第九章 微分方程与差分

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

微分方程与差分方程

微分方程与差分方程

λ = −1± i, 则齐次方程的通解为 y = e−x (C1 cos x + C2 sin x). 因 −1+ i 是单特征根,故设原非齐次方程的特解为
y* = xe−x[( A0 x + A1) cos x + (B0 x + B1) sin x].
402
把它代入原非齐次方程得
4B0 x cos x + 2(A0+B1) cos x − 4A0 x sin x + 2(B0−A1) sin x = x cos x + 3sin x,
解 将特解 y = e2x + (1+ x)ex 代入原非齐次微分方程得 (4 + 2 p + q)e2x + (3 + 2 p + q)ex + (1+ p + q)xex = rex.
比较系数,得方程组
⎧2 p + q = −4, ⎧ p = −3;
⎪⎨2 p + q − r = −3,⇒ ⎪⎨q = 2;
tan y
tan x

1 tan
y
d
tan
y
=
−∫
1 tan
x
d
tan
x,
ln(tan y) = − ln(tan x) + ln C, 故通解为 tan x tan y = C. 例3 求微方程 cos ydx + (1+ e−x ) sin ydy 在 y(0) = π 下的特解.
4
解 原方程变形为 (1+ e−x ) sin ydy = − cos ydx, 分离变量,得
过程,只要对所给通解求若干次导数,以消去所有任意常数即可.

微分方程(13)

微分方程(13)

第9章 微分方程与差分方程第1节 微分方程的大体概念咱们已经明白,利用函数关系能够对客观事物的规律性进行研究.而在许多几何,物理,经济和其他领域所提供的实际问题,即便通过度析、处置和适当的简化后,咱们也只是能列出含有未知函数及其导数的关系式.这种含有未知函数的导数的关系式确实是所谓的微分方程.求出微分方程中的未知函数的进程就叫解微分方程.本章要紧介绍微分方程的一些大体概念和几种经常使用的微分方程的解法.实际问题中的数据大多数是按等时刻距离周期统计的.因此,有关变量的取值是离散转变的,处置他们之间的关系和转变规律确实是本章最后的内容——差分方程.含有未知函数的导数或微分的方程称为微分方程.微分方程中显现的未知函数的导数的最高阶数称为微分方程的阶.现实世界中的许多实际问题,例如,物体的冷却,人口的增加,琴弦的振动,电磁波的传播等,都能够归结为微分方程问题.这时微分方程也称为所研究问题的数学模型.例 质量为m 的物体只受重力作用由静止开始自由垂直降落.依照牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度的乘积,即F ma =.取物体降落的铅垂线为x 轴,其正向向下.下落的起点为原点.记开始下落的时刻0t =,那么物体下落的距离x 与时刻t 的函数关系()xx t =知足22d xg dt=, 其中g 为重力加速度常数.这确实是一个2阶微分方程。

例 产品的月产量为x 时的边际本钱1()82c x x '=+,确实是一个1阶微分方程.在微分方程中,假设未知函数是一元函数就称为常微分方程;假设未知函数是多元函数,就称为偏微分方程.本章只讨论常微分方程。

