大值为__144_m2___.9.如图是二次函数y=a(x+1)2+2图象的一部分,该图象在y轴右侧与x轴交点的坐标是__(1,0)___.10.已知抛物线y=a(x-3)2+2经过点(1,-2).(1)求a的值;(2)若点A(m,y1),B(n,y2)(m<n<3)都在该抛物线上,试比较y1与y2的大小.解:(1)a=-1(2)由题意得抛物线的对称轴为x=3,∵抛物线开口向下,∴当x<3时,y随x的增大而增大,而m<n<3,∴y1<y211.(2014·哈尔滨)将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( D )A .y =-2(x +1)2-1B .y =-2(x +1)2+3C .y =-2(x -1)2+1D .y =-2(x -1)2+312.已知二次函数y =3(x -2)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-2;③其图象顶点坐标为(2,-1);④当x <2时,y 随x 的增大而减小.则其中说法正确的有( A )A .1个B .2个C .3个D .4个13.二次函数y =a(x +m)2+n 的图象如图,则一次函数y =mx +n 的图象经过( C )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限14.设A(-2,y 1),B(1,y 2),C(2,y 3)是抛物线y =-(x +1)2+a 上三点,则y 1,y 2,y 3的大小关系为( A )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 215.二次函数y =a(x +k)2+k ,无论k 为何实数,其图象的顶点都在( B )A .直线y =x 上B .直线y =-x 上C .x 轴上D .y 轴上16.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数y =12(x +1)2-1的图象. (1)试确定a ,h ,k 的值;(2)指出二次函数y =a(x -h)2+k 的开口方向、对称轴和顶点坐标.解:(1)a =12,h =1,k =-5 (2)它的开口向上,对称轴为x =1,顶点坐标为(1,-5) 17.某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1米的喷水管喷出的抛物线水柱最大高度为3米,此时距喷水管的水平距离为12米,求在如图所示的平面直角坐标系中抛物线水柱的解析式.(不要求写出自变量的取值范围)解:∵点(12,3)是抛物线的顶点,∴可设抛物线的解析式为y =a(x -12)2+3.∵抛物线经过点(0,1),∴1=(0-12)2·a +3,解得a =-8,∴抛物线水柱的解析式为 y =-8(x -12)2+318.已知抛物线y =-(x -m)2+1与x 轴的交点为A ,B(B 在A 的右边),与y 轴的交点为C.(1)写出m =1时与抛物线有关的三个正确结论;(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由.解:(1)正确的结论有:①顶点坐标为(1,1);②图象开口向下;③图象的对称轴为x =1;④函数有最大值1;⑤当x <1时,y 随x 的增大而增大;⑥当x >1时,y 随x 的增大而减小等 (2)由题意,若△BOC 为等腰三角形,则只能OB =OC.由-(x -m)2+1=0,解得x =m +1或x =m -1.∵B 在A 的右边,所以B 点的横坐标为x =m +1>0,OB =m +1.又∵当x =0时,y =1-m 2<0.由m +1=m 2-1,解得m =2或m =-1(舍去),∴存在△BOC 为等腰三角形的情形,此时m =222.1.4 二次函数y =ax 2+bx +c 的图象和性质第1课时 二次函数y =ax 2+bx +c 的图象和性质1.二次函数y =ax 2+bx +c(a ≠0)通过配方可化为y =a(x +b 2a )2+4ac -b 24a的形式,它的对称轴是__x =-b 2a ___,顶点坐标是__(-b 2a ,4ac -b 24a )___.如果a >0,当x <-b 2a 时,y 随x 的增大而__减小___,当x >-b 2a 时,y 随x 的增大而__增大___;如果a <0,当x <-b 2a 时,y 随x 的增大而__增大___,当x >-b 2a 时,y 随x 的增大而__减小___. 2.二次函数y =ax 2+bx +c(a ≠0)的图象与y =ax 2的图象__形状完全相同___,只是__位置___不同;y =ax 2+bx +c(a ≠0)的图象可以看成是y =ax 2的图象平移得到的,对于抛物线的平移,要先化成顶点式,再利用“左加右减,上加下减”的规则来平移.知识点1:二次函数y =ax 2+bx +c (a ≠0)的图象和性质1.已知抛物线y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该二次函数有( B )A .最小值-3B .最大值-3C .最小值2D .最大值22.(2014·成都)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为( D )A .y =(x +1)2+4B .y =(x +1)2+2C .y =(x -1)2+4D .y =(x -1)2+23.若抛物线y =x 2-2x +c 与y 轴的交点为(0,-3),则下列说法不正确的是( C )A .