概率中的分组与分配问题
排列组合基础讲义
(4)至多有两名女生含有三类:有两名女生、只有一名 女生、没有女生.
3 1 4 5 故选法有 C2 · C + C · C + C 5 8 5 8 8=966(种);
(5)分两类:第一类是女队长当选,共 C4 12(种). 第二类是女队长不当选,有
2 ∴Cm = C 8 8=28.
【点评】在求组合数中的未知数时要注意必须使 组合数公式本身有意义,同时在计算时要注意合理选 用组合数的两个计算公式,简化计算.下面一道题是 有关排列数的问题,在考查排列数公式的应用时,一 定要注意到排列数是一些连续正整数的乘积,在解题 时注意到这个特点进行约分,可简化计算.
变式题 [2009· 海南宁夏卷] 7 名志愿者中安排 6 人 在周六、 周日两天参加社区公益活动若每天安排 3 人, 则 不同的安排方案共有________种.(用数字作答)
【思路】只要从 7 人中先选 3 人安排在周六,再从余 下的4人中选出3人安排在周日即可.
【答案】 140
【解析】方法 1:从 7 人中先选 3 人安排在周六、再
【解答】 B 3 位男生的全排列数是 A3 3=6,隔开四个 2 空隙,把 3 位女生中的 2 位“捆绑”有方法数 C2 3A2=6,将 3 位女生当两个看,安插在四个空隙中的两个有方法数 A2 4= 12,故“6 位同学站成一排,3 位女生中有且只有两位女生 2 2 2 相邻的排法”有 A3 其中男生甲站两端的男 3C3A2A4=432 种; 2 生排法种数是 A1 A 2 2=4,此时只能在甲的一侧的三个空隙 2 2 中安插经过“捆绑”处理后的三个女生,有方法数 C2 3A2A3= 36,故“3 位男生和 3 位女生共 6 位同学站成一排,若男生 甲站两端,3 位女生中有且只有两位女生相邻的”的排法有 1 2 2 2 2 A2A2C3A2A3=144 种,综上,故符合条件的排法共有 432 -144=288 种.
排列组合应用题的类型及解题策略.
排列组合应用题的类型及解题策略排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填A22·A44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有(C )种。
A)720 B)360 C)240 D)120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个A种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排位置中再排4个舞蹈节目有47A A种法为4676例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A)1800 (B)3600 (C)4320 (D)5040A A=3600,故选B解:不同排法的种数为5256说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
排列组合中分组分配问题
分组分配问题一.基本内容1.案例分析:将4个不同的元素分为2份,每份2个,请问有多少不同的分法?解析:若按照2422C C 6=的方法进行分组,不妨设4个元素分别为,,,a b c d ,则会出现以下情况:①,ab cd ;②,cd ab ;③,ac bd ;④,bd ac ;⑤,ad bc ;⑥,bc ad .显然,用组合数公式计算出来的结果重复了三次,最终的分组结果应以为:242222C C 3A =2.基本原理2.1分组问题属于“组合”问题,常见的分组问题有三种:将n 个不同元素分成m 组,且每组的元素个数分别为m m m m m ,,,,321 ,记m m mm m m n mm m n mm n mn C C C C N )()(121321211-+++-+--⋅⋅⋅⋅= .(1)非均匀不编号分组:n 个不同元素分成m 组,每组元素数目均不相等,且不考虑各组间的顺序,其分法种数为N .(2)均匀不编号分组:将n 个不同元素分成不编号(即无序)的m 组,每组元素数目相等,其分法种数为m mA N .(3)部分均匀不编号分组:将n 个不同元素分成不编号的m 组,其中有r 组元素个数相等,其分法种数为r rA N ,如果再有k 组均匀分组,应再除以kk A .2.2分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.3.相同元素的分组问题:挡板法及其应用:对于n 个相同元素分成m 组(m n <),且每组至少一个元素的分组问题,可采用“隔板法”解决:n 个元素之间形成1n -个空格,只需放入1m -个隔板即可,故不同的分配方案有11C m n --种,其等效于不定方程的非负整数解个数:不定方程r x x x n =+⋅⋅⋅++21的非负整数解.(1)方程r x x x n =+⋅⋅⋅++21的正整数解为11--n r C 个.(2)方程r x x x n =+⋅⋅⋅++21的非负整数解为11--+n r n C 个.二.例题分析例1.某校有5名大学生打算前往观看冰球,速滑,花滑三场比赛,每场比赛至少有1名学生且至多2名学生前往,则甲同学不去观看冰球比赛的方案种数有()A .48B .54C .60D .72【解析】将5名大学生分为1-2-2三组,即第一组1个人,第二组2个人,第三组2个人,共有2215312215C C C A ∙∙=种方法;由于甲不去看冰球比赛,故甲所在的组只有2种选择,剩下的2组任意选,所以由2224A =种方法;按照分步乘法原理,共有41560⨯=种方法;故选:C.例2.甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有,,A B C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A .193243B .100243C .23D .59【解析】首先求所有可能情况,5个人去3个地方,共有53243=种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为3353C A 60⨯=;当5人被分为2,2,1时,情况数为12354322C C A 90A ⨯⨯=;所以共有6090150+=.