n 阶微分方程的一样形式是()(,,,,,)0n F x y y y y '''=,其中x 为自变量,()y y x =是未知函数,上式中,()n y 必需显现,而其余变量(包括低阶导数)能够不显现.若是能从式中解出最高阶导数取得微分方程的如下形式()(1)(,,,,,)n n y f x y y y y -'''=以后咱们只讨论姓如式的微分方程,并假设式右端的函数f在所讨论的范围内持续.专门地,式()中的f若是能写成如下形式()(1)11()()()()n n n n y a x y a x y a x y g x --'++++= 那么称式为n 阶线性微分方程.其中1(),,()n a x a x 和()g x 均为自变量x 的已知函数.把不能表示成形如式的微分方程称为非线性微分方程.例 试指出以下方程是什么方程,并指出微分方程的阶数. (1)3dy x y dx =+ (2)sin (cos )tan 0dyx x y x dx++= (3)32235d y dy x y dx dx ⎛⎫-= ⎪⎝⎭(4)33ln d y dy x xy x dx dx ++= 解 方程(1)是一阶线性微分方程.因为dydx和y 都是一次.方程(2)也是一阶线性微分方程.因为两边除以sin x 就可看出.方程(3)是2阶非线性微分方程,因为其中含有3dy dx ⎛⎫⎪⎝⎭.方程(4)是3阶线性微分方程.因为33,,d y dyy dx dx都是一次式. 若是一个函数代入微分方程能使方程式为恒等式,那么称那个函数为该微分方程的解. 例如,(a)212x gt =,(b)21212x gt c t c =++都是例中的微分方程的解,其中12,c c 为任意常数.通常,称不含任意常数的解为微分方程的特解.而含有彼此独立的任意常数,且任意常数的个数与微分方程的阶数相等的解为微分方程的通解(一样解).那个地址所说的彼此独立的任意常数,是指它们取不同的值时就取得不同的解.从而不能通过归并而使得通解中的任意常数的个数减少.上面的解中,(a)和(c)别离是方程和的特解,(b)和(d)别离是方程和的通解.在实际问题中通常都要求寻觅知足某些附加条件的解.现在,这种附加条件就能够够用来确信通解中的任意常数.这种附加条件称为初始条件,也称为定解条件.一样地,一阶微分方程(,)y f x y '=的初始条件为0x x y y ==其中00,x y 都是已知常数.二阶微分方程(,,)y f x y y '''=的初始条件为00,x x x x y y y y ==''==带有初始条件的微分方程称为微分方程的初值问题. 微分方程的解的图形是一条曲线,称为微分方程的积分曲线. 例 验证函数3()cos y xc x =+(c 为任意常数)是方程2tan 3cos 0dyy x x x dx+-= 的通解,并求出知足初始条件00x y==的特解.解 要验证一个函数是不是是微分方程的通解,只要将函数代入方程,验证是不是恒等,再看函数式中所含的独立的任意常数的个数是不是与方程的阶数相同.对3()cos y xc x =+,求一阶导数233cos ()sin dyx x x c x dx=-+ 把y 和dy dx代入方程左端,得22332tan 3cos 3cos ()sin ()cos tan 3cos 0dyy x x x x x x c x x c x x x x dx+-=-+++-= 因为方程两边恒等,且y中含有一个任意常数,方程又是一阶的,故3()cos y x c x =+是题设方程的通解.把初始条件00x y ==代入通解3()cos y x c x =+中,得0c =.从而所求特解为3cos y x x =.习题9-11、 指出以下微分方程的阶数(1)220xy yy x '''-+=(2)235()sin 0y y x x ''-+=(3)22(3)(45)0xdx x y dy +++=二、指出以下各题中的函数是不是为所给微分方程的解. (1)22,5xy y y x '== (2)2122220,yy y y c x c x x x'''-+==+ (3)12121212()0,xx y y y y c e c e λλλλλλ'''-++==+3、验证1y cx c=+(c 为任意常数)是方程2()10x y yy ''-+=的通解,并求知足初始条件02x y==的特解.4、设曲线在点(,)x y 处的切线的斜率等于该点横坐标的平方,试成立曲线所知足的微分方程,并求出通解.习题9-1答案一、(1)2阶 (2)2阶 (3)1阶 二、(1)是 (2)是 (3)是 3、特解为122yx =+ 4、微分方程为3dy x dx =,通解为414y x c =+第2节 一阶微分方程微分方程没有统一的解法,必需依照微分方程的不同类型,研究相应的解法.本节咱们将介绍可分离变量的微分方程和一些能够化为这种方程的微分方程,如齐次方程等.一、可分离变量的微分方程. 在一阶微分方程(,)dyF x y dx=中,若是右端函数能分解成(,)()()F x y f x g y =,x 与y 分离,x 的一个函数()f x 与y 的一个函数()g y 相乘的形式,即()()dyf xg y dx= 其中()f x ,()g y 都是持续函数.依照这种方程的特点,咱们能够通过积分的方式来求解.设()0g y ≠.用()g y 除方程的两头,用dx 乘以方程的两头,使得未知函数y 的某已知函数及其微分与自变量x 的某已知函数及其微分置于等号的两边(又一次分离了x 与y )得1()()dy f x dx g y =再对上述等式两边积分,即得1()()dy f x dx g y =⎰⎰积分出来以后就说明y 是x 的一个(隐)函数(关系),确实是方程的解. 若是0()0g y =,那么易验证0yy =也是方程的解.上述求解可分离变量的微分方程的方式,称为分离变量法. 例 求微分方程2xydx dy x dy xdx +=+的通解.解 先归并,dx dy 的各项得2(1)(1)x y dx x dy -=-设210,10y x-≠-≠,分离变量得211dy xdx y x =-- 两头积分 211dy xdx y x =--⎰⎰ 得 2111ln |1|ln |1|ln ||22y x c -=-+于是 221(1)(1)y c x -=±-记1cc =±,那么取得题设方程的通解为22(1)(1)y c x -=-例 求微分方程x dye y dx=的通解. 解 分离变量后两边积分xdy e dx y =⎰⎰得1ln ||ln ||x y e c =+ 从而 1xe y c e=±记1cc =±,那么取得题设方程的通解为 xe y ce=例 一曲线通过点(3,2),它在两坐标轴间的任一切线线段均被切点所平分,求曲线的方程.解 设曲线的方程为()yy x =.曲线上任一点(,)x y 的切线方程为Y yy X x-'=-由假设,切点(,)x y 的切线位于两坐标轴间的线段的两个端点别离是0X=时,2Y y =和0Y =时,2X x =.将这两个端点代入切线方程都取得曲线所知足的微分方程dy ydxx =-分离变量后积分,取得通解为xyc =将初始条件3|2x y ==代入通解得6c =. 从而所求的曲线方程为6xy =.二、齐次方程 若是一阶微分方程(,)dyf x y dx= 中的函数(,)f x y 能够写成y x 的函数,即(,)y f x y x ϕ⎛⎫= ⎪⎝⎭,于是 dy y dx x ϕ⎛⎫= ⎪⎝⎭这称为齐次方程.齐次方程能够通过引进新的未知函数的方式化成为可分离变量的微分方程.令y u x =,u 是x 的一个新的未知函数.那么 ,dy du y ux x u dx dx==+, 原齐次方程变成()duxu u dxϕ+= 分离变量后积分得 ln ||()du dxx c u ux ϕ==+-⎰⎰记()u Φ为1()u uϕ-的一个原函数,那么得通解为 ()ln ||u x c Φ=+再以y x 代替u ,就得所给齐次方程的通解 ln ||y x c x ⎛⎫Φ=+ ⎪⎝⎭例 求微分方程22()()0xy x dx y xy dy ---= 的通解.解 原方程变形为2221ydy xy x x dx y xy y yx x--==-⎛⎫- ⎪⎝⎭ 确实是一个齐次方程 令y ux =,那么 ,dy du y ux x u dx dx==+ 代入齐次方程得21du u x u dx u u-+=- 分离变量,0,0u x ≠≠时,得211u du dx u x=- 两边积分211u du dx u x =-⎰⎰得211ln |1|ln ||ln ||2u x c --=+ 以y x 代替u 就取得原方程的通解 11ln |1|ln ||ln ||2yx c x--=+记211c c =±得 21y c x x-= 从而2x xy c -=.注.此题也能够直接分离变量法求解.()()x x y dx y y x dy -=-0y x -≠时, ydy xdx =-积分得 22111222y x c =-+ 即22yx c +=为原方程的通解.如此此题取得两个通解形式2x xy c -=和22y x c +=.说明微分方程的通解并非必然要包括所有解!三、一阶线性微分方程 方程()()dyp x y Q x dx+= 叫做一阶线性微分方程,它关于未知函数y 及其导数y '都是一次的.若是()0Q x ≡,那么方程称为齐次的,不然就称为非齐次的.关于齐次一阶线性微分方程()0dyp x y dx+= 通过度离变量积分,可得它的通解()p x dxy Ce -⎰=而关于非齐次一阶线性微分方程,咱们能够利用它相应的齐次一阶线性微分方程的通解,并利用所谓常数变易法来求非齐次方程的通解,这种方式是把齐次方程的通解中的任意常数C 变易换成x 的未知函数()u x ,即作变换()p x dxy ue -⎰=假设是非齐次方程的解,代入中进而求出()u x ,再代入就取得非齐次方程的解.为此,将对x 求导,注意u 是x 的函数,得()()()p x dxp x dx dy du e up x edx dx--⎰⎰=- 将和代入,得()()p x dxdu e Q x dx-⎰= 分离变量后积分得()()p x dx u Q x e dx C ⎰=+⎰将代入就取得的通解()()()()p x dx p x dx p x dx y Ce e Q x e dx --⎰⎰⎰=+⎰易见,一阶非齐次线性方程的通解是对应的一阶齐次线性方程的通解与其本身的一个特解(中取0C=的解)之和.尔后还可看到,那个结论对高阶非齐次线性方程也成立.例 求方程1cos xy y x x'+=的通解. 解 题设方程是一阶非齐次线性方程,这时1cos (),()xp x Q x x x==. 于是,按公式,所求通解为111ln ln ln cos cos 1cos 1sin dx dx dx x x x x x x x y Ce e e dxx x Ce e e dx x C xdx x xC x x x ----⎰⎰⎰=+=+=+=+⎰⎰⎰ 例 求方程38dy y dx+=的通解. 解 这是一个非齐次线性一阶方程.下面不利用公式,而采纳常数变易法来求解.先求解相应的齐次方程的通解.由 30dy y dx+= 分离变量后积分得相应齐次方程的通解 31x y c e -= , 其中1c 为任意常数.利用常数变易法,将1c 变易为()u x ,即设原非齐次方程的通解为3x y ue -= 求导得 333x x dy du e ue dx dx--=- 代入原非齐次方程得38x du e dx -= 分离变量后积分得 338()83x x u x e dx e C ==+⎰ 从而取得原非齐次方程的通解为383x y Ce -=+ 习题9-2 一、求以下微分方程的通解(1)22(1)(1)0x y dx y x dy -+-=(2)3x y dy dx+=二、求以下微分方程的通解(1)0xy y '--= (2)2222()()0y x xy y dx x x xy y dy -++++=3、求以下微分方程的通解(1)x y y e -'+=(2)sin xy y x '+= 4、求以下微分方程的初值问题:(1)0cos (1)sin 0,|4x x ydx eydy y π-=++== (2)20(1)(1),|1x x x y y x e y ='+-=+=五、已知某产品生产的总本钱C 由可变本钱与固定本钱两部份组成.可变本钱y 是产量x 的函数,且y 关于x 的转变率等于222xy x y +,当10x =时,1y =;固定本钱为100.求总本钱函数()c c x =.习题9-2答案一、(1)22(1)(1)x y C --=; (2)33x y C -+=二、(1)2y Cx +=; (2)arctan y x xy Ce⎛⎫- ⎪⎝⎭= 3、(1)()x y x C e-=+; (2)1(cos )y C x x =-4、(1)(1)sec x e y += (2)(1)x y x e =+五、99()1001)2C x =+- 第3节 可降阶的二阶微分方程 本节讨论三种特殊形式的二阶微分方程的求解.一、()y f x ''=型这种简形的方程,其解法确实是多次积分.在()y f x ''=两头积分,得 1()y f x dx C '=+⎰再次积分,得 1212[()]()y f x dx C dx C f x dxdx C x C =++=++⎰⎰⎰⎰注:关于n 阶微分方程()()n yf x =,显然也能够持续积分n 次,就取得含有n 个任意常数的通解.例 求方程2sin x y e x ''=+的通解.解 持续积分两次,得 212121cos 21sin 4x x y e x C y e x C x C '=-+=+++ 这确实是所求通解.二、(,)y f x y '''=型这种类型的特点是不显含y ,求解方式是:令()y p x '=,那么()y p x '''=,那么原二阶方程化成了一阶方程 (,)p f x p '=利用上一节的方式求出它的通解1(,)p x C ϕ=,再依照1(,)dy y p x C dx ϕ'===也是一阶方程.直接积分得12(,)y x C dx C ϕ=+⎰,就是原二阶微分方程的通解. 注:由于一阶微分方程(,)p f x p '=,咱们并非都会求解.因此本类型(,)y f x y '''=方程的求解还不能说都可求出.例 求方程1x y y xe x'''=+的通解.解 令p y '=,原方程化成1x p p xe x'-= 的一阶线性微分方程.从而 111()()()111dx dx dx x x x x x xp c e e xe e dx c x x e dx c x xe -----⎰⎰⎰=+=+=+⎰⎰即1x p y c x xe '==+因此,原方程的通解为12212()1(1)2x x y c x xe dx c c x x e c =++=+-+⎰ 三、(,)y f y y '''=型这种类型的特点是不明显地含x .这时咱们把x 看成自变量y 的函数,令p y '=,从而p 也是y 的函数.再利用复合函数的求导法那么,把对x 的导数y ''化为对y 的导数,即 dp dp dy dp y p dx dy dx dy ''==⋅=⋅ 于是,(,)y f y y '''=就变成了 (,)dp p f y p dy= 如此就取得一个关于,y p 的一阶微分方程.设1(,)y p y c ϕ'==是它的通解,那么分离变量再积分就取得原方程的通解为21(,)dy x c y c ϕ=+⎰.注.一阶微分方程1(,)dp p y c dyϕ=不必然会求解,因此本类型(,)y f y y '''=也不必然能求出解来. 例 求方程y yy '''=的通解. 解 令p y '=,将x 看做是y 的函数. 这时dp dp dy dp y p dx dy dx dy ''==⋅= 代入原方程就取得一个一阶方程 dp p y dy= 分离变量再积分得2112p y c =+ 再解一阶微分方程2112y p y c '==+ 分离变量再积分得221112dy x c c y ⎛⎫+=⎛⎫++ ⎝⎰ 就是原方程的通解.习题9-31、 求以下方程的通解(1)cos y x x ''=- (2)y x y '''=+(3)(1)y y y '''=+二、求以下微分方程初始问题的特解.(1)300,|0,|0x x x y ey y =='''=== (2)111,|0,|2x x y y y y x==''''=== (3)200()0,|2,|1x x yy y y y y =='''''--===习题9-3答案一、(1)3121cos 6y x x c x c =+++ (2)12x x y c exe c =-+ (3)2x c +=二、(1)3111939x ye x =-- (2)21y x =-(3)1x y e =+。

