2020版高中数学人教A版必修4 导学案 《两角和与差的正弦余弦正切公式二》 (含答案解析)
2020最新高中数学 第三章 3.1.3 二倍角的正弦、余弦、正切公式学案 新人教A版必修4
3.1.3 二倍角的正弦、余弦、正切公式学习目标:1.能利用两角和与差的正、余弦公式推导出两角和与差的正切公式.(重点)2.能利用两角和与差的正切公式进行化简、求值、证明.(难点)3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.(易错点)[自 主 预 习·探 新 知]1.二倍角的正弦、余弦、正切公式记法 公式S 2α sin 2α=2sin_αcos_α C 2α cos 2α=cos 2α-sin 2α T 2αtan 2α=2tan α1-tan 2α23.正弦的二倍角公式的变形(1)sin αcos α=12sin 2α,cos α=sin 2α2sin α.(2)1±sin 2α=(sin_α±cos _α)2.[基础自测]1.思考辨析(1)二倍角的正弦、余弦、正切公式的适用范围是任意角.( ) (2)存在角α,使得sin 2α=2sin α成立.( ) (3)对于任意的角α,cos 2α=2cos α都不成立.( )[解析] (1)×.二倍角的正弦、余弦公式对任意角都是适用的,而二倍角的正切公式,要求α≠π2+k π(k ∈Z )且α≠±π4+k π(k ∈Z ),故此说法错误.(2)√.当α=k π(k ∈Z )时,sin 2α=2sin α. (3)×.当cos α=1-32时,cos 2α=2cos α.[答案] (1)× (2)√ (3)× 2.sin 15°cos 15°=________.14 [sin 15°cos 15°=12×2sin 15°cos 15°=12sin 30°=14.] 3.12-cos 2π8=________.-24 [12-cos 2π8=12-1+cosπ42=12-12-12×22=-24.] 4.若tan θ=2则tan 2θ=________. -43 [tan 2θ=2tan θ1-tan 2θ=2×21-22=-43.] [合 作 探 究·攻 重 难]给角求值(1)cos π7cos 7cos 7的值为( )A .14 B .-14C .18D .-18(2)求下列各式的值:①cos 415°-sin 415°;②1-2sin 275°;③1-tan 275°tan 75°;④1sin 10°-3cos 10°.【导学号:84352329】(1)D [(1)∵cos 3π7=-cos 4π7,cos 5π7=-cos 2π7,∴cos π7cos 3π7cos 5π7=cos π7cos 2π7cos 4π7=8sin π7cos π7cos 2π7cos4π78sinπ7=4sin 2π7cos 2π7cos 4π78sin π7=2sin 4π7cos 4π78sin π7=sin8π78sinπ7=-18.(2)①cos 415°-sin 415°=(cos 215°-sin 215°)(cos 215°+sin 215°)=cos 215°-sin 215°=cos 30°=32. ②1-2sin 275°=1-(1-cos 150°)=cos 150°=-cos 30°=-32. ③1-tan 275°tan 75°=2×1-tan 275°2tan 75°=2×1tan 150°=-2 3.④1si n 10°-3cos 10°=cos 10°-3sin 10°sin 10°cos 10°=2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°sin 10°cos 10°=4sin 30°cos 10°-cos 30°sin 10°2sin 10°cos 10°=4sin 20°sin 20°=4.][规律方法] 对于给角求值问题,一般有两类: 1直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.2若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.[跟踪训练] 1.求下列各式的值 (1)cos 72°cos 36°; (2)1sin 50°+3cos 50°. [解] (1)cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14.(2)原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝ ⎛⎭⎪⎫12cos 50°+32sin 50°12×2sin 50°cos 50°=2sin 80°12sin 100°=2sin 80°12sin 80°=4.给值求值、求角问题(1)已知cos ⎝ ⎛⎭⎪⎫α+4=5,2≤α<2,求cos ⎝ ⎛⎭⎪⎫2α+4的值;(2)已知α∈⎝ ⎛⎭⎪⎫-π2,π2,且sin 2α=sin ⎝⎛⎭⎪⎫α-π4,求α.[思路探究] 依据以下角的关系设计解题思路求解:(1)α+π4与2α+π2,α-π4与2α-π2具有2倍关系,用二倍角公式联系;(2)2α+π2与2α差π2,用诱导公式联系.[解] (1)∵π2≤α<3π2,∴3π4≤α+π4<7π4.∵cos ⎝ ⎛⎭⎪⎫α+π4>0,∴3π2<α+π4<7π4, ∴sin ⎝⎛⎭⎪⎫α+π4=-1-cos 2⎝⎛⎭⎪⎫α+π4=-1-⎝ ⎛⎭⎪⎫352=-45,∴cos 2α=sin ⎝ ⎛⎭⎪⎫2α+π2=2sin ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫α+π4=2×⎝ ⎛⎭⎪⎫-45×35=-2425,sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=1-2cos 2⎝ ⎛⎭⎪⎫α+π4=1-2×⎝ ⎛⎭⎪⎫352=725, ∴cos ⎝ ⎛⎭⎪⎫2α+π4=22cos 2α-22sin 2α=22×⎝ ⎛⎭⎪⎫-2425-22×725=-31250.(2)∵sin 2α=-cos ⎝ ⎛⎭⎪⎫2α+π2=-⎣⎢⎡⎦⎥⎤2cos 2⎝ ⎛⎭⎪⎫α+π4-1=1-2cos 2⎝ ⎛⎭⎪⎫α+π4,sin ⎝ ⎛⎭⎪⎫α-π4=-sin ⎝ ⎛⎭⎪⎫π4-α=-cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α=-cos ⎝ ⎛⎭⎪⎫π4+α,∴原式可化为1-2cos 2⎝ ⎛⎭⎪⎫α+π4=-cos ⎝⎛⎭⎪⎫α+π4,解得cos ⎝ ⎛⎭⎪⎫α+π4=1或cos ⎝⎛⎭⎪⎫α+π4=-12. ∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α+π4∈⎝ ⎛⎭⎪⎫-π4,3π4,故α+π4=0或α+π4=2π3,即α=-π4或α=5π12.母题探究:1.在例2(1)的条件下,求sin 4α的值.[解] 由例2(1)解析知sin 4α=2sin 2αcos 2α=2×725×⎝ ⎛⎭⎪⎫-2425=-336625.2.将例2(1)的条件改为sin ⎝ ⎛⎭⎪⎫π4-x =513,0<x <π4,求cos 2x cos ⎝ ⎛⎭⎪⎫π4+x 的值.[解] ∵0<x <π4,∴π4-x ∈⎝ ⎛⎭⎪⎫0,π4.又sin ⎝⎛⎭⎪⎫π4-x =513,∴cos ⎝ ⎛⎭⎪⎫π4-x =1213.又cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x=2sin ⎝⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =2×513×1213=120169,cos ⎝ ⎛⎭⎪⎫π4+x =sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+x=sin ⎝ ⎛⎭⎪⎫π4-x =513,∴原式=120169513=2413.[规律方法] 解决条件求值问题的方法 1有方向地将已知式或未知式化简,使关系明朗化;寻找角之间的关系,看是否适合相关公式的使用,注意常见角的变换和角之间的二倍关系.2当遇到\f(π,4)±x 这样的角时可利用互余角的关系和诱导公式,将条件与结论沟通.cos 2x =sin ⎝ ⎛⎭⎪⎫π2-2x =2sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x . 类似的变换还有:cos 2x =sin ⎝ ⎛⎭⎪⎫π2+2x =2sin ⎝ ⎛⎭⎪⎫π4+x cos ⎝ ⎛⎭⎪⎫π4+x , sin 2x =cos ⎝ ⎛⎭⎪⎫π2-2x =2cos 2⎝ ⎛⎭⎪⎫π4-x -1,sin 2x =-cos ⎝ ⎛⎭⎪⎫π2+2x =1-2cos 2⎝ ⎛⎭⎪⎫π4+x 等.化简证明问题[探究问题]1.解答化简证明问题时,如果遇到既有“切”,又有“弦”的情况,通常要如何处理? 提示:通常要切化弦后再进行变形.2.证明三角恒等式时,通常的证明方向是什么? 提示:由复杂一侧向简单一侧推导.(1)化简:1tan θ+1+1tan θ-1=________.(2)证明:3tan 12°-3sin 12°4cos 212°-2=-4 3. [思路探究] (1)通分变形.(2)切化弦通分,构造二倍角的余弦→二倍角的正弦→约分求值 (1)-tan 2θ [(1)原式=tan θ-1+tan θ+1tan θ+1tan θ-1=2tan θtan 2θ-1=-2tan θ1-tan 2θ=-tan 2θ.(2)左边=3sin 12°-3cos 12°cos 12°2sin 12°2cos 212°-1 =23⎝ ⎛⎭⎪⎫12sin 12°-32cos 12°2sin 12°cos 12°cos 24° =23sin 12°-60°sin 24°cos 24°=-23sin 48°12sin 48°=-43=右边,所以原等式成立.] [规律方法] 证明三角恒等式的原则与步骤1观察恒等式两端的结构形式,处理原则是从复杂到简单,高次降低,复角化单角,如果两端都比较复杂,就将两端都化简,即采用“两头凑”的思想.2证明恒等式的一般步骤:①先观察,找出角、函数名称、式子结构等方面的差异;②本着“复角化单角”“异名化同名”“变换式子结构”“变量集中”等原则,设法消除差异,达到证明的目的.[跟踪训练]2.求证:(1)cos 2(A +B )-sin 2(A -B )=cos 2A cos 2B ; (2)cos 2θ(1-tan 2θ)=cos 2θ.[证明] (1)左边=1+cos 2A +2B 2-1-cos 2A -2B2=cos2A +2B +cos 2A -2B2=12(cos 2A cos 2B -sin 2A sin 2B +cos 2A cos 2B +sin 2A sin 2B ) =cos 2A cos 2B =右边, ∴等式成立.(2)法一:左边=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ =cos 2θ-sin 2θ=cos 2θ=右边. 法二:右边=cos 2θ=cos 2θ-sin 2θ=cos 2θ⎝ ⎛⎭⎪⎫1-sin 2θcos 2θ=cos 2θ(1-tan 2θ)=左边.[当 堂 达 标·固 双 基]1.下列各式中,值为32的是( ) A .2sin 15°cos 15° B .cos 215°-sin 215° C .2sin 215°D .sin 215°+cos 215°B [2sin 15°cos 15°=sin 30°=12;cos 215°-sin 215°=cos 30°=32;2sin 215°=1-cos 30°=1-32;sin 215°+cos 215°=1,故选B.] 2.(2018·全国卷Ⅰ)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4B [易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.]3.若sin α=3cos α,则sin 2αcos 2α=________.6 [sin 2αcos 2α=2sin αcos αcos 2α=2sin αcos α=6cos αcos α=6.] 4.设sin 2α=-sin α,α∈⎝ ⎛⎭⎪⎫π2,π,则tan 2α的值是________.3 [∵sin 2α=-sin α, ∴2sin αcos α=-sin α.由α∈⎝ ⎛⎭⎪⎫π2,π知sin α≠0,∴cos α=-12,∴α=2π3,∴tan 2α=tan 4π3=tan π3= 3.]5.已知π2<α<π,cos α=-45.(1)求tan α的值;(2)求sin 2α+cos 2α的值.[解] (1)因为cos α=-45,π2<α<π,所以sin α=35,所以tan α=sin αcos α=-34.(2)因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=725,所以sin 2α+cos 2α=-2425+725=-1725.。
数学必修4人教A教案导学案:两角和与差的正弦、余弦、正切公式
3. 1.2 两角和与差的正弦、余弦、正切公式三维目标1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.重点难点教学重点:两角和与差的正弦、余弦、正切公式及其推导.教学难点:灵活运用所学公式进行求值、化简、证明.教学过程1、提出问题①还记得两角差的余弦公式吗?请写出。
②在公式C(α-β)中,角β是任意角,请思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=?C(α+β).③分析观察C(α+β)的结构有何特征?④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)=?sin(α-β)=?结论2、因此我们得到两角和与差的正弦公式,分别简记为S(α+β)、S(α-β).⑤公式S(α-β)、S(α+β)的结构特征如何?⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出t an(α-β)=?tan(α+β)=?结论3、由此推得两角和、差的正切公式,简记为T、T⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?我们把前面六个公式分类比较可得C(α+β)、S(α+β)、T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差归纳总结以上六个公式的推导过程,得出以下逻辑联系图.通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时应注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式2、应用示例例1 已知sinα=53-,α是第四象限角,求sin(4π-α),cos(4π+α),tan(4π-α)的值.练习:课本课后练习1、2、3、4、题例2 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°;(2)cos20°cos70°-sin20°sin70°;(3)15tan 115tan 1-+练习:课本课后练习5、6、7、题例3 求证:cosα+3sinα=2sin(6+α).(两种方法)练习:化简下列各式:(1)3sinx+cosx;(2)2cosx-6sinx.3、课堂小结通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=22b a sin(x+φ),运用它来解决三角函数求值域、最值、周期、单调区间等问题.4、作业布置习题3.1 A 组7、13(1) (3) (5) (7) (9)。