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则3242C A 8⨯=,甲若为3,则2242C A 12⨯=共计81220+=种,当5人被分为2,2,1时,且甲去A ,甲若为1,则224222C A 6A ⨯=,甲若为2,则112432C C A 24⨯⨯=,共计62430+=种,所以甲不在A 小区的概率为()1502030100243243-+=,故选:B.例3.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A .15B .310C .325D .625【解析】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有3353C A 60=种实习方案,当分为2,2,1人时,有22353322C C A 90A ⋅=种实习方案,即共有6090150+=种实习方案,其中甲、乙到同一家企业实习的情况有13233333C A C A 36+=种,故大学生甲、乙到同一家企业实习的概率为36615025=,故选:D.例4.学校要安排2名班主任,3名科任老师共五人在本校以及另外两所学校去监考,要求在本校监考的老师必须是班主任,且每个学校都有人去,则有()种不同的分配方案.A .18B .20C .28D .34【解析】根据本校监考人数分为:本校1人监考,另外4人分配给两所学校,有2,2和3,1两种分配方案,所以总数为:28)(2233142222222412=+∙A C C A A C C C ;本校2人监考,另外3人分配给两所学校,有2,1一种分配方案,所以总数为:()212223226C C C A =,根据分类计数原理,所有分配方案总数为28+6=34;故选:D.例5.现有甲、乙、丙、丁、戊五位同学,分别带着A 、B 、C 、D 、E 五个不同的礼物参加“抽盲盒”学游戏,先将五个礼物分别放入五个相同的盒子里,每位同学再分别随机抽取一个盒子,恰有一位同学拿到自己礼物的概率为()A .45B .12C .47D .38【解析】先从五人中抽取一人,恰好拿到自己的礼物,有15C 种情况,接下来的四人分为两种情况,一种是两两一对,两个人都拿到对方的礼物,有224222C C A 种情况,另一种是四个人都拿到另外一个人的礼物,不是两两一对,都拿到对方的情况,由3211C C 种情况,综上:共有22111425322245C C C C C A ⎛⎫⋅+= ⎪⎝⎭种情况,而五人抽五个礼物总数为55120A =种情况,故恰有一位同学拿到自己礼物的概率为4531208=.故选:D 例6.为贯彻落实《中共中央国务院关于全面深化新时代教师队伍建设改革的意见》精神,加强义务教育教师队伍管理,推动义务教育优质均衡发展,安徽省全面实施中小学教师“县管校聘”管理改革,支持建设城乡学校共同体.2022年暑期某市教体局计划安排市区学校的6名骨干教师去4所乡镇学校工作一年,每所学校至少安排1人,则不同安排方案的总数为()A .2640B .1440C .2160D .1560【解析】将6人分组有2种情况:2211,3111,所以不同安排方案的总数为2234646422C C A 1560A C ⎛⎫+= ⎪⎝⎭.故选:D.例7.为促进援疆教育事业的发展,某省重点高中选派了3名男教师和2名女教师去支援边疆工作,分配到3所学校,每所学校至少一人,每人只去一所学校,则两名女教师分到同一所学校的情况种数为______.【解析】①若2位女老师和1名男老师分到一个学校有1333C A =18种情况;②若2位女老师分在一个学校,则3名男教师分为2组,再分到3所学校,有2333C A =18种情况,故两名女教师分到同一所学校的情况种数为181836+=种.故答案为:36.例8.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到,,A B C 三个贫困县扶贫,要求每个贫困县至少分到一人,则甲、乙2名干部不被分到同一个贫困县的概率为___________.【解析】每个贫困县至少分到一人,4名干部分到三个县有211342132236C C C A A =种方案,其中甲、乙2名干部被分到同一个贫困县的方案有336A =种所以甲、乙2名干部不被分到同一个贫困县的概率为3665366P -==,故答案为:56例9.为弘扬学生志愿服务精神,某学校开展了形式多样的志愿者活动.现需安排5名学生,分别到3个地点(敬老院、幼儿园和交警大队)进行服务,要求每个地点至少安排1名学生,则有_______________________种不同的安排方案(用数字作答).【解析】先将5人分为三组,每组的人数分别为3、1、1或2、2、1,再将三组分配给三个地点,由分步乘法计数原理可知,不同的安排方案数为2233535322150C C C A A ⎛⎫+= ⎪⎝⎭种.故答案为:150.例10.6名教师分配到3所薄弱学校去支教,每个学校至少分配一名教师,甲乙两人不能去同一所学校,丙丁两人必须去同一所学校,共有________种分配方案(用数字作答).【解析】按题目要求可按4、1、1或3、2、1或2、2、2分配,若按4、1、1分配,丙丁必须在4人里,需要从其余剩下的4人里选2人,有24C 种,去掉选中甲乙的1种情况,有(24C -1)种选法,安排去3个学校,共有(24C -1)33A =30种;若按3、2、1分配有两类,丙丁为2,甲乙中选1人作1,分配到3个学校有1323C A ,丙丁在3人组中,从剩余4人中取1人,组成3人组,剩余3人取2人组成2人组,剩余1人构成1人组,去掉甲乙构成2人组的情况2种,共有12432C C -种取法,安排去3个学校有(12432C C -)33A 种,两类共有1323C A +(12432C C -)33A =72种;若按2、2、2分配有2·33A =12种,∴共有30+72+12=114种分配方案.下面是挡板法及其应用,仅做了解即可.例11.不定方程12x y z ++=的非负整数解的个数为()A .55B .60C .91D .540解析:不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.例12.方程123412x x x x +++=的正整数解共有()组A .165B .120C .38D .35解析:如图,将12个完全相同的球排成一列,在它们之间形成的11个空隙中任选三个插入三块隔板,把球分成四组,每一种分法所得球的数目依次是1x 、2x 、3x 、4x ,显然满足123412x x x x +++=,故()1234,,,x x x x 是方程123412x x x x +++=的一组解,反之,方程123412x x x x +++=的每一组解都对应着一种在12个球中插入隔板的方式,故方程123412x x x x +++=的正整数解的数目为:31111109165321C ⨯⨯==⨯⨯,故选:A.。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)