第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件

第九章-微分方程与差分方程简介市公开课一等奖省赛课获奖课件

x
C2
例3.求解微分方程
y
y2 ,y(0) 1,y(0) 1. y
解: 设
y
p( y) ,则
y
p
dp dy
代入方程得
p dp p2 , dy y
p(
dp dy
p y
)
0
p0
27
第27页
(三)不显含自变量 x 二阶微分方程
2
第2页
第一节 微分方程普通概念
例2.设 s=s(t) 为作自由落体运动物体在 t 时刻
下落距离, 则有
d 2s dt 2 g
s(t) g
s g
ds dt
g
ds dt
gt
C1
s(0) 0
s(0)
0
ds gdt
ds gdt
s gt C1
ds ( gt C1 )dt
ds (gt C1 )dt
于价格P线性函数: QS a bP , QD c dP ,
且 a, b, c, d 都是已知正常数. 当 QS = QD 时, 得
均衡价格 P
ac .
当 QS
> QD 时, 价格将下降,
bd
当 QS < QD 时, 价格将上涨,故价格是时间t 函数.
假设在时刻t价格P(t)改变率与这时过剩需求量
x

P(
x)dx
1 x
dx
ln
x
ln
1 x

Q(
x)e
P
(
x )dx
dx
1
x 2eln x dx
xdx x2 ,
2
故 y ( x2 C )e(ln x) ( x2 C ) x Cx x3 .

第九章--微分方程与差分方程简介

第九章--微分方程与差分方程简介
19
于是非齐次方程的一个特解为:y* =kxa x-1 x
例5 求解差分方程 2y x+1 − 4y x = 2
解:原方程可化为 y x+1 − 2y x = 2 x % 则相应齐方程的通解为 y x =C ⋅ 2 x 由于p=2=a, 所以原方程的特解应设为 y* = Ax 2 x x 代入原方程得: A(x+1)2 x +1 − 2 Ax 2 x = 2 x , 1 ⇒A= 2 1 x * y x = x 2 =x 2 x -1 于是 2 所以原方程的通解为: y x =x 2 x -1 +C ⋅ 2 x
(2)∆(cyx ) = c∆y x (c为常数)
(3)∆ (ay x + bz x ) = a∆y x + b∆z x , b为常数) (a
(4)∆ ( yx z x ) = yx +1∆z x + z x ∆yx = y∆z x + z x +1∆yx

yx z x ⋅ ∆y x − y x ⋅ ∆z x (5) ∆( ) = zx z x ⋅ z x +1
23
1、二阶齐次差分方程的通解 由9.6节可知,要求齐次差分方程的通解,只需找出 两个线性无关的特解即可。仿照一阶齐次差分方程, 设二阶齐次差分方程存在指数形式的解: y x = λ x , (λ ≠ 0) 代入原方程得:
λ x+2 + pλ x+1 + qλ x = 0
即:
λ x + pλ + q = 0
11
9.6、常系数线性差分方程 、
9.6.1 n阶 系 线 差 方 的 本 质 常 数 性 分 程 基 性 n阶 系 线 差 方 的 般 式 : 常 数 性 分 程 一 形 为 yx+n +p1yx+n-1+L+pn-1yx+1+pny1 = f (x) 其 , 1,, n为 知 数 且 n ≠ 0, (x)为 知 数 中 pL p 已 常 , p f 已 函 。 当 (x)=0时 上 方 则 n阶 系 齐 线 差 方 。 , 述 程 为 常 数 次 性 分 程 f 当 (x) ≠ 0时 上 方 则 n阶 系 非 次 性 分 程 , 述 程 为 常 数 齐 线 差 方 。 f

微分方程与差分方程之间的关系(例说)

微分方程与差分方程之间的关系(例说)

T 为采样周期
i C
U
T
C
U [nT ] U [(n 1)T ] T
iR U [nT ] 0
C
U [nT ] U [(n 1)T ] R U [nT ] 0 T
RC
U [nT ] U [(n 1)T ] U [nT ] 0 T
RC (U [nT ] U [( n 1)T ] U [nT ] 0 T

nT
T
由于 e 1 ( ) 取一次项进行近似:得:
T t
1 T 2 1 T 1 T ( ) ( )3 ... ( )m ... 2! t 3! t m! t
nT T
U (nT ) U (( n - 1)T ) U e (1 - e ) U 1 (0 ) U (0 )e ( ) (nT ) T T
U [0] t n
n
U [t ]
n t n
U [0]
n
n
U [t ]
n t U [0] 1 n t
n t n t U [0] 1 n t t
(U [nT ] U [( n 1)T ]) U [nT ] 0 T
T U [nT ] U [( n 1)T ] 0 这实际上是一阶线性常系数齐次差分方程。 T T
U [nT ] T U [( n 1)T ]
2 3
U [nT ]
即:
T U [( n 2)T ] T U [( n 3)T ] ... T U [0]

第九章 差分方法

第九章 差分方法

差分方程模型的理论和方法青岛建筑工程学院胡京爽引言1、差分方程:差分方程反映的是关于离散变量的取值与变化规律。

通过建立一个或几个离散变量取值所满足的平衡关系,从而建立差分方程。

差分方程就是针对要解决的目标,引入系统或过程中的离散变量,根据实际背景的规律、性质、平衡关系,建立离散变量所满足的平衡关系等式,从而建立差分方程。

通过求出和分析方程的解,或者分析得到方程解的特别性质(平衡性、稳定性、渐近性、振动性、周期性等),从而把握这个离散变量的变化过程的规律,进一步再结合其他分析,得到原问题的解。