高中数学必修四导学案-两角和与差的正弦、余弦、正切公式
3. 1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
二、教学目标⒈掌握两角和与差公式的推导过程;⒉培养学生利用公式求值、化简的分析、转化、推理能力;⒊发展学生的正、逆向思维能力,构建良好的思维品质。
三、教学重点难点重点:两角和与差公式的应用和旋转变换公式;难点:两角和与差公式变aSina +bCosa 为一个角的三角函数的形式。
四、学情分析五、教学方法1.温故、推新,循序渐进,以学生为主体逐步掌握本节知识要点2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件七、课时安排:1课时八、教学过程(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos cos cos sin sin αβαβαβ+=-;()cos cos cos sin sin αβαβαβ-=+. 这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?让学生动手完成两角和与差正弦和正切公式.()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-+=-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ-=+-=-+-=-⎡⎤⎣⎦ 让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)()()()sin sin cos cos sin tan cos cos cos sin sin αβαβαβαβαβαβαβ+++==+-. 通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢?(分式分子、分母同时除以cos cos αβ,得到()tan tan tan 1tan tan αβαβαβ++=-. 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈ 以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()()()tan tan tan tan tan tan 1tan tan 1tan tan αβαβαβαβαβαβ+---=+-==⎡⎤⎣⎦--+ 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈. (二)例题讲解例1、已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 解:因为3sin ,5αα=-是第四象限角,得4cos 5α===, 3sin 35tan 4cos 45ααα-===- , 于是有43sin sin cos cos sin 4442210πππαα⎛⎫⎛⎫-=-=--= ⎪ ⎝⎭⎝ 43cos cos cos sin sin 444252510πππααα⎛⎫⎛⎫+=-=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭ 两结果一样,我们能否用第一章知识证明? 3tan tan 144tan 7341tan tan 144παπαπα---⎛⎫-===- ⎪⎛⎫⎝⎭++- ⎪⎝⎭ 例2、利用和(差)角公式计算下列各式的值:(1)、s i n 72c o s 42c o s 72s i n 42-;(2)、c o s 20c o s 70s i n 20s i n 70-;(3)、1t a n 151t a n 15+-. 解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象. (1)、()1s i n72c o s 42c o s 72s i n 42s i n7242s i n 302-=-==; (2)、()co s 20c o s 70s i n 20s i n 70c o s 2070c o s 900-=+==; (3)、()1t a n 15t a n 45t a n 15t a n 4515t a n 6031t a n 151t a n 45t a n 15++==+==--.例3x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos 30cos cos30sin 22sin 302x x x x x -=-=-思考:余弦分别等于2和2的. (三)反思总结,当堂检测。
人教A版数学必修四教案:3.1.2两角和与差的正弦、余弦、正切公式(2)
第2课时(一)导入新课思路1.(复习导入)让学生回忆上节课所学的六个公式,并回忆公式的来龙去脉,然后让一个学生把公式默写在黑板上或打出幻灯.教师引导学生回顾比较各公式的结构特征,说出它们的区别和联系,以及公式的正用、逆用及变形用,以利于对公式的深刻理解.这节课我们将进一步探究两角和与差的正弦、余弦、正切公式的灵活应用.思路2.(问题导入)教师可打出幻灯,出示一组练习题让学生先根据上节课所学的公式进行解答.1.化简下列各式(1)cos (α+β)cosβ+sin (α+β)sinβ;(2)cos sin 1tan cos sin cos sin sin 22---+--x x xx x x x ; (3).tan tan cos sin )sin()sin(2222αββαβαβα+-+ 2.证明下列各式(1);tan tan 1tan tan )cos()sin(βαβαβαβα++=-+(2)tan (α+β)tan (α-β)(1-tan 2tan 2β)=tan 2α-tan 2β; (3).sin sin )cos(2sin )2sin(αββααβα=+-+答案:1.(1)cosα;(2)0;(3)1. 2.证明略.教师根据学生的解答情况进行一一点拨,并对上节课所学的六个公式进行回顾复习,由此展开新课.(二)推进新课、新知探究、提出问题①请同学们回忆这一段时间我们一起所学的和、差角公式.②请同学们回顾两角和与差公式的区别与联系,可从推导体系中思考.活动:待学生稍做回顾后,教师打出幻灯,出示和与差角公式,让学生进一步在直观上发现它们内在的区别与联系,理解公式的推导充分发挥了向量的工具作用,更要体会由特殊到一般的数学思想方法.教师引导学生观察,当α、β中有一个角为90°时,公式就变成诱导公式,所以前面所学的诱导公式其实是两角和与差公式的特例.在应用公式时,还要注意角的相对性,如α=(α+β)-β,)2()2(2βαβαβα---=+等.让学生在整个的数学体系中学会数学知识,学会数学方法,更重要的是学会发现问题的方法,以及善于发现规律及其内在联系的良好习惯,提高数学素养.sin (α±β)=sinαcosβ±cosαsinβ〔S(α±β)〕; cos (α±β)=〔C (α±β)〕;tan (α±β)=βαβαtan tan 1tan tan ±〔T (α±β)〕.讨论结果:略.(三)应用示例思路1例1 利用和差角公式计算下列各式的值.(1)sin72°cos42°-cos72°sin42°; (2)cos20°cos70°-sin20°sin70°;(3)15tan 115tan 1-+活动:本例实际上是公式的逆用,主要用来熟悉公式,可由学生自己完成.对部分学生,教师点拨学生细心观察题中式子的形式有何特点,再对比公式右边,马上发现(1)同公式S (α-β)的右边,(2)同公式C (α+β)右边形式一致,学生自然想到公式的逆用,从而化成特殊角的三角函数,并求得结果.再看(3)式与T (α+β)右边形式相近,但需要进行一定的变形.又因为tan45°=1,原式化为15tan 45tan 115tan 45tan -+,再逆用公式T (α+β)即可解得.解:(1)由公式S (α-β)得 原式=sin(72°-42°)=sin30°=21. (2)由公式C (α+β)得 原式=cos(20°+70°)=cos90°=0. (3)由公式T (α+β)得原式=15tan 45tan 115tan 45tan -+=tan(45°+15°)=tan60°=3. 点评:本例体现了对公式的全面理解,要求学生能够从正、反两个角度使用公式.与正用相比,反用表现的是一种逆向思维,它不仅要求有一定的反向思维意识,对思维的灵活性要求也高,而且对公式要有更全面深刻的理解.变式训练 1.化简求值:(1)cos44°sin14°-sin44°cos14°; (2)sin14°cos16°+sin76°cos74°; (3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x).解:(1)原式=sin(14°-44°)=sin(-30°)=-sin30°=21-. (2)原式=sin14°cos16°+cos14°sin16°=sin(14°+16°)=sin30°=21. (3)原式=sin [(54°-x)+(36°+x)]=sin90°=1.2.计算.75tan 175tan 1+- 解:原式=75tan 45tan 175tan 45tan +-=tan(45°-75°)=tan(-30°)=-tan30°=33-.例2 已知函数f(x)=sin(x+θ)+co s (x-θ)的定义域为R ,设θ∈[0,2π],若f(x)为偶函数,求θ的值. 活动:本例是一道各地常用的、基础性较强的综合性统考题,其难度较小,只需利用偶函数的定义,加上本节学到的两角和与差的三角公式展开即可,但不容易得到满分.教师可先让学生自己探究,独立完成,然后教师进行点评.解:∵f(x)为偶函数,∴f(-x)=f(x),即sin(-x+θ)+cos(-x-θ)=sin(x+θ)+cos(x-θ), 即-sinxcos θ+cosxsin θ+cosxcos θ-sinxsin θ =sinxcos θ+cosxsin θ+cosxcos θ+sinxsin θ. ∴sinxcos θ+sinxsin θ=0.∴sinx(sin θ+cos θ)=0对任意x 都成立.∴2sin(θ+4π)=0,即sin(θ+4π)=0. ∴θ+4π=k π(k ∈Z ).∴θ=k π-4π(k ∈Z ).又θ∈[0,2π),∴θ=43π或θ=47π.点评:本例学生可能会根据偶函数的定义利用特殊值来求解.教师应提醒学生注意,如果将本例变为选择或填空,可利用特殊值快速解题,作为解答题利用特殊值是不严密的,以此训练学生逻辑思维能力.变式训练 已知:2π<β<α<43π,cos(α-β)=1312,sin(α+β)=54-,求cos2β的值.解:∵2π<β<α<43π,∴0<α-β<4π,π<α+β<23π.又∵cos(α-β)=1312,sin(α+β)= 54-,∴sin(α-β)=135,cos(α+β)=53-.∴cos2β=cos [(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β) =53-×1312+(54-)×135=6556-.例3 求证:cosα+3sinα=2sin(6π+α). 活动:本题虽小但其意义很大,从形式上就可看出来,左边是两个函数,而右边是一个函数,教师引导学生给予足够的重视.对于此题的证明,学生首先想到的证法就是把等式右边利用公式S (α+β)展开,化简整理即可得到左边此为证法,这是很自然的,教师要给予鼓励.同时教师可以有目的的引导学生把等式左边转化为公式S (α+β)的右边的形式,然后逆用公式化简即可求得等式右边的式子,这种证明方法不仅仅是方法的变化,更重要的是把两个三角函数化为一个三角函数.证明:方法一:右边=2(sin6πcosα+cos 6πsinα)=2(21cosα+23sinα)=cosα+3sinα=左边.方法二:左边=2(21cosα+23sinα)=2(sin 6πcosα+cos 6πsinα)=2sin(6π+α)=右边. 点评:本题给出了两种证法,方法一是正用公式的典例,而方法二则是逆用公式证明的,此法也给了我们一种重要的转化方法,要求学生熟练掌握其精神实质.本例的方法二将左边的系数1与3分别变为了21与23,即辅助角6π的正、余弦.关于形如asinx+bcosx (a ,b不同时为零)的式子,引入辅助角变形为Asin(x+φ)的形式,其基本想法是“从右向左”用和角的正弦公式,把它化成Asin(x+φ)的形式.一般情况下,如果a=AC osφ,b=Asinφ,那么asinx+bcosx=A(sinxcosφ+cosxsinφ)=Asin(x+φ).由sin 2φ+cos 2φ=1,可得 A 2=a 2+b 2,A=±22b a +,不妨取A=22b a +,于是得到cosφ=22ba a +,sinφ=22ba b +,从而得到tanφ=ba,因此asinx+bcosx=22b a +sin(x+φ),通过引入辅助角φ,可以将asinx+bcosx 这种形式的三角函数式化为一个角的一个三角函数的形式.化为这种形式可解决asinx+bcosx 的许多问题,比如值域、最值、周期、单调区间等.教师应提醒学生注意,这种引入辅助角的变换思想很重要,即把两个三角函数化为一个三角函数,实质上是消元思想,这样就可以根据三角函数的图象与性质来研究它的性质.因此在历年高考试题中出现的频率非常高,是三角部分中高考的热点,再结合续内容的倍角公式,在解答高考物理试题时也常常被使用,应让学生领悟其实质并熟练的掌握它.变式训练 化简下列各式:(1)3sinx+cosx; (2)2cosx-6sinx.解:(1)原式=2(23sinx+21cosx)=2(cos 6πsinx+sin 6πcosx) =2sin(x+6π). (2)原式=22 (21cosx-23sinx)=22(sin 6πcosx-cos 6πsinx)=22sin(6π-x).例4 (1)已知α+β=45°,求(1+tanα)(1+tanβ)的值;(2)已知sin(α+β)=21,sin(α-β)=31,求.tan tan βα 活动:对于(1),教师可与学生一起观察条件,分析题意可知,α+β是特殊角,可以利用两角和的正切公式得tanα,tanβ的关系式,从而发现所求式子的解题思路.在(2)中,我们欲求.tan tan βα若利用已知条件直接求tanα,tanβ的值是有一定的困难,但细心观察公式S (α+β)、S (α-β)发现,它们都含有sinαcosβ和cosαsinβ,而.tan tan βα化切为弦正是βαβαsin cos cos sin ,由此找到解题思路.教学中尽可能的让学生自己探究解决,教师不要及早地给以提示或解答.解:(1)∵α+β=45°,∴tan(α+β)=tan45°=1.又∵tan(α+β)=,tan tan 1tan tan βαβα-+∴tanα+tanβ=tan(α+β)(1-tanαtanβ), 即tanα+tanβ=1-tanαtanβ.∴原式=1+tanα+tanβ+tanαtanβ=1+(1-tanαtanβ)+tanαtanβ=2. (2)∵sin(α+β)=21,sin (α-β)= 31, ∴sinαcosβ+cosαsinβ=21,①sinαcosβ-cosαcosβ=31.②①+②得sinαcosβ=125, ①-②得cosαsinβ=121,∴5121125sin cos cos sin tan tan ===βαβαβα点评:本题都是公式的变形应用,像(1)中当出现α+β为特殊角时,就可以逆用两角和的正切公式变形tanα+tanβ=tan(α+β)(1-tanαtanβ),对于我们解题很有用处,而(2)中化切为弦的求法更是巧妙,应让学生熟练掌握其解法.变式训练1.求(1+tan1°)(1+tan2°)(1+tan3°)…(1+tan44°)(1+tan45°)的值解:原式=[(1+tan1°)(1+tan44°)][(1+tan2°)(1+tan43°)]…[(1+tan22°)(1+tan23°)](1+tan45°)=2×2×2×…×2=223. 2.计算:解:原式=tan45°(1-tan15°tan30°)+tan15°tan30°=1.(四)作业已知一元二次方程ax 2+bx+c=0(ac ≠0)的两个根为tanα、tanβ,求tan(α+β)的值.解:由韦达定理得:tanα+tanβ=ab -,tanαtanβ=a c ,∴tan(α+β)=a c bac c b-=--=-+1tan 1tan tan αββα.(五)课堂小结1.先让学生回顾本节课的主要内容是什么?我们学习了哪些重要的解题方法?通过本节的学习,我们在运用和角与差角公式时,应注意什么?如何灵活运用公式解答有关的三角函数式的化简、求值、恒等证明等问题.2.教师画龙点睛:通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.推导并理解公式asinx+bcosx=22b a +sin(x+φ),运用它来解决三角函数求值域、最值、周期、单调区间等问题.。