一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
概率的主要公式
一、 排列公式!(n 1)(n 2)(n 1)(n )!m nn A n m m =---+=-二、 排列的性质111!(n 1)!;0!1;A A(m 1)Am m m n nn n n +++=⋅-==++1111A AA A 1m m m m m m nn m ++++++=+三、 几个常用数值!!==112236445120672075040!=;!=;!=;;!=;!=;四、 方法提要 (1) 应用原则①优先原则:优先确定特殊位置和特殊元素;②确定性原则:对不确定的情况元素(元素或位置)要分类讨论确定。
③间接原则:直接解决困难或分类情况太多的问题宜有间接方法解决。
(2) 常用方法位置确定法;元素确定法;捆绑法;插空法;隔板法;字典法;消序法。
(3) 常见限制条件类型在与不在问题;邻与不邻问题;含与不含总是排组混合问题;染色问题;分组与分配问题;字典排列问题;圆排列问题;错位排列问题一、 组合数公式(n 1)(n 2)(n 1)!!!()!m m n nm mA n m n C A m m n m ---+===- 二、 组合数的性质1111110121211121;;m n m m m m n nn nnm m m m mm nn n k n k k k k n n k k k k k k k k nn C C CCC C C C CC CC C CC CC C C-++++++--+++++++==++++=++++=++++=三、 几个常用的数值2234552436666;10;15;C 20C C C C C ======一、事件的关系与运算包含:B B A A ⊇包含,,相等:B A A B A B ⊇⊇且,= 并事件:A B A B +或 交事件:A B AB 或 互斥事件:A B ∅= 对立事件:A B 为必然事件。
二、概率的基本性质 (1)0P A ≤≤()1(2)0P A ≤≤()1(3)00P ∅不可事件概率为()=,。
数学中的组合、排列与概率问题
密码学中的很多加密算法也与组合数学密切相关。例如,RSA算法中的素数选择、AES算 法中的S盒设计等,都涉及到组合数学的知识。这些算法通过运用组合数学的原理,提高 了加密算法的安全性和效率。
CHAPTER 03
概率论基础
概率的定义与性质
随机试验与样本空间
概率论研究随机现象,通过随机试验来描述。样本空间是随机试验所有可能结果的集合。
CHAPTER 05ห้องสมุดไป่ตู้
组合、排列与概率的综合问 题
基础综合问题解析
基础概念辨析
首先,要明确组合、排列的定义及其区别,理解概率的基本概念与 计算方法。
公式与定理应用
掌握组合数公式、排列数公式,以及加法原理、乘法原理等基本原 理,能熟练运用这些公式和原理解决基础问题。
典型例题解析
通过解析典型例题,如抽签问题、分房问题等,进一步加深对组合 、排列与概率基础知识的理解。
几何概型
试验的样本空间是某个几何区域,事件对应为区域中的子区域。通过计算子区域的几何度量(如面积 、体积)与全区域的几何度量之比,得到事件的概率。
条件概率与独立性
条件概率
在已知某事件发生的条件下 ,另一事件发生的概率。通 过条件概率,可以研究事件
之间的相互依赖关系。
独立性
若两事件的发生概率等于各 自发生概率的乘积,则称这 两事件独立。独立事件互不 影响,一个事件的发生不会
在经济学中,期望效用理论是描述个体在面对不 确定性时如何做决策的重要理论,其基础就是概 率论。
风险度量
概率论提供了度量风险的方法,如方差、标准差 等,这些方法在经济学中被广泛应用。
3
计量经济学
计量经济学是经济学的一个分支,它用统计方法 对经济数据进行处理和分析,概率论是其不可或 缺的理论基础。
排列组合和二项式定理及概率统计知识点
排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑬两个公式:①;m n n mn CC -= ②mn m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式 n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法.②排除法. n 个不同座位,例:A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . ④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)m m n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.x 2x 4例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
概率问题常见典型考题赏析
ʏ朱云飞概率是高中数学的重要内容,也是高考的必考内容㊂高考主要考查随机事件与概率,考查事件的相互独立性以及概率与频率等㊂下面就概率问题常见典型考题进行举例分析,供大家学习与提高㊂题型1:随机事件的表示理解随机现象㊁样本点和样本空间的概念,理解随机事件的概念,在实际问题中,能正确求出事件包含的样本点的个数,并会写出相应的样本空间㊂例1抛掷红㊁蓝两枚骰子的试验,用(x,y)表示结果,其中x表示红色骰子出现的点数,y表示蓝色骰子出现的点数㊂(1)写出这个试验的样本空间㊂(2)写出这个试验的结果的个数㊂(3)指出事件A={(1,6),(2,5),(3,4), (4,3),(5,2),(6,1)}的含义㊂(4)写出 点数之和大于8 这一事件的集合表示㊂解:(1)这个试验的样本空间Ω为{(1, 1),(1,2),(1,3),(1,4),(1,5),(1,6),(2, 1),(2,2),(2,3),(2,4),(2,5),(2,6),(3, 1),(3,2),(3,3),(3,4),(3,5),(3,6),(4, 