2、应用:差分方程模型有着广泛的应用。

实际上,连续变量可以用离散变量来近似和逼近,从而微分方程模型就可以近似于某个差分方程模型。

差分方程模型有着非常广泛的实际背景。

在经济金融保险领域、生物种群的数量结构规律分析、疾病和病虫害的控制与防治、遗传规律的研究等许许多多的方面都有着非常重要的作用。

可以这样讲,只要牵涉到关于变量的规律、性质,就可以适当地用差分方程模型来表现与分析求解。

3、差分方程建模:在实际建立差分方程模型时,往往要将变化过程进行划分,划分成若干时段,根据要解决问题的目标,对每个时段引入相应的变量或向量,然后通过适当假设,根据事物系统的实际变化规律和数量相互关系,建立每两个相邻时段或几个相邻时段或者相隔某几个时段的量之间的变化规律和运算关系(即用相应设定的变量进行四则运算或基本初等函数运算或取最运算等)等式(可以多个并且应当充分全面反映所有可能的关系),从而建立起差分方程。

或者对事物系统进行划分,划分成若干子系统,在每个子系统中引入恰当的变量或向量,然后分析建立起子过程间的这种量的关系等式,从而建立起差分方程。

在这里,过程时段或子系统的划分方式是非常非常重要的,应当结合已有的信息和分析条件,从多种可选方式中挑选易于分析、针对性强的划分,同时,对划分后的时段或子过程,引入哪些变量或向量都是至关重要的,要仔细分析、选择,尽量扩大对过程或系统的数量感知范围,包括对已有的、已知的若干量进行结合运算、取最运算等处理方式,目的是建立起简洁、深刻、易于求解分析的差分方程。

第九章 偏微分方程差分方法

第九章 偏微分方程差分方法

第9章 偏微分方程的差分方法含有偏导数的微分方程称为偏微分方程。

由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。

偏微分方程的数值方法种类较多,最常用的方法是差分方法。

差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。

本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。

9.1椭圆型方程边值问题的差分方法9.1.1 差分方程的建立最典型的椭圆型方程是Poisson (泊松)方程G y x y x f yux u u ∈=∂∂+∂∂-≡∆-),(),,()(2222 (9.1)G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。

当f (x ,y )≡0时,方程(9.1)称为Laplace(拉普拉斯)方程。

椭圆型方程的定解条件主要有如下三种边界条件第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件),(y x nuβ=∂∂Γ (9.3) 第三边值条件 ),()(y x ku nuγ=+∂∂Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。

满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。

用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。

差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。

设G ={0<x <a , 0<y <b }为矩形区域,在x ,y 平面上用两组平行直线x =ih 1, i =0,1,…,N 1, h 1=a /N 1 y =jh 2, j =0,1,…,N 2, h 2=b /N 2将G 剖分为网格区域,见图9-1。

微分方程差分方程

微分方程差分方程

微分方程差分方程
(原创版)
目录
1.微分方程和差分方程的定义与特点
2.微分方程和差分方程的解法及其应用
3.微分方程和差分方程的关系与区别
正文
微分方程和差分方程是数学领域中两种重要的方程式,它们各自具有独特的定义和特点,并在实际应用中发挥着重要的作用。