人教版高中数学高一A版必修4导学案 两角和与差的正弦、余弦和正切公式(二)
课堂导学三点剖析1.两角和与差的正切【例1】 已知tan(α+β)=5,tan(α-β)=3,求tan2α,tan2β,tan(2α+4π). 思路分析:想办法利用已知条件中的角α+β与α-β表示所求式中的角,不难看出2α=(α+β)+(α-β),2β=(α+β)-(α-β),tan(2α+4π)用tan2α表示出来. 解:tan2α=tan [(α+β)+(α-β)] =.7435135)tan()tan(1)tan()tan(-=⨯-+=-+--++βαβαβαβα tan 2β=tan [(α+β)-(α-β)] =.8135135)tan()tan(1)tan()tan(=⨯+-=-++--+βαβαβαβα tan(2α+4π)=1137417412tan 12tan 1=+-=-+αα. 2.两角和与差的正切公式的运用【例2】计算下列各式的值:(1)tan15°+tan75°; (2)︒+︒-15tan 115tan 1; (3)︒︒-︒+︒19tan 41tan 119tan 41tan ; (4))6tan()3tan(1)6tan()3tan(παπαπαπα++++-+; (5).12tan 3112tan 3ππ+- 解:(1)tan15°+tan75°=tan(45°-30°)+tan(45°+30°) =︒-︒++︒+︒-30tan 130tan 130tan 130tan 1 =331331331331-+++-=13313113-+++-=2)13(2)13(22++- =2-3+2+3=4;(2)原式=︒︒+︒-︒15tan 45tan 115tan 45tan =tan(45°-15°) =tan30°=33; (3)原式=tan(41°+19°)=tan60°=3;(4)原式=tan [(α+3π)-(α+6π)] =tan 6π=33; (5)原式=12tan 3tan 112tan 3tan ππππ+-=tan(3π-12π) =tan 4π=1. 3.给值求角问题 【例3】 已知α,β,γ都是锐角,且tanα=21,tanβ=51,tanγ=81,求α+β+γ的值. 错解:因为tan(α+β)=βαβαtan tan 1tan tan -+ =.97512115121=⨯-+ tan(α+β+γ)=819718197tan )tan(1tan )tan(⨯-+=+-++γβαγβα=1. ∵α、β、γ都是锐角,∴0<α+β+γ<π23, 故:α+β+γ=4π或45π. 正解:因为tan(α+β)=97.tan [(α+β)+γ]=1.由已知γ<β<α.又因0<21<33, 所以0<γ<β<α<6π,得0<α+β+γ<2π. 故α+β+γ=4π. 各个击破题演练1 已知tanx=41,tany=-3,求tan(x+y)的值. 解:tan(x+y)=.711)3(411341tan tan 1tan tan -=-⨯--=-+y x y x 变式提升1已知tanα=71,tanβ=31,求tan(α+2β). 解:tan(α+β)=21317113171tan tan 1tan tan =•-+=•-+βαβα, t an(α+2β)=tan [(α+β)+β] =312113121tan )tan(1tan )tan(•-+=•+-++ββαββα=1. 类题演练2利用和(差)角公式化简: (1)θθθθtan 2tan 1tan 2tan +-; (2)θθtan 1tan 1+-. 解:(1)原式=tan(2θ-θ)=tanθ.(2)原式=θπθπtan 4tan1tan 4tan+-=tan(4π-θ). 变式提升2 (1)求tan50°-tan20°-33tan50·tan20°的值. 解∵tan50°-tan20°=tan30°(1+tan50°·tan20°),∴tan50°-tan20°-33tan50°·tan20° =tan30°(1+tan50°tan20°)-33tan50°·tan20° =tan30°+tan30°·tan50°tan20°-33tan50°·tan20° =tan30°=33. (2)化简:tan(18°-x)tan(12°+x)+3[tan(18°-x)+tan(12°+x)]解:tan30°=tan [(18°-x)+(12°+x)] =33)12tan()18tan(1)12tan()18tan(=+︒-︒-+︒+-︒x x x x . ∴tan(18°-x)+tan(12°+x) =33[1-tan(18°-x)tan(12°+x)]. ∴原式=1.温馨提示tanα±tanβ=tan(α±β)(1 tanαtanβ)这一公式变形在解题中经常用到,只要题目中有tanα+tanβ或tanα-tanβ,一般用正切公式的变形,整体代入都能凑效.类题演练3已知α、β都是锐角,且tanα=21,tanβ=31,求α+β. 解:tan(α+β)=βαβαtan tan 1tan tan -+ =.1312113121=•-+∵α、β均为锐角,∴0°<α+β<180°∴α+β=45°.变式提升3已知tanα=3(1+m),3(tanα·tanβ+m)+tanβ=0,且α、β都是锐角,求α+β.解:由已知可得 tanα=3+3m,①tanβ=-3tanαtanβ-3m.② 由①+②可得 tanα+tanβ=3(1-tanαtanβ), ∴βαβαtan tan 1tan tan -+=tan(α+β)=3. 又∵0<α<2π,0<β<2π,∴0<α+β<π,∴α+β=3π.。
高中数学必修四教案-3.1.2 两角和与差的正弦、余弦、正切公式(2)-人教A版
tanα= sin 类 比 推 导 3 : c os
tan(α+β)=
思考:如何用 tanα、tanβ 表示
tan(α+β) 思路:弦化切 (分子分母同除以 cosαcosβ)
注意:α、β 的范围 (α、β、α+β≠ k )
2
老师运用类比思想, 整体代入的数学思想 引导,学生填空、化
(2)引导学生利用诱导公式五和同角三角函数的关系推导 S( ) 、
T ,并运用公式求值、化简,培养学生逻辑推理的能力。
教学目标
1.能根据两角和与差的余弦公式推导出两角和与差的正弦公式,运用 联系的观点解决问题 2.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公 式,从而认识事物之间的相互联系与相互转化 3.掌握两角和与差的正弦、余弦、正切公式及公式的正用逆用、变形
(5)熟练掌握公式、 S( ) 、 C( ) 、 T 的正用、逆用
教 学 两角和与差的正弦和正切公式的推导过程及运用. 重点
教 学 灵活运用所学公式进行求值、化简 难点
(1)本节课是在学习了两角和与差的余弦的基础上,推导两角和与
学情 分析
差的正弦和正切公式,学生已经运用换元思想解决了 C( ) 。
方法二、观察例 2(3) 题的形式发现
原式=
tan 45 1- tan 45
tan15 tan15
=tan(45°+15°)
=tan60°= 3
充分调动学生的 学习积极性,用 不同方法解决问 题,达到很好的
效果
由于时间的关系,没来得及对课堂检测的答案,但看到大部分学生做 达标检测 了一部分,准备下节课完成剩下的习题。
方法二、
S C C S
人教A版高中数学必修四两角和与差的正弦、余弦、正切公式教案新
3.1.2两角和与差的正弦、余弦、正切公式(2)教学目的:能由两角和与差的的余弦、正弦公式推导出两角和与差的正切公式, 并能进行简单的三角函数式的化简、求值和恒等变形。
教学重点:两角和与差的正弦、余弦、正切公式的结构及应用。
教学难点: 公式之间的联系与区别,公式的记忆。
教学过程一、复习提问练习:1.求证:cosx+sinx=2cos(x 4π-)证:左边= 2(22cosx+22sinx)=2( cosxcos 4π+sinxsin 4π)=2cos(x 4π-)=右边又证:右边=2( cosxcos4π+sinxsin 4π)=2(22cosx+22sinx) = cosx+sinx=左边2.已知 ,求cos(α-β)解: ①2: sin 2α+2sin αsin β+sin 2β=259③ ②2: cos 2α+2cos αcos β+cos 2β=2516④ ③+④: 2+2(cos αcos β+sin αsin β)=1 即:cos(α-β)=21二、新课两角和与差的正切公式 T α+β ,T α-βtan(α+β)公式的推导(让学生回答) ∵cos (α+β)≠0 tan(α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(-+=++ 当cos αcos β≠0时sin α+sin β=53① cos α+cos β=54 ②分子分母同时除以cos αcos β得:以-β代β得:注意:1︒必须在定义域范围内使用上述公式。
即:tan α,tan β,tan(α±β)只要有一个不存在就不能使用这个公式,只能(也只需)用诱导公式来解。
2︒注意公式的结构,尤其是符号。
例1、求tan15︒,tan75︒的值:解:1︒ tan15︒= tan(45︒-30︒)=32636123333331331-=-=+-=+-2︒ tan75︒= tan(45︒+30︒)= 32636123333331331+=+=-+=-+例2、已知sin α=-53,α是第四象限的角,求tan (4π-α)解:由sin α=-53,α是第四象限的角,cos α=α2sin 1-=54, tan α=ααcos sin =-43tan (4π-α)=απαπtan 4tan1tan 4tan+-=-7例3、求下列各式的值:1︒75tan 175tan 1-+ 2︒tan17︒+tan28︒+tan17︒tan28︒解:1︒原式=3120tan )7545tan(75tan 45tan 175tan 45tan -==+=-+2︒ ∵28tan 17tan 128tan 17tan )2817tan(-+=+∴tan17︒+tan28︒=tan(17︒+28︒)(1-tan17︒tan28︒)=1- tan17︒tan28︒∴原式=1- tan17︒tan28︒+ tan17︒tan28︒=1 练习:P145 5、6、7 作业:P150 9、10、11、12、13tan(α-β)=βαχαtan tan 1tan tan +-tan(α+β)=βαχαtan tan 1tan tan -+。
必修4第三章两角和差的正弦、余弦、正切、二倍角公式学案
3.1.1两角差的余弦公式一、教学目标1.引导学生建立两角差的余弦公式。
通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打好基础。
2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。
3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。
重点 两角差余弦公式的探索和简单应用。
难点 探索过程的组织和引导。
教学过程(一)创设情景,揭示课题问题:(1)能不能不用计算器求值 :0cos 45 ,0cos30 ,0cos15(2)0000cos(4530)cos45cos30-=-是否成立? (二)、研探新知向量法:问:①结合图形,明确应选哪几个向量,它们怎么表示? ② 怎样利用向量数量积的概念和计算公式得到结果。
③ 对探索的过程进一步严谨性的思考和处理,从而得到合理的科学结论。
设计意图:让学生经历利用向量知识解决一个数学问题的过程,体会向量方法解决数学问题的简洁性。
()()cos ,sin ,cos ,sin OA OB ααββ==则由向量数量积的概念,有 OA OB ∙=由向量数量积的坐标表示,有OA OB ∙=因为 α、β、都是任 意 角,所以αβ-也是任意角,但由诱导公式以总可找到一个[0,2)θπ∈,使得cos cos()θαβ=-。