抛物线开口向上B .抛物线的对称轴是x =1C .当x =1时,y 的最大值为-4D .抛物线与x 轴的交点为(-1,0),(3,0)4.抛物线y =x 2+4x +5的顶点坐标是__(-2,1)___.5.已知二次函数y =-2x 2-8x -6,当__x <-2___时,y 随x 的增大而增大;当x =__-2___时,y 有最__大___值是__2___.知识点2:二次函数y =ax 2+bx +c (a ≠0)的图象的变换6.抛物线y =-x 2+2x -2经过平移得到y =-x 2,平移方法是( D )A .向右平移1个单位,再向下平移1个单位B .向右平移1个单位,再向上平移1个单位C .向左平移1个单位,再向下平移1个单位D .向左平移1个单位,再向上平移1个单位7.把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( A )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =218.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A ,B ,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)由抛物线过C(5,4)得25a -25a +4a =4,解得a =1,∴该二次函数的解析式为y =x 2-5x +4.∵y =x 2-5x +4=(x -52)2-94,∴顶点坐标为P(52,-94) (2)(答案不唯一,合理即正确)如:先向左平移3个单位,再向上平移4个单位,得到的二次函数解析式为y =(x -52+3)2-94+4,即y =(x +12)2+74,也即y =x 2+x +29.(2014·河南)已知抛物线y =ax 2+bx +c(a ≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为__8___.10.二次函数y =2x 2+mx +8的图象如图所示,则m 的值是( B )A .-8B .8C .±8D .6,第10题图) ,第12题图)11.已知二次函数y =-12x 2-7x +152.若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系正确的是( A )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2>y 3>y 1D .y 2<y 3<y 112.已知二次函数y =ax 2+bx +c(a <0)的图象如图所示,当-5≤x ≤0时,下列说法正确的是( B )A .有最小值-5,最大值0B .有最小值-3,最大值6C .有最小值0,最大值6D .有最小值2,最大值613.如图,抛物线y =ax 2+bx 和直线y =ax +b 在同一坐标系内的图象正确的是( D )14.已知二次函数y =x 2-2kx +k 2+k -2.(1)当实数k 为何值时,图象经过原点?(2)当实数k 在何范围取值时,函数图象的顶点在第四象限内?解:(1)∵图象过原点,∴k 2+k -2=0,∴k 1=-2,k 2=1 (2)y =x 2-2kx +k 2+k -2=(x -k)2+k -2,其顶点坐标为(k ,k -2).∵顶点在第四象限内,∴⎩⎨⎧k >0,k -2<0,∴0<k <2 15.当k 分别取-1,1,2时,函数y =(k -1)x 2-4x +5-k 都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.解:①当k =1时,函数为y =-4x +4,是一次函数,无最值;②当k =2时,函数为y =x 2-4x +3,为二次函数,此函数图象的开口向上,函数只有最小值而无最大值;③当k =-1时,函数为y =-2x 2-4x +6,为二次函数,此函数图象的开口向下,函数有最大值,因为y =-2x 2-4x +6=-2(x +1)2+8,所以当x =-1时,函数有最大值,为816.已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C ,D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点坐标;若P 点不存在,请说明理由. 解:(1)将(0,0)代入二次函数y =x 2-2mx +m 2-1中,得0=m 2-1,解得m =±1,∴二次函数的解析式为y =x 2+2x 或y =x 2-2x (2)当m =2时,二次函数解析式为y =x 2-4x+3,即y =(x -2)2-1,∴C(0,3),顶点坐标为D(2,-1) (3)存在.连接CD ,根据“两点之间,线段最短”可知,当点P 位于CD 与x 轴的交点时,PC +PD 最短.可求经过C ,D 两点的直线解析式为y =-2x +3,令y =0,可得-2x +3=0,解得x =32,∴当P 点坐标为(32,0)时,PC +PD 最短 第2课时 用待定系数法求二次函数的解析式用待定系数法求二次函数的解析式的几种常见的形式:(1)三点式:已知图象上的三个点的坐标,可设二次函数的解析式为__y =ax 2+bx +c___.(2)顶点式:已知抛物线的顶点坐标(h ,k)及图象上的一个点的坐标,可设二次函数的解析式为__y =a(x -h)2+k___.