首先,我们来了解微分方程。

微分方程是一种涉及函数及其导数的方程,它描述了函数在某一点的变化率与该函数在某一点的取值之间的关系。

微分方程广泛应用于物理、工程、生物和经济等多个领域,其解法主要包括分离变量法、常数变易法、参数方程法等。

通过求解微分方程,我们可以了解许多自然现象和社会现象的变化规律。

接下来,我们来了解差分方程。

差分方程是一种涉及离散函数及其差分(即函数值之差)的方程,它描述了离散函数在某一点的变化与该函数在其他点的取值之间的关系。

差分方程主要应用于计算机科学、信息处理、自动控制等领域,其解法主要包括常数差分法、线性差分法等。

通过求解差分方程,我们可以设计和实现许多高效的算法和控制系统。

微分方程和差分方程虽然各自有独特的定义和特点,但它们之间也存在一定的关系和联系。

差分方程实际上是微分方程在离散情况下的一种特殊形式。

在解决实际问题时,我们可以根据问题的具体性质,选择合适的方程类型进行求解。

总之,微分方程和差分方程在理论研究和实际应用中都具有重要意义。

第1页共1页。

第九章 微分方程与差分方程简介

第九章  微分方程与差分方程简介

第九章 微分方程与差分方程简介基 本 要 求一、了解微分方程及其解、通解、初始条件和特解等概念。

二、掌握变量可分离的方程、齐次方程和一阶线性方程的求解方法。

三、会用降阶法解下列方程:),(),,(),(//////)(y y y y y y f x f x f n ===。

四、会用微分方程解决一些简单的应用问题。

五、了解差分与差分方程及其通解与特解等概念。

习 题 九1、试说出下列微分方程的阶数:(1)x yy y x =-'2'2)(; ………………………………一阶 (2) 02)(22=+-xydy dx y x ;…………………………一阶 (3)022'''''=++y x y xy ;………………………………三阶 (4)x y y y =++'2''')1(.…………………………………二阶 2、验证下列各题中所给函数是否是所对应的微分方程的解: (1)y xy x y 2,5'2==;解:由x y x y 105'2=⇒= ∴y x xy 2102'== ∴25x y =为y xy 2'=的解.(2) 02,sin '''=-+=xy y xy xxy . 解:∵2''sin cos )sin (x x x x x x y -==,32''sin 2cos 2sin xxx x x x y +--= ∴0sin 22'''≠-=-+x xy y xy ,即xxy sin =不是02'''=-+xy y xy 的解.3、求下列微分方程的通解:(1)0'2=+y y x ;解:x Ce y C x y x dx y dy 12ln 1ln =⇒+=⇒-=(2) xy dxdyx =+)1(2; 解:)1(ln )1ln(21ln 122222x C y C x y x xdx y dy +=⇒++=⇒+=(3) y yex x dx dy 12+=; 解:C x e ye dx x x dy ye yyy++=-⇒+=2322)1(311(4) 3'ln xy xy xy +=;解:C x y y C x y y dx x x dy y y +=+⇒+=+⇒=+24212423)(ln 22)(ln 2142ln )( 4、解下列初值问题:(1)0)1(,12=+=y y dx dy; 解:∵)tan(arctan 12C x y C x y dx y dy+=⇒+=⇒=+ 由10)1(-=⇒=C y ∴)1tan(-=x y (2)1)0(,==-y e dxdyy x ;解:∵C e e dx e dy e x y x y +=⇒=由11)0(-=⇒=e C y ∴1-+=e e e x y (3)1)0(,)1(212-=-+=y y x dx dy ;解:∵C x x y y dx x dy y ++=-⇒+=-222)12()1(2由31)0(=⇒-=C y ∴3222++=-x x y y (4)2)2(,132=++=y x x yx dx dy .解:∵13ln )1ln(213ln 13222+=+⇒++=+⇒+=+x C y C x y x xdx y dy 由52)2(=⇒=C y ∴)1(5)3(22x y +=+ 5、求下列齐次方程的通解: (1)xyx y -=';解:令u xu y x y u +=⇒='',方程化为:xdx u du =-21 积分得:xC x C y Cx u C x u 2222121)21(ln ln 21ln 21-=⇒=-⇒+=--- (2) yx y x y -+='; 解:令u xu y x y u +=⇒='',方程化为dx x du uu u u u u xu 1)111(1122'=+-+⇒-+=+ 积分得:Cx u e C x du u u u =+⇒+=+--212arctan 2)1(ln ln )1ln(21arctan即Cx xy exy =+-2122)1(arctan(3)xy xe y xy +='; 解:令u xu y x y u +=⇒='',方程化为dx xu d e e u dx du x u u u 1)(=--⇒+=+- 积分得:)ln ln(ln x C x y C x e u --=⇒-=--(4)x xy y x y xy -=sin sin' x x yy x y x y -=sin sin /;解:令u xu y x y u +=⇒='',方程化为dx xudu 1sin -=积分得:C x xyC x u +=⇒--=-ln cos ln cos(5) 1,02)3(022==--=x y xydx dy x y .解:令u xu y x y u +=⇒='',方程化为x dx du u u u uu =--++--)]25151(1035[2 积分得:C y x y C x u u u =-⇒+=+----3251225ln ln ln 1065ln 1035ln 216、求下列微分方程的通解:(1) x e y y =-3';解:2)()(2333xx x x dx x dx eCe C dx e e C dx e e e y -=+=+⎰=⎰⎰-⎰-(2)22'x e y xy =+;解:方程整理为xe y x y x 22'=+∴)2(1)(1)(222222C e xC dx xe x C dx e x e ey x x dx x x dx x+=⎰+=⎰+⎰⎰=-(3)'xy xy e x =+;解:方程整理为xe y y x=-'∴)(ln )1()(C x e C dx xe C dx e x e ey x x dx x dx+=⎰+=+⎰⎰=-⎰ (4))2,2(,1tan ππθθθ-∈=-y d dy ; 解:方程整理为1tan '=⋅-y y θ∴θθθθθθθθθθcos tan )cos (cos 1)(tan tan CC d C d e e y d d +=+=⎰+⎰⎰=⎰- (5))0('>=++-x e y xy xy x;解:方程整理为xe y x x y x-=++1'∴)1()()(ln )ln (11xC e C dx e x e eC dx e xe ey x x x x x x dx xx x dx xx +=+⎰=+⎰⎰=-+-+-⎰+-+-*(6)21y x dx dy +=. 解:方程整理为2'y x x =-∴y y y dydy Ce y y C dy e y e C dy e y e x +---=+=+⎰⎰=⎰⎰-22)()(2227、求下列微分方程的通解: (1)x x y sin ''+=;解:∵12'cos 2)sin (C x x dx x x y +-=+=⎰ ∴⎰++-=+-=21312sin 6)cos 2(C x C x x dx C x x y(2) '''''44y y xy +=; 解:令 (3)0'''=+y xy ;解:令''''P y P y =⇒=,则原方程为dx xP dP P xP 10'-=⇒=+ 积分得x C P C x P 11ln ln ln =⇒+-=,即211ln C x C y xC dx dy +=⇒= (4) 222x dxy d =; 解:∵132'3C x dx x y +==⎰ ∴2141312)3(C x C x dx C x y ++=+=⎰ (5)xy y xy ''''ln =;解:令''''P y P y =⇒=,则原方程为x P x P P ln '=,令dxdu x u P x P u +=⇒=' ∴原方程为xdxu u du =-)1(ln ,积分有2111111)1(1ln ln ln 1ln ln 11C C x C e y e x P x C x P C x u x C x C +-=⇒=⇒=-⇒+=-++(6) '22''')(y y y yy =-; 解:令dy dP Py y P y =⇒=''')(,原方程化为y P ydy dP =-1∴)()1()(11111C y y C dy yy y C dy yeeP dyy dyy +=⎰+⋅⇒+⎰⎰⎰=-∴xC xC e C e C C y dx C dy C y y C y y y 11221111'1)11()(-=⇒=+-⇒+= (7)x x y y sin cot 2'''=+;解:令''''P y P y =⇒=,则原方程为x x P P sin cot 2'=+,即)cos cos 31(csc )sin ()sin (1321321cot 2cot 2C x x x C xdx x csx C dx e x e P xdx xdx +-=+⎰⇒⎰+⎰⋅⎰=-∴2121222cot 3sin 3csc 2csc sin sin 1sin sin )sin 1(31C x C x x xdx C x d x xx d x y +--=+--=⎰⎰⎰ (8)'''''y y =;解:令''''''P y P y =⇒=,则原方程为dx pdP=,积分得x e C P 1= ∴21'C e C y x += ∴321C x C e C y x ++= (9)2,1,30'0''=====x x y y y y .解:令dydP P y y P y =⇒=''')(,原方程化为dy y PdP 3=,积分得12324C y P +=∵2,10'0====x x yy∴由上式得01=C ,即43'2y y =∴24124C x y +=,同理可得22=C ∴2241+=x y8、求下列函数的差分. (1)C y x =(C 为常数); 解:0=-=∆C C y x (2)x x a y =;解:)1(1-=-=∆+a a a a y x x x x (3)ax y x sin =;解:2sin )21(cos 2sin )1(sin a x a ax x a y x +=-+=∆(4) 2x y x =;解:12)1(22+=-+=∆x x x y x 9、确定下列差分方程的阶. (1)23123=+-++x x x y y x y ; 解:∵3)3(=-+x x ∴其阶为3. (2) 242+--=-x x x y y y .解:∵6)4()2(=--+x x ∴其阶为6.第九章 单 元 测 验 题1、指出下列题的叙述是否正确:(1)方程y x y y xy 2'2)(=-是齐次的;…………………………………………错 (2)方程0)13()2(3'22=+++y x xy x 是线性的;………………………………正确 (3)方程1623'-+-=xy x y y 是可分离的.……………………………………正确 2、求下列微分方程的通解:(1))(cos 2'x yx y xy +=;解:∵)(cos 2'x y x y y += 令''xu y y x y u +=⇒=,原方程化为dx x udu 1sec 2=积分得)arctan(ln ln tan C x x y C x u +=⇒+= (2)xy x x y 1ln 1'=+; 解:xCx C dx x x x y C dx e x ey dx x x dxx x ln 2ln )ln (ln 1)1(ln 1ln 1+=⎰+=⇒+⎰⎰⎰=-*(3) 0)2(22=-+-dy x xy y dx y ; 解:原方程整理得1)21(2=-+x y y dy dx ∴)1()1()(121212)21()12(22y y ydyy y dyy y Ce y x C dy e ye y x C dy eex +=⇒⎰+=⇒⎰+⎰⎰=---2(4)0)1('''2=--xy y x ,且满足1,00'0====x x y y .解::令''''P y P y =⇒=,则原方程为dx x xP dP 21-=,积分得 2121ln 1ln 21ln xC P C x P -=⇒+--= ∴2121arcsin 1C x C y dx x C dy +=⇒-=又∵1,00'0====x x y y ∴代入上式得0,121==C C ∴x y arcsin =3、求曲线方程)(x y y =,它满足方程y x dxdy34=,且在y 轴上的截距等于7. 解:由题得dx x ydy34=,积分有4x Ce y = 又∵曲线在y 轴上的截距等于7 ∴当0=x 时7=y ,代入上式得7=C∴曲线方程为47x e y =.4、求一条曲线,使该曲线的切线、坐标轴与切点的纵坐标所围成的梯形面积等于2a ,并且该曲线过),(a a 点. 解:设该曲线方程为)(x f y =则曲线上任意一点),(00y x A 的切线方程为))((00'0x x x f y y -=-设此切线与y 轴交于点C ,过切点A 作AB 垂直于x 轴于点B ,对梯形ABOC 有:000'0000'0,),()0)((y AB x OB x f x y x x f y OC ==-=-+=∴)](2[22)(0'0002x f x y x a OBAB OC S ABOC -=⇒+=由于点),(00y x A 的任意性,上式可以改写为2'2)2(a xy y x =-整理得22'22xa y x y -=-,积分得)32()2()2(3224222222C xa x C dx x a x C dx e x a ey dx x dxx +=+⎰-=+⎰⎰-⎰=-- 又∵曲线过),(a a 点 ∴a C 31= ∴ax x a y 33222+=。

线性微分方程及差分方程

线性微分方程及差分方程

u x
du dx
u

1 u
2
2
即: x
2
du dx
1 u 1 8) (9
当 1 u 0时 , 分 离 变 量 得 : du 1 u
2

dx x
16
两边积分: arcsin u ln x C
再将:u arcsin y x
y x
2
二、微分方程的阶 微分方程中,未知函数的最高阶导数的阶数 定义2 称为微分方程的阶 三、微分方程的解
定义3
如果某个函数代入微分方程后使其两端恒等,则称 此函数为该微分方程的解,如果微分方程的解所含 独立的任意常数个数等于方程的阶数,则称此解为 微分方程的通解。而微分方程任意确定的解称为微 分方程的特解
一 线性方程
(Linear differential equation)
二 伯努利方程
(Bernoulli differential equation)
三 小结 思考判断题
25