于是对于任意角α、β都有x如图,建立单位圆Oco Cαβ-()简记例1. 利用差角余弦公式求0cos15的值变式训练:利用两角差的余弦公式证明下列诱导公式:(1)ααπsin)2cos(=-;(2)cos(2)cosπαα-=4π52.sinα=απcosβ= - βcos5213αβ∈-例已知,(,),,第三象限角,求()的值变式训练:15sin cos173πθθθ=-已知,是第二象限角,求()的值三、反思总结:本节主要考察如何用任意角αβ,的正弦余弦值来表示cos()αβ-,回顾公式Cαβ-()的推导过程,观察公式的特征,注意符号区别以及公式中角α,β的任意性,特别要注意公式既可正用、逆用,还可变用(即要活用).在求值的过程中,还要注意掌握“变角”和“拆角”的思想方法解决问题. 四、当堂检测1.利用两角和(差)的余弦公式,求00cos75,cos1052.求值0000cos75cos30sin75sin30+ 3.化简cos()cos sin()sinαββαββ+++14.cos sin7αβααββ=+=已知,为锐角,,(),求cos五、课后练习与提高1. 0000cos50cos20sin50sin20+的值为()A. 12 B. 13 C. D. 2. 0cos(15)-的值为()A. B. C. D 3.已知12cos,0,132παα⎛⎫=∈ ⎪⎝⎭,则c o s()4πα-的值等于()A. B. C. D. 134.化简00cos(30)cos sin(30)sinαααα+++= 5.若()0000cos60,sin60,(cos15,sin15)a b==,则a b∙= 6.已知233sin,,cos,0,3242ππααπβα⎛⎫⎛⎫=-∈=∈ ⎪ ⎪⎝⎭⎝⎭,求cos()αβ-的值.3.1.2两角和与差的正弦、余弦、正切公式(1)教学目的:能由两角差的余弦公式推导出两角和的余弦公式,并进而推得两角和差的正弦公式,并运用进行简单的三角函数式的化简、求值和恒等变形教学重点: 由两角和的余弦公式推导出两角和的正弦公式 教学难点: 进行简单的三角函数式的化简、求值和恒等变形 教学过程:(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:()cos αβ+= ;二、讲解新课: ()c o s αβ-= .这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? 提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?请同学们动手完成两角和与差正弦和正切公式.()()sin cos 2παβαβ⎡⎤+=-+=⎢⎥⎣⎦()()sin sin αβαβ-=+-=⎡⎤⎣⎦.三、讲解范例:例1不查表,求下列各式的值:(熟悉公式结构)1︒ sin75︒ 2︒ sin13︒cos17︒+cos13︒sin17︒例2 求证:cos α+3sin α=2sin(6π+α) (构造辅助角方法)例3 已知sin(α+β)=32,sin(α-β)=52 求βαtan tan 的值 (整体计算思想)四、当堂检测)(37sin 83sin 37cos 7sin 1的值为、︒︒-︒︒(A)23-(B)21- (C)21(D)232、x x sin cos 3-=_____________.)(,3cos 2cos 3sin 2sin 3的值是则若、x x x x x =(A)10π(B)6π(C)5π (D)4π.________3sin ,2,23,51cos 4=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∈=πθππθθ则若、()()._________sin sin cos cos 6=+++ββαββα、五、小结 两角和与差的正弦、余弦公式及一些技巧“辅助角”“角变换”“逆向运用公式”如:asin α+bcos α=22b a + (sin αcos φ+cos αsin φ)= 22b a + sin(α+φ),其中tan φ=ab 等,有时能收到事半功倍之效.六、课后作业:3.1.2两角和与差的正弦、余弦、正切公式(2)教学目的:要求学生能根据两角和与差的正、余弦公式推导出两角和与差的正切公式教学重点:根据两角和与差的正、余弦公式推导出两角和与差的正切公式 教学难点:公式T α+β ,T α-β及运用 教学过程:一、复习引入:1.两角和与差的正、余弦公式βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=-二、讲解新课:请同学们结合教材完成下列探究观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.∵cos (α+β)≠0()()()sin tan cos αβαβαβ++==+ .通过什么途径可以把上面的式子化成只含有tan α、tan β的形式呢? 注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?()()tan tan αβαβ-=+-=⎡⎤⎣⎦注意:,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.三、讲解范例:例1求tan15︒,tan75︒的值:(熟悉公式结构)例2 已知tan α=31,tan β=-2 求cot(α-β),并求α+β的值,其中0︒<α<90︒, 90︒<β<180︒例3 求下列各式的值:1︒75tan 175tan 1-+(对1的灵活处理) 2︒tan17︒+tan28︒+tan17︒tan28︒(整体计算思想)(四)当堂检测 1. 已知()21tan ,tan ,544παββ⎛⎫+=-= ⎪⎝⎭求tan 4πα⎛⎫+ ⎪⎝⎭的值.( ))(75tan 75tan 1 22的值为、︒︒-(A)32(B)332()32-C (D)332-3. 若.)tan(,21cos cos ,21sin sin ,=-=--=-βαβαβαβα则均为锐角,且4、α为第二象限角,)的值。
人教A版高中数学必修四两角和与差的正弦、余弦、正切公式二教案
3.1.2 两角和与差的正弦、余弦、正切公式(二)一、教学目标1、理解两角和与差的余弦、正弦和正切公式,体会三角恒等变换特点的过程;2、掌握两角和与差的余弦、正弦和正切公式的应用及ααcos sin b a +类型的变换。
二、教学重、难点1. 教学重点:两角和、差正弦和正切公式的运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.三、教学设想:(一)复习式导入:(1)基本公式βαβαβαsin cos cos sin )sin(-=- βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαtan tan 1tan tan )tan(⋅+-=- βαβαβαtan tan 1tan tan )tan(⋅-+=+(2)练习:教材P132面第6题。
思考:怎样求ααcos sin b a +类型?(二)新课讲授例1x x解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?)()1cos sin 30cos cos30sin 22sin 302x x x x x x x ⎫==-=-⎪⎪⎭思考:是怎么得到的?=12的.归纳:b a b a b a =++=+ϕϕαααtan )sin(cos sin 22例2、已知:函数R x x x x f ∈-=,cos 32sin 2)( 求)(x f 的最值。
(2)求)(x f 的周期、单调性。
例3.已知A 、B 、C 为△ABC 的三內角,向量)3,1(-=m ,)sin ,(cos A A n = ,且1=∙n m ,求角A 。
(2)若3sin cos cos sin 2122-=-∙+B B B B ,求tanC 的值。
练习:(1)教材P132面7题(2)在△ABC 中,B A B A cos cos sin sin ,则△ABC 为( )A .直角三角形B .钝角三角形C .锐角三角形D .等腰三角形(2) 的值为12sin 12cos3ππ-( )A . 0B .2C .2D .2- 思考:已知432πβπ,1312)cos(=-βα,53)sin(-=+βα,求α2sin三、小结:掌握两角和与差的余弦、正弦和正切公式的应用及ααcos sin b a +类型的变换。
高中数学必修四导学案-两角和与差的正弦、余弦、正切公式
疱工巧解牛知识•巧学一、两角和的余弦公式1.比较cos(α-β)与cos(α+β),根据α+β与α-β之间的联系:α+β=α-(-β),则由两角差的公式得cos(α+β)=cos[α-(-β)]=cosαcos(-β)+sinαsin(-β)=cosαcosβ-sinαsinβ,即cos(α+β)=cosαcosβ-sinαsinβ.学法一得这种以-β代β的变换角的方式在三角函数的恒等变形中有着重要应用,同时也启发我们要辩证地看待和角与差角.在公式C(α-β)中,因为角α、β是任意角,所以在C(α+β)中,角α、β也是任意角.2.用两点间的距离公式推导C(α+β).图3-1-5如图3-1-5,在直角坐标系xOy内作单位圆O,以O为顶点,以x轴的非负半轴为始边,作出角α、-β,使角α、-β的终边分别交单位圆于点P2、P4,再以OP2为始边,作角β,使它的终边交单位圆于点P3,这样就出现了α、β、α+β这样的角,设角α、-β的始边交单位圆于点P1,则P1(1,0).设P2(x,y),根据任意角的三角函数的定义,有sinα=y,cosα=x,即P2(cosα,sinα);同理,可得P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)).由整个作图过程可知△P3OP1≌△P2OP4,所以|P1P3|=|P2P4|.|P1P3|2=|P2P4|2,即[cos(α+β)-1]2+sin2(α+β)=[cos(-β)-cosα]2+[sin(-β)-sinα]2.根据同角三角函数的基本关系,整理得2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ),即cos(α+β)=cosαcosβ-sinαsinβ.3.利用向量的数量积推导C(α+β).图3-1-6如图3-1-6,在平面直角坐标系xOy内作单位圆,以Ox为始边作角α、-β,它们与单位圆的交点分别为A、B.显然,=(cos α,sin α),=(cos(-β),sin(-β)).根据向量数量积的定义,有·=(cos α,sin α)·(cos(-β),sin(-β))=cos αcos(-β)+sin αsin(-β)=cos αcos β-sin αsin β.于是cos(α+β)=cos αcos β-sin αsin β.学法一得 ①在处理问题的过程中,把有待解决或难解决的问题,通过某种转化,归结为一类已经解决或比较容易解决的问题,最终求得原问题的解,这种思想方法叫做化归思想. ②以任意角的三角函数的定义为载体,我们推导了同角的三角函数的基本关系式、诱导公式和两角和的余弦公式.熟记公式中角、函数的排列顺序及式中的正负号是正确使用公式的关键.记忆要诀 公式右端的两部分为同名三角函数之积,连接符号与左边的连接符号相反.二、两角和与差的正弦1.公式的推导sin(α-β)=cos [2π-(α-β)]=cos [(2π-α)+β]=cos(2π-α)cos β-sin(2π-α)sin β=sin αcos β-cos αsin β. 在上面的公式中,以-β代β,即可得到sin(α+β)=sin αcos β+cos αsin β.2.和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2π-α)=sin2πcos α-cos2πsin α=0×cos α-1×sin α=-sin α.当α或β中有一个角是2π的整数倍时,通常使用诱导公式较为方便;上面公式中的α、β均为任意角. 误区警示 公式对分配律不成立,即sin(α±β)≠sin α±sin β,学习时一定要注意这一点.学法一得 公式使用时不仅要会正用,还要能够逆用,如化简sin(α+β)cos β-cos(α+β)sin β,不要将sin(α+β)和cos(α+β)展开,而应当整体考察,进行如下变形:sin(α+β)cos β-cos(α+β)sin β=sin [(α+β)-β]=sin α,这也体现了数学中的整体原则.记忆要诀 记忆时要与两角和与差的余弦公式区别开来,两角和与差的正弦公式的右端的两部分为异名三角函数之积,连接符号与左边的连接符号相同.三、两角和与差的正切1.公式的推导利用两角和的正弦、余弦公式,可以推导出两角和的正切公式:tan(α+β)=βαβαβαβαβαβαsin sin cos cos sin cos cos sin )cos()sin(-+=++,当cos αcos β≠0时,我们可以将上式的分子、分母同时除以cos αcos β,即得用tan α和tan β表示的公式: tan(α+β)=βαβαtan tan 1tan tan -+,在上面的公式中,以-β代β,可得两角差的正切公式: tan(α-β)=βαβαtan tan 1tan tan +-. 2.公式成立的条件要能应用公式,首先要使公式本身有意义,即tan α、tan β存在.并且1+tan αtan β的值不为零,所以可得α、β需满足的条件:α≠k π+2π,β≠k π+2π,α+β≠k π+2π或α-β≠k π+2π,以上k∈Z .当tan α、tan β、tan(α±β)不存在时,可以改用诱导公式或其他方法解决. 学法一得 两角和与差的正切同样不仅可以正用,而且可以逆用、变形用,逆用和变形用都是化简三角恒等式的重要手段,如tan α+tan β=tan(α+β)(1-tan αtan β)就可以解决诸如tan15°+tan30°+tan15°tan30°的问题.所以在处理问题时要注意考察式子的特征,巧妙运用公式或其变形,使变换过程简单明了.典题•热题知识点一 所求角可表示成两个特殊角的和、差例1 求sin75°,tan15°的值.解:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30° =42621222322+=⨯+⨯; tan15°=tan(60°-45°)=32311345tan 60tan 145tan 60tan -=+-=︒︒+︒-︒, 或tan15°=tan(45°-30°)=3233133130tan 45tan 130tan 45tan -=+-=︒︒+︒-︒. 例2 求︒︒-︒︒︒+︒8sin 15sin 7cos 8sin 15cos 7sin 的值. 思路分析:观察被求式的函数名称的特点和角的特点,其中7°=15°-8°,15°=8°+7°,8°=15°-7°.无论采取哪种代换方式,都可减少角的个数.利用和角或差角公式展开,进行约分、化简、求值.若用7°=15°-8°代换,分子、分母是二次齐次式;若用15°=8°+7°或8°=15°-7°代换,分子、分母将会出现三次式,显然选择后者更好,不妨比较一下. 答案:原式=︒︒+︒-︒︒︒+︒+︒8sin )87sin(7cos 8sin )87cos(7sin ︒︒︒-︒-︒︒︒︒+︒-︒=︒∙︒-︒︒︒-︒︒∙︒-︒︒︒+︒=8sin 8cos 7sin )8sin 1(7cos 8sin 8cos 7cos )8sin 1(7sin 8sin 7cos 8sin 8cos 7sin 7cos 8sin 7sin 8sin 8cos 7cos 7sin 2222 ︒︒-︒︒︒︒+︒︒=︒︒︒-︒∙︒︒︒︒+︒∙︒=8sin 7sin 8cos 7cos 8sin 7cos 8cos 7sin 8sin 8cos 7sin 8cos 7cos 8sin 8cos 7cos 8cos 7sin 223215tan 15cos 15sin -=︒=︒︒=. 巧解提示:原式=︒∙︒-︒-︒︒∙︒+︒-︒8sin 15sin )815cos(8sin 15cos )815sin( ︒∙︒-︒∙︒+︒∙︒︒∙︒+︒∙︒-︒∙︒=8sin 15sin 8sin 15sin 8cos 15cos 8sin 15cos 8sin 15cos 8cos 15sin ︒∙︒︒∙︒=8cos 15cos 8cos 15sin =tan15°=tan(45°-30°) 3233133130tan 45tan 130tan 45tan -=+-=︒∙︒+︒-︒=. 方法归纳 三角函数式的结构一般由角、三角函数符号及运算符号三部分组成.因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角恒等变换的重要特点.无论是化简、求值,还是证明,其结果应遵循以下几个原则:①能求值的要求值;②三角函数的种类尽可能少;③角的种类尽可能少;④次数尽可能低;⑤尽可能不含根号和分母.知识点二 已知α、β的三角函数值,求α±β的三角函数值例3 已知sin α=31,求cos(3π+α)的值. 思路分析:因为3π是个特殊角,所以根据C (α+β)的展开式,只需求出cos α的值即可.