以下有三种特殊情况:①当已知抛物线的顶点在原点时,我们可设抛物线的解析式为__y =ax 2___;②当已知抛物线的顶点在y 轴上或以y 轴为对称轴,但顶点不一定是原点时,可设抛物线的解析式为__y =ax 2+c___;③当已知抛物线的顶点在x 轴上,可设抛物线的解析式为__y =a(x -h)2___,其中(h ,0)为抛物线与x 轴的交点坐标.(3)交点式:已知抛物线与x 轴的两个交点坐标(x 1,0),(x 2,0)及图象上任意一点的坐标,可设抛物线的解析式为__y =a(x -x 1)(x -x 2)___.知识点1:利用“三点式”求二次函数的解析式1.由表格中信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数关系式正确的是( A ) x -10 1 ax 2 1ax 2+bx +c8 3 A .y =x 2-4x +3 B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +82.已知二次函数y =ax 2+bx +c 的图象经过点(-1,0),(0,-2),(1,-2),则这个二次函数的解析式为__y =x 2-x -2___.3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.解:由题意,得⎩⎨⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎨⎧a =2,b =-3,c =1,∴二次函数的解析式为y =2x 2-3x +1 知识点2:利用“顶点式”求二次函数的解析式4.已知某二次函数的图象如图所示,则这个二次函数的解析式为( D )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8 D .y =2(x -1)2-85.已知抛物线的顶点坐标为(4,-1),与y 轴交于点(0,3),求这条抛物线的解析式. 解:由题意,设二次函数的解析式为y =a(x -4)2-1,把(0,3)代入得3=a(0-4)2-1,解得a =14,∴y =14(x -4)2-1 知识点3:利用“交点式”求二次函数的解析式6.如图,抛物线的函数表达式是( D ) A .y =12x 2-x +4 B .y =-12x 2-x +4 C .y =12x 2+x +4 D .y =-12x 2+x +4 7.已知一个二次函数的图象与x 轴的两个交点的坐标分别为(-1,0)和(2,0),与y 轴的交点坐标为(0,-2),求这个二次函数的解析式.解:由题意,设二次函数解析式为y =a(x +1)(x -2),把(0,-2)代入得-2=-2a ,∴a =1,∴y =(x +1)(x -2),即y =x 2-x -28.抛物线的图象如图所示,根据图象可知,抛物线的解析式可能是( D )A .y =x 2-x -2B .y =-12x 2-12x +2 C .y =-12x 2-12x +1 D .y =-x 2+x +29.二次函数y =-x 2+bx +c 的图象的最高点是(-1,-3),则b ,c 的值分别是( D )A .b =2,c =4B .b =2,c =-4C .b =-2,c =4D .b =-2,c =-410.抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表:x … -2 -1 0 1 2 …y … 0 4 6 6 4 …从上表可知,下列说法中正确的是__①③④___.(填序号)①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2+bx +c 的最大值为6;③抛物线的对称轴是x =0.5;④在对称轴左侧,y 随x 增大而增大.11.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线的解析式为__y =x 2-2x -3___.12.将二次函数y =(x -1)2+2的图象沿x 轴对折后得到的图象的解析式为__y =-(x -1)2-2___.13.(2014·杭州)设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C在直线x =2上,且点C 到抛物线对称轴的距离等于1,则抛物线的函数解析式为__y =18x 2-14x +2或y =-18x 2+34x +2___. 14.已知二次函数的图象的对称轴为x =1,函数的最大值为-6,且图象经过点(2,-8),求此二次函数的表达式.解:由题意设y =a(x -1)2-6,∵图象经过点(2,-8),∴-8=a(2-1)2-6,解得a =-2,∴y =-2(x -1)2-6,即y =-2x 2+4x -815.已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x 轴交于A ,B 两点.(1)试确定此二次函数的解析式;(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB 的面积;如果不在,试说明理由.解:(1)设二次函数的解析式为y =ax 2+bx +c ,∵二次函数的图象经过点(0,3),(-3,0),(2,-5),∴c =3,∴⎩⎨⎧9a -3b +3=0,4a +2b +3=-5,解得⎩⎨⎧a =-1,b =-2,∴y =-x 2-2x +3 (2)∵当x =-2时,y =-(-2)2-2×(-2)+3=3,∴点P(-2,3)在这个二次函数的图象上.令-x 2-2x +3=0,解得x 1=-3,x 2=1,∴与x 轴的交点为(-3,0),(1,0),∴AB =4,则S △PAB =12×4×3=6。