线性方程(Linear differential equation)
一阶线性微分方程的标准形式:
dy dx
当 Q ( x ) 0,
3
4
§9.2 一阶微分方程
一、可分离变量的微分方程
1 .形 如 M ( x ) d x N ( y ) d y 0 1 3) (9 的方程称为变量已分离的微分方程
将 (9 1 3) 式 两 边 同 时 积 分 , 得
M ( x )dx N ( y )dy C (9-14)
11
解:这是一个可分离变量的初值问题,分离变量德 dx adt ( xm x ) x

第九章 fx微分方程与差分方程简介

第九章 fx微分方程与差分方程简介
dp p = f ( y, p) dy
y′ = p(y)
p = ψ ( y , C1 )
dp dy′ =p y′′ = dx dy
y′ = ψ ( y , C1 )
dy ∫ ψ ( y , C1 ) = x + C 2 .
3
第九章 微分方程与差分方程简介
7.
y′′ + py′ + qy = 0
2
λ + pλ + q = 0
x 1 1 2 = − + y + C. y y 2
1 3 x = −1 + y + Cy . 2
′ = ± 1 − u2 xu du dx ± = . 2 x 1− u
7
5. 求以 y = Ce
第九章 微分方程与差分方程简介
− x2
为通解的微分方程 . − x2 y ′ = − 2 xCe = − 2 xy y ′ + 2 xy = 0 . x 2x x −x 6. 已知 y1 = xe + e , y2 = xe + e ,
y 3 = xe x + e 2 x − e − x 为二阶线性非齐次
微分方程的三个解,求 此微分方程 . 微分方程的三个解, 因Y1 = y1 − y3 = e− x , Y2 = y1 − y2 = e2x − e−x , Y3 = Y1 +Y2 = e2x ,
e 和 e 是二阶线性齐次微分方 程线性无关特解, λ1 = −1, λ 2 = 2, (λ + 1)(λ − 2) = 0, λ2 − λ − 2 = 0.
2
5. y′′ = f ( x , y′ ) y′ = p(x) y′′ = p′(x) p′ = f ( x , p ) p = ϕ ( x , C1 ) y′ = ϕ ( x , C1 )

微分方程和差分方程简介

微分方程和差分方程简介
y f (x, y)
常用的解法:分离变量法
形如
dy f (x)g( y) dx
P (x)P ( y)dx Q (x)Q (x) 0
1
2
1
2
的方程均为可分离变量的微分方程。
对(2)式两端分别积分,便可得到微分方程的通解
g( y)dy f (x)dx C
其中C为任意常数。
例1 求微分方程 y 3x2 y的通解。
特征方程 r2 pr q 0的根 两个相异实根 r1 r2 两个相等实根 r r1 r2 一对共扼复根 r1,2 i
齐次方程y py qy 0的通解
y C1er1x C2er2 x y (C1 C2 x )erx
y (C1 cos x C2 sin x)ex
二阶非齐次常系数微分方程
微分方程与差分方程简介
我们知道,函数是研究客观事物运动规律的重要 工具,找出函数关系,在实践中具有重要意义。可在 许多实际问题中,我们常常不能直接给出所需要的函 数关系,但我们能给出含有所求函数的导数(或微分) 或差分(即增量)的方程,这样的方程称为微分方程 或差分方程.
动态 模型
• 描述对象特征随时间(空间)的演变过程 • 分析对象特征的变化规律 • 预报对象特征的未来性态
求微分方程(组)的解析解命令:
dsolve(‘方程1’, ‘方程2’,…‘方程n’, ‘初始条件’, ‘自变量’)
记号: 在表达微分方程时,用字母 D 表示求微分,D2、D3 等
表示求高阶微分.任何 D 后所跟的字母为因变量,自变量可以指
定或由系统规则选定为确省.
例如,微分方程