1),(4,2),(4,3),(4,4),(4,5),(4,6),(5, 1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}㊂(2)这个试验的结果的个数为36㊂(3)事件A的含义为抛掷红㊁蓝两枚骰子,掷出的点数之和为7㊂(4)记事件B= 点数之和大于8 ,则B ={(3,6),(4,5),(4,6),(5,4),(5,5),(5, 6),(6,3),(6,4),(6,5),(6,6)}㊂题型2:随机事件的含义解答此类问题,应先理解事件中样本点的意义,再观察事件中样本点的规律,才能确定随机事件的含义㊂例2柜子里有3双不同的鞋,随机抽取2只,用A1,A2,B1,B2,C1,C2分别表示3双不同的鞋,其中下标为奇数表示左脚,下标为偶数表示右脚㊂指出下列随机事件的含义㊂(1)事件M={A1B1,A1B2,A1C1, A1C2,A2B1,A2B2,A2C1,A2C2,B1C1, B1C2,B2C1,B2C2}㊂(2)事件N={A1B1,B1C1,A1C1}㊂(3)事件P={A1B2,A1C2,A2B1, A2C1,B1C2,B2C1}㊂解:(1)事件M的含义是 从3双不同鞋中随机抽取2只,取出的2只鞋不成双 ㊂(2)事件N的含义是 从3双不同鞋中随机抽取2只,取出的2只鞋都是左脚 ㊂(3)事件P的含义是 从3双不同鞋中随机抽取2只,取到的鞋一只是左脚,一只是右脚,但不成双 ㊂题型3:事件的运算事件的运算应注意的两个问题:一是要紧扣运算的定义,二是要全面列举同一条件下的试验可能出现的全部结果,必要时可利用V e n n图或列出全部的试验结果进行分析㊂在一些比较简单的题目中,需要判断事件之间的关系时,可以根据常识来判断㊂如果遇到比较复杂的题目,需要严格按照事件之间关系的定义来推理㊂例3在掷骰子的试验中,可以定义许多事件㊂例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数}㊂根据上述定义的事件,回答下列问题㊂(1)请列举出符合包含关系㊁相等关系的事件㊂(2)利用和事件的定义,判断上述哪些事件是和事件㊂解:(1)事件C1,C2,C3,C4发生,则事件D3必发生,所以C1⊆D3,C2⊆D3,C3⊆D3, C4⊆D3㊂同理可得:事件E包含事件C1,C2,C3, C4,C5,C6;事件D2包含事件C4,C5,C6;事件F包含事件C2,C4,C6;事件G包含事件C1,C3,C5㊂易知事件C1与事件D1相等,即事件C1=D1㊂(2)因为事件D2={出现的点数大于3} ={出现4点或出现5点或出现6点},所以D2=C4ɣC5ɣC6(或D2=C4+C5+C6)㊂同理可得:D3=C1ɣC2ɣC3ɣC4,E=C1ɣC2ɣC3ɣC4ɣC5ɣC6,F=C2ɣC4ɣC6, G=C1ɣC3ɣC5㊂题型4:互斥事件与对立事件互斥事件与对立事件的判断是针对两个事件而言的㊂一次试验中,两个互斥事件有可能都不发生,也可能有一个发生,但不可能两个都发生;两个对立事件必有一个发生,但是不可能两个事件同时发生,也不可能两个事件同时不发生㊂所以两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥㊂例4某县城有甲㊁乙两种报纸供居民订阅,记事件A为 只订甲报 ,事件B为 至少订一种报纸 ,事件C为 至多订一种报纸 ,事件D为 不订甲报 ,事件E为 一种报纸也不订 ㊂判断下列每组事件是不是互斥事件;如果是,再判断它们是不是对立事件㊂(1)A与C;(2)B与E;(3)B与D;(4)B 与C;(5)C与E㊂解:(1)由于事件C 至多订一种报纸 中包括 只订甲报 ,即事件A与事件C有可能同时发生,故A与C不是互斥事件㊂(2)事件B 至少订一种报纸 与事件E 一种报纸也不订 是不可能同时发生的,故B与E是互斥事件㊂又事件B与事件E必有一个发生,故B与E是对立事件㊂(3)事件B 至少订一种报纸 中包括 只订乙报 ,即有可能 不订甲报 ,也就是说事件B和事件D有可能同时发生,故B与D 不是互斥事件㊂(4)事件B 至少订一种报纸 中的可能情况为 只订甲报 只订乙报 订甲㊁乙两种报 ㊂事件C 至多订一种报纸 中的可能情况为 一种报纸也不订 只订甲报 只订乙报 ㊂也就是说事件B与事件C可能同时发生,故B与C不是互斥事件㊂(5)由(4)的分析知,事件E 一种报纸也不订 是事件C中的一种可能情况,所以事件C与事件E可能同时发生,故C与E不是互斥事件㊂题型5:古典概型解古典概型问题时,要牢牢抓住它的两个特点和计算公式㊂这类问题的解法多样,技巧性强,解题时需要注意两个问题:试验必须具有古典概型的两大特征,即有限性和等可能性;计算基本事件个数时,要做到不重不漏,可借助坐标系㊁表格或树状图等列出所有基本事件㊂例5同时投掷两个骰子,向上的点数分别记为a,b,则方程2x2+a x+b=0有两个不等实根的概率为()㊂A.15B.14C.13D.12解:因为方程2x2+a x+b=0有两个不等实根,所以Δ=a2-8b>0㊂同时投掷两个骰子,向上的点数分别记为a,b,则共包含36个样本点㊂满足a2-8b>0的为(6,1),(6,2),(6, 3),(6,4),(5,1),(5,2),(5,3),(4,1),(3, 1),共9个样本点,所以方程2x2+a x+b=0有两个不等实根的概率为936=14㊂应选B㊂题型6:概率的基本性质当事件A 与B 互斥(A ɘB =⌀)时,P (A ɣB )=P (A )+P (B ),这称为互斥事件的概率加法公式㊂一般地,如果A 1,A 2,,A m 是两两互斥的事件,则P (A 1ɣA 2ɣ ɣA m )=P (A 1)+P (A 2)+ +P (A m )㊂若A ,B 为对立事件,则P (A )=1-P (B )㊂求复杂事件的概率的两种方法:将所求事件转化成彼此互斥事件的并事件;先求其对立事件的概率,再求所求事件的概率㊂例6 围棋盒子中有多粒黑子和多粒白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率为1235㊂那么,现从中任意取出2粒恰好是同一色的概率是㊂解:设 从中任意取出2粒都是黑子 为事件A , 从中任意取出2粒都是白子 为事件B , 从中任意取出2粒恰好是同一色 为事件C ,则C =A ɣB ,且事件A 与B 互斥㊂由上可知,P (C )=P (A )+P (B )=17+1235=1735,即 从中任意取出2粒恰好是同一色 的概率为1735㊂题型7:相互独立事件的判断对于事件A ,B ,若满足P (A ɘB )=P (A B )=P (A )P (B ),则称事件A ,B 相互独立,简称A ,B 独立㊂所谓独立事件就是某事件发生的概率与其他任何事件都无关,用集合的概念解释即集合之内所有事件发生的可能性范围互不相交㊂通过式子P (A B )=P (A )P (B )来判断两个事件是否独立,若上式成立,则事件A ,B 相互独立,这也是定量判断㊂例7 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令事件A ={一个家庭中既有男孩又有女孩},B ={一个家庭中最多有一个女孩}㊂对下述两种情形,讨论事件A 与B 的独立性㊂(1)家庭中有两个小孩㊂(2)家庭中有三个小孩㊂解:(1)有两个小孩的家庭,男孩㊁女孩的所有可能情形为Ω={(男,男),(男,女),(女,男),(女,女)},即4个基本事件㊂由等可能性知这4个基本事件的概率都为14㊂由题意可知,事件A ={(男,女),(女,男)},B ={(男,男),(男,女),(女,男)},A B ={(男,女),(女,男)},所以P (A )=12,P (B )=34,P (A B )=12㊂由此可知,P (A B )ʂP (A )P (B ),所以事件A ,B 不相互独立㊂(2)有三个小孩的家庭,男孩㊁女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)},即8个基本事件㊂由等可能性可知,这8个基本事件的概率均为18,这时A 中含有6个基本事件,B 中含有4个基本事件,A B 中含有3个基本事件㊂所以P (A )=68=34,P (B )=48=12,P (A B )=38㊂显然P (A B )=38=P (A )P (B ),所以事件A 与B 相互独立㊂题型8:相互独立事件概率的综合应用求较复杂事件概率的方法:列出题中涉及的各事件,用适当的符号表示;弄清事件之间的关系(两事件是互斥还是对立,或是相互独立),列出关系式;根据事件之间的关系,准确选取概率公式进行计算㊂当直接计算符合条件的事件的概率较复杂时,可先间接计算对立事件的概率,再求出符合条件的事件的概率㊂例8 计算机考试分理论考试与实际操作两部分,每部分考试成绩只记 合格 与 不合格 ,两部分考试都 合格 者,则计算机考试 合格 ,并颁发合格证书㊂已知甲,乙,丙三人在理论考试中 合格 的概率依次为45,34,23,在实际操作考试中 合格 的概率依次为12,23,56,所有考试是否合格相互之间没有影响㊂(1)假设甲,乙,丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率㊂解:(1)记 甲获得合格证书 为事件A , 乙获得合格证书 为事件B , 丙获得合格证书 为事件C ,则P (A )=45ˑ12=25,P (B )=34ˑ23=12,P (C )=23ˑ56=59㊂因为P (C )>P (B )>P (A ),所以丙获得合格证书的可能性最大㊂(2)设 三人考试后恰有两人获得合格证书 为事件D ㊂由题意知三人所有考试是否获得合格证书相互独立,则P (D )=P (A BC )+P (AB C )+P (AB C )=25ˑ12ˑ49+25ˑ12ˑ59+35ˑ12ˑ59=1130㊂题型9:频率与概率的关系在实际问题中,常用事件发生的频率作为概率的估计值㊂在用频率估计概率时,要注意试验次数n 不能太小,只有当n 很大时,频率才会呈现出规律性,即在某个常数附近波动,且这个常数就是概率㊂例9 某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:h)进行了统计,统计结果如表1所示㊂表1分组频数频率[500,900)48[900,1100)121[1100,1300)208[1300,1500)223[1500,1700)193[1700,1900)165[1900,+ɕ)42(1)求各组的频率㊂(2)根据上述统计结果,估计灯管使用寿命不足1500h 的概率㊂解:(1)由表可知频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042㊂(2)样本中寿命不足1500h 的频数是48+121+208+223=600,所以样本中寿命不足1500h 的频率是6001000=0.6,即灯管使用寿命不足1500h 的概率约为0.6㊂题型10:随机模拟法估计概率随机数模拟试验估计概率时,先要确定随机数的范围和用哪些数代表不同的试验结果㊂可以从以下三个方面考虑:当试验的样本点等可能时,样本点总数即为产生随机数的范围,每个随机数代表一个样本点;研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数;当每次试验结果需要n 个随机数表示时,要把n 个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复㊂例10 某种心脏手术,成功率为0.6,现采用随机模拟方法估计 3例心脏手术全部成功 的概率㊂先利用计算器或计算机产生0~9之间取整数值的随机数,由于成功率是0.6,故我们用0,1,2,3表示手术不成功,4,5,6,7,8,9表示手术成功;再以每3个随机数为一组,作为3例手术的结果㊂经随机模拟产生如下10组随机数:812,832,569,683,271,989,730,537,925,907㊂由此估计 3例心脏手术全部成功的概率为( )㊂A.0.2B .0.3C .0.4D .0.5解:由10组随机数为812,832,569,683,271,989,730,537,925,907,可知4~9中恰有三个随机数的有569,989,即2组,故所求的概率为P =210=0.2㊂应选A ㊂作者单位:福建省厦门市新店中学(责任编辑 郭正华)。
高中数学选修2-3基础知识归纳(排列组合、概率问题)
一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。
四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法:②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2) 特殊元素优先考虑、特殊位置优先考虑;例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:(1)分类求解:按甲排与不排在最右端分类.(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