人教版九年级数学上册《22-1-1 二次函数》作业同步练习题及参考答案

人教版九年级数学上册《22-1-1 二次函数》作业同步练习题及参考答案

2 2 22.1 二次函数的图象和性质 22.1.1 二次函数 1. 自由落体公式为 h=1gt 2(g 为常量),h 与 t 之间的关系是( )A.正比例函数B.一次函数C.二次函数D.以上答案都不对2. 某种商品的原价为 a 元,经过两次降价后为 y 元,假设每次降价的百分率均为 x ,则 y 与 x 的函数解析式为( )A .y=ax 2+aB .y=x 2+aC .y=ax 2-2ax+aD .y=a-2x3. 下列函数解析式中,一定为二次函数的是() A.y=3x-1B.y=ax 2+bx+cC.s=2t 2-2t+1D.y=x 2+1 �4.下列函数:①y=2x-1;②y=-5;③y=x 2+8x-2;④y= 3 ;⑤y= 1 ;⑥y=�.其中 y 是 x 的二次函数的 � �3 2� �是 .(填序号)5.已知函数 y=(m 2-m )x 2+(m-1)x+m+1.(1) 若这个函数是 y 关于 x 的一次函数,则 m= ;(2) 若这个函数是 y 关于 x 的二次函数,则 m,且 m .6.若 y=(a 2+a )��2-2�-1是二次函数,则( )A.a=-1 或 a=3B.a ≠-1,且 a ≠0C.a=-1D.a=37. 下列函数关系中,可以看作是二次函数 y=ax 2+bx+c 模型的是() A.在一定距离内,汽车行驶的速度和行驶时间的关系B.某地区人口自然增长率为1%,这个地区人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度(h)与时间(t)的关系(不计空气阻力,其关系式为h=v0t-4.9t2,其中v0 为发射信号弹的初速度)D.圆的周长与圆的半径的关系8.已知正方形的周长是c cm,面积为S cm2,则S 与c 之间的函数解析式为.9.有一个长方体木块,其长和宽相等,高比长多2 m.(1)若长方体的长和宽用x(单位:m)表示,则长方体的表面积S(单位:m2)如何表示?(2)如果将长方体的表面涂上油漆,每平方米所需要的油漆费用是3 元,这个长方体所需要的油漆费用用y(单位:元)表示,那么y 的解析式是什么?★10.如图,有长为24 m 的篱笆,一面利用墙(墙的最大可用长度a 为10 m)围成中间隔有一道篱笆的长方形花圃.设花圃的一边长AB 为x(单位:m),面积为y(单位:m2).(1)求y 与x 的函数解析式及x 的取值范围.(2)如果要围成面积为45 m2 的花圃,那么AB 的长度是多少?2 g ≠0, h t . C . 2 � 参考答案夯基达标1.C 在公式 h=1gt 2 中,t 的次数是 2, 1且 所以是 的二次函数 故选 2 2.C3.C A .y=3x-1 是一次函数,故 A 错误;B .y=ax 2+bx+c (a ≠0)是二次函数,故 B 错误;C .s=2t 2-2t+1 是二次函数,故 C 正确;D .y=x 2+ 1不是二次函数,故 D 错误. � 4.③5.(1)0 (2)≠0 ≠1培优促能6.D7.C 本题可用排除法,选项 A 中,v=�,不是二次函数;选项 B 中,年份为自变量,所以不是二次函数;选项D 中,C=2πr ,周长是半径的正比例函数.故选 C .8.S=�216 9.解 (1)S=2x 2+4x (x+2)=6x 2+8x.(2)y=3(6x 2+8x )=18x 2+24x.创新应用10.解 (1)∵AB=x m,∴BC=(24-3x )m .∴y=x (24-3x )=-3x 2+24x.又 x>0,且 10≥24-3x>0, 14x<8. ∴ 3 ≤ (2)当 y=45 时,即-3x 2+24x=45,∴x=3(舍去)或 x=5.故当 AB 的长度为 5 m 时,围成花圃的面积为 45 m 2.。