1、用差商代替导数
若步长h较小,则有
y'(x) y(x h) y(x) h

第九章 微分方程与差分方程习题解答

第九章 微分方程与差分方程习题解答

练习9.11.指出下列微分方程的阶数:解:(1)一阶 (2)一阶 (3)一阶 (4)二阶2.验证下列各函数是否为所给微分方程的解,并指出哪些是特解哪些是通解。

(21,,C C C 为任意常数)解:(1)通解 (2)特解 (3) 不是解 (4)不是解3.写出以下列函数为通解的微分方程,其中21,,C C C 为任意常数 解:(1)直接求式子求导,可得0)(22=+'−y y yx x(2)直接求式子求导,可得02=−'+''y y y练习9.21.求下列各微分方程的通解或在给定初值条件下的特解:(1)解:xdx ydy sin =两边同时积分-cosx 1cos lny e c y c x =⇒+−=(2)解:22ln 2x e c y c x y xdx ydy⋅=⇒+=⇒=积分(3)解法一:cy x c y x cxy y x xy d dy dx =+−=+−⇒=+−⇒=+−)1)(1()1)(1(0)(或解法二:cy x cc d d x y x dxy dy =+−⇒=⇒+=⇒−=−=+=−=+)1)(1(1ln ln 1,111ξηξηξξηηξη令(4) 解:0011tan cos 0,4)0(22=⇒=+=⇒+=⇒===c c c e x dt e xdx t x t令π故t t e x e x arctan ,tan ==(5)解:dy e e dx e e x y y x )1()1(++−ce e ce e e dy dx e dy e dx e x y y x x y y x y x =+−⇒=+−⇒=+++−⇒++)1)(1(0)((6)解:1232323230)1()1(c y y x x dy y y dx x x =−−+⇒=+−+c y y x x =−−+⇒23233232e y e xx 2O学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MO O C中国大学MOO C中国大学MOO C中国大学MOO C中国大学MO O C中国大学M OOCO 学M O C 中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学M OOC令)1ln(21)1ln(211)1(,1e c c e y x +−=⇒++=⇒==由 故)1ln(21)1ln(22e e y x +−++=(8)解:c x y x dx y dy =+⇒=++arctan ln 012令4401)1(,1ππ=⇒=+⇒==c c y x 由故4arctan ln π=+x y2.求下列各微分方程的通解或特解:(1)解:u dxdux dx dy x y u x y x y dx dy +=⇒=−=令112ln )2ln(211c x u u u u u dx du x +=−⇒−=+⇒c y xy x c u u =−⇒⋅=−⇒22222(2)解:令xyu =)ln(0)ln(0)ln(ln ln =+=+⇒=+⇒+=⇒=⇒+=+=−−−−xyxy u u u u ecx ecx e cx c x e x dx edu u e u dx du x dx dy 故原方程的通解为:(3)解:令012=+−−+⇒=u u u dxdux x y u 122ln )1ln(1c x u u xdxu du+=++⇒=+⇒22221cx y x y cx u u =++⇒=++⇒(4)解:令c x u u dx du x x y u +=⇒=⇒=ln 2tan ln sin 01ln 1ln 2,1=⇒+=⇒==c c u x π令x x y x u arctan 2arctan 2=⇒=⇒(5)解:令 u dydu y dy dx y x u +⋅==则 化简得 uu dy du y u u u dy du y 25123122−=⋅⇒−=+⋅ c y u dy udu +=−−⇒=⇒ln 51ln 122 O 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MO O C中国大学MOO C中国大学MOO C中国大学MOO C中国大学MO O C中国大学M OOCO 学M O C 中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学M OOC令00)0(,1)0(0====c u y x 得则 故151)51(32552=−⇒=−y x y yu (6)解: xyu xy x y dx dy =+−=令,11则11112+−−=⇒+−=+u u dx du x u u dx du x u 令 c x u u x dx u du u +=−+−⇒=++−⇒ln arctan 1ln 21)1()1(22令0,0)1(,0)1(,1====c u y x 得则故 0arctan 2)ln(ln 2arctan 2ln ln arctan 1ln 21222222=++⇒−=++⇒=−+−xyy x x x yxy x x u u 3.求下列微分方程的通解:(1)解:令y x z −= zz z z dx dy dx dz 22211+=++=−= ()()()c x y x n y cx z n z dx z zdz+=+−−−+=+−⇒=+⇒12112 故原方程的通解为: )(1y x ce y x +−=+− (2)解:373737++−−−=y x y x dx dy 0407337≠=−−=∆⎩⎨⎧=+=⎩⎨⎧==⇒⎩⎨⎧=++−=−−ηξy x y x y x y x 1010********0故令 得ξξξξηξηξξηξηd du u u d du u d d u =−−=+⇒+−−==277377337令 cy x y x cc u u c u u u cuu u =−+−−⇒=−+⇒=−+⇒=⎪⎭⎫ ⎝⎛−+−⇒+=−+−−−⇒5225727527322)1()1()()()1()1(11)1(ln 11ln 1431ln 21ηξξηξξξ (3)解:0111=−−=∆−−−=y x dyO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MO C中国大学MO O C中国大学MO O C中国大学MO O C中国大学MO O C中国大学MOOC中国大学M OOCO 学M O C 中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学MOO C中国大学M OOC令 1221211−−=−−−+=+=z z z z dx dz yx z cy x y x c x z z dx dz z z =−++++=−+⇒=−−2ln 32 2ln 32212即 (4)解:051=∆++−++−=y x y x dx dy令 54511+−=+++−=−=z z z dx dz xy z c x y x y c x z z dx dz z =−+−⇒+−=+⇒−=+52)(4524)5(22(5)解:分离变量得01122=++−yydyx xdx 两边积分得1221ln 211ln 21C y x =++−−得通解为C xy =−+2211 (6)解:变形得 0223=+x y dydxy 分离变量得并积分得21yCx = 变易常数C ,即令21)(y y C x =,代入原方程有y y C 1)(=', 积分得C y y C +=ln )( 得通解为)(ln 12C y yx +=4.求下列各微分方程的通解或在给定初值条件下的特解:(1)解:()()cdx e x e c dx e x e y x x x dx+⋅=+⋅⎰=⎰⎰−−222244分部积分()[]x x x e c x c x e e 2221212−−⋅+−=+−=(2)解:利用函数变量法:令 x e x Q x p −==)(1)(⎥⎦⎤⎢⎣⎡+⎰⎰=⎰−c dx e x Q e y dx x p dx x p )()()( []()c x e c dx e e e x x x x +=+⋅=−−−⎰ (3)解:cos sin cos c dx e e e y xdx x xdx⎪⎭⎫ ⎝⎛+⎰⎰=−−⎰O学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MO C中国大学MO O C中国大学MO O C中国大学MO O C中国大学MOOC中国大学MOOC中国大学M OOCO 学M O C 中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学MOOC中国大学MOOC中国大学M OOC(4)解:⎪⎪⎭⎫ ⎝⎛+⎰−⎰=⎰−−−c dx e x x e y dx x xdx x x 12212221cos []1sin 1cos 11222−+−=+−=⎰x xx c c xdx x(5)解:01212=+−+yy dy dx 故⎪⎪⎭⎫ ⎝⎛+⋅−=⎪⎪⎭⎫ ⎝⎛+⋅−⎰=⎰⎰−+−−−c y dy e e c y dy e ex y y y y dy yy21)ln 21(2121)1( y yye cy y c e e y 122112+−=⎥⎥⎦⎤⎢⎢⎣⎡+−⋅=(6)解:c t x t dt x dx ++=+⇒+=+)2ln()13ln(31213 令0)0(,0==x t ,得2ln −=c故()()2211331+=+t x (7)解:[]x c e c dx e x c dx e x e e y xx x dx x x dx +=+=⎪⎪⎭⎫ ⎝⎛+⎰⋅⎰=⎰⎰−1 令1)2(,2==y x ,即22221e c ce −=⇒+= 故xe e y x 22−+=(8)解:⎥⎦⎤⎢⎣⎡+−−−−=⎪⎪⎭⎫ ⎝⎛+⎰⋅−−⎰=⎰⎰−−−−c dx x x x x x x x c dx e x x x e y x x dxx x dx 11)12(11)12()1()1( [][]c x x x x c dx x x x +−−=+−−=⎰21)12(1 令4)2(,2==y x ,即0)24(24=⇒+−=c c故2x y =5.求下列方程的通解:(1)解:23x y yx dydx+= 令1−=x z ,则dydx x dy dz 21−= O学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC 中国大学MO OC中国大学MOO C中国大学MOO C中国大学MOO C中国大学MO O C中国大学M OOCO 学M O C 中国大学M O O C中国大学M O O C 中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学MOOC331y yz y ydy dz −−=−−= 22222232322222)2()2( y y y y y ydyydy ce y c y e ec dy e y ec dy e y e z −−−−−+−−=⎥⎥⎦⎤⎢⎢⎣⎡+−−=⎥⎥⎦⎤⎢⎢⎣⎡+−=⎪⎭⎫ ⎝⎛+⎰⋅⎰=⎰⎰即:1)2(222=+−−y cex y(2)解: 令3−=y z ,则24333x z xdy dx y dx dz −=−=− []c x x c dx x x c dx e x e z dx x dx x +−=⎥⎦⎤⎢⎣⎡+−=⎪⎪⎭⎫ ⎝⎛+⎰⋅−⎰=⎰⎰−ln 3 3333333 即:1)ln 3(33=−x c y x(3)解:xy x dy dx 2−= 令2x z =,则dydx x dy dz 2=y z y x dydz42422−=−= 故[][]yce c y e e c dy ye e x c dy e y e z y y y y y dy dy21)21(4 422222222++=++=+−=⇒⎪⎭⎫ ⎝⎛+⎰⋅−⎰=−−−⎰⎰(4)解: 令x z 1=,则y yz dydxx dy dz −−=−=312 311)(23232323332222−=⇒+=⎪⎪⎭⎫ ⎝⎛+⋅−=⎪⎭⎫ ⎝⎛+⎰⋅−⎰=−−−−⎰⎰y y y y ydy ydy cexc e c dy e y e c dy e y e z(5)解: 令xyu =,则u u u u x tan +=+' cx x y cx u cx u dx xudu u dx xdu arcsin sin ln ln sin ln 1cot tan =⇒=⇒+=⇒=⇒=⇒(6)解:其对应的齐次方程分离变量得xdx y dy −= O 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOCO 学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO学MOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学MOOC中国大学M OOCO 学MOC 中国大学MO OC中国大学MOO C中国大学MO O C中国大学MO O C中国大学MOOC中国大学M OOCO 学M O C 中国大学M O O C中国大学M O O C 中国大学M O O C 中国大学M O O C中国大学MOOC中国大学M OOC积分得c x y ln ln ln +−=将c 常数变易为)(x c ,代入得xx c 1)(=',积分得c x x c +=ln )( 于是原方程的通解为)(ln 1c x xy +=6.不作要求。

差分法求解微分方程

差分法求解微分方程

差分法求解微分方程
微分方程是数学中常见的一种求解问题,但是它是一种难以定性求解的问题,为了解决这一问题,出现了一种新的求解方法:差分法。

差分法是一种基于差分方程组的近似解法,它通过一系列的迭代叠加,以计算出数学方程的近似解。

差分法是一种常用的求解方法,广泛应用于各行各业、物理和化学等学科的计算和模拟。

它由方程组的差分表示引出,直接求解方程组,一般不使用求解公式,可以快速准确地求解复杂的方程。

它是一种基于叠加法的近似解法,主要用于连续变化的系统模型,有效地解决了求解复杂的微分方程的算法问题。

差分法的基本思路是,将微分方程组简化成差分方程组,将微分方程组转化为差分方程组进行求解,从而得到微分方程的近似解。

首先,要对微分方程做变换,通过变换微分方程,将其转化为差分方程,然后计算出对应的解。

其次,根据所给出的差分方程,使用叠加法计算出其近似解,最后,根据解法,从近似解中求出最终的解,实现微分方程组的求解。

因此,差分法可以有效解决求解复杂微分方程的计算问题,与数值分析、数值解析等方法相比,差分法可以更快速、更精确地求解复杂的微分方程,并且易于实现。

更重要的是,差分法具有普适性,可以用于解决任意高度的复杂的微分方程,因此被广泛应用于各行各业,尤其是在工程领域中。

总之,差分法是一种普遍适用的求解方法,可以快速精确地求解
复杂的微分方程组,在现实应用中有广泛的应用性,受到了广大研究人员的重视和关注。

高数-微分方程与差分方程68页PPT

高数-微分方程与差分方程68页PPT

谢谢!
68
高数-微分方程与差分方程
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dy = cos xdx y2
两边同时积分
− 1 1 = sin x + c ⇒ y = − y sin x + c
¡ 2 dy (2)解: = 2 xdx ⇒ ln y = x 2 + c ⇒ y = c ⋅ e x y
(3)解法一:
dx − dy + d ( xy ) = 0 ⇒ x − y + xy = c ⇒ ( x − 1)( y + 1) = c 或(1 − x)(1 + y ) = c
⇒ u = 2 arctan x ⇒ y = 2 x arctan x
(5)解:令 u =
x y y⋅

du dx = y⋅ +u dy dy
化简得

du 1 − 5u 2 du 1 − 3u 2 +u = ⇒ y⋅ = dy dy 2u 2u
2u ⋅ du dy 1 = ⇒ − ln 1 − 5u 2 = ln y + c 2 1 − 5u 5 y