高考数学最新真题专题解析—概率与排列组合(新高考卷)
高考数学最新真题专题解析—概率与排列组合(新高考卷)【母题来源】2022年新高考I卷【母题题文】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】【解析】【分析】本题考查了古典概型及其计算,涉及组合数公式、对立事件的概率公式,属基础题.【解答】解:由题可知,总的取法有72=21种,不互质的数对情况有:两个偶数,3和6.所以两个数互质的概率为=1−42+121=23.【母题来源】2022年新高考II卷【母题题文】甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A.12种B.24种C.36种D.48种【答案】【分析】本题考查排列、组合的运用,属于基础题.【解答】解:先利用捆绑法排乙丙丁成四人,再用插空法选甲的位置,则有223321=24种.【命题意图】第1题考察计数原理,考察排列组合的应用,考察古典概型的计算,考察应用排列组合计算古典概型问题的概率。
第2题考察排列组合的捆绑法、插空法等计算方法。
试题通过设计优化情境,应用型、创新性的考察。
【命题方向】排列组合与概率是高考必考的知识点之一,其中概率是相对容易排列组合则时难时易。
主要考察分类、分布计算原理的应用,考察古典概型及几何概型,突出考察分类讨论思想,考察转化化归数学思想应用,试题在问题情境的设置上越来越接近生活,把实际问题合理、正确的转化为排列组合概率问题,以此来考察思想、应用、创新等能力。
排列、组合与概率常以现实生活、社会热点为载体【得分要点】涉及到排列组合的综合问题,处理此类问题一般先分析如何安排,在安排时是分类还是分步,元素之间是否讲顺序,以及分组问题注意重复情况的处理,对各种情况一定要仔细斟酌题意,写全切不要重复1.古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.古典概率中的“人坐座位模型基础”:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
排列组合与概率初步专题讲义
排列组合与概率初步专题讲义一、排列组合1、两个基本原理(加法原理与乘法原理) 类型一、排数字问题1. 用0、1、2、3、4、5这六个数字(1) 可以组成多少个各位数字不重复的三位数? (2) 可以组成多少个各位数字允许重复的三位数? (3) 可以组成多少个各位数字不允许重复的三位的奇数? (4) 可以组成多少个各位数字不重复的小于1000的自然数?(5) 可以组成多少个大于3000小于5421且各位数字不重复的四位数?2.从1到9这9个自然数中,任取3个数作数组),,(c b a ,且c b a >>,则不同数组共有( )个。
A. 21 B. 28 C. 56 D. 84 E. 343类型二、投信问题(分房问题)3、将3封信投入4个不同的信箱,则不同的投信方法种数是( ) A.43⨯ B. 43 C. 34 D. 7 E. 以上结论均不正确4、有4名学生参加数、理、化三科竞赛,每人限报一科,则不同的报名情况有( ) A. 43 B. 34 C. 321 D. 432 E. 以上结论均不正确5、6个人分到3个车间,共有不同的分法( ) A. 63 B. 36 C. 18 D. 747 E. 以上结论均不正确6、6个人分工栽3棵树,每人只栽1棵,则共有不同的分工方法( ) A. 63 B. 3240 C. 36 D. 120 E. 以上结论均不正确类型三、染色问题7、用5种不同的颜色给图中的A,B,C,D 四个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则共有多少种不同的涂色方法?8、有6种不同的颜色为下列广告牌着色,要求在①②③④四个区域中相邻(有公共边界)区域中不用同一种颜色,则不同的着色方法有()种A. 64B. 46C. 24D. 240E. 480类型四、较复杂的两个原理的综合问题9、现有高一学生8人,高二学生5人,高三学生10人,组成数学课外活动小组,(1)选其中1个为总负责人,有多少种不同的选法?(2)每一个年级选1名组长,有多少种不同的选法?(3)在一次活动中,推选出其中2人作为中心发言人,要求2人来自不同的年级,有多少种不同的选法?10、某赛季足球比赛计分规则是:胜一场,得3分,平一场,得1分,负一场,得0分,一球队打完15场,积33分,若不考虑顺序,该球队胜、负、平的情况共有()种A. 3B. 4C. 6D. 6E. 711、三边长均为整数,且最大边长为11的三角形的个数为()A. 25B. 26C. 30D. 36E. 3712、若直线方程0a,可以从这五个数字0,1,2,3,4这五个数字中任取两个ax中的b+by=不同的数字,则方程所表示的不同的直线共有()种。
概率例题
4.1
例1设射击手甲与乙在同样条件下进行射击,其命中的环数是一随机变量.假如有历史记录可得它们分别有下面的分布律(其中0表示脱靶).
例2将3个球随机地放入3个盒子中去,球与盒子均可区分,以X表示空盒子数目,求E(X)
例3分组验血:在一个人数很多的团体中普查某种疾病,为此要抽验N个人的血,
可以有两种方法进行.(1)将每个人的血分别去验,这就需要N次.(2)按k个人一组进行分组,把从k个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明k个人的血都呈阴性反应,这样,这k个人得血就只需验一次.若呈阳性,则再对这k个人的血液分别进行化验.这样,k个人的血总共要化验k+1次.假如每个人化验呈阳性的概率为p且这些人的试验反应是相互独立的.试说明当p较小时,选取适当的k,按第二种方法可以减少化验的次数.并说明k取什么值时最适宜.
5.2
例1炮火轰击敌方防御工事100次,每次轰击命中的炮弹数服从同一分布,其数学期望为2 ,均方差为.若各次轰击命中的炮弹数是相互独立的,求100次轰击
(1)至少命中180发炮弹的概率;
(2)命中的炮弹数不到200发的概率.
例2
例3某保险公司的老年人寿保险有1万人参加,每人每年交200元.若老人在该年内死亡,公司付给家属1万元.设老年人死亡率为,试求保险公司在一年内的这项保险中亏本的概率.
例5 “分房模型”的应用
生物系二年级有n个人,求至少有两人生日相同(设为事件A)的概率.