由于条件只告诉了sin α=31,没有明确角α所在的象限,所以应分类讨论,先求cos α的值,再代入展开式确定cos(3π+α)的值. 解:∵sin α=31>0,∴α位于第一、二象限. 当α是第一象限角时,cos α=322)31(12=-, ∴cos(3π+α)=cos 3πcos α-sin 3πsin α=6322312332221-=⨯-⨯; 同理,当α是第二象限角时,cos α=322-, ∴cos(3π+α)=6332+-. 方法归纳 解这类给值求值问题的关键是先分清S (α±β)、C (α±β)、T (α±β)的展开式中所需要的条件,结合题设,明确谁是已知的,谁是待求的.其中在利用同角三角函数的基本关系求值时,应先解决与已知具有平方关系的三角函数值.但是,对于cos(π+α)、cos(2π+α)这样的函数求值,由于它们的角与2π的整数倍有关,所以无需按它们的展开式求值,直接利用诱导公式可能更简单.例4 已知cos(α-2β)=91-,sin(2α-β)=32,并且2π<α<π,0<β<2π,求2c o s βα+的值. 思路分析:观察给出的角)2()2(2βαβαβα---=+,结合公式C (α-β)展开式的特点,只需利用同角三角函数的基本关系计算出sin(α-2β)、cos(2α-β)的值即可. 解:∵2π<α<π,0<β<2π,∴4π<2α<2π,0<2β<4π.∴4π<α-2β<π,-4π<2α-β<2π. 又∵cos(α-2β)=91-<0,∴πβαπ<-<<22. ∴954)91(1)2(sin 1)2sin(22=--=--=-βαβα. 同理,∵sin(2α-β)=32>0,∴220πβα<-<. ∴35)32(1)2(sin 1)2cos(22=-=--=-βαβα. 故)]2()2cos[(2cos βαβαβα---=+ =cos(α-2β)cos(2α-β)+sin(α-2β)sin(2α-β) 2757329543591=⨯+⨯-=. 例5 在△ABC 中,sinA=53,cosB=135,求cosC. 思路分析:本题主要考查三角形中的三角函数问题.若不注意“△ABC”这个条件,就会产生多解,所以解这类问题时一定要注意尽量压缩角的范围,避开分类讨论,同时要注意结论是否符合题意.解:∵cosB=22135<,∴B∈(4π,2π)且sinB=1312. ∵sinA=2253<,∴A∈(0,4π)∪(43π,π). 若A∈(43π,π),B∈(4π,2π),则A+B∈(π,23π)与A+B+C=π矛盾, ∴A ∉(43π,π).因此A∈(0,4π)且cosA=54. 从而cosC=cos [π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=651613125313554=⨯+⨯-. 例6 如图3-1-7,已知向量OP =(3,4)绕原点旋转45°到OP′的位置,求点P′(x′,y′)的坐标.图3-1-7思路分析:本题相当于已知角α的三角函数值,求α+45°的三角函数值.解:设∠xOP=α.因为|OP|=54322=+,所以cos α=53,sin α=54. 因为x′=5cos(α+45°)=5(cos αcos45°-sin αsin45°)22)22542253(5-=⨯-⨯=, 同理,可求得y′=5sin(α+45°)=227,所以P′(22-,227). 方法归纳 ①已知角α的某一三角函数值和角α所在的象限,则角α的其他三角函数值唯一;已知角α的某一三角函数值,不知角α所在的象限,应先分类讨论,再求α的其他三角函数值.②一般地,90°±α,270°±α的三角函数值,等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号,它的证明也可通过两角和、差的三角函数式进行.③在给值求值的题型中,要灵活处理已知与未知的关系,合理进行角的变换,使所求角能用已知角表示出来,所求角的三角函数值能用已知角的三角函数值表示出来.知识点三 已知三角函数值求角例7 已知sin α=55,sin β=1010,且α、β都是锐角,求α+β的值. 思路分析:(1)根据已知条件可先求出α+β的某个三角函数值,如cos(α+β).(2)由两角和的余弦公式及题设条件知只需求出cos α、cos β即可.(3)由于α、β都是锐角,所以0<α+β<π,y=cosx 在(0,π)上是减函数,从而根据cos(α+β)的值即可求出α+β的值. 解:∵sin α=55,sin β=1010,且α、β都是锐角,∴cos α=552sin 12=-α,cos β= 10103sin 12=-β.∴cos(α+β)=cos αcos β-sin αsin β=2210105*********=⨯-⨯. 又∵0<α+β<π,∴α+β=4π. 方法归纳 给值求角的一般步骤是:①确定所求角的范围;②找到该范围内具有单调性的某一三角函数值;③先找到一个与之相关的锐角,再由诱导公式导出所求角的值.知识点四 利用两角和、差的三角函数公式证明恒等式例8 已知3sin β=sin(2α+β),求证:tan(α+β)=2tan α.思路分析:观察条件等式和结论等式中的角,条件中含有β、2α+β,结论中含有α+β、α,若从条件入手,可采用角的变换,β=(α+β)-α,2α+β=(α+β)+α,展开后转化成齐次整式,约分得出结论.证明:∵3sin β=3sin [(α+β)-α]=3sin(α+β)cos α-3cos(α+β)sin α,sin(2α+β)=sin [(α+β)+α]=sin(α+β)cos α+cos(α+β)sin α,又3sin β=sin(2α+β),∴3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α.∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.方法归纳 对条件恒等式的证明,若条件复杂,可从化简条件入手得出结论;若结论复杂,可化简结论得出条件;若条件和结论都较为复杂,可同时化简它们,直到找到它们间的联系.知识点五 变用两角和差的三角函数公式化简求值例9 用和、差公式证明tan12°+tan18°+33 tan12°·tan18°=33. 解:∵︒∙︒-︒+︒18tan 12tan 118tan 12tan =tan(12°+18°)=tan30°=33, ∴tan12°+tan18°=33 (1-tan12°·tan18°), 即左边=33(1-tan12°tan18°)+33tan12°tan18°=33=右边. ∴tan12°+tan18°+33tan12°·tan18°=33. 方法归纳 三角公式通过等价变形,可正用,可逆用,也可变用,主要是通过对函数结构式的变形与对角的分、拆、组合来实现的.例10 求(1+tan1°)(1+tan2°)(1+tan3°)……(1+tan45°)的值.解:因为α+β=45°时,tan(α+β)=βαβαtan tan 1tan tan --+=1,所以tan α+tan β+tan αtan β=1,即(1+tan α)(1+tan β)=2. 于是(1+tan1°)(1+tan44°)=(1+tan2°)(1+tan43°)=……=(1+tan22°)(1+tan23°)=2. 又因为1+tan45°=2,所以原式=223.方法归纳 当α+β=k π+4π,k∈Z 时,(1+tan α)(1+tan β)=2; 当α+β=k π-4π,k∈Z 时,(1+tan α)(1+tan β)=2tan αtan β. 问题•探究思想方法探究问题1 在三角恒等变换中,三角公式众多,公式变换也是解决问题的有效手段,在应用这些公式时要注意些什么问题?探究过程:使用任何一个公式都要注意它的逆向变换、多向变换,这是灵活使用公式所必须的,尤其是面对那么多三角公式,把这些公式变活,显得更加重要,这也是学好三角函数的基本功.如:cos(α-β)cos β-sin(α-β)sin β化简为__________.将α-β看作一个角,β看作另一个角,则cos(α-β)cos β-sin(α-β)sin β=cos [(α-β)+β]=cos α. 解答本题时不仅利用角的变换:α=(α-β)+β,同时运用了公式的逆向变换. 探究结论:两角和的正切公式tan(α+β)=βαβαtan tan 1tan tan -+.除了掌握其正向使用之外,还需掌握如下变换:1-tan αtan β=)tan(tan tan βαβα++;tan α+tan β=tan(α+β)(1-tan αtan β);tan αtan βtan(α+β)=tan (α+β)-tan α-tan β等.两角和的正切公式的三种变形要熟悉,其在以后解题中经常使用,要能灵活处理.问题2 2004年重庆高考有一题为:求函数y=sin 4x+32sinxcosx-cos 4x 的最小正周期和最小值,并写出该函数在[0,π]上的单调递增区间.该函数变形后就需要用到形如asinx+bcosx(a 、b 不同时为零)的式子的变换,我们称之为辅助角变换,那么如何进行辅助角变换?探究过程:形如asinx+bcosx(a 、b 不同时为零)的式子可以引入辅助角变形为Asin(x+φ)的形式.asinx+bcosx=)cos sin (222222x b a b x b a a b a -+++, 令cos φ=22b a a +,sin φ=22b a b +,则 原式=22b a +(sinxcos φ+cosxsin φ)=22b a +sin(x+φ).(其中φ角所在象限由a 、b 的符号确定,φ角的值由tan φ=a b 确定,常常取φ=arctan ab ). 探究结论:辅助角变换是三角变形的重要形式,它的应用十分广泛,特别是在数学中求三角函数的最值及物理学当中波的合成时,都是重要的工具.例如2sinx-3cosx ,就可以利用这一结论将其化为一个三角函数的形式,从而确定其最值,因为a=2,b=-3,A=1322=+b a ,所以2sinx-3cosx=13sin(x+φ),(其中φ在第四象限,且tan φ=23-),所以2sinx-3cosx 的最大值是13,最小值是13-.。
人教新课标A版必修4:3.1 两角和与差的正弦、余弦和正切公式(导学案+教案)
π2)1cos导学案两角和与差的正弦、余弦公式【目标及要求】1. 掌握两角和与两角差的正弦、余弦公式.2.能正确运用三角公式进行简单的三角函数式的化简、求值、证明. 【课前预习案】:2、 诱导公式1)sin()cos()tan()παπαπα+=⎧⎪+=⎨⎪+=⎩ 2)sin()cos()tan()ααα-=⎧⎪-=⎨⎪-=⎩ 3)sin()cos()tan()παπαπα-=⎧⎪-=⎨⎪-=⎩4)sin()2cos()2παπα⎧-=⎪⎪⎨⎪-=⎪⎩ 5) sin()2cos()2παπα⎧+=⎪⎪⎨⎪+=⎪⎩ 3、同角三角函数基本关系平方关系(1)_______________ 商数关系(2)_______________ 4、两角差的余弦公式)(βα-Ccos()αβ-=cos15o= 【课内探究案】1、问题一:cos75?o=设计问题解决方案2、探究一:探究两角和的余弦公式思考1:注意到α+β=α―(?),结合)(βα-C ,推导cos(α+β)。
)cos(βα+=cos(())α-=________________(学生独立完成,组内核对)思考2:上述公式就是两角和的余弦公式,记作)(βα+C ,该公式有什么特点?如何记忆? 3、 学以致用(一)求值 cos75= 化简 =+)6cos(απ4、探究二:探究两角和与差的正弦公式 思考3:sin()cos(?)αβ+=诱导公式)2cos(sin απα-=,则?)2cos()sin(-=+πβα。
分别用sin ,cos ,sin ,cos ααββ 表示)sin(βα+。
))(2cos()sin(-=+πβα=))()cos((+=____________________________(学生独立完成,组内核对)思考4:如何求)sin(βα-?有哪些方法可以实现? ①()()sin cos()2παβ=-- ②sin()sin(())αβα-=+——学生讨论交流方法(组内讨论,邻近组间交流结果))sin(βα-=____________________________________思考5:上述公式就是两角和与差的正弦公式,分别记作)(βα+S ,)(βα-S ,这两个公式有什么特点?如何记忆?5、学以致用(二)求值sin 75= 化简=-)43sin(απ【理论迁移与技能提升】例1、 已知3sin ,5αα=-是第四象限的角,sin()4πα-求、cos()4πα-,cos()4πα+、sin()4πα+的值。
2020秋人教A版数学必修四3.1.2两角和与差的正弦公式word导学案
3.1.2 两角和与差的正弦公式【学习目标】1、掌握两角和与差的正弦公式及其推导方法。
2、通过公式的推导,了解它们的内在联系,培养逻辑推理能力。
并运用进行简单的三角函数式的化简、求值和恒等变形。
3、掌握诱导公式 sin =cos α,sin = cos α,sin =- cos α, sin =- cos α,【学习重点难点】 (一)预习指导: 两角和与差的余弦公式:(二)基本概念: 基本概念:1.两角和的正弦公式的推导 sin(α+β)=sin(α-β)=sin αcos β-sin αcos β(二)、典型例题选讲:例1求值sin(χ+60°)+2sin(χ-60°)-3cos(120°-χ)⎪⎭⎫ ⎝⎛+απ2⎪⎭⎫ ⎝⎛-απ2⎪⎭⎫ ⎝⎛+απ23⎪⎭⎫⎝⎛-απ23例2:已知sin(2α+β)=3sin β,tan α=1,求tan(α-β)的值.例3:已知sin(α+β)= ,sin(α-β)= 求 的值.例4:(1)已知sin(α-β)= ,sin(α+β)= ,求tan α:tan β)的值.【课堂练习】1.在△ABC 中,已知cosA = ,cosB= ,则cosC 的值为2.已知 <α< ,0<β<α,cos( +α)=- ,sin( +β)= ,求sin(α+β)的值.3.已知sin α+sin β= ,求cos α+cos β的范围.3252βαtan tan 312131544π43π4π5343π135224.已知sin(α+β)= ,sin(α-β)= ,求 的值.5.已知sin α+sin β= cos α+cos β= 求cos(α-β)6.化简2cos χ-6sin χ 解:我们得到一组有用的公式:(1)sin α±sin α=2sin =2cos .(3)sin α3±cos α=2sin =2cos(4)αsin α+bcos α=22b a +sin (α+ϕ)=22b a +cos(α-θ)7.化解3cos χχsin -8.求证:cos χ+sin χ=2cos (χ - )21101βαtan tan 5354 ⎝⎛⎪⎭⎫±4πα ⎝⎛⎪⎭⎫4πα ⎝⎛⎪⎭⎫±3πα ⎝⎛⎪⎭⎫3πα 4π9.求证:cos α+3sin α=2sin ( ).10.已知 ,求函数у=cos ( )-cos 的值域.11.求 的值.【课堂小结】απ+6⎥⎦⎤⎢⎣⎡∈2,0πχχπ-12⎝⎛⎪⎭⎫+χπ125︒︒-︒20cos 20sin 10cos 2。
高中数学必修四3.1.2两角和与差的正弦、余弦、正切公式(2)导学案
高中数学必修四3.1.2两角和与差的正弦、余弦、正切公式(2)导学案
1.2两角和与差的正弦、余弦、正切公式
【学习目标】
领会两角和与差的正弦、余弦、正切公式之间的内在联系,并能灵活运用公式进行运算.