∫ − x ( x −1)
dx
dx
故y = x 2
5. 求下列方程的通解: dx (1)解: = y ⋅ x + y 3 ⋅ x 2 dy 1 dx dz 令z = x -1 则 =− 2 ⋅ dy x dy dz y = − − y 3 = − yz − y 3 dy x
z=e∫
y2 2
- ydy
令 x = 0则y (0) = 1, u(0) = 0得c = 0 故 (1 − 5u 2 ) =
1 ⇒ y 5 − 5x 2 y 3 = 1 y5
y −1 dy x y (6)解: = , 令u = dx y + 1 x x
则u + x
⇒−
du u − 1 du −1 − u 2 = ⇒x = dx u + 1 dx 1+ u
练习 9.1 1.指出下列微分方程的阶数: 解:(1)一阶 (2)一阶 (3)一阶 (4)二阶
2.验证下列各函数是否为所给微分方程的解,并指出哪些是特解 哪些是通解。 ( c, c1 , c2 为任意常数) 解:(1)不是解 (2)特解 (3)通解 (4)不是解
3.写出以下列函数为通解的微服方程,其中 c, c1 , c2 为任意常数 解:(1)直接求式子求导,可得 (x 2 − yx )y ′ + y 2 = 0 (2)直接求式子求两次导,可得 y ′′ + y ′ − 2 y = 0 练习 9.2 1.求下列各微分方程的通解或在给定初值条件下的特解: (1)解:
(2)解:令
dz dy 3 = −3 y −4 = ⋅ z − 3x2 dx dx x 3 3 dx − dx 3 z = e ∫ x [ ∫ −3 x 2 e ∫ x dx + c] = x3 [− ∫ dx + c] x z = y -3 则 = x3 (−3ln x + c) 即 x3 y 3 (c − 3ln x) = 1
=
1 1 1 + cos 2 x sin x x c [ ∫ cos3 dx + c] = [∫ + + dx + c] = cos x cos x 2 2 cos x 2 cos x
(4)解:y = e

∫ x2 −1dx
2x
[∫
dx 1 − 2 y (5)解: + +1 = 0 dy y2 故 x=e
Q ( x) = e − x
− p ( x ) dx ∫ p ( x ) dx dx + c y=e ∫ Q ( x ) e ∫
= ( x + c )
− 2 dx (2)解: y = e ∫ (∫ 4 x ⋅ e 2 x dx + c ) = e − 2 x 2x
3.求下列微分方程的通解: (1)解:
−2 −1 dy −2 x − y − 1 = ,∆ = = −3 ≠ 0 1 2 dx x + 2 y − 1
− 2 x − y − 1 = 0 x0 = −1 x = ξ − 1 , 令 ⇒ x + 2y −1 = 0 y = η +1 y0 = 1
1
1
= y ⋅ e [ −e
1 y
+ c] = − y + cy ⋅ e
dx dt 1 (6)解: = ⇒ ln(3x + 1) = ln(t + 2) + c 3x + 1 t + 2 3 令t = 0, x(0) = 0, 得 c = - ln 2
1 1 故(3x + 1) 3 = (t + 2) 2

dη − 2ξ − η η = , 令u = dξ ξ + 2η ξ 1 + 2u du −2−u dξ +u = ⇒ du = 2 1 + 2u dξ ξ − 2 − 2u − 2u
故ξ
1 ⇒ − ln − 2 − 2u − 2u 2 = ln ξ + c1 2
⇒ 2(1 + u + u 2 ) =
e x ∫ dx ex + c 1 x x (7)解:y = e [ ∫ ⋅ e dx + c ] = [ ∫ e dx + c] = x x x 2 e +c 令x = 2, 设 y (2) = 1 即1 = ⇒ c = 2 − e2 2 2 + e x − e2 故 y= x

∫x
dx
x (2 x − 1) ∫ x ( x −1) x x(2 x − 1) x − 1 (8)解:y = e [∫ ⋅e dx + c ] = ⋅[∫ ⋅ dx + c] x −1 x −1 x −1 x x x [ ∫ (2 x − 1)dx + c] = [ x 2 − x + c] = x -1 x −1 令x = 2, y (2) = 4 4 = 2 × (4 - 2 + c) ⇒ c = 0
¤ ¥
令 x = 1, y (1) = 1 0 + 故 ln y + arctan x =
π
4
π
4
=c ⇒c=
π
4
2.求下列各微分方程的通解或特解:
y du y dy dy (1)解: = x 令u = ⇒ = x + u dx x dx dx y −1 x du u 1 ⇒x +u = ⇒ ln(2u − u 2 ) = ln x + c1 dx u −1 2 ⇒ 2u − u 2 = c ⋅ x 2 ⇒ 2 xy − y 2 = c
5 2
⇒ ( x − y − 1) 2 ( x + y − 1)5 = c
(3)解:
dy − x − y − 1 = dx 2 x + 2 y − 1
z = x+ y
∆=
−1 −1 =0 2 2

dz − z −1 z − 2 = 1+ = dx 2z − 1 2z − 1
2z −1 dz = dx ⇒ 2 z + 3ln z − 2 = x + c z−2 x + 2 y + 3ln x + y − 2 = c
(4)解:
dy − x + y + 1 = dx − x + y + 5
∆=0
令 z = y−x
dz z +1 −4 = −1 + = dx z+5 z+5
2
( y − x) + 5y − x = c z2 ( z + 5) dz = −4dx ⇒ + 5 z = −4 x + c ⇒ 2 2
4.求下列各微分方程的通解或在给定初值条件下的特解: (1)解:利用函数变量法:令 p( x) = 1
(1 + u )du dx 1 = ⇒ − ln 1 + u 2 − arctan u = ln x + c 2 (1 + u ) 2 x
令 x = 1, 则y(1) = 0, u(1) = 0, 得c = 0
1 − ln(1 + u 2 ) − arctan u = ln x 2 2 2 故 ⇒ ln x +2 y + 2 arctan y = −2 ln x x x y ⇒ ln( x 2 + y 2 ) + 2 arctan = 0 x
y ¦ du x +u = 2 u +u x dx
(2)解:令 u =
du 2 u =
dx , u = ln x + c x
u = (ln x + c) 2 ⇒ y = x(ln x + c) 2
(3)解:令 u =
⇒ du 1+ u2
y du ⇒x + u − u − 1+ u2 = 0 x dx
1 2 1 2
令 x = 1, y (1) = 1 ⇒ = ln(1 + e) + c ⇒ c = − ln(1 + e) 故 y 2 = 2 ln(1 + e x ) + 1 − 2 ln(1 + e) (8)解:
dy dx + = 0 ⇒ ln y + arctan x = c y 1 + x2
c ⇒ ξ 2 + ηξ + η 2 = c 2 ξ
⇒ ( x + 1) 2 + ( x + 1)( y − 1) + ( y − 1) 2 = c1 即:x 2 + y 2 + xy + x − y = c 7 −3 = 40 ≠ 0 −3 7
相关文档
最新文档