精品人教版九年级数学上册22.1 二次函数的图像与性质 同步练习1 含答案

精品人教版九年级数学上册22.1 二次函数的图像与性质  同步练习1 含答案

22.1《二次函数的图像与性质》同步练习1带答案 一.选择题1.抛物线122+=x y 的顶点坐标是( )A.(0,1)B. (0,-1)C. (1,0)D. (-1,0)2.抛物线)0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,则b a ,的取值范围分别是( )A.0,0>>b aB.0,0<>b aC.0,0<<b aD.0,0><b a3.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮 圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m4.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是( ) 第3题A.向下平移3个单位长度B. 向上平移3个单位长度C.向下平移2个单位长度D.向下平移2个单位长度5.抛物线122+-=x y 的对称轴是( )A .直线21=xB .直线21-=x C .y 轴 D .直线2=x 6.抛物线42-=x y 与x 轴交于B,C 两点,顶点为A ,则ABC ∆的周长为( )A .54B .454+C .12D .452+7.在同一平面直角坐标系中,一次函数c ax y +=和二次函数c ax y +=2的图象大致所示中的()AB .C .D .二.填空题 2.5m 3.05m l x yO1.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2.二次函数c ax y +=2()0≠a 中,若当)(,2121x x x x x ≠取时,函数值相等,则当x 取21x x +时,函数值等于 。

3.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。

2022年人教版《二次函数的图像与性质》同步练习附答案

2022年人教版《二次函数的图像与性质》同步练习附答案

2021人教版九年级数学上册第22章22.1《二次函数的图像与性质》同步练习1带答案 一.选择题122+=x y 的顶点坐标是〔 〕A.(0,1)B. (0,-1)C. (1,0)D. (-1,0))0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,那么b a ,的取值范围分别是〔 〕A.0,0>>b aB.0,0<>b aC.0,0<<b aD.0,0><b a3.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一局部,假设命中篮 圈中心,那么他与篮底的距离l 是〔 〕m B .4m m m4.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是〔 〕 第3题 3个单位长度 B. 向上平移3个单位长度 C.向下平移2个单位长度 D.向下平移2个单位长度122+-=x y 的对称轴是〔 〕A .直线21=x B .直线21-=x C .y 轴 D .直线2=x 42-=x y 与x 轴交于B,C 两点,顶点为A ,那么ABC ∆的周长为〔 〕A .54B .454+C .12D .452+7.在同一平面直角坐标系中,一次函数c ax y +=和二次函数c ax y +=2的图象大致所示中的〔 〕AB .C .D . 二.填空题 1.抛物线322--=x y 的开口,对称轴是,顶点坐标是,当x时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2.二次函数c ax y +=2()0≠a 中,假设当)(,2121x x x x x ≠取时,函数值相等,那么当x 取21x x +时,函数值等于。

3.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。

其中判断正确的选项是。

人教版九年级数学上册:二次函数的图象与性质(一)同步练习 含答案

人教版九年级数学上册:二次函数的图象与性质(一)同步练习 含答案

22.1.3 二次函数c ax y +=2的图象与性质(一)知识点:函数)0(2≠+=a c ax y 的图象是一条 ,对称轴是 ,顶点是 ,当0>a ,抛物线开口 ,顶点是抛物线的 ,当0<a ,抛物线开口 ,顶点是抛物线的 。