会推导并会应用公式
A.B.
c.D.
规律总结:
怎样化简类型?
【课堂小结】
【当堂达标】
=
A.B.
c.D.
可化为
A.B.
c.D.
*3.若,则=
【课时作业】
在△ABc中,,则△ABc为
A.直角三角形B.钝角三角形
c.锐角三角形D.等腰三角形
△ABc中,若2cosBsinA=sinc则△ABc的形状一定是
A.等腰直角三角形B.直角三角形
c.等腰三角形D.等边三角形
函数y=sinx+cosx+2的最小值是
A.2-B.2+
c.0D.1
.如果cos=-,那么cos=________.
*5.求函数y=cosx+cos的最大值
*6.化简.
*7.已知<α<,0<β<,cos=-,sin=,求sin的值.在三角形ABc中,求证:
*9.已知函数
的最大值是1,其图象经过点.
求的解析式;
已知,且
求的值.
【延伸探究】
是否存在锐角和,使得+2=;同时成立,若存在,求出和的值,若不存在,请说明理由。
【新导学案】高中数学人教版必修四:312《两角和与差的正弦、余弦、正切公式》(2).doc
3.1.2《两角和与差的正弦、余弦、正切公式》导学案【学习目标】1. 能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间 的内在联系。
2. 能应用公式解决比较简单的有关应用的问题。
•【重点难点】1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.【学法指导】1. 理解并掌握两角和与差的正弦、余弦、正切公式,初步运用公式求一些角的三角函数值;2. 经历两角和与差的三角公式的探究过程,提高发现问题、分析问题、解决问题的能力;【知识链接】1、在一般情况下 sin( a + B ) Hsin a +sin P , cos( a + p ) Hcos a +cos P . sin0 = 2,则sin(&-◎二;若&是第四象限角,则sin(ff-—)=5 44tan& = 2,第三象限角,求tan(^-—) = _______________________ .0)等。
2 1 7T已知 tan (6Z + 0) = 丁, tan (a -/?) = — — ,那么 tan (cr + 丁)的值为( ) A^ ——— C^ — D N —1818 12 223. 在运用公式解题时,既要注意公式的正用,也要注意公式的反用和•变式运用.如公式tan(« ±3)= ?n a — tan 卩可变形为:七刖 a 土 tan 0 二tan( a ± P ) (1 + tan a tan B );1 + tan a tan ptan 20 + tan 40 + V3 tan 20° tan 40° = ________________4、又如:asin a +bcos Q 二 Q a? + b ,(sina cos (])+cos asin (1)) = a 2 +/?2 sin (a + <1>),其中 tanbe 二一等,有时能收到事半功倍之效.・aA /3 cos.r-sinx =注意角的变换及公式除活运用,女ftz 二(G + 〃) 一 0;2Q 二(Q + 0) -(G - 0),2、± tan a tan B =.1-tan a ± tan 0 tan (a ± 0)sin a + cos a = ________________ :sina -cosa = _______________提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中【学习过程】(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:动手完成两角和与差正弦和正切公式.观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.通过什么途径可以把上面的式子化成只含有tana 、tan0的形式呢?(分式分子、分母同时除以C°S°COS0,得到tan(“ + 0)=器册注意:Q + 0 工—F k 兀工—F k7U 、/3 工—FG Z )以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?/ 小 r ztana + tan(—0) tan a - tan 0 tan(a —0) = tan a + (_0)= --------------------------- = ------------------------ ---L 」 l — tanotan(—0) l + tanatan0注意:6Z + 0 工—F k 兀、(X F k 兀、0 H —F k7V (k G z ). (二)例题讲解例2、利用和(差)角公式计算下列各式的值:1、已知sin^ = --,6Z 是第四象限角,求sin/\[兀• COS (7t' —+ Q ,tan ( 龙) a —— 5<4丿u )I 4丿 的值..例(1)、sin72° cos42° -cos72° sin42°: (2)、cos20° cos70: -sin20° sin70z: (3)、l + tanl5° l-tanl5°3、若 sin2xsin3x = cos2xcos3x,贝吐的值是 ( )兀(A)—10兀(近,则 sin/ \0 + -I 2*<3例3、化简血 cosx- sinx【学习反思】【基础达标】1、sin 7°cos37° -sin 83°sin 37。
人教版高中数学A版必修4学案 两角和与差的正弦、余弦、正切公式(二)
3.1.2 两角和与差的正弦、余弦、正切公式(二)明目标、知重点 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式.2.能利用两角和与差的正切公式进行化简、求值、证明.3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.1.两角和与差的正切公式(1)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β. (2)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.两角和与差的正切公式的变形(1)T (α+β)的变形:tan α+tan β=tan(α+β)(1-tan αtan β).tan α+tan β+tan αtan βtan(α+β)=tan(α+β).tan αtan β=1-tan α+tan βtan (α+β). (2)T (α-β)的变形:tan α-tan β=tan(α-β)(1+tan αtan β).tan α-tan β-tan αtan βtan(α-β)=tan(α-β).tan αtan β=tan α-tan βtan (α-β)-1.[情境导学] 某城市的电视发射塔建在市郊的一座小山的山顶C 处.小山的高BC 约为30米,在地平面上有一点A ,测得A 、C 两点间距离约为67米,从点A 处观测电视发射塔的视角(∠CAD )约为45°.求这座电视发射塔的高度.解 设电视发射塔的高CD =x ,∠CAB =α,则sin α=3067. 在Rt △ABD 中,tan(45°+α)=x +3030tan α, 于是x =30tan (45°+α)tan α-30. 如何能由sin α=3067求得tan(45°+α)的值呢?或者说能不能用sin α把tan(45°+α)表示出来呢?虽然我们已经学习了两角和与差的正弦、余弦公式,但是使用这些公式显然不能直接解决上述问题.我们有必要得到两角和与差的正切公式.探究点一 两角和与差的正切公式的推导思考1 你能根据同角三角函数基本关系式tan α=sin αcos α,从两角和与差的正弦、余弦公式出发,推导出用任意角α,β的正切值表示tan(α+β),tan(α-β)的公式吗?试一试.答 当cos(α+β)≠0时,tan(α+β)=sin (α+β)cos (α+β)=sin αcos β+cos αsin βcos αcos β-sin αsin β. 当cos αcos β≠0时,分子分母同除以cos αcos β,得tan(α+β)=tan α+tan β1-tan αtan β. 根据α,β的任意性,在上面式子中,以-β代替β得tan(α-β)=tan α+tan (-β)1-tan αtan (-β)=tan α-tan β1+tan αtan β. 思考2 在两角和与差的正切公式中,α,β,α±β的取值是任意的吗?答 在公式T (α+β),T (α-β)中α,β,α±β都不能等于k π+π2(k ∈Z ). 探究点二 两角和与差的正切公式的变形公式思考 两角和与差的正切公式变形形式较多,例如:tan α±tan β=tan(α±β)(1∓tan αtan β),tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 这些变形公式在解决某些问题时是十分方便的.请利用两角和与差的正切公式或变形公式完成以下练习.练习:直接写出下列式子的结果:(1)tan 12°+tan 33°1-tan 12°tan 33°= ;(2)tan 75°= ;(3)1-tan 15°1+tan 15°= . 答案 (1)1 (2)2+3 (3)33例1 求下列各式的值: (1)3+tan 15°1-3tan 15°; (2)tan 15°+tan 30°+tan 15°tan 30°.解 (1)原式=tan 60°+tan 15°1-tan 60°tan 15°=tan(60°+15°) =tan 75°=tan(30°+45°)=tan 30°+tan 45°1-tan 30°tan 45°=33+11-33=2+ 3. (2)∵tan 45°=tan 15°+tan 30°1-tan 15°tan 30°=1, ∴tan 15°+tan 30°=1-tan 15°tan 30°∴原式=(1-tan 15°tan 30°)+tan 15°tan 30°=1.反思与感悟 公式T (α+β),T (α-β)是变形较多的两个公式,公式中有tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者知二可表示出第三个.跟踪训练1 求下列各式的值:(1)cos 75°-sin 75°cos 75°+sin 75°; (2)tan 36°+tan 84°-3tan 36°tan 84°.解 (1)原式=1-tan 75°1+tan 75°=tan 45°-tan 75°1+tan 45°tan 75°=tan(45°-75°)=tan(-30°)=-tan 30°=-33. (2)原式=tan 120°(1-tan 36°tan 84°)-3tan 36°tan 84°=tan 120°-tan 120°tan 36°tan 84°-3tan 36°tan 84°=tan 120°=- 3.例2 若α,β均为钝角,且(1-tan α)(1-tan β)=2,求α+β的值.解 ∵(1-tan α)(1-tan β)=2,∴1-(tan α+tan β)+tan αtan β=2,∴tan α+tan β=tan αtan β-1,∴tan α+tan β1-tan αtan β=-1.∴tan(α+β)=-1. ∵α,β∈⎝⎛⎭⎫π2,π,∴α+β∈(π,2π).∴α+β=7π4. 反思与感悟 此类题是给值求角题,解题步骤如下:①求所求角的某一个三角函数值,②确定所求角的范围.此类题常犯的错误是对角的范围不加讨论,范围讨论的程度过大或过小,会使求出的角不合题意或者漏解.跟踪训练2 已知tan α,tan β是方程x 2+33x +4=0的两根,且-π2<α<π2,-π2<β<π2,求角α+β.解 由已知得⎩⎪⎨⎪⎧tan α+tan β=-33,tan α·tan β=4, ∴tan α、tan β均为负,∴-π2<α<0,-π2<β<0. ∴tan(α+β)=tan α+tan β1-tan αtan β=-331-4= 3. ∵-π<α+β<0,∴α+β=-2π3. 例3 已知△ABC 中,tan B +tan C +3tan B tan C =3,且3tan A +3tan B =tan A tan B -1,试判断△ABC 的形状. 解 ∵3tan A +3tan B =tan A tan B -1,∴3(tan A +tan B )=tan A tan B -1,∴tan A +tan B1-tan A tan B =-33,∴tan(A +B )=-33. 又∵0<A +B <π,∴A +B =5π6,∴C =π6, ∵tan B +tan C +3tan B tan C =3,tan C =33, ∴tan B +33+tan B =3,tan B =33, ∴B =π6,∴A =2π3, ∴△ABC 为等腰钝角三角形.反思与感悟 三角形中的问题,A +B +C =π肯定要用,有时与诱导公式结合,有时利用它寻找角之间的关系减少角.跟踪训练3 已知A 、B 、C 为锐角三角形ABC 的内角.求证:tan A +tan B +tan C =tan A tan B tan C .证明 ∵A +B +C =π,∴A +B =π-C .∴tan(A +B )=tan A +tan B 1-tan A tan B=-tan C . ∴tan A +tan B =-tan C +tan A tan B tan C .即tan A +tan B +tan C =tan A tan B tan C .1.若tan(π4-α)=3,则tan α的值为( ) A .-2 B .-12 C.12D .2 答案 B解析 tan α=tan ⎣⎡⎦⎤π4-⎝⎛⎭⎫π4-α =1-tan ⎝⎛⎭⎫π4-α1+tan ⎝⎛⎭⎫π4-α=1-31+3=-12. 2.已知A +B =45°,则(1+tan A )(1+tan B )的值为( )A .1B .2C .-2D .不确定答案 B解析 (1+tan A )·(1+tan B )=1+(tan A +tan B )+tan A tan B=1+tan(A +B )(1-tan A tan B )+tan A tan B=1+1-tan A tan B +tan A tan B =2.3.已知A ,B 都是锐角,且tan A =13,sin B =55,则A +B = . 答案 π4解析 ∵B 为锐角,sin B =55, ∴cos B =255,∴tan B =12, ∴tan(A +B )=tan A +tan B 1-tan A tan B =13+121-13×12=1. ∵0<A +B <π,∴A +B =π4. 4.已知tan ⎝⎛⎭⎫α-β2=12,tan ⎝⎛⎭⎫β-α2=-13,则tan ⎝⎛⎭⎫α+β2= .答案 17解析 tan ⎝ ⎛⎭⎪⎫α+β2=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-β2+⎝⎛⎭⎫β-α2 =tan ⎝⎛⎭⎫α-β2+tan ⎝⎛⎭⎫β-α21-tan ⎝⎛⎭⎫α-β2tan ⎝⎛⎭⎫β-α2 =12+⎝⎛⎭⎫-131-12×⎝⎛⎭⎫-13=17. [呈重点、现规律]1.公式T (α±β)的适用范围及结构特征和符号规律(1)由正切函数的定义可知α、β、α+β(或α-β)的终边不能落在y 轴上,即不为k π+π2(k ∈Z ). (2)公式T α±β的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和. (3)符号变化规律可简记为“分子同,分母反”.2.