例2袋中有a只白球,b只红球,从袋中按不放回与放回两种方式取m个球(m<=a+b),
求其中恰有k个(k<=a,k<=m)白球的概率
例3在0,1,2,3, ,9中不重复地任取四个数,求它们能排成首位非零的四位偶数的概率.
排列组合问题的类型及解题策略【优质】
排列组合应用题的类型及解题策略四川省双流县中学 周汝东排列组合问题,通常都是出现在选择题或填空题中,或结合概率统计综合出题,它联系实际,生动有趣,但题型多样,思路灵活,不易掌握。
实践证明,解决问题的有效方法是:题型与解法归类、识别模式、熟练运用。
一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.(06上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A 22种;中间4个为不同的商业广告有A 44种,从而应当填 A 22·A 44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。
A )720B )360C )240D )120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有47A 种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为4676A A 种 例4(06重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A )1800 (B )3600 (C )4320 (D )5040解:不同排法的种数为5256A A =3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
心理学探究中的随机分配及对照组设定
心理学探究中的随机分配及对照组设定在心理学研究的广袤领域中,随机分配和对照组的设定是确保研究结果准确性和可靠性的关键基石。
这两个重要概念不仅影响着研究的设计与实施,更决定着我们从研究中得出的结论是否具有科学价值和实际意义。
首先,让我们来理解一下什么是随机分配。
简单来说,随机分配就是将参与研究的个体以完全随机的方式分配到不同的实验组或处理条件中。
这可不是随便把人分组那么简单,而是要借助科学的随机化方法,比如使用随机数生成器或者随机抽签等方式,确保每个个体都有相同的概率被分配到任何一组。
为什么要这么做呢?想象一下,如果我们按照自己的主观意愿或者某些非随机的因素来分组,比如根据个体的年龄、性别或者性格特点,那么很可能会导致分组偏差。
这样一来,不同组之间在研究开始前就存在了本质上的差异,后续得到的结果就很难说是由于我们所施加的实验处理导致的,还是原本分组的差异造成的。
随机分配的最大优点就在于它能够最大程度地平衡掉那些我们可能没有考虑到的、潜在的混杂因素,使得不同组的个体在各种可能影响研究结果的因素上尽可能保持一致,从而为我们揭示出真正的因果关系提供了可能。
接下来,我们谈谈对照组的设定。
对照组在心理学研究中扮演着至关重要的角色,它就像是一面镜子,让我们能够清晰地看到实验处理所带来的效果。
对照组中的个体通常不接受我们所关注的实验处理或者接受一种标准的、常规的处理方式。
通过将实验组和对照组的结果进行对比,我们可以准确地判断出实验处理是否产生了显著的影响。
比如说,我们想要研究一种新的心理治疗方法是否有效,那么就需要设立一个接受传统治疗方法或者不接受任何治疗的对照组。
只有这样,当实验组的治疗效果明显优于对照组时,我们才能有信心地说这种新的治疗方法是切实有效的。
如果没有对照组,我们就无法确定观察到的变化是由于治疗本身还是其他无关因素引起的,比如个体的自然恢复、时间的推移或者环境的改变。
在实际的研究中,随机分配和对照组的设定常常是相辅相成的。
新教材2023年高中数学 第10章 概率 10
[归纳提升] (1)频率是概率的近似值,随着试验次数的增加,频率 会越来越接近概率.
(2)频率本身是随机的,在试验前不能确定. (3)概率是一个确定的常数,是客观存在的,在试验前已经确定,与 试验次数无关.
【对点练习】❶ 在n次重复进行的试验中,事件A发生的频率为mn ,
当n很大时,那么P(A)与mn 的大小关系是
(A)
A.P(A)≈mn
B.P(A)<mn
C.P(A)>mn
D.P(A)=mn
[解析] 在n次重复进行的试验中,事件A发生的频率为mn ,当n很大
时,mn 越来越接近P(A),因此我们可以用mn 近似地代替P(A).故选A.
题型二
用随机事件的频率估计其概率
典例 2 为了了解一个小水库中 养殖的鱼的有关情况,从这个水库中多 个不同位置捕捞出100条鱼,称得每条鱼 的质量(单位:kg),并将所得数据分组, 画出频率分布直方图(如图).
【对点练习】❹ “某彩票的中奖概率为1100”意味着
(D)
A.买 100 张彩票就一定能中奖
B.买 100 张彩票能中一次奖
C.买 100 张彩票一次奖也不中
D.购买彩票中奖的可能性为1100
Байду номын сангаас
[解析] 某彩票的中奖率为1010,意味着中奖的可能性为1100,可能中
奖,也可能不中奖.
课堂检测•固双基
(1)在下面的表格中填写相应的频率;
分组 [1.00,1.05) [1.05,1.10) [1.10,1.15) [1.15,1.20) [1.20,1.25) [1.25,1.30]
频率
(2)估计数据落在[1.15,1.30]中的概率为多少; (3)将上面捕捞的100条鱼分别做一记号后再放回水库,几天后再从 水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据 这一情况来估计该水库中鱼的总条数.