一.选择题1.抛物线122+=x y 的顶点坐标是( )A.(0,1)B. (0,-1)C. (1,0)D. (-1,0)2.抛物线)0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,则b a ,的取值范围分别是( )A.0,0>>b aB.0,0<>b aC.0,0<<b aD.0,0><b a 3.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m4.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是( ) 第3题A.向下平移3个单位长度B. 向上平移3个单位长度C.向下平移2个单位长度D.向下平移2个单位长度5.抛物线122+-=x y 的对称轴是( )A .直线21=x B .直线21-=x C .y 轴 D .直线2=x 6.抛物线42-=x y 与x 轴交于B,C 两点,顶点为A ,则ABC ∆的周长为( )A .54B .454+C .12D .452+7.在同一平面直角坐标系中,一次函数c ax y +=和二次函数c ax y +=2的图象大2.53.05lxyO致所示中的( )A B . C . D .二.填空题1.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2.二次函数c ax y +=2()0≠a 中,若当)(,2121x x x x x ≠取时,函数值相等,则当x 取21x x +时,函数值等于 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.1《二次函数的图像与性质》同步练习1带答案 一.选择题 1.抛物线122+=x y 的顶点坐标是( )
A.(0,1)
B. (0,-1)
C. (1,0)
D. (-1,0)
2.抛物线)0(2≠+=a b ax y 与x 轴有两个交点,且开口向下,则b a ,的取值范围分别是( )
A.0,0>>b a
B.0,0<>b a
C.0,0<<b a
D.0,0><b a
3.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15
x 2+3.5的一部分,若命中篮
圈中心,则他与篮底的距离l 是( )
A .3.5m
B .4m
C .4.5m
D .4.6m
4.将抛物线322-=x y 平移后得到抛物线22x y =,平移的方法可以是( ) 第3题
A.向下平移3个单位长度
B. 向上平移3个单位长度
C.向下平移2个单位长度
D.向下平移2个单位长度
5.抛物线122+-=x y 的对称轴是( )
A .直线21=x
B .直线2
1-=x C .y 轴 D .直线2=x 6.抛物线42-=x y 与x 轴交于B,C 两点,顶点为A ,则ABC ∆的周长为( )
A .54
B .454+
C .12
D .452+
7.在同一平面直角坐标系中,一次函数c ax y +=和二次函数c ax y +=2的图象大致所示中的( )
A
B .
C .
D .
二.填空题 1.抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当
2.5m
3.05m l x y
O
x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.
2.二次函数c ax y +=2()0≠a 中,若当)(,2121x x x x x ≠取时,函数值相等,则当x 取21x x +时,函数值等于 。

3.任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点。

其中判断正确的是 。

4.点),3(m A 在抛物线12-=x y 上,则点A 关于x 轴的对称点的坐标为 。

5.若抛物线3)2(2+-+=x m x y 的对称轴是y 轴,则=m 。

6.若一条抛物线与22
1x y =的形状相同且开口向上,顶点坐标为(0,2),则这条抛物线的解析式为 。

7.与抛物线32
12+-=x y 关于x 轴对称的抛物线的解析式为 。

8.已知),2(),,2(),,1(321y C y B y A -三点都在二次函数)0(12>-=a ax y 的图象上,那么321,,y y y 的大小关系是 。

(用“<”连接)
三.解答题
1.已知抛物线b ax y +=2过点(-2,-3)和点(1,6)
(1)求这个函数的关系式;
(2)当为何值时,函数y 随x 的增大而增大。

2.已知直线x y 2=和抛物线32+=ax y 相交于点),2(b A ,求b a ,的值;
3.如图,已知抛物线的顶点为)1,0(A ,矩形CDEF 的顶点C 、F 在抛物线上,点
D 、
E 在x 轴 上,C
F 交y 轴于点)2,0(B ,且矩形其面积为8,此抛物线的解析式。

答案
一.选择题
1.A
2.D
3.B
4.B
5.C
6.B
7.B
二.填空题
1.下 y 轴 (0,-3) 0<
0> 2. C 3.①②③④ 4.(3,-8)
5. 2
6. 2
21
2+=x y
7.3212-=x y 8.321y y y << 三.解答题
的增大而减小。

随时,当抛物线开口向下
代入和把x y x a x y b a b a b a b
ax y 0,03)2(9
39
3
6
3
4)6,1()3,2()1.(122>∴<-=+-=∴⎩⎨⎧=-=∴⎩⎨⎧=+-=+∴+=--
4
1
3
243
)4,2()
4,2(4
2)2(.222=∴+⨯=∴+=∴=∴=a a ax y A A b x
y b 代入把代入,把
1414
11
22)2,2(,1)
22(22
1482)
2,0(.3222+=∴=∴+⨯=+=∴==∴=∴=∴x y a a F ax y F DE OE y DE CDEF EF B 代入上式的把设抛物线解析式为,轴对称
,由抛物线关于的面积为且矩形。

相关文档
最新文档