公式T (α±β)的逆用一方面要熟记公式的结构,另一方面要注意常值代换.如tan π4=1,tan π6=33,tan π3=3等. 要特别注意tan ⎝⎛⎭⎫π4+α=1+tan α1-tan α,tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α.3.公式T (α±β)的变形应用只要见到tan α±tan β,tan αtan β时,要有灵活应用公式T (α±β)的意识,就不难想到解题思路.一、基础过关1.已知α∈⎝⎛⎭⎫π2,π,sin α=35,则tan ⎝⎛⎭⎫α+π4的值等于( ) A.17 B .7 C .-17D .-7 答案 A2.已知tan(α+β)=35,tan ⎝⎛⎭⎫β-π4=14,那么tan ⎝⎛⎭⎫α+π4等于( ) A.1318 B.1323C.723D.16答案 C解析 tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤α+β-⎝⎛⎭⎫β-π4=35-141+35×14=723.3.已知tan α=12,tan β=13,0<α<π2,π<β<3π2,则α+β的值是( ) A.π4 B.3π4 C.5π4 D.7π4答案 C4.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2-5x +1=0的两个实数根,则△ABC 是( )A .钝角三角形B .锐角三角形C .直角三角形D .无法确定答案 A解析 ∵tan A +tan B =53,tan A ·tan B =13, ∴tan(A +B )=52,∴tan C =-tan(A +B )=-52, ∴C 为钝角.5.1+tan 75°1-tan 75°= . 答案 -36.已知tan ⎝⎛⎭⎫π4+α=2,则12sin αcos α+cos 2α的值为 . 答案 23解析 ∵tan ⎝⎛⎭⎫π4+α=2,∴1+tan α1-tan α=2,解得tan α=13. ∴12sin αcos α+cos 2α=sin 2α+cos 2α2sin αcos α+cos 2α=tan 2α+12tan α+1=19+123+1=23. 7.求值:(1-tan 59°)(1-tan 76°).解 原式=1-tan 59°-tan 76°+tan 59°tan 76°=1-(tan 59°+tan 76°)+tan 59°tan 76°=1-tan 135°(1-tan 59°tan 76°)+tan 59°tan 76°=1+1-tan 59°tan 76°+tan 59°tan 76°=2.二、能力提升8.化简tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°的值等于( )A .1B .2C .tan 10° D.3tan 20°答案 A解析 原式=tan 10°tan 20°+3tan 20°+ 3 tan 10° =3(tan 10°+tan 20°+33tan 10°tan 20°) =3×33=1. 9.设θ为第二象限角,若tan ⎝⎛⎭⎫θ+π4=12,则sin θ+cos θ= . 答案 -105解析 因为tan ⎝⎛⎭⎫θ+π4=tan θ+11-tan θ=12, 所以tan θ=-13, 因为θ为第二象限角,所以cos θ=- 11+tan 2θ=-31010, sin θ=1-cos 2θ=1010, 则sin θ+cos θ=1010-31010=-105. 10.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)= . 答案 1解析 ∵tan β=cos α-sin αcos α+sin α=1-tan α1+tan α. ∴tan β+tan αtan β=1-tan α.∴tan α+tan β+tan αtan β=1.∴tan α+tan β=1-tan αtan β.∴tan α+tan β1-tan αtan β=1,∴tan(α+β)=1. 11.在△ABC 中,求证:tan A 2tan B 2+tan B 2tan C 2+tan C 2tan A 2=1. 证明 ∵A +B +C =180°,∴A 2+B 2+C 2=90°. ∴A +B 2=90°-C 2. ∴tan ⎝ ⎛⎭⎪⎫A +B 2=tan ⎝⎛⎭⎫90°-C 2=1tan C 2. ∴tan ⎝ ⎛⎭⎪⎫A +B 2·tan C 2=1. ∴⎝⎛⎭⎫tan A 2+tan B 2tan C 21-tan A 2tan B 2=1, ∴tan A 2tan C 2+tan B 2tan C 2=1-tan A 2tan B 2. 即tan A 2tan B 2+tan B 2tan C 2+tan C 2tan A 2=1. 12.已知sin(α-β)=513,sin(α+β)=-513,且α-β∈(π2,π),α+β∈(3π2,2π),求cos 2β的值.解 ∵sin(α-β)=513,α-β∈(π2,π), ∴cos(α-β)=-1213. ∵sin(α+β)=-513,α+β∈(3π2,2π),∴cos(α+β)=1213. ∴cos 2β=cos [(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=1213×(-1213)+(-513)×513=-1. 三、探究与拓展13.已知tan α,tan β是方程x 2-3x -3=0的两根,试求sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β)的值.高中数学-打印版精校版 解 由已知有⎩⎪⎨⎪⎧tan α+tan β=3,tan α·tan β=-3, ∴tan(α+β)=tan α+tan β1-tan αtan β=31-(-3)=34. ∴sin 2(α+β)-3sin(α+β)cos(α+β)-3cos 2(α+β) =sin 2(α+β)-3sin (α+β)cos (α+β)-3cos 2(α+β)sin 2(α+β)+cos 2(α+β) =tan 2(α+β)-3tan (α+β)-3tan 2(α+β)+1=(34)2-3×34-3(34)2+1=-3.。
2020版高中数学人教A版必修4 导学案 《两角和与差的正弦余弦正切公式二》学生版
3.1.2 两角和与差的正弦、余弦、正切公式(二)学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.知识点一 两角和与差的正切公式思考1 怎样由两角和的正弦、余弦公式得到两角和的正切公式?答案为: tan(α+β)=sin (α+β)cos (α+β)=sin αcos β+cos αsin βcos αcos β-sin αsin β,分子分母同除以cos αcos β,便可得到.思考2 由两角和的正切公式如何得到两角差的正切公式? 答案为: 用- β替换tan(α+β)中的β即可得到. 名称 简记符号 公式 使用条件 两角和的正切 T (α+β)tan(α+β)=tan α+tan β1-tan αtan βα,β,α+β均不等于kπ+π2(k∈Z)两角差的正切 T (α- β)tan(α- β)=tan α-tan β1+tan αtanβα,β,α- β均不等于kπ+π2(k∈Z)知识点二 两角和与差的正切公式的变形 (1)T (α+β)的变形:tan α+tan β=tan(α+β)(1- tan αtan β).tan α+tan β+tan αtan βtan(α+β)=tan(α+β).tan αtan β=1- tan α+tan βtan (α+β).(2)T (α- β)的变形:tan α- tan β=tan(α- β)(1+tan αtan β).tan α- tan β- tan αtan βtan(α- β)=tan(α- β).tan αtan β=tan α-tan βtan (α-β)- 1.类型一 正切公式的正用例1.(1)已知tan α=- 2,tan(α+β)=17,则tan β的值为 .(2)已知α,β均为锐角,tan α=12,tan β=13,则α+β= .反思与感悟(1)注意用已知角来表示未知角. (2)利用公式T (α+β)求角的步骤: ①计算待求角的正切值.②缩小待求角的范围,特别注意隐含的信息. ③根据角的范围及三角函数值确定角. 跟踪训练1已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝⎛⎭⎪⎫θ-π4= .类型二 正切公式的逆用例2:(1)1+tan 15°1-tan 15°= ;(2)1-3tan 75°3+tan 75°= .反思与感悟注意正切公式的结构特征,遇到两角正切的和与差,构造成与公式一致的形式,当式子出现12,1,3这些特殊角的三角函数值时,往往是“由值变角”的提示.跟踪训练2求下列各式的值:(1)cos 75°-sin 75°cos 75°+sin 75°; (2)1-tan 27°tan 33°tan 27°+tan 33°.类型三 正切公式的变形使用例3.(1)化简:tan 23°+tan 37°+3tan 23°tan 37°;(2)若锐角α,β满足(1+3tan α)(1+3tan β)=4,求α+β的值.反思与感悟两角和与差的正切公式有两种变形形式:①tan α±tan β=tan(α±β)(1∓tan αtan β)或②1∓tan α·tan β=tan α±tan βtan (α±β).当α±β为特殊角时,常考虑使用变形形式①,遇到1与正切的乘积的和(或差)时常用变形形式②.合理选用公式解题能起到快速、简捷的效果.跟踪训练3在△ABC 中,A +B≠π2,且tan A +tan B +3=3tan Atan B ,则角C 的值为( )A.π3B.2π3C.π6D.π41.若tan α=3,tan β=43,则t an(α- β)等于( )A.13B.- 13C.3D.- 3 2.已知cos α=- 45,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan ⎝ ⎛⎭⎪⎫π4-α等于( ) A.- 17 B.- 7 C.17D.73.已知A +B=45°,则(1+tan A)(1+tan B)的值为( ) A.1 B.2 C.- 2 D.不确定4.已知A ,B 都是锐角,且tan A=13,sin B=55,则A +B= .5.已知sin α+cos αsin α-cos α=3,tan(α- β)=2,则tan(β- 2α)= .1.公式T (α±β)的结构特征和符号规律 (1)公式T (α±β)的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和.(2)符号变化规律可简记为“分子同,分母反”. 2.应用公式T (α±β)时要注意的问题 (1)公式的适用范围由正切函数的定义可知,α、β、α+β(或α- β)的终边不能落在y 轴上,即不为kπ+π2(k∈Z).(2)公式的逆用一方面要熟记公式的结构,另一方面要注意常值代换如tan π4=1,tan π6=33,tan π3=3等.特别要注意tan(π4+α)=1+tan α1-tan α,tan(π4- α)=1-tan α1+tan α.(3)公式的变形应用只要用到tan α±tan β,tan αtan β时,有灵活应用公式T (α±β)的意识,就不难想到解题思路. 特别提醒:tan α+tan β,tan αtan β,容易与根与系数的关系联系,应注意此类题型.课时作业一、选择题1.若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.562.3tan 23°tan 97°- tan 23°- tan 97°的值为( ) A.2 B.2 3 C. 3 D.03.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝⎛⎭⎪⎫α+π4的值为( ) A.322 B.2213 C.1318 D.164.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2- 5x +1=0的两个实数根,则△ABC 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.无法确定5.若tan 28°tan 32°=a,则tan 28°+tan 32°等于( )A.3aB.3(1- a)C.3(a- 1)D.3(a +1)6.设向量a=(cos α,- 1),b=(2,sin α),若a⊥b,则tan ⎝⎛⎭⎪⎫α-π4等于( ) A.- 13 B.13 C.- 3 D.37.在△ABC 中,tan A +tan B +tan C=33,tan 2B=tan A·tan C,则B 等于( ) A.30° B.45° C.120° D.60°二、填空题8.已知tan α=12,则tan (π4+α)-11+tan (π4+α)的值是 .9.tan 75°-tan 15°1+tan 75°tan 15°= .10.已知α,β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)= .11.如图,在△ABC 中,AD⊥BC,D 为垂足,AD 在△ABC 的外部,且BD∶CD∶AD=2∶3∶6, 则tan ∠BAC= .12.若(tan α- 1)(tan β- 1)=2,则α+β的最小正值为 .三、解答题13.已知tan ⎝ ⎛⎭⎪⎫π12+α=2,tan ⎝⎛⎭⎪⎫β-π3=22,求:(1)tan ⎝⎛⎭⎪⎫α+β-π4的值; (2)tan(α+β)的值.四、探究与拓展14.如果tan α,tan β是方程x 2- 3x- 3=0两根,则sin (α+β)cos (α-β)= .15.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2 两角和与差的正弦、余弦、正切公式(二)学习目标 1.能利用两角和与差的正弦、余弦公式推导出两角和与差的正切公式. 2.能利用两角和与差的正切公式进行化简、求值、证明. 3.熟悉两角和与差的正切公式的常见变形,并能灵活应用.知识点一 两角和与差的正切公式思考1 怎样由两角和的正弦、余弦公式得到两角和的正切公式?答案为: tan(α+β)=sin (α+β)cos (α+β)=sin αcos β+cos αsin βcos αcos β-sin αsin β,分子分母同除以cos αcos β,便可得到.思考2 由两角和的正切公式如何得到两角差的正切公式? 答案为: 用- β替换tan(α+β)中的β即可得到. 名称 简记符号 公式 使用条件 两角和的正切 T (α+β)tan(α+β)=tan α+tan β1-tan αtan βα,β,α+β均不等于kπ+π2(k∈Z)两角差的正切 T (α- β)tan(α- β)=tan α-tan β1+tan αtanβα,β,α- β均不等于kπ+π2(k∈Z)知识点二 两角和与差的正切公式的变形 (1)T (α+β)的变形:tan α+tan β=tan(α+β)(1- tan αtan β).tan α+tan β+tan αtan βtan(α+β)=tan(α+β).tan αtan β=1- tan α+tan βtan (α+β).