概率中的分组与分配问题
概率中的分组与分配问题在概率学中,分组与分配问题是指将一组有限元素(总是整数)分到不同的组中,或将这些元素分配给不同的容器(也称分组中的容器),以满足某些条件。
本文讨论的是概率中的这类问题的数学表示以及在特殊情况下的解决方法。
概率学中的分组与分配问题是一个非常重要的理论。
它不仅涉及到有限组合数的计算问题,而且可以用来描述概率学中的组合问题。
其基本形式是,将元素按一定的顺序放入容器中,使每个容器都满足一定的条件。
例如,可以将元素放入n个容器中,使容器i(i≤n)中的元素数量等于aiai为可调整参数)。
在概率学中,分组与分配问题可以用来描述实际问题,并用数学方法解决。
例如,假设有一批商品,需要根据不同的价格分配到不同的市场上去销售,那么就可以用概率中的分组与分配问题来解决。
它可以让商品按照价格分到不同的市场,然后通过概率论来估计销售数量。
此外,在非线性优化模型中经常用到分组与分配问题。
这类数值最优化问题往往涉及到多个变量,这些变量可以按某一特定的概率分配到不同的维度,以便实现更好的优化效果。
分组与分配问题是一个复杂的问题,它的解决方案也有很多种。
常用的方法有贪心算法、符号搜索、回溯算法等。
贪心算法的思路是,每次从某个容器中选取一个最优的元素并加入到另一个容器中,直到所有的容器都满足预期条件为止。
这种方法简单,可以快速找到最优解,但有时也可能会让问题变得更复杂。
符号搜索和回溯算法是一种较为复杂的解决方案。
它们通过在可行解空间中进行搜索来尝试每一种可能的解。
符号搜索算法可以尝试全部的解,而回溯算法可以在搜索过程中剪枝,从而缩短搜索时间。
概率中的分组与分配问题是一个复杂但又有趣的课题,研究它可以为解决实际问题提供有效的数学技术支持。
因此,研究概率中的分组与分配问题,对于提高系统管理水平和实现优化有重要而又直接的意义。
总之,概率中的分组与分配问题是一个非常有趣的研究课题,它有许多应用领域,比如计算机科学、概率论和优化等。
概率问题
摘要:排列、组合知识是数学知识来源于生活,又应用于生活的具体体现。
不同情况下的排列、组合问题的解决,是提高人们利用数学知识解决现实问题能力的一种途径。
关键字:排列、组合、分类、分步、元素、特殊、相邻排列组合问题与现实生活有密切联系,在很多领域有广泛的应用,是当今发展很快的组合数学的最初步知识。
这种以记数问题为特征的内容在中学数学中是较为独特的。
它不仅应用广泛,是学习概率与统计知识以及进一步学习高等数学有关知识的准备知识,而且由于其思想方法独特灵活,也是发展学生抽象能力和逻辑思维能力的素材。
正因如此,它也是学习高中数学的一个难点。
下面,我谈谈高中数学中排列与组合问题的常见类型及应对策略。
一、有限制排列问题有限制排列问题,因限制条件不同,而使问题复杂多样,解决手段也必须“对症下药”。
常见的限制条件及对策。
1、有特殊元素或特殊位置。
2、元素必须相邻的排列。
、3、元素不相邻的排列。
4、元素有顺序限制的排列。
基本的解题思想方法为:1、对于特殊元素或特殊位置,一般采用直接法。
即先排特殊元素或特殊位置。
2、相邻排列问题,通常采用“捆绑”法,即可以把相邻元素看作一个整体参与其它元素排列,同时对相邻元素自排。
3、对于元素不相邻的排列,可以先考虑不受限制的元素的排列。
再把不相邻的元素插在前面元素排列的空位和两端。
4、对于元素顺序有限制的排列,可以先不考虑限制排列后,利用规定顺序的实情求结果。
在实际解题过程中,首先必须认真审题,明确问题为排列还是组合问题。
其次是抓住问题的本质特征,灵活运用基本原理和公式进行分析解答,同时还要注意一些方法和技巧,使一些看似复杂的问题迎刃而解。
1、特殊优先法对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些特殊入手。
先满足特殊元素或特殊位置,再去满足其它元素或位置,这种解法叫做特殊优先法。
例:1名老师和4名学生排成一排,若老师不排在两端,则共有多少种不同的排法?分析:(解法1、特殊元素法)老师在中间3个位置上任选1个的选法有A41种,然后剩余的四名学生在余下的四个位置上,排法有A44种。
概率例题
第四章 4.1例1 设射击手甲与乙在同样条件下进行射击,其命中的环数是一随机变量.假如有历史记录可得它们分别有下面的分布律(其中0表示脱靶).例2 将3个球随机地放入3个盒子中去,球与盒子均可区分,以 X 表示空盒子数目,求 E (X )例3分组验血:在一个人数很多的团体中普查某种疾病,为此要抽验 N 个人的血, 可以有两种方法进行.(1)将每个人的血分别去验,这就需要N 次.(2)按 k 个人一组进行分组,把从k 个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明k 个人的血都呈阴性反应,这样,这k 个人得血就只需验一次.若呈阳性,则再对这k 个人的血液分别进行化验.这样, k 个人的血总共要化验 k+1次.假如每个人化验呈阳性的概率为 p 且这些人的试验反应是相互独立的.试说明当 p 较小时,选取适当的 k ,按第二种方法可以减少化验的次数.并说明k 取什么值时最适宜.例4 设随机变量X 的密度函数为求 E (X )例5 如何确定投资决策方向某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资例6 设随机变量的分布律为例7 设随机变量(X,Y )的联合概率密度Xp1-022.03.05.0⎪⎩⎪⎨⎧<≤-<≤=其它,021,210,)(x x x x x f )1(2-+X X E 求例8例9 国际市场上每年对我国某种出口商品的需求量是随机变量X (单位:吨),它服从[2000,4000]上的均匀分布.设每售出这种商品一吨,可为国家挣得外汇3千元,但如果销售不出二积压于仓库,则每吨需花费保养及其它各种损失费用1千元,问需要组织多少货源,才能使国家的收益期望最大例 设 ( X , Y ) 的分布律为4.2例1 设X 为掷一颗骰子出现的点数,试求D(X)例2:设随机变量X 具有数学期望XY1231-012.01.01.01.01.01.0003.0()()3231 ,12(,) 0 1,y x x x x yf x y E Y EXY ⎧<<>⎪=⎨⎪⎩其他求数学期望。