(2)T (α- β)的变形:tan α- tan β=tan(α- β)(1+tan αtan β).tan α- tan β- tan αtan βtan(α- β)=tan(α- β).tan αtan β=tan α-tan βtan (α-β)- 1.类型一 正切公式的正用例1.(1)已知tan α=- 2,tan(α+β)=17,则tan β的值为 .(2)已知α,β均为锐角,tan α=12,tan β=13,则α+β= .反思与感悟(1)注意用已知角来表示未知角. (2)利用公式T (α+β)求角的步骤: ①计算待求角的正切值.②缩小待求角的范围,特别注意隐含的信息. ③根据角的范围及三角函数值确定角. 跟踪训练1已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝⎛⎭⎪⎫θ-π4= .类型二 正切公式的逆用例2:(1)1+tan 15°1-tan 15°= ;(2)1-3tan 75°3+tan 75°= .反思与感悟注意正切公式的结构特征,遇到两角正切的和与差,构造成与公式一致的形式,当式子出现12,1,3这些特殊角的三角函数值时,往往是“由值变角”的提示.跟踪训练2求下列各式的值:(1)cos 75°-sin 75°cos 75°+sin 75°; (2)1-tan 27°tan 33°tan 27°+tan 33°.类型三 正切公式的变形使用例3.(1)化简:tan 23°+tan 37°+3tan 23°tan 37°;(2)若锐角α,β满足(1+3tan α)(1+3tan β)=4,求α+β的值.反思与感悟两角和与差的正切公式有两种变形形式:①tan α±tan β=tan(α±β)(1∓tan αtan β)或②1∓tan α·tan β=tan α±tan βtan (α±β).当α±β为特殊角时,常考虑使用变形形式①,遇到1与正切的乘积的和(或差)时常用变形形式②.合理选用公式解题能起到快速、简捷的效果.跟踪训练3在△ABC 中,A +B≠π2,且tan A +tan B +3=3tan Atan B ,则角C 的值为( )A.π3B.2π3C.π6D.π41.若tan α=3,tan β=43,则t an(α- β)等于( )A.13B.- 13C.3D.- 3 2.已知cos α=- 45,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan ⎝ ⎛⎭⎪⎫π4-α等于( ) A.- 17 B.- 7 C.17D.73.已知A +B=45°,则(1+tan A)(1+tan B)的值为( ) A.1 B.2 C.- 2 D.不确定4.已知A ,B 都是锐角,且tan A=13,sin B=55,则A +B= .5.已知sin α+cos αsin α-cos α=3,tan(α- β)=2,则tan(β- 2α)= .1.公式T (α±β)的结构特征和符号规律 (1)公式T (α±β)的右侧为分式形式,其中分子为tan α与tan β的和或差,分母为1与tan αtan β的差或和.(2)符号变化规律可简记为“分子同,分母反”. 2.应用公式T (α±β)时要注意的问题 (1)公式的适用范围由正切函数的定义可知,α、β、α+β(或α- β)的终边不能落在y 轴上,即不为kπ+π2(k∈Z).(2)公式的逆用一方面要熟记公式的结构,另一方面要注意常值代换如tan π4=1,tan π6=33,tan π3=3等.特别要注意tan(π4+α)=1+tan α1-tan α,tan(π4- α)=1-tan α1+tan α.(3)公式的变形应用只要用到tan α±tan β,tan αtan β时,有灵活应用公式T (α±β)的意识,就不难想到解题思路. 特别提醒:tan α+tan β,tan αtan β,容易与根与系数的关系联系,应注意此类题型.课时作业一、选择题1.若tan α=13,tan(α+β)=12,则tan β等于( )A.17B.16C.57D.562.3tan 23°tan 97°- tan 23°- tan 97°的值为( ) A.2 B.2 3 C. 3 D.03.已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,则tan ⎝⎛⎭⎪⎫α+π4的值为( ) A.322 B.2213 C.1318 D.164.A ,B ,C 是△ABC 的三个内角,且tan A ,tan B 是方程3x 2- 5x +1=0的两个实数根,则△ABC 是( ) A.钝角三角形 B.锐角三角形 C.直角三角形 D.无法确定5.若tan 28°tan 32°=a,则tan 28°+tan 32°等于( )A.3aB.3(1- a)C.3(a- 1)D.3(a +1)6.设向量a=(cos α,- 1),b=(2,sin α),若a⊥b,则tan ⎝⎛⎭⎪⎫α-π4等于( ) A.- 13 B.13 C.- 3 D.37.在△ABC 中,tan A +tan B +tan C=33,tan 2B=tan A·tan C,则B 等于( ) A.30° B.45° C.120° D.60°二、填空题8.已知tan α=12,则tan (π4+α)-11+tan (π4+α)的值是 .9.tan 75°-tan 15°1+tan 75°tan 15°= .10.已知α,β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)= .11.如图,在△ABC 中,AD⊥BC,D 为垂足,AD 在△ABC 的外部,且BD∶CD∶AD=2∶3∶6, 则tan ∠BAC= .12.若(tan α- 1)(tan β- 1)=2,则α+β的最小正值为 .三、解答题13.已知tan ⎝ ⎛⎭⎪⎫π12+α=2,tan ⎝⎛⎭⎪⎫β-π3=22,求:(1)tan ⎝⎛⎭⎪⎫α+β-π4的值; (2)tan(α+β)的值.四、探究与拓展14.如果tan α,tan β是方程x 2- 3x- 3=0两根,则sin (α+β)cos (α-β)= .15.如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 的横坐标分别为210,255.(1)求tan(α+β)的值; (2)求α+2β的值.答案解析例1.答案为:3解析:tan β=tan[(α+β)- α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.(2)答案为:π4解析:因为tan α=12,tan β=13,所以tan(α+β)=tan α+tan β1-tan αtan β=12+131-12×13=1.因为α,β均为锐角,所以α+β∈(0,π),所以α+β=π4.跟踪训练1答案为:- 43解析 由题意,得cos ⎝ ⎛⎭⎪⎫θ+π4=45,∴tan ⎝⎛⎭⎪⎫θ+π4=34. ∴tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=- 1tan ⎝ ⎛⎭⎪⎫θ+π4=- 43. 例2:答案为:(1)3;(2)- 1;解析:(1)原式=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.(2)原式=33-tan 75°1+33tan 75°=tan 30°-tan 75°1+tan 30°tan 75°=tan(30°- 75°)=- tan 45°=- 1.跟踪训练2解:(1)原式=1-tan 75°1+tan 75°=tan 45°-tan 75°1+tan 45°tan 75°=tan(45°- 75°)=tan(- 30°)=- tan 30°=-33. (2)原式=1tan (27°+33°)=1tan 60°=33.例3.解: (1)方法一tan 23°+tan 37°+3tan 23°tan 37°=tan(23°+37°)(1- tan 23°tan 37°)+3tan 23°tan 37° =tan 60°(1- tan 23°tan 37°)+3tan 23°tan 37°= 3. 方法二∵tan(23°+37°)=tan 23°+tan 37°1-tan 23°tan 37°,∴3=tan 23°+tan 37°1-tan 23°tan 37°,∴3- 3tan 23°tan 37°=tan 23°+tan 37°, ∴tan 23°+tan 37°+3tan 23°tan 37°= 3. (2)∵(1+3tan α)(1+3tan β)=1+3(tan α+tan β)+3tan αtanβ=4, ∴tan α+tan β=3(1- tan αtan β),∴tan(α+β)=tan α+tan β1-tan αtan β= 3.又∵α,β均为锐角,∴0°<α+β<180°, ∴α+β=60°.跟踪训练3 答案为:A解析 ∵tan A+tan B + 3=3tan Atan B ⇔tan(A +B)·(1- tan Atan B)=3(tan Atan B- 1).① 若1- tan Atan B=0,则cos Acos B- sin Asin B=0,即cos(A +B)=0.∵0<A+B<π,∴A+B=π2与题设矛盾.∴由①得tan(A +B)=- 3,即tan C= 3.又∵0<C<π,∴C=π3.1.答案为:A解析 tan(α- β)=tan α-tan β1+tan αtan β=3-431+3×43=13.2.答案为:D解析 由cos α=- 45,且α∈⎝ ⎛⎭⎪⎫π2,π,得sin α=35,所以tan α=sin αcos α=- 34, 所以tan ⎝ ⎛⎭⎪⎫π4-α=tan π4-tan α1+tan π4tan α=1-⎝ ⎛⎭⎪⎫-341-34=7.故选D.3.答案为:B ;解析:(1+tan A)(1+tan B)=1+(tan A +tan B)+tan Atan B=1+tan(A +B)(1- tan Atan B)+tan Atan B=1+1- tan Atan B +tan Atan B=2.4.答案为:π4解析 ∵B 为锐角,sin B=55,∴cos B=255,∴tan B=12, ∴tan(A+B)=tan A +tan B 1-tan Atan B =13+121-13×12=1.又∵0<A+B<π,∴A+B=π4.5.答案为:43解析 由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.∵tan(α- β)=2,∴tan(β- α)=- 2,故tan(β- 2α)=tan[(β- α)- α]=tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.1.答案为:A解析 tan β=tan[(α+β)- α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.2.答案为:C解析:∵tan(23°+97°)=tan 23°+tan 97°1-tan 23°tan 97°=tan 120°=- 3,∴tan 23°+tan 97°=- 3+3tan 23°tan 97°,∴原式=3tan 23°tan 97°- (- 3+3tan 23°tan 97°)= 3. 3.答案为:A ;解析 因为α+π4=(α+β)- (β- π4),所以tan ⎝ ⎛⎭⎪⎫α+π4=tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝⎛⎭⎪⎫β-π4=25-141+25×14=322.4.答案为:A解析:∵tan A+tan B=53,tan A·tan B=13,∴tan(A+B)=52,∴tan C=- tan(A +B)=- 52,∴C 为钝角,即△ABC 为钝角三角形. 5.答案为:B解析:∵tan(28°+32°)=tan 28°+tan 32°1-tan 28°tan 32°=3,∴tan 28°+tan 32°=3(1- a).6.答案为:B ;解析 由a·b=2cos α- sin α=0,得tan α=2.tan ⎝⎛⎭⎪⎫α-π4=tan α-tanπ41+tan αta nπ4=2-11+2=13.7.答案为:D ;解析 由公式变形得tan A +tan B=tan(A +B)(1- tan Atan B)=tan(180°- C)(1- tan Atan B) =- tan C(1- tan Atan B)=- tan C +tan Atan Btan C.∴tan A+tan B +tan C=- tan C +tan Atan Btan C +tan C=tan Atan Btan C=3 3.又∵tan 2B=tan Atan C ,∴tan 3B=33,∴tan B=3,∴B=60°.8.答案为:129.答案为: 3解析 原式=tan(75°- 15°)=tan 60°= 3. 10.答案为:1解析 ∵tan β=cos α-sin αcos α+sin α=1-tan α1+tan α,∴tan β+tan αtan β=1- tan α,∴tan α+tan β+tan αtan β=1,∴tan α+tan β=1- tan αtan β, ∴tan α+tan β1-tan αtan β=1,∴tan(α+β)=1. 11.答案为:17解析 ∵AD⊥BC 且BD∶CD∶AD=2∶3∶6,∴tan ∠BAD=BD AD =13,tan ∠CAD=CD AD =36=12,tan ∠BAC=tan(∠CAD - ∠BAD)=tan ∠CAD-tan ∠BAD 1+tan ∠CADtan ∠BAD =12-131+12×13=17.12.答案为:3π413.解:(1)tan ⎝ ⎛⎭⎪⎫α+β-π4=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π12+⎝ ⎛⎭⎪⎫β-π3 =tan ⎝ ⎛⎭⎪⎫α+π12+tan ⎝⎛⎭⎪⎫β-π31-tan ⎝⎛⎭⎪⎫α+π12tan ⎝ ⎛⎭⎪⎫β-π3=2+221-2×22=- 2.(2)tan(α+β)=tan ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+β-π4+π4=tan ⎝ ⎛⎭⎪⎫α+β-π4+tan π41-tan ⎝⎛⎭⎪⎫α+β-π4tanπ4=-2+11+2×1=22- 3.14.答案为:- 32解析 sin (α+β)cos (α-β)=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β=31+(-3)=- 32.15.解:由条件得cos α=210,cos β=255.∵α,β为锐角,∴sin α=1-cos 2α=7210,sin β=1-cos 2β=55.因此tan α=sin αcos α=7,tan β=sin βcos β=12.(1)tan(α+β)=tan α+tan β1-tan αtan β=7+121-7×12=- 3.(2)∵tan 2β=tan(β+β)=2tan β1-tan 2β=2×121-⎝ ⎛⎭⎪⎫122=43, ∴tan(α+2β)=tan α+tan 2β1-tan αtan 2β=7+431-7×43=- 1.又∵α,β为锐角,∴0<α+2β<3π2,∴α+2β=3π4.。